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Completely Reducible p-compact Groups

JESPER MICHAEL MØLLER

Abstract. Rational automorphisms of products of simple p-compact groups
are shown to be composites of products of rational automorphisms of the

individual factors and permutation maps.

1. Introduction

Homotopy Lie groups, or p-compact groups, have come under intense scrutiny

since their inaugural appearance in Dwyer and Wilkerson’s foundational paper

[4] and this note may be viewed as yet another piece of evidence in support of the

prophecy of an “uncanny similarity” between compact Lie groups and p-compact

groups.

The purpose of this note is to show that rational automorphisms of products

of p-compact groups behave in a very rigid way.

A rational automorphism of a connected p-compact group Y is an endomor-

phism f of Y , i.e. a based self-map Bf of BY , inducing an automorphism

H∗(Bf ;Zp)⊗Zp
Qp of the polynomial ringH∗(BY ;Zp)⊗Zp

Qp. Conjugacy classes

of rational automorphisms form a monoid εQ(Y ) ⊆ [BY,BY ].

As an illustration of the main result [Theorem 3.5], suppose that Y1 and Y2
are two simple [8, Definition 5] p-compact groups with nonisomorphic, nontrivial

Weyl groups. Then the product map

εQ(Y1) ≀ Σn1
× εQ(Y2) ≀ Σn2

−→ εQ(Y
n1

1 × Y n2

2 )

is monoid isomorphism for any choice of exponents n1, n2 ≥ 1. In other words,

any rational automorphism f of Y = Y n1

1 × Y n2

2 is, up to permutation of the n1
factors equal to Y1 and the n2 factors equal to Y2, conjugate to a product

f =
∏

1≤j≤n1

f1j ×
∏

1≤j≤n2

f2j
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of rational automorphisms f1j , 1 ≤ j ≤ n1, of Y1 and rational automorphisms

f2j , 1 ≤ j ≤ n2, of Y2. Moreover, the corresponding product map of mapping

spaces
∏

1≤j≤n1

map(BY1, BY1)Bf1j ×
∏

1≤j≤n2

map(BY2, BY2)Bf2j −→ map(BY,BY )Bf

is a homotopy equivalence. It follows [Corollary 3.9] that the precomposition

map

Bf : map(BY,BY )B1 → map(BY,BY )Bf

is a homotopy equivalence for each of the precomposition maps Bf1j and Bf2j ,

involving simple p-compact groups, are known to be homotopy equivalences by an

earlier result [8, Corollary 4.7]. Combined with Dwyer and Wilkerson’s demon-

stration that the centralizer [4, 3.4] of the identity endomorphism is a p-compact

group isomorphic [10, Theorem 1.3] to the center, we see that the centralizer

CY (fY ) of any rational automorphism f of Y is a p-compact group isomorphic

to the center [10, 3] Z(Y ) of Y .

The completely reducible p-compact groups of the title [Definition 3.10] con-

stitute a class of connected p-compact groups to which the above computation of

centralizers of rational automorphisms is extendable [Theorem 3.11] by covering

group methods. The size of this class of p-compact groups has not yet been

investigated.

Part of this work was done as a guest of the Institut Mittag-Leffler, Djursholm,

Sweden, and I would like to thank the institute for its hospitality.

2. Representation theory

This section contains some preliminary remarks about representations of finite

groups designed for use in the following sections.

Let R be an integral domain, k its field of fractions, and let E, E1 and E2 be

R-modules. Suppose that the finite groups W, W1 and W2 act faithfully on the

modules E, E1 and E2, respectively.

Definition 2.1. TheW1-representation E1 is similar to theW2-representation

E2 if the there exists an R-module isomorphism A : E1 → E2 and a group isomor-

phism α : W1 →W2 such that A◦w = α(w)◦A for all w ∈W1. The isomorphism

A is called a similarity from E1 to E2.

Let Sim(W ) ⊂ AutR(E) denote the group of self-similarities of the W -

representation E. In other words, Sim(W ) is the normalizer of the image of

W in AutR(E). Note the exact sequence

1 −→ AutR[W ](E) −→ Sim(W ) −→ Aut(W )

and that if the representations W1 −→ AutR(E1) and W2 −→ AutR(W2) are

similar, conjugation with a similarity A : E1 → E2 induces an isomorphism

Sim(W1) ∼= Sim(W2) of self-similarity groups.
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For any ring extension R ⊆ S, let W ⊗R S denote the induced representation

of W in E ⊗R S. In particular, W ⊗R k denotes the vector space representation

of W in E ⊗R k. An element w ∈ W is called a reflection if the vector space

endomorphism 1− w ⊗R k has rank 1 [1, V, §2, no 1, Definition 1].

Example 2.2. Let WB denote the Weyl group of the Lie group Spin(2n+ 1)

faithfully represented in the Z-module EB given by the fundamental group of

a maximal torus. Similarly, let WC denote the Weyl group of Sp(n) faithfully

represented in the Z-module given by the fundamental group EC of a maximal

torus in Sp(n), n > 2.

Assume that the representations WB ⊗ R and WC ⊗ R are similar, i.e. that

there exists an R-isomorphism A : EB ⊗R→ EC ⊗R which is α-equivariant for

some group automorphism α : WB →WC .

Let β1, . . . , βn be a basis for the root system (of type Bn) for Spin(2n + 1)

and σB
i the reflection of EB corresponding to βi, i.e. σ

B
i (x) = x−βi(x)β

∨
i where

β∨
i ∈ EB is the inverse root to βi.

Note that, for any i, A ◦ σB
i ◦ A

−1 is a reflection of EC ⊗ k so that [1,

VI, §1, no 1, Remarque 3] A ◦ σB
i = σC

i ◦ A for some reflection σC
i ∈ WC .

Let γi be the root and γ∨i the inverse root corresponding to the reflection σC
i .

The vectors A(β∨
i ) and γ∨i are proportional; write A(β∨

i ) = λiγ
∨
i with λi ∈

k. Since (β∨
1 , . . . , β

∨
n ) is a Z-basis for EB [2, IX, §4, no 6, Proposition 11]

and A is an R-automorphism, (λ1γ
∨
1 , . . . , λnγ

∨
n ) is an R-basis for EC ⊗ R and

the linearly independent set (γ∨1 , . . . , γ
∨
n ) is a Q-basis for EC ⊗ Q such that

the corresponding set of reflections {σC
1 , · · · , σ

C
n } generates [1, VI, §1, no 5,

Remarque 1] the Weyl group WC . This implies (since not all γ∨i can have the

same length) that (γ∨1 , . . . , γ
∨
n ) is a basis for the inverse root system of Sp(n),

hence a Z-basis for EC . As A : EB ⊗R→ EC ⊗R is surjective, each coefficient

λi must be a unit in the ring R.

The relation AσB
i (β∨

j ) = σC
i A(β

∨
j ) is equivalent to λiβi(β

∨
j ) = λjγi(γ

∨
j ) for

all i and j. It follows that βi(β
∨
j )βj(β

∨
i ) = γi(γ

∨
j )γj(γ

∨
i ), i.e. that the bijection

βi −→ γi of bases determines an isomorphism of the associated Coxeter graphs.

Thus we may arrange the roots so that βn−1(β
∨
n ) = −1 and γn−1(γ

∨
n ) = −2

leading to the relation λn−1 = 2λn. Since both λn−1 and λn are units in R, also

2 is a unit in R.

Conversely, if 2 is invertible in R, it is easy to write down a similarity between

WB ⊗R and WC ⊗R.

Let now Si, i ∈ I, be a finite family of free R-modules of finite rank and

Wi, i ∈ I, finite, nontrivial groups with Wi acting faithfully on Si such that the

corresponding vector space representation Wi ⊗R k is irreducible.

Let the product group
∏

i∈I Wi act faithfully on
∏

i∈I Si in the obvious way.

The first lemma of this section computes the endomorphism ring of
∏

Si as

an R[
∏

Wi]-module.
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Lemma 2.3. Suppose that R is a principal ideal domain and that each group

Wi contains a reflection of Si. Then the obvious homomorphism
∏

i∈I

R −→ End
R[
∏

Wi]

(

∏

Si

)

is a ring isomorphism.

Proof. Let A be an R[
∏

Wi]-endomorphism of
∏

Si. Since the
∏

Wi-

representations Si ⊗R k, i ∈ I, are irreducible and pairwise nonisomorphic,

A =
∏

Ai for some Ai ∈ EndR[Wi](Si) by Schur’s lemma.

Let σi ∈Wi be a reflection of Si. As the image im(1− σi) is a free R-module

of rank 1 which is invariant under Ai, there exists a scalar λi ∈ R such that

im(1 − σi) ⊆ ker(Ai − λi) in Si. Then also ker(Ai − λi) 6= 0 in the irreducible

Wi-representation Si ⊗R k; hence Ai is multiplication by λi on Si ⊗R k and on

Si.

The next two lemmas are concerned with groups of self-similarities of faithful

representations.

Now pick a set of exponents ni ≥ 1, i ∈ I. The group W :=
∏

i∈I W
ni

i is

faithfully represented in the R-module S :=
∏

i∈I S
ni

i . Let Σni
< Sim(Wni

i ) <

Sim(W ) denote the subgroup consisting of permutations of the ni-factors of Si

in the product Sni

i or in S =
∏

Sni

i .

The proof of the following key lemma was kindly supplied by K. Uno.

Lemma 2.4. Assume that the Wi-representations Si, i ∈ I, are pairwise non-

similar. Then the canonical homomorphism
∏

i∈I

Sim(Wi) ≀ Σni
−→ Sim(W )

is a group isomorphism.

Proof. Write W =
∏

iW
ni

i =
∏

i,j Wij and S =
∏

i S
ni

i =
∏

i,j Sij where

Wij =Wi and Sij = Si for 1 ≤ j ≤ ni.

Let A be an R-automorphism of S and α a group automorphism of W such

that A ◦ w = α(w) ◦ A for all w ∈ W . Note that the submodule ASij of S is

W -invariant as

α(w)ASij = AwSij = ASij

for all w ∈ W . Let now v be a nonzero element of ASij . Write v on the form

v =
∑

i,j vij with vij ∈ Sij . Pick k and l such that vkl is nonzero. Since ASij is

invariant under the action of the subgroup Wkl < W ,
∑

(i,j) 6=(k,l)

vij +Wklvkl ⊆ ASij

and hence also

Wklvkl −Wklvkl ⊆ ASij .
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The left hand side generates a nontrivial Wkl-invariant submodule of Skl, so

Skl ⊗R k ⊆ A(Sij ⊗R k)

by irreducibility of Skl ⊗R k. In fact, since A is an automorphism of S ⊗R k,

Sσ(i,j) ⊗R k = A(Sij ⊗R k) for some permutation σ of the index set. Then also

Sσ(i,j) = ASij since A is an automorphism of S =
∏

Sij and each Sij is a free

R-module.

If w ∈ Wij , α(w) ∈ Wσ(i,j) for α(w) = AwA−1 fixes pointwise
∏

(u,v) 6=σ(i,j) Suv. In fact, α(Wij) = Wσ(i,j) since α is an automorphism of

W =
∏

Wij . Thus A restricts to a similarity from Sij to Sσ(i,j) and there-

fore, by the nonsimilarity assumption, σ(i, j) = (i, σi(j)) for some permutation

σi ∈ Σni
.

We conclude that A =
∏

i∈I(
∏

j Aij) ◦ σi where Aij ∈ Sim(Wij) = Sim(Wi)

for 1 ≤ j ≤ ni.

For instance

Sim(Wn1

B ⊗ Z2 ×W
n2

C ⊗ Z2) ∼= Sim(WB ⊗ Z2) ≀ Σn1
× Sim(WC ⊗ Z2) ≀ Σn2

where WB and WC are the representations over Z as in Example 2.2 and Z2 is

the ring of 2-adic integers.

In Lemma 2.4 the representations Wi, i ∈ I, are assumed to be pairwise

nonsimilar. We now omit this assumption and instead group together similar

representations.

More specifically, declare i1, i2 ∈ I to be equivalent indices if the represen-

tations Wi1 −→ AutR(Si1) and Wi2 −→ AutR(Si2) are similar. Write the in-

dex set I =
⋃

j∈J I(j) as a disjoint union of equivalence classes I(j), j ∈ J .

Then W (j) :=
∏

i∈I(j)W
ni

i is faithfully represented in S(j) :=
∏

i∈I(j) S
ni

i and

W =
∏

j∈J W (j) faithfully represented in S =
∏

j∈J S(j).

Corollary 2.5. Assume that the index set I =
⋃

j∈J I(j) is divided into

equivalence classes such that Si1 and Si2 are similar if and only if i1, i2 ∈ I(j)

for some j ∈ J . Then the canonical homomorphism
∏

j∈J

Sim(W (j)) −→ Sim(W )

is a group isomorphism.

Proof. Choose an element i(j) ∈ I(j) and let n(j) :=
∑

i∈I(j) ni. Because

W (j) =
∏

i∈I(j)W
ni

i is similar to W
n(j)
i(j) ,

Sim(W ) ∼= Sim

(

∏

i∈I

Wni

i

)

= Sim





∏

j∈J

∏

i∈I(j)

Wni

i




∼= Sim





∏

j∈J

W
n(j)
i(j)





∼=
∏

j∈J

Sim(Wi(j)) ≀ Σn(j)
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and

Sim(W (j)) ∼= Sim





∏

i∈I(j)

Wni

i




∼= Sim

(

W
n(j)
i(j)

)

∼= Sim(Wi(j)) ≀ Σn(j)

for all j ∈ J .

In the applications to be discussed the next section,Wi will be the Weyl group

and Si the free Zp-module given by the fundamental group of the maximal torus

of a p-compact group.

3. Rational automorphisms

This section introduces a class of p-compact groups, called completely re-

ducible p-compact groups, and investigates their rational automorphisms.

A homomorphism f : X1 → X2 between two connected p-compact groups, X1

and X2, i.e. a based map Bf : BX1 → BX2 between the classifying spaces, is a

rational isomorphism if [8, Definition 4]

H∗(Bf ;Zp)⊗Zp
Qp : H

∗(BX2;Zp)⊗Zp
Qp −→ H∗(BX1;Zp)⊗Zp

Qp

is an isomorphism. An endomorphism f : Y → Y of a p-compact group Y which

is a rational equivalence will be called a rational automorphism.

All homomorphisms between p-compact groups restrict to homomorphisms

between the maximal tori [8, Theorem 2.4]. For endomorphisms, the precise

formulation of this assertion is the following version for p-compact groups of the

classical Adams-Mahmud theorem.

Theorem 3.1. [8, Theorem 2.5] Let Y be a connected p-compact group with

maximal torus T −→ Y and let f : Y → Y be an endomorphism of Y . There

exists an endomorphism ϕ of T such that the diagram

T

��

ϕ // T

��
Y

f
// Y

commutes and

(i) The endomorphism ϕ is a (rational) automorphism if and only if f is a

(rational) automorphism.

(ii) The homotopy class of Bϕ in [BT,BT ] is unique up to left action by the

Weyl group WT (Y ).

The Weyl group WT (Y ) is faithfully represented [4, Theorem 9.7] in the free

Zp-module π2(BT ). The uniqueness of the lift ϕ has the consequence that for

any w ∈WT (Y ) ⊆ [BT,BT ], Bϕ◦w = α(w)◦Bϕ for some α(w) ∈WT (Y ). Since
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π2(Bϕ)⊗Zp
Qp is an automorphism of π2(BT )⊗Zp

Qp, α is an automorphism of

WT (Y ) and

π2(Bϕ)⊗Zp
Qp ∈ Sim(WT (Y )⊗Zp

Qp)

is a self-similarity of the vector space representation WT (Y ) ⊗Zp
Qp. If f is an

(honest) automorphism of Y , π2(Bϕ) is an automorphism of π2(BT ) and the

uniqueness clause implies that

π2(Bϕ) ∈ Sim(WT (Y ))

is a self-similarity of the Zp-representation WT (Y ).

Denote by εQ(Y ) ⊆ [BY,BY ] the monoid of conjugacy classes of rational

automorphism of Y . The invertible elements in this monoid is the group Out(Y )

of conjugacy classes of automorphisms of Y .

Now consider a finite collection Yi, i ∈ I, of connected p-compact groups. Let

Wi be the Weyl group of Yi with respect to some maximal torus Ti −→ Yi.

The following lemma, based on the vanishing theorem of [8, Theorem 5.1],

will be applied repeatedly in the following.

Lemma 3.2. Let f be an endomorphism of the product p-compact group
∏

i∈I Yi. Suppose that there exist endomorphisms ϕi : Ti → Ti, i ∈ I, such that

∏

i Ti

��

∏

i
ϕi

//
∏

i Ti

��
∏

i Yi f
//
∏

i Yi

commutes up to conjugacy. Then

(i) There exist endomorphisms fi of Yi such that f is conjugate to the prod-

uct endomorphism
∏

i fi of
∏

i Yi.

(ii) If f is a (rational) automorphism, each fi is a (rational) automorphism.

Proof. Let, for each i ∈ I, ιi : Yi →
∏

i Yi and πi :
∏

i Yi → Yi be the canon-

ical injection and projection homomorphisms. Define fi : Yi → Yi as the com-

posite πi ◦ f ◦ ιi.

The assumption that f lifts to a product endomorphism of the product max-

imal torus
∏

i Ti implies that the restriction of πi ◦ f to
∏

j 6=i Tj is trivial and

hence also [8, Corollary 5.7] that the restriction of πi ◦ f to
∏

j 6=i Yj is trivial.

Consequently, πi ◦ f admits a factorization [8, Corollary 1.8]

∏

iXi

πi

��

πi◦f // Xi

Xi

<<
y

y
y

y
y
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through Xi. The only possible factorization is the endomorphism fi. Of course,

[BY,BY ] =
∏

i[BY,BYi], so πi ◦ f = fi ◦ πi = πi ◦ (
∏

i fi) shows that f and
∏

i fi are conjugate.

If f is a (rational) automorphism, the lift
∏

i ϕi is a (rational) automorphism

too [Theorem 3.1] and hence each ϕi, i ∈ I, is a (rational) automorphism. Since

ϕi : Ti → Ti covers fi : Xi → Xi it follows, Theorem 3.1 again, that fi is a (ra-

tional) automorphism.

Assume now that the faithful representation Wi −→ AutQp
(π2(BTi)⊗Zp

Qp) is

irreducible for each i ∈ I, i.e. that each Yi is a simple [8, Definition 5] p-compact

group.

Lemma 3.2 leads in the first place to a slight generalization of [8, Theorem

4.5] or, in other words, to a p-compact group version of [5, Proposition 1.3] from

where the proof is copied.

Proposition 3.3. Suppose that the prime p divides the order of each of the

Weyl groups Wi of the connected, simple p-compact groups Yi, i ∈ I. Then

Out(
∏

i Yi) = εQ(
∏

i Yi).

Proof. Let f be any rational automorphism of the product p-compact group
∏

i Yi. The task is to show that f is invertible.

Choose [Theorem 3.1] a rational automorphism ϕ such that

∏

i Ti

��

ϕ //
∏

i Ti

��
∏

i Yi f
//
∏

i Yi

commutes up to conjugacy and π2(Bϕ) ⊗Zp
Qp ∈ Sim(

∏

iWi ⊗Zp
Qp). In par-

ticular, ϕ determines an automorphism of the Weyl group
∏

iWi of
∏

i Yi and

by replacing f by an iterate of itself, if necessary, we may assume that this

automorphism is in fact the identity. Then the induced homomorphism

π2(Bϕ) ∈ End
Zp[
∏

Wi]

(

∏

π2(BTi)
)

∼=
∏

Zp

is a product homomorphism by Lemma 2.3 meaning that ϕ itself is conjugate to a

product
∏

i ϕi of endomorphisms ϕi of Ti. That also f is conjugate to a product
∏

i fi of rational automorphisms fi ∈ εQ(Yi) now follows from Proposition 3.2.

However, since p divides the order of the Weyl group Wi and Yi is simple, any

rational automorphism of Yi is invertible by [8, Theorem 4.5].

Rational automorphisms of the product p-compact group
∏

i Yi can be ana-

lyzed in detail in case the factors are distinct in the sense defined below.

Definition 3.4. A finite family Yi, i ∈ I, of connected, simple p-compact

groups is similarity free if each Weyl group Wi is nontrivial and
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(i) The representations Wi −→ Aut(π2(BTi)) of the Weyl groups in the max-

imal tori are pairwise nonsimilar.

(ii) If, for some pair i1, i2 ∈ I, the representations Wi1 ⊗Zp
Qp and

Wi2 ⊗Zp
Qp are similar, then p divides the Weyl group order |Wi1 | =

|Wi2 |.

Any family Gi, i ∈ I, of pairwise nonisomorphic, simply connected, simple

compact Lie groups (none of which is equal to Sp(n), n > 2, if p > 2) is similarity

free; see Example 2.2 when p = 2.

The main motivation for the introduction of this concept is the following main

result; cfr. [9, Theorem 3.1].

Theorem 3.5. Let Yi, i ∈ I, be a similarity free family of connected, simple

p-compact groups and let Y =
∏

i∈I Y
ni

i , ni ≥ 1.

(i) The canonical homomorphisms

∏

i∈I

εQ(Yi) ≀ Σni
−→ εQ(Y )

∏

i∈I

Out(Yi) ≀ Σni
−→ Out(Y )

are isomorphisms.

(ii) If f = (
∏

i∈I

∏

1≤j≤ni
fij) ◦ σ for some fij ∈ εQ(Xi), 1 ≤ j ≤ ni, and

some permutation map σ ∈
∏

i∈I Σni
, then the product map

∏

i∈I

∏

1≤j≤ni

map(BYi, BYi)Bfij −→ map(BY,BY )B(f◦σ−1)

is a homotopy equivalence.

The proof is divided into four parts.

By assumption, the index set I can be divided into equivalence classes I =
⋃

j∈J I(j) such that i1, i2 ∈ I(j) for some j ∈ J if and only if the representations

Wi1 ⊗Zp
Qp and Wi2 ⊗Zp

Qp are similar. Note that if the equivalence class I(j)

contains more than one element then p | |Wi| for all i ∈ I(j).

Put Y (j) =
∏

i∈I(j) Y
ni

i , j ∈ J , so that Y =
∏

j∈J Y (j).

Lemma 3.6. The product maps

∏

j∈J

εQ(Y (j)) −→ εQ(Y )

∏

j∈J

Out(Y (j)) −→ Out(Y )

are monoid isomorphisms.
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Proof. It suffices to show surjectivity as the above maps are monoid

monomorphisms by general and elementary principles. Let f ∈ εQ(Y ) be a

(rational) automorphism of Y . Let T (j) :=
∏

i∈I(j) Ti be the maximal torus and

W (j) :=
∏

i∈I(j)Wi the Weyl group of Y (j). Choose [Theorem 3.1] a (rational)

automorphism ϕ :
∏

j∈J T (j)→
∏

j∈J T (j) that covers f . Then

π2(Bϕ)⊗Zp
Qp ∈ Sim





∏

j∈J

W (j)⊗Zp
Qp




∼=
∏

j∈J

Sim(W (j)⊗Zp
Qp)

by Lemma 2.5. It follows in particular, that the induced homomorphism π2(Bϕ)

preserves the factors of
∏

j∈J π2(BT (j)) and hence that also ϕ =
∏

j∈J ϕ(j)

is a product of (rational) automorphisms ϕ(j) ∈ εQ(T (j)), j ∈ J . Now apply

Lemma 3.2.

In the next lemma, Σni
< Out(Y (j)), i ∈ I(j), denotes the subgroup consist-

ing of permutations of the ni factors equal to Yi in Y (j) =
∏

i∈I(j) Y
ni

i .

Lemma 3.7. The canonical homomorphism
∏

i∈I(j)

Out(Yi) ≀ Σni
−→ Out(Y (j))

is an isomorphism for each j ∈ J .

Proof. Let f be any automorphism of Y (j). Choose [Theorem 3.5] an au-

tomorphism ϕ of maximal torus T (j) that covers f . Then

π2(Bϕ) ∈ Sim(W (j)) ∼=
∏

i∈I(j)

Sim(Wi) ≀ Σni

by Lemma 2.4. It follows in particular that B(ϕ ◦ σ−1) =
∏

i∈I(j) ϕi for

some automorphisms ϕi ∈ Out(Ti), i ∈ I(j), and some permutation map

σ ∈
∏

i∈I(j) Σni
. Now apply Lemma 3.2 to f ◦ σ−1.

In case the index set I(j) contains more than one element, then the formula

∏

j∈I(j)

εQ(Yi) ≀ Σni
∼= εQ(Y (j))

is, by Proposition 3.3, just an alternative formulation of Lemma 3.7. The com-

putation of the rational equivalences in case the index set I(j) does consist of

just a single element is handled by the following lemma.

Lemma 3.8. The canonical homomorphism

εQ(Yi) ≀ Σni
−→ εQ(Y

ni

i )

is a monoid isomorphism for all i ∈ I.
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Proof. Proceed as in the proofs of Lemma 3.6 and Lemma 3.7 using the

isomorphism Sim(Wni

i ⊗Zp
Qp) ∼= Sim(Wi⊗Zp

Qp) ≀Σni
from Lemma 2.4 together

with Lemma 3.2.

After these three lemmas it is time for

Proof of Theorem 3.5. The preceding three lemmas imply that
∏

i∈I

εQ(Yi) ≀ Σni
=
∏

j∈J

∏

i∈I(j)

εQ(Yi) ≀ Σni
∼=
∏

j∈J

εQ(Y (j)) ∼= εQ(Y )

and a similar computation applies to the case of (genuine) automorphisms.

As to point (ii), write Y =
∏

i Y
ni

i =
∏

i,j Yij where Yij = Yi for 1 ≤ j ≤ ni.

The projection homomorphism πij of Y to Yij is part of a short exact sequence

∏

(k,l) 6=(i,j)

Ykl −→ Y
πij

−−→ Yij

of p-compact groups. In this situation, precomposition with Bπij induces a

homotopy equivalence of mapping spaces [8, Lemma 1.7] which, as πij ◦f ◦σ
−1 =

fij ◦ πij , restricts to a homotopy equivalence

Bπij : map(BYij , BYij)Bfij → map(BY,BYij)B(πij◦f◦σ−1)

of connected components. With the map of point (ii) as the top horizontal map,

the diagram

∏

i,j map(BYij , BYij)Bfij
//

≃
∏

Bπij ++VVVVVVVVVVVVVVVVVVV

map(BY,BY )B(f◦σ−1)

∏

i,j map(BY,BYij)B(πij◦f◦σ−1)

commutes and point (ii) follows.

Any rational automorphism f of the connected p-compact group Y induces

(restricts to) a rational automorphism Z(f) of the center Z(Y ) characterized as

the unique endomorphism that makes

Z(Y )

��

Z(f) // Z(Y )

��
Y

f
// Y

commute up to conjugacy [8, Corollary 3.2].

Thanks to the homotopy equivalence BZ(Y ) −→ map(BY,BY )B1 from Dwyer

and Wilkerson [3, Theorem 1.3], Z(f) can also be computed as a map between

mapping spaces.
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Corollary 3.9. Let f be a rational automorphism of the p-compact group

Y =
∏

Y ni

i from Theorem 3.5. Then the post- and precomposition maps

map(BY,BY )B1

Bf

−−→ map(BY,BY )Bf
Bf
←−− map(BY,BY )B1

are homotopy equivalences and the endomorphism Z(f) is an automorphism of

Z(Y ).

Proof. According to Theorem 3.5 we may assume that f =
∏

i

∏

j fij for

some rational automorphisms fij of Yij = Yi, i ∈ I, 1 ≤ j ≤ ni. The postcom-

position and precomposition maps fit into the commutative diagram

map(BY,BY )B1

Bf
// map(BY,BY )Bf map(BY,BY )B1

Bfoo

∏

map(BYij , BYij)B1

≃

OO

∏

Bfij

//
∏

map(BYij , BYij)Bfij

≃

OO

∏

map(BYij , BYij)B1

≃

OO

∏

Bfij

oo

where the vertical maps are the homotopy equivalences of Theorem 3.5. Since

each of the p-compact groups Yij is simple with nontrivial Weyl group, the post-

comoposition maps Bfij as well as the precompostion maps Bfij are homotopy

equivalences by [8, Corollary 4.7].

Evaluation at the base point determines a commutative diagram

map(BY,BY )B1

��

Bf

≃
// map(BY,BY )Bf

��

map(BY,BY )B1
Bf

≃
oo

��
BY

Bf // BY BY

showing that Z(f) identifies to the homotopy equivalence (Bf)−1 ◦Bf .

In particular, we see that Z may be regarded as a homomorphism

Z : εQ(Y )→ Aut(Z(Y )).

The following definition was introduced as an attempt to extend Corollary 3.9

to a larger class of p-compact groups by applying Notbohm’s [11, Theorem].

Definition 3.10. A connected p-compact group is completely reducible if its

universal covering p-compact group [10, Lemma 3.2] is isomorphic to a product

p-compact group of the form
∏

i∈I Y
ni

i where (Yi)i∈I is a finite, similarity free

family of simply connected, simple p-compact groups.

This definition should be regarded as provisional since, with a little luck, any

connected p-compact group will turn out to be completely reducible.

For any completely reducible p-compact group X there exists [10, Theorem

5.4] a short exact sequence of the form

K
(incl,ϕ)
−−−−→

(

∏

Y ni

i

)

× S
q
−→ X(3.1)
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where K is a subgroup of the finite [10, Theorem 5.3] center Z (
∏

Y ni

i ) ∼=
∏

Z(Yi)
ni , S is a p-compact torus (equal to the connected component of the

center of X), and ϕ : K → S a homomorphism.

Suppose now that X1 and X2 are two connected, locally isomorphic [8, Def-

inition 3], completely reducible p-compact groups, i.e. [8, Proposition 1.4] that

there exist short exact sequences

Kj

(incl,ϕj)
−−−−−→

(

∏

Y ni

i

)

× S
qj
−→ Xj(3.2)

for j = 1, 2. Let εQ(X1, X2) ⊆ [BX1, BX2] denote the set of conjugacy classes

of rational equivalences from X1 to X2.

By Theorem 3.5 and [8, Theorem 3.2] there exists an injection

Λ: εQ(X1, X2)→ (
∏

εQ(Yi) ≀ Σni
)× εQ(S)

associating to each f ∈ εQ(X1, X2), rational automorphisms gij ∈ εQ(Yi), i ∈

I, 1 ≤ j ≤ ni, h ∈ εQ(S), and a permutation map σ ∈
∏

Σni
such that

(
∏

i∈I Y
ni

i

)

× S

q1

��

g×h //
(
∏

i∈I Y
ni

i

)

× S

q2

��
X1

f
// X2

commutes up to conjugacy with g =
∏

i∈I(
∏

j gij) ◦ σi. The image of Λ consists

of those pairs (g, h) for which Z(g)(K1) ⊆ K2 and the diagram

K1

Z(g)

��

��

ϕ1 // S

h

��
K2 ϕ2

// S

commutes up to conjugacy.

In particular, the sets εQ(X1, X2) will be completely known for all pairs

(X1, X2) of locally isomorphic, completely reducible p-compact groups once the

the monoids εQ(Y ) together with the homomorphisms Z : εQ(Y )→ Aut(Z(Y ))

are known for all simply connected, simple p-compact groups Y .

Here is a consequence that already now is obtainable. In point (i),

Z : εQ(X1, X2)→ εQ(Z(X1), Z(X2)) is the homomorphism of [8, Corollary 3.2]

(considered above in case of rational automorphisms).

Theorem 3.11. Suppose that X1 and X2 are the two locally isomorphic, com-

pletely reducible p-compact groups given by the short exact sequences ( 3.2).

(i) For any rational equivalence f : X1 → X2, the precomposition map

Bf : map(BX2, BX2)B1 → map(BX1, BX2)Bf
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is a homotopy equivalence (i.e. the centralizer of f is isomorphic to the

center of X2) and the diagram

Z(X1)

≃

��

Z(f) // Z(X2)

≃

��
map(BX1, BX1)B1

Bf
// map(BX1, BX2)Bf map(BX2, BX2)B1

Bf

≃oo

commutes up to conjugacy.

(ii) If |K1| > |K2|, then εQ(X1, X2) = ∅.

Proof. Let g ∈ εQ(Y ), where Y =
∏

Y ni

i is the universal covering p-compact

group of X, and h ∈ εQ(S) be rational automorphisms such that g × h covers f

up to conjugacy. Precomposition with these maps induces a fibre map

BK2
// map(BY,BY )B1 ×map(BS,BS)B1

//

Bg×Bh≃

��

map(BX2, BX2)B1

Bf

��
BK2

// map(BY,BY )Bg ×map(BS,BS)Bh
// map(BX1, BX2)Bf

of fibrations as in [8, Proposition 3.4]. The precomposition map Bg is a homo-

topy equivalence by Corollary 3.9 and Bh is a homotopy equivalence since S is

an abelian p-compact group. Hence also Bf is a homotopy equivalence.

The computation of Z(f) now proceeds as in Corollary 3.9.

The second statement of the theorem follows because Z(g) is an automorphism

of Z(Y ) by Corollary 3.9.

The postcomposition map Bf is in general not a homotopy equivalence.

Another consequence is a version of Proposition 3.3 concerning invertibility of

rational automorphisms of semisimple p-compact groups, i.e. p-compact groups

with finite fundamental groups.

Corollary 3.12. Let X be a semisimple, completely reducible p-compact

group given as in ( 3.1) with S trivial. Assume that the prime p divides the

order |Wi| of the Weyl group of Yi for all i ∈ I. Then εQ(X) = Out(X).

Proof. By Proposition 3.3, any rational automorphism of Y has a homotopy

inverse, so the monoid monomorphism Λ: εQ(X)→ εQ(Y ) shows that the same

is true for X.

Finally, a few examples to illustrate the use of Theorem 3.5.

Example 3.13. (1) According to [5, Proposition 1.3] or Proposition 3.3 and

[6]

εQ(Spin(2n+ 1)∧2 ) = Out(Spin(2n+ 1)∧2 ) = {ψ
u | u ∈ Z∗

2}
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and Z(ψu) is the identity map of Z(Spin(2n + 1)∧2 ) = Z/2. Hence [8, Theorem

3.2]

Out(SO(2n+ 1)∧2 ) = Out(Spin(2n+ 1)∧2 )

and the product map

Out(Spin(2n+ 1)∧2 )×Out(SO(2n+ 1)∧2 ) −→ Out(Spin(2n+ 1)∧2 × SO(2n+ 1)∧2 )

is an isomorphism.

(2) The monomorphism Λ: Out(SO(2n)∧2 )→ Out(Spin(2n)∧2 ) is an isomorphism

for n > 4 but not for n = 4; see [7, Example 2.2].

(3) For any finite collection (Gi)i∈I of pairwise nonisomorphic simply connected,

simple, compact Lie groups
∏

i∈I

εQ((Gi)
∧
2 ) ≀ Σni

∼= εQ(
∏

i∈I(G
ni

i )∧2 )

and the similar formula holds for odd primes too if Gi 6= Sp(n), n > 2, for all

i ∈ I.
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