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0. Introduction

LetG; andG4 be two connected compact Lie groups with classifying spaces
BG, and BGy. Write G1 > G4 if there exists a Lie group epimorphism

G1 — G9 with finite kernel and writedBG1 > BG5, if there exists a rational
equivalence, i.e. a map whose rationalization is a homotopy equivalence,
from BG1 to BGs. The purpose of this paper is to investigate the transitive
relation> on Lie groups as well as on classifying spaces.

Consider, for some fixed connected compact Lie gi@uihe finite set of
allisomorphism classes of connected compact Lie groups locally isomorphic
to G. This set, equipped with the covering group relatinis called the
local isomorphism system @¥. Its structure was analyzed by Baum [Ba]:
Classical Lie group theory tells us that the local isomorphism systeth of
contains a (uniquely determined) maximal element of the tBrmT where
H is the simply connected compact Lie group homotopy equivalent to the
universal covering group aff andT is a torus of rank> 0 (isomorphic
to the connected component of the centeof Any element of the local
isomorphism system af is [Ba, Proposition 2] the quotient éf x T' by a

| thank C.U. Jensen and S.Jgndrup for supplying the proof of Lemma 3.2 and K. Ishiguro
and D. Notbohm for many entertaining discussions
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special subgrgu— a special subgroup, denotgd, ), is [Ba, 1] the graph
of some homomorphism : K — T defined on a central subgroup of
H. Thus we may write

(%) G=HxT/(K,p)

for some (essentially unique) special subgrofp ¢).
Letting Epi(G1, G2) denote the set of Lie epimorphisms@f ontoGo,
the main technical advantage of Baum’s approach is expressed in

Theorem 0.1.[Ba, Proposition 5, Corollary 6Assume that
G1=H x T/(Kl,gol) anng =H x T/(KQ,QOQ)

are two connected compact Lie groups, locally isomorphi€'texpressed
as quotients off x T.

1. Epi(Gy, G2) corresponds bijectively to the set of all pairs
(o, B) € Aut(H) x Epi(T)
for whicha(K;) C K, and the diagram

K 27

!

Ky > T

commutes.
2. The pair(«a, 3), satisfying the conditions in (1), represents a Lie group

isomorphisnG; —» G if and only if3 € Aut(T) anda (K1) = Ko.

Here,Epi(7") denotes the monoid of of epimorphismsTfonto itself
andAut(H) the group of Lie automorphisms &f.

The bijection in point (1) associates to the pait 3) the epimorphism
G1 — Gycoveredbyw x 3: HxT — H x T. If G is presented as ifx),
any other presentation 6f has by point (2) the form

G=HxT/(a(K), Bopo(a|K)™)

for (o, B) € Aut(H) x Aut(T).

As K iscentralinH , the restriction oé. to K only depends ontheimage
of ain the groupOut(H) of outer automorphisms df . And sinceOut(H)
is a finite group, isomorphic to the automorphism group of the Dynkin
diagram ofH, Baum’s method makes it possible to do actual calculations —
a graphic display of the local isomorphism systent/@B0) can be found
in [Ba].
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A surprising result of Baum’s analysis is that two connected compact
Lie groups can cover each other without being isomorphic. (The simplest
example of this occurs in the local isomorphism systerti @f).) Here is a
systematic way of constructing such examples. Supposétispresented
as in formula(x) above and lef7, G] denote the set of isomorphism classes
of connected compact Lie groupswith G > L > G. For any epimorphism
R : T — T which is injective on the subgroup(K') C T, define

FRrG = H x T/(K, Ry)

where (inspired by [N-S]) theF” stands for ‘fake’. The commutative dia-
gram

K—Y2>7

4

K*)ch T

shows (Theorem 0.1) thét > FrG.
The isomorphism type of’rG depends on the presentatiof). How-
ever,

F (H x T/(K, 9)) = Frogr (H x T/(a(K), Bopo (a]K)™)

for any choice of(a, 3) € Aut(H) x Aut(T). Hence the set of isomor-
phism types FrG}, with R running through the allowable epimorphisms,
is presentation independent.

It turns out that alsd'rG > G so that

G > Fr(G) > G

or, equivalentlyF'rG € [G, G|, whenever the group in the middle is defined.
Actually, any group ifG, G| has this form.

Proposition 0.2.[Proposition 3.1]|G, G| equals the set of isomorphism
classes of Lie groups of the forflkG where R € Epi(T) is injective on
e(K)CT.

A proof of this statement can be found in Section 3. The material of Sec-
tion 3 also shows tha€z, G] is parameterized by the quotientdfit (o (K))
by the subgroup of those group automorphismg@X’) that extend to au-
tomorphisms of". For example[U (n), U(n)], n > 2 contains}y(n) ele-
ments where is Euler’sy-function. (These Lie groups are denoféty, (n)
in [N-S].)

If pistrivial,i.e.G = (H/K) x T, orif G is simple,[G, G| = {G}.

Following the pioneers [R-S], we now consider Baum’s method from a
homotopy point of view.
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Recall thatBG, > BG- means that there exists a rational equivalence
BG1 — BGs. Of courseGq > G5 implies BG > BGs but the converse
implication is not true in general (see below). Howevef;, > BG, does
imply (Proposition 2.7) thatz; andG5, are locally isomorphic so we are in
a situation where Baum’s method applies.

In the following homotopy version of Theorem 0¢cly(BG1, BG2) C
[BG1, BG,] denotes the set of homotopy classes of rational equivalences of
BG1t0BGyandsq(BH) C [BH, BH]the monoid of homotopy classes of
rational self-equivalences &fH . The invertible elements ity (B H ) form
the groupAut(B H) of homotopy classes of homotopy self-equivalences of
BH.

Theorem 0.3.Assume that
G1 =H x T/(Kl,gol) andG2 =H x T/(KQ,()OQ)

are two connected compact Lie groups, locally isomorphi€'texpressed
as quotients off x T.

1. eq(BG1, BG2) corresponds bijectively to the set of all pairs
(fH, ) € eq(BH) x Epi(T)

for whichn(fr)(K1) C K9 and the diagram

K1L>T

n(fH)IK1I is@

Ky 5= T

commutes.

2. The pair(fy, ), satisfying the conditions in (1), represents a homo-
topy equivalenceBG; — BG, if and only if fiy € Aut(BH),
(NS Aut(T), andn(fH)(Kl) = Ko.

In the above theoremy,: eq(BH) — Aut(Zy), whereZy is the center
of H, is a certain homomorphism defined in Section 2. See Theorem 2.3 for
ap-complete version of Theorem 0.3.

The bijection in point (1) associates (¢, ¢) a rational equivalence
BG1 — BG; covered byfy x ¢ : BH x BT — BH x BT.

The monoidsq(BH) and the functiom are completely known, rather
simple, algebraic structures, see [J-M}d[Mg], Theorem 3.1) and Exam-
ple 2.2, and this theoretically complete determination of all rational equiv-
alences between classifying spaces also appears to be a very user-friendly
algorithm in concrete applications; see Example 2.6 containing e.g.
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eq (BU(n)) = {¢* x 9% | (\, k) € Z x Z, (\,n!) =1, A = x modn},
n> 2,

together with a few other explicit formulas.

Jackowski, McClure & Oliver’s foundational method leads to an alterna-
tive description [J-M-Q] of rational self-equivalences in terms of admissi-
ble homomorphisms and root systems. Notbohn [Nfers a K -theoretic
classification of rational self-equivalences.

Bearing in mind thatg(BH) in general contains more than just in-
duced maps [J-M-QMg], a comparison of Theorem 0.1 and Theorem 0.3
indicates why there exist rational equivalendss; — BG4 that are not
induced by Lie group epimorphisnis; — Gs. In greater detail, suppose
H = H, x---x Hyisthe factorization of the simply connected compact Lie
group H into simple factors. Theag(BH) contains products of unstable
Adams operations of the forgh= ™ x --. x ™ where the exponent;
is prime to the Weyl group order df,. We haven(f) = ¢ x -+ x ¢™
wherey™i(z) = 2™ for anyz in the center of{;. Assuming that7 is given
as in the above formulgé), define

Glna,...,n = H x T/ ((HW) (K), ¢o (HW‘ZH)l)

and note the commutative diagram

K T
<Hwni>|f<le
(ITvm™) (K)

po(ITe"i|Zm) ™"

showing (Theorem 0.3) tha&G > BG[n4,...,n]. But, generally speak-
ing, no Lie group epimorphism tak&s onto G[n1,...,n:] as (Theorem
0.1) no Lie group automorphism tak&sisomorphically ontd] [ /") (K).
(ThusG[n4,...,n;] — G is a ‘finite covering map of finite loop spaces’
but not necessarily a finite covering map of compact Lie groups.) The iso-
morphism type of7[n4, ..., n] is independent of the chosen presentation

Using this construction to make up for the lack of unstable Adams op-
erations in the Lie category we obtain

Proposition 0.4.Let Gy and G5 be as in Theorem 0.1 and Theorem 0.3.

1. BGy > BG, if and only if Gy[ny,...,ns] > G5 for some natural
numbersn; with n; prime to the Weyl group order of the simple factor
H;.
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2. BG1 ~ BGs ifand only ifG; = G5 as Lie groups.

Point (2) in Proposition 0.4 was proved by H. Scheerer [S] in case of
simply connected compact Lie groups; A. Osse [O] recently published an
independent and quite different proof also for connected compact Lie groups,
and D. Notbohm [N] obtained the same result for compact Lie groups in
general.

Actually alsoBG|[ny,...,n{] > BG for BG[n1,...,nd[m, ..., my]
whenn;m; = 1 modulo the Weyl group order dff;. Thus

BG > BFrGi[ni,...,n) > BG

whenever the middle classifying space is defined. This observation leads to
a homotopy version of Proposition 0.2.

Let (G, G) denote the set of isomorphism classes of connected compact
Lie groupsL forwhichBG > BL > BG;thusFrG[n1,...,n) € (G, G).

Proposition 0.5.[Proposition 3.5|(G, G) equals the set of isomorphism
classes of Lie groups of the forbkG[ni,...,n:| whereR € Epi(T) is
injective onp(K) C T andny,...,n; are natural numbers with,; prime
to the Weyl group order of the simple factdk.

Of course |G, G| C (G, G); however, these two sets are not in general
identical (see Example 3.6). K is trivial, i.e.G = H x T, or G is simple,
(G.G) ={G}.

Now follows an application of Theorem 0.3 and jt€omplete analog,
Theorem 2.3, to genus sets of Lie group classifying spaces.

Let B be a connected nilpotent space of finite type. Denoté&/HyB)
the genus set consisting of all connected nilpotent homotopy tpe$
finite type with completion\” ~ B" and rationalizationX ) ~ Bq).

The perhaps most famous example of a genus sé&X)ieSp(2)) =
{Sp(2), E5} whereEs is called the Hilton—Roitberg criminal [H-R]. An-
other striking result is Zabrodsky's estimatg [Example 4.6.7]

IG)(SU(n |>H*"

of the size of the genus set 6fU(n). On the other hand compact Lie
groups modulo maximal tori are generically rigid, i.e. their genus sets are
singletons [G—M, P]. The finiteness of these genus sets is not accidental.
Indeed, G} (B) is finite, by Wilkerson [W, Theorem C], for any simply
connected finite CW-comple®. The situation changes drastically when
turning to infinite complexes. Rector [R], with help from McGibbon [McG]

at the primep = 2, found an invariant classifying the elements of the genus
set of BSU (2) and used it to show th&t)) (BSU(2)) is uncountably large;
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infactG{ (BG) is uncountably large [Mg, Theorem 2.3] for any non-abelian
connected compact Lie grodp. Notbohm & Smith investigated the genus
set of BU(n); their FUN Proposition [N-S, Proposition 2.1] asserts that
B([U(n),U(n)]) C G{(BU(n)), i.e. that the classifying space of any Lie
group covering and covered B¥(n) is of the same genus & (n).

The following construction may be seen as an attempt to extract the
essence of the FUN Proposition. Assume tHag a connected compact Lie
group presented as in formula) above. For any primg define

GV = H x T/(Kp, ¢|Kp)

wherek), is thep-primary part of the abelian group C Zy.(G®) = HxT
for almost allp.) The isomorphism type @) is independent of the choice
of special subgroupk, ¢).

Proposition 0.6.[Proposition 2.7, Proposition 4.1] LeL be a connected
compact Lie group. TheBL € G} (BG) if and only if L(P) € (G»), GP))
for all primesp.

Corollary 0.7. For any connected compact Lie group, B({(G,G)) C
G)(BG).

If G is simple or of the fornG = H x T', G itself is the only connected
compact Lie group whose classifying space is of the same gend&'a
do not know a general expression for the cardinality of the 8&&t€7) C
{L| BL € G}(BG)}.)

The final theorem of this paper, akind of a converse to Corollary 0.7, grew
out of a suggestion by C.A. McGibbon to consider rational equivalences
between spaces of the same genus&s

Theorem 0.8.Let G be a connected compact Lie group aida space of
the same genus d3G. If there exists a rational equivalence betweémand
BG, thenX € B((G,G)).

WhenG is simple a much stronger statement holds.

Corollary 0.9. LetG be a simple Lie group and a space of the same genus
asBG. If there exists an essential map betwééand BG, thenX ~ BG.

This implies in particular, as pointed out to me by K.-l. Maruyama and
by the referee, that no nontrivial map conneBtSp(2) and BEs5. See also
[I-M-N] for related results.

1. Roots and covering homomorphisms

This section establishes the terminology pertaining to roots and covering
homomorphism of Lie groups to be used in the next section.
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Let G be a compact connected Lie group with maximal tdfds The
adjoint representation df in the complex vector spade®g LG is com-
pletely determined by its irreducible charact&ys — S'. Aroot of G is a
homomorphismx : LTz — R fitting into a commutative diagram

LTGL>]R

expl le(t)eZﬂ'it

Te =5

for some nontrivial irreducible charactgy, contained in the adjoint repre-
sentation. The root system 6fis the setb; C Hom (L7, R) of all roots
of G.

The kernel of the universal covering space homomorphigm LT —
T¢ is naturally isomorphic to the fundamental grom7;) so any root
a @ LTg — R restricts to a homomorphism ébrexp = m(7¢) into
kere =7Z;i.e.

$q C Hom (m(Tg), Z) € Hom (m(Tg);, , Z})

whereZ; denotes the-adic integers and (T¢), = m1(Tg) ® Z;, is the
completion at the primg of the fundamental group.

The compact connected Lie groafs finitely covered by a compact Lie
group of the formH x T whereH is a simply connected compact simple
Lie group and! is a torus. According to Baum [Ba] we may even arrange
thatG as a quotient o x 7" has the special form

G=HxT/(K,¢)

where(K, ) C H x T is the graph of a homomorphis#fyy > K — T
defined on a central subgroudp of H. Thus we have principak -bundles

K &y HxT % @
I U U

K b TyxT S 1,

wherej(h) = (h,¢(h)), h € K, andgq is the projection homomorphism.
Consider the short exact sequence

0 — m1(T) x m(T) "W ) (T) — K — 1

classifying the principak'-bundleq|Ty x T overTg.

Lemma l.1l.Let®y C Hom (m (Tx),Z) and®e C Hom (71 (1), Z) be
the root systems dff andG, respectively. Then
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1. &y = Pg omi(q)
2. () kera=mi(q)(m(T)) .

aEPq

[~=3

Proof. (1) The linear isomorphisniq : LH x LT — LG is equivariant
in the sense that

Lgo Ad(h) = Ad (q(h)) o Lq

forallh € H C H x T. Thus composition witly : Ty x T — T deter-
mines a bijection between the irreducible characters dfthespresentation
C ®gr LG and those of th€T; x T')-representatiof @ (LH x LT'). The
commutative diagram

Lg a

LTy x LT LTg

expl expl l

Ty x T ——Tg—— S

now shows that the roots &f x T precisely are the homomorphism of the
forma o Lg for « € &¢.

(2) Leta € & be aroot. In the basic situation

LTg L LR

16 ——= 5!

the kernel,U,, of the charactex,, is a closed codimensioh subgroup
of T with Lie algebralLU, = ker a. (The hyperplanedU,, a € @4,
form the walls of the Weyl chambers ([B-tD], Definition V.2.11).) As the
intersection) Uy, is the centeZ; of G ([B-tD], Proposition V.2.3) we see

(0%
that LZc = (ker a C LTg. Restricting to the integral lattice gives
«

m(Za) = mkera cm(Tq) -

Finally, sinceq : H x T' — G is the quotient map with respect to the
special subgroupK, ) C H x T, g mapsT C H x T isomorphically
onto the identity componerﬂg of Zg; see the proof of ([Ba], Proposition
5). In particular;y () (m(T)) = m1(Zg). O
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The proof ofthefirstpartof Lemma 1.1 does notuse¢hali xT — G
is of the special form but only that is a surjective homomorphism of
compact connected Lie groups of the same dimension.
Thep-completion of the short exact sequence for the prindigddundle
q|Ty x T has the form

0— m(TH); X m(T)Q 7%” m(TG)Q — K, —1

where K, is the p-primary subgroup ofK. Becausep-completion is an
exact functor of finitely generated abelian groups, Lemma 1.1 immediately
translates into @-adic version as well. In particular

m(q) (7T1(T)1/3\) = ﬂkera C 7T1<T(;);\

where the intersection is taken overalk ¢ C Hom (m1(Tc);,), Zy,)-

2. Rational equivalences

The aim of this section is, for any paiz; andG,, of locally isomorphic
compact connected Lie groups, to describe an injection

eq ((BG1), , (BGa))) C eq(BH,) x eq(BT})

where H x T, H simply connected]" a torus, is a compact Lie group
that coversG; and G2. Here, and in the followingsq(X,Y) C [X,Y]
denotes the set of homotopy classes of rational equivaleXices> Y and
ep(X) C [X, X] the monoid of rational self-equivalences¥f

First, a few remarks about the exponential exact sequence of aTorus,
The integral exponential exact sequence,

0—m(T) — LT BT —1

relates the torus, its Lie algebra and its integral lattice and it yields an iso-
morphism of abelian groups

n: Hom (7 (T), m1(T)) =, Hom (T,T)

takingw: m (T') — m(7T) to the homomorphism(w): T — T covered
byw® 1g: LT — LT. Thep-adic exponential exact sequence [J-M}O

0 —m (7)) — (1)) Q — Tpoo — 1

relates the subgrouf,~ C 7' of elements op-power order and thg-adic
lattice | (T'),: = m(T) ® Zj,. Itis obtained by tensoring

0—Zp —Q, —Z/p™ —0
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with 7 (7") and exploiting the natural isomorphisfior (7',Z/p>) =
m1(T) ® Z/p> coming from— @ Z /p>° applied to the integral exponential
exact sequence. Theadic exponential exact sequence yields an isomor-
phism of abelian groups

np: Hom (my(T)) , m(T)}) = Hom (Tpoo , Tpeo)

takingw: 71 (T), — m1(T); to the homomorphismy(w): Tyee — Tpeo
covered byw ® 1g. (Note ([F], Example 5, p. 181) that any abelian group
homomorphism between free finitely generargﬂmodules automatically
is Z;)-linear.)

Also for any pair,7; andTs, of tori, we define an isomorphism

Mp: Hom (7T1(T1);\, Fl(TQ);\) — Hom ((Tl)poo s (Tg)poo)

by associating to any homomorphisnthe homomorphism, (w) such that

0 ——=m(Th); ——=m(T1)y ® Q—— (T1)p —1

N N

0—— 7T1(T2);)\ - 7T1(T2);,\ RQ —— (TQ)poo —1
is a homomorphism gf-adic exponential exact sequences. Standard homo-
logical algebra shows
Lemma 2.1.Letw € Hom (w1 (1)) , m1(12)}).

1. wis an epimorphism= 1, (w) is an epimorphism.
2. np(w) is a monomorphisres w is a monomorphism.
3. Ifdim T = dim 715, then

w is a monomorphisms w ® 1g is an isomorphism
& 1p(w) is an epimorphism

and
w is an isomorphisme 7, (w) is an isomorphism
In particular,n, restricts to an isomorphism of monoids
np: Q(BT)") = Mono (m1(T);) — Epi(Tpe)

whereMono(—)(Epi(—)) denotes the monoid of injective (surjective) en-
domorphisms.

Thereis a parallel construction whéhs replaced by a simply connected
compact Lie grouH . Let Zy denote the center df and(Zy ), = Zy N
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(TH)p~ the subgroup of elements pfpower order inZy; here, Ty is the
maximal torus off. Define

Tp: 5Q(BH$) — Aut ((Zm)p)

by n,(fu) = nmp(wr) | (Zm), where the rational equivalencegs; <
eq(BH,) andwy € eq((BTy);) are related by the homotopy commuta-
tive diagram

(BTw)p "~ (BTn))

L

fu
BH) —!" . BG)

The mapwy exists by [A-W] and is a rational equivalence by ([J-M]O
Proposition 1.2). Sincey is unique up to lefiVz-action [A-W], 7, (wp)

is well-defined on the subgrogx ),, of central elements. It remains to be
seen that),(wy) maps(Zy), isomorphically to itself. The isomorphism
([Mg], Theorem 3.1)

o(BH)) = H eq (BH;))) 1 5,

H =][[;_, H", H;simple andH; # H; fori # j (with the convention that
Sp(n) andSpm (2n+1),n > 2, are considered to be distinct onlyit= 2)
shows that), is determined by its values for simple Lie groupdlfs simple
and(Zg), # 1, thenp | [Wg| and [J-M-Q] eq(BH,') = Aut(BH,)
is generated byBa, o € Out(H), and unstable Adams operatiofis,
X € (Z)*. Clearlyn,(Ba) = al(Zy), andn, (v)(t) = £, 1 € (Ty)pee,
take(Zx ), isomorphically to itself.

Here is an explicit list of, for the simply connected compact simple
Lie groups.
Example 2.2See Bourbaki ([Bo], Chp. VK4) for the action ofDut(H) on
Z.

i) The center ofSU(n), n = p’m > 2,5 > 1, (p,m) = 1, is cyclic of
ordern, Zsy(m) = {w'E |0 < i < n},w=e>"/" and

Np: €Q (BSU(n);\) (Zsum))p = {wm’ |0<i< p7}
is given by, () (w™) = w™AMod’ whereAmodp’ € (Z/p?)* is the
reduction modulgy’ of A € (Z))*.
ii) Spin (8) has centeZ = Z/2&7Z/2 andn, mapsOut(Spin (8)) = X5

isomorphically tcAut(Z) and all unstable Adams operations to the identity.
Spin (2n),n > 4 even, has cente = Z/2 x Z/2 andnz(a), 1 # a €
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Out(Spin (2n)) = Xy, is the nontrivial automorphism df that fixes the
kernel of the double coveringpin (2n) — SO(2n); na (Y1) (t) = t for
all A € (Z))* andt € Zy C Ty~. Spin(2n), n > 5 odd, has center
Z = 7/4 andny mapsOut(Spin (2n)) = X, isomorphically toAut(Z);
n2 () (t) = A MM for all X € (Z4)* andt € Z.

iif) Eg has cente = Z /3 andns mapsOut(FEs) = Yo isomorphically
to Aut(Z); n2(*)(t) = A M9 for all A € (Z4)* andt € Z.

iv) In all other casesy, is trivial.

The locally isomorphic compact connected Lie grogasandG, may
be assumed given on the form

Gl:HXT/(KZ,QOZ), i:1,2,

whereT isatorus H is a simply connected compact Lie group and K; —
T a homomorphism defined on a subgraldp C Zg. The principal ;-
bundles .

K, 2 HxT- 26, i=1,2
wherej; (k) = (k,¢i(k)), k € K;, induce fibrations

BK; 24 BH x BT 2% By, i=1,2,

of integral spaces and similar fibrationgge€ompleted spaces. The follow-
ing theorem describes the sgi((BG\1),,, (BG2);)) of rational equivalences

Theorem 2.3.For a given primep, let (K;), C K;, i = 1,2, denote the
subgroup ofK; of elements gf-power order.
(1) The product maps

e(BH)) x eq(BT))  — eq(BH) x BT}
Aut(BH)) x Aut(BT)) — Aut(BH) x BT}
are monoid isomorphisms.

(2) Letf: (BGy), — (BG?), be a(rational) equivalence. Then there
exist (rational) equivalencegy : BH,) — BH,), fr: BT,' — BT}
and a monomorphism (an isomorphism) (K ), — (K32), such that the
diagram

B(Kl)p Ba B(KQ)p
Bj1l iBjQ
faxfr
BH) x BT) T . BH) x BT}

Blhi iBth

(BG1)) f (BG2))
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commutes up to homotopy. The (rational) equivalerigesnd f are unique
up to homotopy and the monomorphiarts unique.

(3) Letfy: BH) — BH, and fr: BT, — BT, be (rational)
equivalences. The equatigho Bq; ~ Bgs o (fn x fr), has a solution
for some (rational) equivalencg: (BG1), — (BG>), if and only if the
commutative diagram

(ZH)p <—)(K1)p s Ty
I
Up(fH)l% | lnp(fT)

Y
(ZH)p <—>(K2)p R P>

can be completed by some (monomorphism) isomorphisii;), —
(KQ)p-

Proof. (1) It suffices to prove surjectivity as the two maps in point (1) are
monomorphisms by general principles.

Let g be a rational self-equivalence &fH,' x BT,". Choose [A-W],
[J-M-O,, Proposition 1.2 € Epi((T#)pe X Ty ), WwhereTy is the max-
imal torus of H, such that

(Be)p

i i

BHPA X BTpA BHIf X BTpA

commutes up to homotopy. The induced map

m2((By)y) € Mono(m1((Th)y) x m(T}))
C Autg, ((m1(Tw) x m(T)) @ Qp)

belongs to the normalize¥ (Wg 1) of the Weyl group of x 7' in the
general linear group of the vector spdag(Tx) x 71 (7)) ® Q,. An ele-
mentary linear algebra calculation, using the fact that the inverse rogéts of
spansr (Ty) ® Q,, shows that

N(WHXT) = N(WH) X Athp (71'1 (T) & Qp)

is the product of the normalize¥ (W) of the Weyl group ofH in the
general linear group of;(Ty) ® Q, and the full general linear group of
m(T) ® Qp. Hence

Y =9H X QT
for somepy € Epi((Th)p~) and somepr € Epi(Tp=).
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Now definefy to be the composition
N A AN 9 AN N A
BH, — BH, x BT,) — BH, x BT," — BH,

of g and the obvious inclusion and projection maps. A look at the homotopy
groupsr.(BH,') ®Q C m.(BH,' x BT)") ® Q reveals thafy; is arational
equivalence OBH;\. Observe that the above commutative square remains
commutative if the bottom mapis replaced by x (BgoT)g. Since rational
self-equivalences are determined by their restrictions to the maximal torus
[J-M-O,, Corollary 1.10], it follows thay ~ fz x (BgoT)Q. This proves
surjectivity.

If g € Aut(BH, x BT} is a homotopy self-equivalence; ((Ber);,)
= m2(g) is an automorphism ofy(BH,) x BT}') = mo(B1T,') andr.(fu)
= 7>4(g) an automorphism ofr.(BH))) = w>4(BH, x BT}). Thus
fr € Aut(BH,') andpr € Aut(Tpe) in this case.

(2) LetTy C H beamaximaltorusif andletl; = Ty xT/(Kl, 1),
Ty =Ty X T/(Kg, ©2) serve as maximal tori fa&;, G2. There exists [A-
W] a homotopy commutative diagram

(BTl)]/D\ —_— (BTQ)Q

L

(BG1)) —L~ (BGy))

The map between the classifying spaces of the maximal tori is a rational
equivalence sincg is one, see ([J-M-¢}, Proposition 1.2), so it induces
on homotopy some : 71 (T1),, — m1(T); such thatw ® 1q is an isomor-

phism. Define the isomorphisai by the commutative diagram

w®lg
m(T1) ® Qp “ m(T2) ® Qp

B

\ /

Wl(Tl);\% 7T1(T2);\

(q1)% | 2 (ﬂ)*T (qg)*T = | (g2)=

71'1(TH X T);\ 7T1(TH X T);\

. , T

m(TeXT)®Qp — — — = — — — — — — — — — — — — — >m (T xT)®Qp

whereg;: (H xT,Ty xT) — (G;, T;), i = 1,2, are the projections.
The isomorphismw ® Q is admissible [A-W] in the sense that for any
wi € NIy) CHCHXT

(w®Q)oAd (g1 (wr)) = Ad (g2(w2)) © (w @ Q)
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for somew; € N(Ty) C H C H x T'. This implies that
Vw, € N(Ty)3we € N(Tg): w' o Ad (wy) = Ad (w3) o’

i.e. that alsa.’ is an admissible automorphism. Admissibility implies, see
[Mg] or [J-M-0,], that for any root, of H x T there exist another root;
of H x T such that

ahow = o)

for some nonzero scalay € Q,. By Lemma 1.1 = a1 o (¢1)« and
oy = a0 (q2). for some rootsy; : m (Ti):g\ — Zlﬁ of G;,i = 1, 2. Hence,
for any rootas of Go, there exists a roat; of G; such that

az0(W®Q)o(q1)x =20 (q2)s 0w =0apow’ =Xy = Ao (q1)s,

i.e. such thatvs o (w ® Q) = Aay. Thusw(ker o) C ker aa. AS g runs
through the root systemhs, of G2, a; runs through the root syste#y of
(1 and we conclude that

or, by Lemma 1.1w((q1)«(m1(T);) C (g2)«(m1(T);)). Since(q1). and
(g2)« are monomorphisms; restricts to a monomorphismy : 71 (T, —
m1(T); such thatw o (¢1)« = (g2)« © wr. This monomorphism will make
also the diagram

Bq1)«
0 o (BT)) P 2 (BG) — 2 (), |
T
B *
0 WQ(BT)Z/?\ (Ba>) WQ(BGQ);J\ & (KQ)p 1

commute; here the exact rows are the short exact sequences for the principal
K;-bundlesq;: H x T — Gy, i = 1,2. Hence the only obstruction,
2 o fx o (Bq1)s, to lifting f o Bg; vanishes and there exigl; x fr €
eq(BH, x BT}') anda € Hom ((K1)p, (K2),) such thatf o Bqy =~
Bq2 o (fH X fT) anda o 81 = 62 o f*
We may viewfy as the2-connected covef(2) of f (which is a self
map of(BG;),(2) = BH,),i = 1,2). Thus fg is uniquely determined by
f and is a homotopy equivalencefifs one. Alsofr is uniquely determined
by f asmy(fr) = wr is a restriction ofry(f) and, sincev is injective (see
the proof of (3))wr is an isomorphism ifra (f) is one.
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(3) Definei;, | = 1, 2, by the commutative diagram

(K1)p K

Tl

(TH X T)poo>Z—>H x T

with horizontal inclusions.
Let, as abovefy x fr be the lift of the rational equivalenge (BGl)
— (BG2),. Write fr = (Byr), and let(Byg), be the restriction of
fu to (BTH) o1 € Epi(Tpe ), o € Epi((TH)p ) Then the outer and
lower square of the diagram

B(Kl)p Ba B(K2)p

| |

B((Tr x T)p=)p = B((Tu x T)p=)p

5| |

B(H x T)) JrxJr B(H x T))

A (Ben)p x(Ber)y

are homotopy commutative meaning ti¥t oio o ) ~ B(io (pg X ¢r)0

i1). By the theorem of Dwyer & Zabrodsky [D-Z], the homomorphisms
ioigoaandio (pg X @r) o are conjugate and even identical because
the imagei o i5 o v is central inH x T'. This is equivalent to saying that

fits into the commutative diagram of (3). Note thatnust be injective since
np(fH) = @u|Zy is an isomorphism.

Assume, conversely, that the diagram in (3) can be completed commu-
tatively by somen. The above diagram of classifying spaces will then be
homotopy commutative and so the “ Zabrodsky spaces will then be homo-
topy commutative and so the “ Zabrodsky Lemma” ([Mi], Proposition 9.5;
[Z], Lemma 3.1), or Proposition 1.1 in [N assures thafy x fr covers
somef: (BG1), — (BGa),. O

Thus we may say that
e ((BGh), , (BGa))) Ceq(BH,) x Epi(Ty=)

is the subset consisting of those pdifs;, ) for whichn,(fr)((£1)p) C
(K2), and

(K1)p —= Ty
Wp(fH)(Kl)pI i@

(Kg)p W) T
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commutes. Moreover, a pafify, ¢), for which this diagram commutes,
represents a homotopy equivalende@Gi), — (BG2), if and only if
fu € Aut(BH))), ¢ € Aut(Tp~), andn,(fu)((K1)p) = (Ka2)p. In case
G1 = Gy =: G, eq(BG)) (Aut(BGY)) is even a submonoid (subgroup)
of eq(BH,)) x eq(BT})") (Aut(BH,') x Aut(BT})).

We single out the semisimple case

Corollary 2.4. Let H be a simply connected compact Lie groif,, Ko C
Z i central subgroups, ang any prime.

1. ?%(])3(}{{/[{1)97 B(H/K»)y) = {f € eq(BHy) | np(f)(K1)p C

2. EQ(QBP(H/KQQ% B(H/K3)p) = 0if |(K1)p| > [(K2)p| -

3. Let PH = H/Zy. Theneg(BH), BPH)) = eo(BH)) =
SQ(BPH;\) bUtEQ(BPHIé\ , BH;\) = @ if (ZH)p 75 0.

In the general case we have,
€Q ((BG1)$, (BGQ);\) CeQ (B(H/Kl)]/o\ ; B(H/KQ)I/)\) X EQ(BTI;\)

so agaireg((BG1),, (BG2),) = 0if [(K1)p| > [(K2)pl. If ¢1 andyp; are
trivial, i.e. G; = (H/K;) x T, i = 1,2, the above inclusion is an identity
generalizing (1) in Theorem 2.3.

Example 2.5i) Let k be a natural number and Iél, C U(n), n =
»m, (p,m) = 1, be the subgroup of all diagonal matriceé& where
6% = 1. Then [Ba]

(n)/Fk = SU(n) x Sl/(Z, oK), prlw) = Wk

wherew generates’ = Zgy;(,,) as in Example 2.2.
Commutativity of

Zy 255 (81 e
oA
Zp 2 (91 oo

whereX € (Z))* and0 # s € Z is equivalent tolA = kxmodp’.
Consequently, fon > 2,

eq (BU(n)/Ix), , B(U(n)/17),) =
{(\K) € (Z))* x Z)) | Ix = ke modp’ }
as sets and as monoids:if= . In particular,

eq (BUM)L) = {(A\ k) € (Z))* x (Z))* | A=xmodp’ }, n> 2.
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If (k,n)=1,U(n)/I} = FUg(n) is the funny unitary group of [N-S].
i) Let H = Spin (2n+ 1) x Sp (n), n > 2. Example 2.2 shows that
is trivial oneg(BHY') = Aut(BHY) = (Z4)* x (Z4)*. Hence
BHY) if K1 =K»
BUH/K) , B(HKy))) = 4 < P2
8@( ( / 1);0’ ( / 2>p) {@ |f Kl #KQ

for any pair of central subgroups;, Ko C Zyg = Z/2 x Z/2; cf. ([3-M-
0O;], Example 2.1).

We now turn to Theorem 0.3, i.e. the integral version of Theorem 2.3.
Note that, as in the-complete case, there exists a homomorphism of
monoids

n: eq(BH) — Aut(Zp)
given byn(f) = ¢|Zy wherep € Aut(Ty) gives alift toBTy of f.

Proof of Theorem 0.3irst note that the product maps

eq(BH) x eq(BT) — eo(BH x BT)
Aut(BH) x Aut(BT) —s Aut(BH x BT)

are monoid isomorphisms: Again, it suffices to prove surjectivity. J~ar
eo(BH x BT), let fg € eqg(BH) be the map induced by on the 3-
connected covefBH x BT)(3) ~ BH and lety € Epi(T) be the epi-
morphism withma(g) = ma(By) on me(BH x BT) = mo(BT). Then
g" ~ (fg x By)" by point (1) of Theorem 2.3, so, since completion

[BH x BT, BH x BT| — [(BH x BT)",(BH x BT)"]

is injective [J-M-Q, Theorem 3.1]g ~ fg x By.If g € Aut(BH x BT)
then, of coursef; € Aut(BH) andy € Aut(T).

Suppose thaf: BG; — BGs is a rational equivalence. There exist by
point (2) of Theorem 2.3 map§;: BH" — BH" andfy: BT" — BT"
making the completed diagram

faxfp

(BH x BT (BH x BT)"
(Bq1)Ai i(Btm)A
(BG)M (BG)M

f/\

homotopy commutative. Since the projection m&jgs andBg, are rational
equivalences, there also exists a homotopy equivalgiige making the
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rationalized diagram

(BH x BT) 1% (BH x BT)

(Bm)(o)l”—“ :J/(B(D)(O)

(BG1)(0) fz) (BG2)(0)

homotopy commute. Applying the rationalization functor to the first and
the formal completion functor to the second of the above diagrams, and
remembering thai( Bq1)") o) and((Bg2)") o) are homotopy equivalences,
we see that the rationalization #f; x f,» agrees with the formal completion

of £(0) as self maps of( BH x BT)") ). By Sullivan’s Arithmetic Square
[B-K], fy x f7» andf(0) come from aself map @8 H x BT . This selfmapis

a rational equivalence (its rationalizatigi0) is a homotopy equivalence)
and therefore of the fornfy x By for somefy € eg(BH) and some

¢ € Epi(T). Since

(Bgzo (fu x Bp))" = (Baz2)" o (fi x fp) = f" o (Bq1)" = (f o Ba1)"

and completion is injectivei3qs o (fir x By) ~ f o Bq;. By point (3) of
Theorem 2.3y(fr)(K1) C K2 andyps o (n(fm)|K1) = ¢ o (¢1|K1).

The unigueness clauses of Theorem 2.3 together with injectivity of com-
pletion show thaff; andy are uniquely determined by/.

Conversely, supposgy € eq(BH) andBy € ¢q(BT) are rational
equivalences such thatfy)(K;) C Ky and

KlLT

n(fH)|K1I i@

Ky > T

commutative. Then there exists by point (3) of Theorem 2.3 a faguch
that
AfH) X (Bp)"

(BH x BT) (BH x BT)"
(Bql)Al J/(qu)A
(BG1)" % (BG2)"

commutes. Sinc&q; and Bg, are rational equivalences, there also exists
a homotopy equivalencfy): (BG1)) — (BGa2)(o) such that the corre-
sponding diagram in the rational category commutes. Exploiting, as above,
that Bq; and Bg, are rational equivalences, we see tﬁétandf(o) come
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from a mapf: BG1 — BG, which must necessarily be a rational equiva-
lence.

It is easy to see (using Theorem 2.3) thaf i€ cq(BG1, BG2), fu €
eq(BH), andy € Epi(T) satisfyBgs o (fu x By) ~ f o Bqi, thenf is
a homotopy equivalence if and only f; is a homotopy equivalence, is
an automorphism, angl fr) (K1) = Ko. O

In particular,a[ni, ..., n; R] € eqo(BH) x eg(BT) given, with nota-
tion as in Section 0, by

t
afny, ..., n; R] = (Hw R),
=1
defines a rational equivalené®s — BFrG[n1,. .., n.
Example 2.61) With Iy, C U(n) as in Example 2.5,
eQ (B(U(n)/1}y), B(U(n)/17)) =
{(MK)EZXZ|(A\n!)=1, )\ =xkmodn }

for n > 2. In particular, wherk,n) = 1,

I

eQ (BFUg(n)) = eq (BU(n)
{MR)EZXZ](An!) =1, k=Amodn}, n>2,
as monoids.
i) For H = Spin (2n+1) x Sp(n), n > 2,
eo(BH) = {(\w) €ZxZ|(An)=1=(un)}
by ([Mg], Theorem 3.1) and [J-M-(), and

eo (B(H/K1), B(H/K,)) = {;Q(BH) :: 2 ; 2

for any pair of central subgroups,, Ko C Zy, cfr. ([3-M-O;], Example
2.1).

The next proposition shows that Theorem 2.3 covers all existing rational
equivalences between classifying spaces of compact connected Lie groups.

Proposition 2.7.Two compact connected Lie groups, andGs, are locally
isomorphic if any of the following three conditions holds

1. SQ(BGl, BGQ) ?é @
2. eq((BG1)y , (BG2)y) # 0
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3. eq((BG1),, , (BGa)y) # 0 wherep is odd andG'; and G contain no
simple factors of typ€’,,, n > 2.

Proof. (1) First note the special case
EQ(BGl s BGQ) 7é 0= G1 2 Gy

when G; and G5 are simply connected simple Lie groups. To see this,
choose a homomorphis@; > T) — T» C G5 of maximal tori such that
the diagram

BT, -2“~ BT,

L

BG1 _— BG2

homotopy commutes with some rational equivalence at the bottom. The
induced map,.: m1(71)®Q — m1(T5)®Qis an admissible isomorphism.
Therefore there exist a bijectiop: ¢ — &3 of positive roots and a
function\: &7 — Q* such thatv, o 04 = 0y(a) © w« aNdp(a) o w, =
A(a)a for all positive rootse € @7; see ([A-M], Theorem 2.12), ([Mg],
Theorem 1.3) or [J-M-@, Lemma 2.3]. These two identities imply that
¢ preserves the produet,sng, of Cartan numbers so singg at least
after composition with an automorphism from the Weyl grougzef can
be assumed to preserve the simple roptdetermines an isomorphism of
Coxeter graphs. Hena&; = G, or G1,G2 € {Spin (2n + 1), Sp(n)} for
somen > 2. But even in the latter casgé; = G- for Ishiguro showed
([, Theorem 5(a)) that there exist no essential m&#pin(2n + 1) «»
BSp(n), n > 2.

In the general case, vie®; as a finite quotient off; x T" whereH;
is simply connected and@™ is ann;-dimensional torus. IBG; and BGo
are rationally equivalent so are theonnected coverBH, ~ BG1(2) and
BHsy ~ BG»(2) and

n1 = dimg (m2(BG1) ® Q) = dimg (m2(BG2) ® Q) =na .

To showH; = H, we again exploit admissibility. Choose a homomorphism
H, > T, = T, ¢ H, of maximal tori such thaBw: BT, — BT,
covers some rational equivalenge BG; — BG». The induced map
ws: m(T1) ® Q — m1(T2) ® Q is equivariant w.r.t. some automorphism
of the Weyl groups ([A-M], Theorem 2.12) and (7;) ® Q splits into a
direct sum of distinct irreducible representations of the Weyl group, ([Ba],
Proposition 5, p. 82) or ([J-M-§), Lemma 2.3), corresponding to the sim-
ple factors ofH;. Thus, by Schur's lemma, each simple factr< H;
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corresponds to a unique simple factr< H, such thatv, maps the direct
summand ofr; (77) ® Q corresponding t&; isomorphically to the direct
summand ofr; (73) ® Q corresponding t&,. The composition

BS, —»s BH, —'» BH, —» BS,

of the rational equivalencg with the obvious inclusion and projection, is
then again a rational equivalence and%0= S, by the first part of this
proof. This showdd; = Hs.

(2) is proved similarly using ([lI], Theorem 5(b)), which says that all maps
BSpin(2n + 1)4 + BSp(n), are nonessential, to handle the special case
of simply connected simple groups. These kind of difficulties do not occur
in (3) where admissibility suffices. (J

When the primep is odd, any simple factor of typ€,,, n > 2, can
always be replaced by a simple factor of typg without changing the
homotopy type of the-completed classifying space.

Finally, a simple test for a map to be a rational equivalence.

Proposition 2.8.Let G; and G5 be two compact connected Lie groups.

1. Amapf: BGy — BG, is a rational equivalence if and only if the
induced map

H*(f;Q): H*(BG1;Q) +— H"(BG2;Q)
is an isomorphism.

2. Amapf: (BG1), — (BGz), is a rational equivalence if and only if
the induced map

H*(f;2) © 1g: H*(BG1)p; Zh) ® Q +— H*((BG2)):Z)) ® Q

is an isomorphism.

Proof of (2).1f H*(f; ZQ) ® Q is an isomorphism of graded algebras, the
induced map of indecomposables is an isomorphism of modules@yer
naturally identifiable to the dual of the induced homomorphism

m(f) ® 1g: m((BG1)p) ® Q — m((BG2),) ® Q

between homotopy groups. The rationalizatig, : ((BGl);\)(O) —
((BG?2);)(0) is thus a homotopy equivalence.

Conversely, iff is a rational equivalence, its fibré,, is a connected
torsion space and henég*(F; ZQ) ®Q = Q,. The Serre spectral sequence

(H*((BG2)p: Zp) ® Q)®q,(H*(F; Z))) ® Q) = H*((BG1),; Z))®Q
now implies thatd*( f; ZQ) ® Qis an isomorphism. O
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3. Local isomorphism systems

This section contains the proofs of Proposition 0.2, Proposition 0.4 and
Proposition 0.5.

As in Section 0G; = H x T/(Kl,gol) andGy = H x T/(KQ,(pg)
are two Lie groups locally isomorphic to some fixed connected compact Lie
groupG = H x T/(K, ). Here,H is a simply connected compact Lie

group and ifH = H§:1 H,;, whereH,; is simple, the derived group

FrGlny,...,n) =

H x T/ (Hw) (K), Rogo (Hwi\ZH)

i=1 i=1

is defined wheneveR € Epi(T) is injective onp(K) C T andn; € Nis
prime to the Weyl group order df;.

The first proposition is a slight improvement of Proposition 0.2. Let
detR denote the determinant off R) € Mono(71(T)), i.e. |det(R)| =
|coker(n(R))|.

Proposition 3.1.Let G; and G, be two locally isomorphic compact con-
nected Lie groups. The¥; > G, > G; if and only if FrG, = G- for
someR € Epi(T) with determinant prime toK |.

Proof. We must showFrG; > G;. Note that the mag|im ¢ : im ¢ —
im (R¢q) is an isomorphism. The extension problem

im -1
im (Rg@l) (R‘ ;01) im ©1
|,
T - T

is equivalent to the lifting problem

771(T/ im (R¢1))>?—> 771(T/ im ¢1)

al la
im -1
im (Rep1) % im 1

whose solution Lemma 3.2 assures; h8iis the homomorphism classifying
the principal bundld” — T'/im (R¢;1) or T' — T'/im ;. Thus there
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exists an epimorphisrfi € Epi(7") making the diagram

Ry

Ki——T

X

K1*>T

commute meaning (Theorem 0.1) tHgtG1 > G (and thatFs FrGy =
Gh).

Conversely, assum@&; > G2 > G and letG; — G5 be an epimor-
phism determined by; € Out(H) andg; € Epi(T') such thaty (K;) C
Ky and 811 = ¢oaq| K. Since alsoGy > Gy, | K| = |K2| and 5 |
im 1 : im 7 — im @9 IS an isomorphism. Choose, using Lemma 3.2,
someR € Epi(T") such that

K 21 im §01( T

wlxals iR

K5 im o€ T

v2

commutes and| K|, detR) = 1. ThenRy1| K1 = p201| K7 SO, by The-
orem 0.1,(c1, 1) € Aut(H) x Aut(7T) covers a Lie group isomorphism

FrGi —> Gy. O

Lemma 3.2.Let R be a commutative rindy/ afinitely generated-module,
F a finitely generated fred2-module andd, : F — M, 0y : FF - M
epimorphisms.

i) If R is a local principal ideal domain, then there exists an isomorphism
f+F — Fsuchtha,f = 0.

i) If R = Z, M is a finite abelian group and is a natural number such
thatnM = 0 then there exists a monomorphisim F — F' such that
Oof = 01 and(n, detf) = 1.

Proof. i) Let k denote the residue field d@. Suppose first thad; @ & :
F®rk — M ®gkisanisomorphism; = 1,2. Let f : FF — F be
any R-homomorphism such thak f = 0;. Nakayama’s lemma ([Ma], 1.
M) applied to the kernel and cokernel fhows thaif is an isomorphism.
In the general case, choose a minimal basis ([Ma], 1. N)ofi.e. a free
finitely generated?-moduleF and an epimorphisi, : £/ — M inducing



786 J. M. Mgller

an isomorphisnd, @ k of vector spaces. By projectivity, there exists a
homomorphismy; such that the diagram

i

Fi/ T{ M
commutesy; is an epimorphism by Nakayama’s lemma. Thus: F & F)”
is a direct sum of two finitely generated free modulg$)F;) ®r k is
an isomorphismg;|F/ = 0, anddimg(F' ®g k) = dimg(F ®g k) —
dimgp(M ®g k), ¢ = 1,2. Definef := f' @ f” wheref’ : F{ — F}
is any homomorphism such th&}f = 9] and f” : FY = Fl'is any
isomorphism.
i) M is a module over the Artinian ring/nZ and has as such a projective
coverm : P(M) — M. For any other epimorphism : P — M from a
projective moduleP onto M there exists a modul& and an isomorphism
P(A)® K = P suchthap|P(A) = mandp(K) = 0 ([Bass], Lemma 2.3).
In particular, we have a commutative diagram

PO K, PA)a K
r can F/nF——£—>F/nF can r
Xlal a2i/
A=A

whered;|P(A) = m = 02| P(A) andd; K1 = 0 = 32 K». SinceF'/nF is a
finite abelian groupk; = Ko; let f’ : K1 — K be any isomorphism. The
mapf := 1p(4) @ f’ is an isomorphism of/nF" with 9; = 9, o f. Take
[+ F — F to be any homomorphism coverirnfg Sincef @ 17,7 is an
isomorphism ofF'/nF', the determinant of is invertible in the ringZ /nZ.
O

Proof of Proposition 0.4(1) SupposeBG, > BGs. Then there exists an
f € eg(BH) and ank € Epi(T") making the diagram

ZH<—3K1L>T

n(f)l l J,R

Zy <—K, WT
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commute. Therational equivalengeas, cf. the remarks preceding Example
2.2, the formf = Ba o [ [ 4™ for some (outer) automorphismof H and
some natural numberg prime to the Weyl group order df;. Rearranging
the above commutative diagram we obtain another commutative diagram

pro([Ty™iZu) "

H<—([T¥™) (K1) T

| E

H °Ko % T
showing thatG1[n1,...,ny] > Gs.

(2) If BG; and BG4 are homotopy equivalent, then, becase,(BH) =
Out(H) e. g. by ([Mg], Corollary 3.2), the first of the above diagrams
commutes withn(f) = n(Ba) = « for somea € Out(H) and some
R € Aut(T) and thusG; andG» are isomorphic ([Ba], Corollary 6) Lie
groups. O

We shall later need a slightly stronger version of point (1) in Proposition
0.4. LetW denote the Weyl group off.

Proposition 3.3.LetG; and G4 be two locally isomorphic connected com-
pact Lie groups. The®BG, > BG» if and only ifG1[n; ..., n] > Gy for
some natural numbers; with (][ n;, [Wg|) = 1.

Since the result of the proce§§ — G1[n1,...,n:| only depends on;
modulo the Weyl group order df;, this follows immediately from Propo-
sition 0.4 and

Lemma 3.4.Let wy, ... ,w; andmyq, ... ,m; be natural numbers with
(m;,w;) = 1for1 < i < t. Then there exist natural numbers (primes)
such that; = m; modw; forall 1 <i <tand([]n;, [Jw:) = 1.

Proof. By Dirichlet's Theorem there are infinitely many prime numbers
congruent tan; modulow;. Choose one such prime which is larger than
[] w; and call itn;. Do this for eachi. The result follows. O

The proof of Proposition 3.3 shows that any rational equivalehce
BG1 — BG4 has a factorization of the form

(IT¥™,17) By

BG1 BGl[nl,...,nt]

BG,

wherem; € N is prime to, and congruent te; modulo the order of, the
Weyl group of H;, (J]n, [Wx|) = 1, andy = (o, R) is a Lie group
epimorphism of7[nq, ..., n;] ontoGs.
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Note also, in connection with the proof of point (2) of Proposition 0.4,
that Theorem 2.3 contains as a special case the isomorphism

Aut(BG) = Out(G)

from [J-M-O,, Corollary 3.2].
Combining (the proofs of) Proposition 3.1 and Proposition 3.3 results in

Proposition 3.5.The following three conditions are equivalent:

1. BG1 > BGy > BG,

2. FrG1[nq,...,ny] = Go for someR € Epi(T') with (detR, |K;]) =1
and somey; € Nwith (J[[ n;, [Wg|) =1

3. Gl[nl,. . .,nt] > Gy > Gl[nl,. . .,nt] for somen; € N with (Hnl,
W) =1

Example 3.6Let Z = {(w1 F, woE) | w} = 1 = w3} denote the center of
H = SU((5) x SU(5).
i) There are no covering homomorphisms between

Gi=HxS8Y(Z, p1) and Gy =Gi[l, 13| = H x S*/(Z, ¢2),

wherep; (w1 F, woF) = wiws andpa(wi B, waF) = wlwg, even though
BG, > BGy > BGh; in particularFrGy # Ga for all R € Epi(T), 5 1
detR, so condition (2) in Proposition 3.5 can not be sharpendd:#G, =
Go.

i) Let

Gi=HxS'xS'/(Z, p1)andGy = FrGy = H x S* x S1/(Z, v9)

Wheregol(le, ng) = (wl, WQ), R(tl, tg) = (tltg, tg) and(pg(le, LUQE)
= Roi1(w1E,woE) = (w1,w3). ThenBG; > BGs > BG; because
G1 > Gy > Gy butGy[n1, na] # G4 for all choices ofn;, ny € N with
(n1n2, 5!) = 1, so condition (2) in Proposition 3.5 can not be sharpened to
Gl[nl, 712] = GQ.
iii) For

Gy = H/Al and Gy = Gl[l, 7] = H/AQ,
whereA; = {(wE, w'E)},i = 1,2, the groupOut(G1) = Aut(BG;) =
Z/2 ® Z/2 andOut(Gz) = Aut(BG2) = Z/2 are not isomorphic. No
covering homomorphism exists betwe@n andG, as no Lie group auto-
morphism ofH takesA; to As.

The structure of the local isomorphism system of a connected com-
pact Lie group’ is conveniently represented by an oriented graph: Define
G1 ~ Gy if G2 € [G1,G1] and represent the partially ordered set of these
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equivalence classes by an oriented graph in the usual fashion. Indicate the
number of elements in each equivalence class.
The oriented graph representing the local isomorphism systeh-6f

@/AD\@
N

whereG is at the top and the projective groafy Z; is at the bottom. In the
middle row are the quotients 6f by the special subgroupsy, A, andA,
(in the notation of Example 3.6).

Now define the homotopy local isomorphism systeréab be the set of
isomorphism classes of connected compact Lie groups locally isomorphic
to G equipped with the relatio&; - Gs if BG; > BGs. Also this ordered
set may be represented by an ordered graph in the same way as was done
for the local isomorphism system. This time we group together all groups
equivalent under the equivalence relat@n ~ G- if Gy € (G1,G1). For
G = SU(5) x SU(5) the result is

/\
\/

becausdi! x 7)(A1) = Ay and no other relations are introduced.

4. The genus set 0BG

For a compact connected Lie groGp= H x T/(K, ¢), the set(G,G)
consists (Proposition 3.5) of the derived grod@sG[nl, ...,n¢] where
(ITni, Wg|) = 1 = (detR, |K|). If the primep divides|K|, p does
not divide neithef [ n; nor detR, so[]¢™ is a homotopy equivalence of
BH;\ andR|T,~ an automorphism df,-. It follows (Theorem 2.3) that
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Blni,...,ny; Ry € Aut(BH,) x Aut(Tp) given by

(IT¢™, R) ifp||K]|
oo,y Rl = )
Al -oms Bly {(1,1) 1 |K]
defines a homotopy equivalens&” "4 Bp,Giny, ... n" such

that the diagram of completed classifying spaces

[n1,...,ne; R]

BH" x BT" ’ BH" x BT

) ) |

BGN BFRrGnq,...,nd"

1%

B[n1,...,n¢; R

commutes where indiscriminately denotes the projection Hf x T onto
G or FrG[ny,...,n). ThusBG and BFrG[n1,...,n;] are spaces of the
same genus. MoreoveBG > BFrG[n1,...,n]. This is the point of de-
parture for the proof of Theorem 0.8. But firgt-adic version of Proposition
3.5.

For any primep, the Lie group

GWP) .— H % T/(Kp#’Kp)

was defined in Section O as the quotient/dfx T' by the graph of the
restrictiony| K, of ¢ to thep-primary subgroup of<. Note the principal
bundle

K/K, — G? — G
implying that(BG®)/ ~ BG).

Proposition 4.1.Let G; and GG, be two locally isomorphic compact con-
nected Lie groups ang a prime. Then the following four conditions are
equivalent:

1. (BG1)) ~ (BGh))

2. FrGi[ny,...,ng®) = Ggp) for someR € Epi(T) and somey; € N
such thatp t detR and (] ns, |Wy|) = 1

3. BGY > BGY > BGW

4. Gilny,...,n ® > Gép) > Gy[ni,...,n:]® for some natural num-
bersn; with ([ n;, [Wgl|) =1
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Proof. If (BG1), ~ (BGs), then there exisf € eq(BH,) andj ¢
Aut (T~ ) such that

(ZH)p <—)(Kl)p s T

win)| x| %lﬁ

(Zr)p <—(K2)p —>T
commutes. By the remarks preceding Example 2.2, the homotopy equiva-
lencef has the form

f=go@" x--xy™)

whereu; € (ZQ)* is ap-adic unit andy is a composition of automorphisms
of H and possibly some exceptional isogenies. Howeygis trivial on
any exceptional isogeny, 89(f) = ao [[¥"|Zy for somea € Out(H)
and some natural numbens € N with n; = u; mod|Zy| and, by Lemma
3.4,(]] ni, |[Wg|) = 1. According to Lemma 3.2, the derived commutative
diagram

o ni|Zp) "t

|
al %\L B im Lp1l% IR
Y

H<—"(K2)p im ;T

Y2

can be completed by somiec Epi(7") whose determinantis not divisible by
p. Hence(a, 17) covers a Lie group isomorphisizG1[ny, . . ., n,]® =
G,
The implicationg2) = (3) = (4) follow from Proposition 3.5.

Now assume (4). SincBGl[nl,...,nt](P) > BGgp) and|(K1),| =
|(K2),| there existy; € Out(H) andj; € Epi(T) such that the diagram

° il 7)1

| |

H )(KQ)p 02 T

commutes wherev |(K1), : ([[¢"™) (K1)p — (K2)p, andfi|im ¢ :
im ¢p; — im @9 are isomorphisms. By Lemma 3.2 there existss
Aut(Tye) such thaty o 1 = p2 0 a1|(K1), meaning that
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where(BGEp))Q ~ (BG;)" for i = 1,2 by the fibration mentioned above.
O

The above proposition implies (Corollary 0.7) thatdf > Gy > G4,
thenBG1 andBG» are of the same genus. The converse is not true as shown

by

Example 4.2i) Let p and ¢ be distinct primes and let; = SU(pq) x
SU(pq)/K; whereK, = Z/pgx1andK, = Z/pxZ/q. ThenG® =~ G
and G\” =~ G\ so BG, and BG, are of the same genus but neither
G1 > Gy norGy > (G and neitheilBG1 > BG4y nor BGy > BGh.

ii) Let pbe aprimeZ = {W'E } = Z/p, w = *>™/P, the center o U (p),
andyy, : Z — S' the homomorphism given by, (wE) = w* where

k € Z. Then

SU(p) x S*/(Z, k) > SU(p) x S* /(Z, 1) > SU(p) x S*/(Z, )
whenevemp 1 k£ andp t [ but
SU(p) x S*)(Z, o) = SU(p) x S* /(Z, 1)

only if kK = 4+ modp by Theorem 0.1. Hence condition (2) in Proposition
4.1 can not in general be sharpened?tgc?) = G;”).

More preparation is necessary before the proof of Theorem 0.% bet
a connected nilpotent space of finite type. A homotopy self-equivaléde
the formal completiod B") ) is calledr.-continuous ifr. (V) is Z" ® Q-
linear onm.((B"))) = m(B) ® Z" ® Q. CAut((B")(s)) denotes the
subgroup of allr.-continuous elements ofut((B"))) [W, Definition
3.3]. For anyV € CAut((B")) the homotopy inverse limiBy of the
diagram

.
BN — (BW?(BA) «— B

is a nilpotent space of finite type of the genu#sotn fact, Wilkerson showed
[W, Theorem 3.8] that the assignmént— By induces a bijection

Aut(Bg))\ CAut((B")(g))/ Aut(B*) — G§(B)
of pointed sets.
Consider the subsets) (B)" andG{)(B)~ of G{}(B) defined by
Go(B)" ={Xe€Gy(B)| X > B}, Gp(B)” ={X€Gy|B=>X}

whereX > B (B > X) ifthere exists arational equivalende— B (B —
X). Furthermore, leAut(B),zq(B), Aut(B"),zg(B") denote the images
in CAut((B")(q) of, respectivelyAut(B),q(B), Aut(B"), eq(B").
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Lemma 4.3.(Cf. [Mg, Proposition 3.9])X € G{(B)~ (X € G{(B)") if
and only ifX ~ By—1 (X ~ By) for someV € gg(B").

Proof. SupposeX € G{}(B)~. Leta : B — X be a rational equivalence
andg : BN — X’ a homotopy equivalence. The commutative diagram

Bgye(@™)(o)
Bo) (B™)(0) = (B™)(0) B/
a(o)l: (o/\)(o)i: :lﬁ(g) ziﬂ
X(O) (XA)<0> :(X/\)(O) -~ XN

showsthafX ~ By, 1 withV = 5(_()§°(0‘A)(0) = (B toa) (o) € Eg(B).

Conversely, suppose € eq(B") and putV = 3 € €g(B"). Then

B(g) — (B")(0) (B")(y<— B"

b

By — (B")(0) % (B")(y<— B"

commutes and induces a rational equivalence fi9to By, 1.
Similar arguments apply t6)(B)". O

In the case ofB = BG and X = BFrG[n,...,n, we have (see
Section 2) a rational equivalence

a[ni,...,ng R] € e(BG, BFRG[ny, .. .,nt) C eq(BH) x eq(BT)
as well as a homotopy equivalence

Blni,...,n; R] € eg(BG", BFrG[n1,...,n")
C eg(BH") x eq(BT").

The commutative diagram

Bo) Bq
(BHXBT)(9) = (BH"xBT") () =<— (BH"xBT")g) —> (BG")(p) <——— BG"

N\Lﬁ(g) Nlﬁ(o) N\LB

(BHXBT)(gy — (BH"xBT")(gy = (BH" xBT") gy Bi (BFRC[ni]")(0) <— BFRGni]"
q

shows thaB FrG|[ny, ..., n:] as an element of

Aut((BH x BT)())\ CAut((BH" x BT")¢))/ Aut(BG") = G (BG)
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corresponds to the equivalence class contaiging 3[n1, ..., n; R]. An-
other representative for the same equivalence clagdsis, . .., n;; R] !
where

V[n17 tee ,TLt;R] = ﬂ[nh < '7nt;R]71 OO[[TLl, s 7nt;R]
given, as an element efy(BH") x eq(BT"), by
(1, 1) if p| K]
(ITy™, R) if pt|K]|
is (Theorem 2.3) a rational self-equivalencezd”.

Lemma 4.4.G{(B)~ = {B} if and only ifeg(B") = Aut(B") - £¢(B)
andG{(B)* = {B} ifand only ifeg(B") = 2¢(B) - Aut(B").

Vinig,...,ng; R]p = {

Proof. Supposé&r)) (B)~ = {B} and letV € ep(B"). SinceV ~! classifies
(Lemma 4.3)B, V~! = RU in CAut((B")g)) for someR € Aut(B))
and somé/ € Aut(B"). Note thatR~* = UV € Aut(Bp)) Neg(B") =
2g(B)soV = U1R™! € Aut(B") - 2g(B).

The converse is clear by Wilkerson’s double coset formula for the genus
set. O

In the special case wheilg = BT is the classifying space of a torus,
G{(BT) = {BT}, and it follows from Lemma 4.4 that ify (BT")

Aut(BT") - eq(BT) = eqg(BT") = eq(BT) - Aut(BT")
as the homomorphisms

rationalization

COMPRION. (BT RN A e (BT )

EQ(BT)
are injective.
The condition in Lemma 4.4 is easily checked for simple or simply
connected compact Lie groups.

Lemma 4.5.Let G be a simple Lie group with Weyl groiyz. Then any
rational self-equivalence € ¢ (BG") has the formy = f o ¢)™ for some
homotopy self-equivalencgé € Aut(BG”) and some natural number

prime to|W¢|.

Proof.As BG" =[], BG}, g = [, gpisaproductof rational equivalences
9p € eq(BG)). According to [J-M-Q,J-M-0y], g, = f, o ¢"» where
fp € Aut(BG}) andn,, is a power of such that, = 1if p divides|Wg/|.
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Also (]_[p fp—l) og = [[,¢™ is a rational equivalence d8G", so the
induced map

p

Ty (H w) : 14 ((BGM)(0)) — ma((BG™) ()
(0)

is an isomorphism. This isomorphism can be identified to multiplication in
the modulers((BG")p)) = Z" ® Q by the adic integefn?.). In particular,

the equatior(n?)z = 1 has a solution. Recall that the elements of the ring
Z" ® Q are sequences= (z,) wherex,, is ap-adic number which actually

is ap-adic integer for almost afl. Hencen, = 1 for p > P for some prime
P.Letn = [[,.pnp. Thenn is prime to|W¢| and(n,,) = (up)n where
(up) is aunitinZ”. Now

g=[]fe]]v™ = (HfoW) oy
p p p
wheref := [[,(f, o) € Aut(BG"). O

Lemma 4.6.Let H = H,f:l H; be a simply connected compact Lie group
written as the product of its simple factofd;. Then any rational self-
equivalencey € ¢g(BH") has the formg = f o H';:lz/;”i for some
homotopy self-equivalengec Aut(BH”) and some natural numbers
prime to the Weyl group order @f;.

Proof. We may assume that has the formg = ¢; x --- x g where
gi € eo(BH!"): The remarks preceding Example 2.2 imply thafter com-
position with a homotopy equivalence of the fofiy, o, € ], Aut(BH)),

whereo, permutes identical factors in the produgt) = [];_, (BH;)},
becomes such a product map. By Lemma 4;,5= f; o ¢™ with f; €
Aut(BH!") andn; a natural number prime to the Weyl group orderhf

Now
t

t
g=11rTIv"
=1

=1
wheref :=[[\_, fi € Aut(BH"). O
Alternatively, any rational equivalengec o (BH") has the forny =

(ITw™) o f/ with f" € Aut(BH").
An obvious consequence of Lemma 4.3-4.6 is
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Proposition 4.7.G}}(BG)" = { BG} = G{)(BG)~ whenevelG is simple
or a simply connected compact Lie group.

We may now consider the special case, Corollary 0.9, of Theorem 0.8
whereG is simple, cf. [Mg, Example 3.11].

Proof of Corollary 0.9.Assume thatf : BG — X is essential. As
completion induces, cf. [J-M-Q Theorem 3.1], an injectiofBG, X] —
[BG", X"], there exists a prime such thatf)* is essential and hence
[J-M-0O4] a rational equivalence. Then also the original mfajs a ratio-

nal equivalence (Proposition 2.8) and the result follows from Proposition
47. O

Finally we deal with Theorem 0.8. Using the notation introduced in this
section,

G@(BG)—:{BFRG[m, cn] | (detR, |K|) =1 = (H i, \WH\)}
— Gp(BG)T

is an alternative formulation of that theorem.

Proofof Theorem0.8etX € G (BG)~.ByLemma4.3X isclassified by
Ve CAut((BH" x BT")(g)) for someV € eq(BG") C e(BH") x
eg(BT"). Any rational equivalence aBH" has (Lemma 4.6) the form
fo][v™ forsomef € Aut(BH”) and some natural numbetsprime to
the order of the Weyl group of thigh simple factorH; of H and any rational
equivalence oBT" has the forms o S for some3 € Aut(BT") and some
S € eq(BT). Thus

V= (fon"z ﬂoS)
where the diagrams

(ZH)p ~—K, s @(Kp);) Tpeo

ﬁp(fp)onlbnil N\L \LN lﬁpos

(ZH)p K, s ‘P(Kp)c—> Tpeo

commute and have isomorphisms as indicated. These diagrams remain com-
mutative ifn; is replaced by any natural number with the same residue mod-
ulo the order of the Weyl group df;. Note that such a replacement does not
change the equivalence classiof !, which is also the equivalence class of
(7%, B71),inthe double coset formula f6#) (BG). According to Lemma
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3.4, we may therefore assume that the prodijict; is prime to the order of
the Weyl groupV; of H. The rearranged commutative diagrams

, o(p™i|Zg) !
([Tom) K, — =22 oK) Ty

Up(fp)J/% Ei ls

(Kp) (IBp_l 0 ) (Kp) = Tpe

By top

can be pieced together ny taking the direct sum over all prinfeswhich
K,#1to

o(y"i|Zy) ™ (

(I K Pl ———T
ﬂ(f)l” NJ/SSD(K) 'R
|

K (0 oK) T

wheren(f) = @up(fp), 87 o = @B, o ¢lK, and Sjp(K) =
@D S| (K,). Lemma 3.2 shows that this diagram can be completed by some
R € Epi(T) with (detR, |Wg|) = 1. Then

BpRep = po (np(fp) o H¢n’> | K,

so(f, o [T4™, ByR) € eg(BG)). Define
o = JUpelv™, BR) ifp||K]
" (s By) if pt ||

and note that/ := [] U, is a homotopy equivalence &G". The space
X € G{(BQG) is therefore also represented by

W o [ R il IK]
([Tvr. s)v 1U‘{(L 1) it pt|K|

showing thatX = BFrG[n1,...,n.

If X € Gj(BG)" then X is classified by som& € ¢o(BG") C
eg(BH") x eq(BT"). Write V on the form

V= (Hwniof, Soﬂ)

with f € Aut(BH"), 8 € Aut(BT"), S € ¢¢(BT), and proceed as
above. O
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In other words,G))(BG)~ = B((G,G)) = G{(BG)* is a finite set
consisting of those Lie group classifying spaédsfor which BG > BL >
BG. For example,

Go(BSO(n))* ={BSO(n)}

GH(BSU(n) x BSU(n))* = {BSU(n) x BSU(n)}

Go(B(SU(5) x SU(5)/A1))* = {B(SU(5) x SU(5)/A1),
B(SU(5) x SU(5)/A2)}

Go(BU(n))* ={BWU®)/I})| (k,n) =1}

in the notation of Example 2.5 and Example 3.6. (The two spaces in the
third of the above examples have non-isomorphic groups of homotopy self-
equivalences, see also [Mg, Example 3.7].)

The full genus set(}(BG) contains in general (Example 4.2) other
Lie group classifying spaces than thos&ilf)( BG)*; namely (Proposition
0.6) all homotopy type® L for which L®) ¢ (G®) G®) for all primesp.
Alternatively, X € G{(BQ) is [N-S,N,] the classifying space of a compact
connected Lie group iK has a maximal torus.
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