Toric morphisms between p-compact groups

Jesper M. Mgller

Abstract. It is well-known that any morphism between two p-compact groups
will lift, non-uniquely, to an admissible morphism between the maximal tori.
We identify here a class of p-compact group morphisms, the p-toric mor-
phisms, which can be perceived as generalized rational isomorphisms, en-
joying the stronger property of lifting uniquely to a morphism between the
maximal torus normalizers. We investigate the class of p-toric morphisms and
apply our observations to determine the mapping spaces map(BSU(3), BF4),
map(BGgz,BF4), and map(BSU(3),BG2) where the classifying spaces have
been completed at the prime p = 3.

1. Introduction

The classification up to homotopy of maps between classifying spaces of com-
pact Lie groups is a traditional project of algebraic topology [18, 26]. One line
of development started with the investigations 25 years ago by Hubbuck [15, 16]
and Adams-Mahmud [1]. They noted the close relationship between maps be-
tween classifying spaces and admissible homomorphisms between maximal tori.
The regular admissible homomorphisms, in particular, turned out to have espe-
cially nice properties. It is the purpose of this paper to study regular admissible
morphisms, here called toric admissible morphisms, in light of the more recent
theory by Dwyer-Wilkerson [9] of p-compact groups. As case studies, we classify
homotopy homomorphisms SU(3) — Fy4, Go — Fy, and SU(3) — Gs at the prime
p=3.

In order to describe the content in more detail, let X; and X5 be p-compact
groups, for the sake of this introduction assumed to be connected, with maximal
tori T(X1) — X3 and T(X2) — X, respectively. For any morphism f: X; — X5
there is a lift T'(f): T(X1) — T(X2), unique up the action of the Weyl group of
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X5, such that the diagram

T(x1) —LL 7(x,)

X —f>X2

commutes up to conjugacy. As a consequence of uniqueness, the morphism 7T'(f) is
admissible in the sense that for any element w, of the Weyl group of X; there exists
and element wy of the Weyl group of Xs such that T'(f)w; = weT(f). In general,
ws is not uniquely determined by wq, but if it is, we say that f is p-toric (2.1). (As
we shall see (2.4), f is p-toric, if and only if the centralizer Cx, (fi17'(X1)) of the
maximal torus of X in X5 is a maximal torus of Xs. This explains the name.) In
that case, the correspondence w; — ws is a homomorphism of Weyl groups and,
by Theorem 3.5, there is a unique lift N(f): N(X1) — N(X2) to a map between
the maximal torus normalizers such that the diagram

N(X1) L N ()

L

Xy 4f>X2

commutes up to conjugacy, i.e. a p-toric morphism lifts uniquely to a morphism
between the maximal torus normalizers.

In many concrete cases the generic morphism is p-toric. As a first example,
we consider the case where the domain X; = SU(3), the codomain X5 = Fy,
and the prime p = 3. The compact Lie group F, contains a unique copy of
SU(3,3) = SU(3) xzsu(s)) SU(3) as a subgroup of maximal rank (4.10). Any
morphism SU(3) — SU(3, 3) is of the form

) SU3) 2 SU(3) x SU3) L% SU(3) x SU(3) — SU(3, 3)

where u and v are 3-adic units or zero (2.17). Composing with the inclusion
e: SU(3,3) — F4 we obtain the morphism ey(*¥): SU(3) — F,. Observe that
elp(®?) = ep(==v) gince the inclusion e is invariant under the action of the
Weyl group Wy, (SU(3,3)) [11, 4.3] [24, 8.4] which is of order two generated by the
self-map 1~ X z(su(3)) ¥ ™! of SU(3,3) (4.15). These maps ey, u,v € Z5U{0},
with the relation ey () = e~ turn out to describe Rep(SU(3),Fy) =
[BSU(3)%, (BF4)4] completely.

Theorem 1.1. The map
eo—: Wg,(SU(3,3))\ Rep(SU(3),SU(3,3)) — Rep(SU(3),F4)

is a bijection when p = 3.
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See (4.16, 5.7, 6.7) for information about the centralizers [9, 3.5] of these
maps. The proof of Theorem 1.1 is divided into three cases: Monomorphisms
SU(3) — F4 (4.13), p-toric monomorphisms PU(3) — F4 (5.4), and, the tech-
nically most demanding case, non-p-toric monomorphisms PU(3) — F4 (6.1).

As a second example, we consider the case where X; = Go and Xy = Fy
and p = 3 and reprove a result from Jackowski-McClure-Oliver [19]. To state the
theorem, we recall that the compact Lie group Gy contains a unique copy of SU(3)
as a subgroup of maximal rank (8.5). Thus we may restrict morphisms defined on
Gg to this subgroup SU(3) C Ga.

Theorem 1.2. [19, 3.4] The restriction map
Rep(Gaz, F4) — Rep(SU(3), F4)
is a bijection when p = 3.

See (7.2) for information about the centralizers of the homotopy morphisms
from G, to Fy at the prime p = 3.

When working with this paper, I made use of a MAGMA program written
by K. Andersen for computing admissible homomorphisms. I also wish to thank
C. McGibbon for a clarifying remark.

2. Toric morphisms

In this section I introduce the concept of a p-toric morphism, relate it to other, more
familiar, types of morphisms between p-compact groups, and provide examples of
morphisms that are p-toric and others that are not.

Let X; and X5 be p-compact groups (or extended p-compact tori [10, 3.12])
with maximal tori Ty = T(X;) — X3, To = T(X2) — X5 and Weyl groups
Wy = W(X1) and Wy = W(Xa) [9], respectively. Write Rep(X;, X2) for the set
[BX1, BX>] of conjugacy classes of loop space morphisms [9, §3].

Definition 2.1. 1. A loop space morphism Ty — X is p-toric (or regular [1,
2.22], [19, 1.3]) if its centralizer Cx,(T1) is a p-compact toral group [9,
6.3].

2. A loop space morphism X1 — Xa is p-toric if its composition with T} —
X1 1is p-toric.

Note that the centralizer C'x,(77) in (2.1.1) is known to be a p-compact group
[9, §6] [10, 2.5].

We shall now consider some alternative criteria for a morphism to be p-
toric. For any loop space morphism f: X; — X5 between p-compact groups or
extended p-compact tori there exists [9, 8.11] [10, 2.14] a loop space morphism
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T(f): Ty — Tz between the maximal tori such that

T
s (2.2)

Xy T>X2

commutes. Moreover, the conjugacy class of T'(f) in Rep(T1,T5) is unique up to
the action by the Weyl group W5 of the target [22, 3.5]. The Adams-Mahmud map

Rep(Xl, XQ) — WQ\ Rep(Tl, TQ),

taking f € Rep(X1, X2) to the Wa-orbit of T'(f) € Rep(11,T%), is instrumental
in the proofs of 1.1 and 1.2. Note that, by uniqueness of T'(f), the image of the
Adams-Mahmud map is contained in W\ Adm(77y,T) where

Adm(Tl,Tg) = {(p S Rep(Tth) | Wy C WQ(,D} (23)

is the set of admissible homomorphisms. For each element w; of the Weyl group
W7 of the domain there are in general several solutions for we € W5 in the equa-
tion T'(f)wy = woT(f). As we shall shortly see (2.4), the p-toric morphisms are
characterized (for connected X53) as the ones for which ws is uniquely determined
by w;.

Let

Wy = {wy € Wy | wa - T(f) = T(f)}
denote the stabilizer subgroup at T'(f) for the action of W5 on Rep(Ty,Ts). The
conjugacy class of this subgroup does not depend of the choice of T'(f) but only
on f.
In case X; and X, are extended p-compact tori, there is a short exact se-
quence of loop spaces
Ty — Ox,(T(NT1) — Wy
from which we see that
f: X1 — Xs is p-toric & WQT(f) = mo(Cx,(T1)) is a finite p-group.
In case X; and Xs are p-compact groups, Cx, (71) — X5 is a monomorphism
of maximal rank [10, §4], so
f+ X1 — X is p-toric & Cx,(T1)o — Xo is a maximal torus for X,
where subscript 0 indicates identity component. If X5 is assumed to be connected,
a stronger statement is possible.
Proposition 2.4. Assume that Xs is a connected p-compact group. The following
are equivalent
1. f is p-toric.
2. Cx,(T1) — Xo is a mazimal torus for Xs.
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3. WZT(f) 1s trivial.
for any p-compact group morphism f: X1 — Xs.

Proof. For general reasons, the centralizer C'x,(T1) is a connected [21, 3.11] [10,
7.8] p-compact group [10, 2.5] and the evaluation morphism Cx,(71) — X3 a
monomorphism of maximal rank [10, 4.3]. Also, any p-compact group with trivial
Weyl group is [9, 9.7] [21, 3.7, 3.8] a p-compact torus. These general facts, in
combination with [9, 8.11] [21, 3.6], easily imply the proposition. O

Consequently, for any p-toric morphism f: X; — X5 with connected tar-
get, there is for each element w of the Weyl group of the domain a unique ele-
ment x(f)(w) of the Weyl group of the target so that T'(f)w = x(f)(w)T(f) €
Rep(Th,Tz), and x(f): W1 — Wh is a group homomorphism.

In general, for a possible non-connected target X5, we consider an enlarged
version of diagram (2.2) in the form of the diagram

2, (2.5)

X1 4f>X2

where jo: No — X5 is the normalizer [9, 9.8] of the maximal torus. Using that
Cn,(T1) — Cx,(T1) is a maximal torus normalizer [22, 3.4.3], we get

£ is p-toric < T1 5 X, L5 X, is p-toric (2.6)
< COn,(Th) — Cx,(T1) is an isomorphism (2.7)
=1 29 1, 2 N, is petoric (2.8)

eWIW) s a finite p-group. 2.9
2

When p > 2, also the converse of the third implication holds because, for odd p,
a p-compact group is a p-compact toral group if and only if its Weyl group is a
finite p-group [23, 7.9].

In some cases, see e.g. [22, 5.1] or (3.5) below, it is possible to lift f to a loop
space morphism N(f) between the maximal torus normalizers such that

Ny YL N, (2.10)

sl s

Xy 4f>X2
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commutes up to conjugacy. In this situation
f is p-toric = N(f) is p-toric (2.11)

and for p > 2 also the converse holds. (Use (2.7, 2.8) to see this.)
In the following examples and elsewhere

e TRep(X1, X2) C Rep(Xi, X2) denotes the set of conjugacy classes of p-
toric morphisms

e Mono(X1, X5) C Rep(Xi, Xs2) denotes the set of conjugacy classes of

monomorphisms

TMono(X7, X3) = Mono(X1, X2) N TRep(X1, X5)

eq (X1, X2) C Rep(X1,X3) is the set of rational isomorphisms [22, 2.1]

eq(X1) = eq(X1,X1) is the monoid of rational automorphisms of X4

Out(X7) is the group of conjugacy classes of automorphisms of X; (the

invertible elements of the monoid Rep(X1, X1)).

Above, a loop space morphism between extended p-compact tori is a monomor-
phism if its discrete approximation [10, 3.12] is a group monomorphism.

Example 2.12. If Xy and X5 have the same rank [9, 5.11],
MOHO(Xth) C TRep(Xl,Xg) D) €Q(X1,X2)

because any monomorphism [9, 3.2] (rational isomorphism [22, 2.1]) restricts to an
isomorphism (epimorphism) between maximal tori [21, 3.6] [22, 3.6].
If X1 and X5 are locally isomorphic, simple p-compact groups [22, 2.7, 5.4]

TRep(Xl,Xg) = Rep(Xl,Xg) — {0} = EQ(X17X2)

because f is p-toric or a rational isomorphism if and only if T(f) is non-trivial if
and only if f is non-trivial [22, 6.7].

Example 2.13. For any p-compact group X and any integer m > O,
TRep(X, X™) = (TRep(X, X))™. If X is simple,

TRep(X, X™) = (Rep(X, X) — {0})™ = eq(X)™ " out(x)™,

where the last identity holds under the assumption that p divides the order of the
Weyl group [22, 5.5, 5.6].

Proposition 2.14. Assume that X1 is connected and that z: Z1 — X1 is a central
monomorphism [9, 3.5]. Then there are bijections

e Rep(X1/Z1,X32) — {f € Rep(X1, X2) | f oz is trivial}

o TRep(X1/Z1,X2) — {f € TRep(X1,X2) | f oz is trivial}
induced by the epimorphism X; — X1/Z1 [9, 3.2, 83]. In fact,
map(B(X1/Z1), BX2) is homotopy equivalent to a union of connected components
of map(BX1, BX5).
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Proof. The epimorphism of X; to X;/Z; induces a homotopy equivalence be-
tween map(B(X1/Z1), BX5) and a collection of components of map(BX;, BX5)
[22, 2.10]. This shows the injection of sets of representations, and, when applied
with X7 replaced by 77, it shows that a morphism X; — X5 is p-toric if and only
if its composition with the epimorphism X; — X;/Z; is p-toric. U

Proposition 2.15. Assume that X, is simply connected, Xo is connected, and that
z: Zy — X is a central monomorphism. Then there are bijections

e Rep(X1, X2) — Rep(X1, X2/25)
[ TRep(Xl,Xg) — TRep(Xl,Xg/Zg)

induced by the epimorphism Xo — Xo/Z5.
Proof. Obstruction theory (remember that BX; is 3-connected [6]) shows that

Rep(X1, X2) = Rep(Xy,X2/Z5) and the existence of a short exact sequence of
p-compact groups [9, 3.2]

K — Cx,(X1) = Cx,/z2,(X1)
where BK is one component of the homotopy fixed point set BZSX ';in particular

K is a p-compact toral group. It follows that Cx,(X7) is a p-compact toral group
if and only if Cx, /z,(X1) is. O

Example 2.16. For any simply connected, simple p-compact group X and any cen-
tral monomorphism Z — X,

TRep(X, X™/Z) = TRep(X, X™) = eq(X)™ "2 Out(x)™
where the last identity holds if p divides the order of the Weyl group [22, 5.5, 5.6].
Example 2.17. Let p be an odd prime and let SU(p,p) denote the quotient of

SU(p) x SU(p) be the central subgroup generated by (CE,("1E) where ¢ # 1 is
a pth root of unity. Then (2.15)

Rep(SU(p), SU(p, p)) = Rep(SU(p), SU(p)) x Rep(SU(p), SU(p))
TRep(SU(p), SU(p, p)) = Out(SU(p)) x Out(SU(p))
where [20, 2.5, 3.5] [24, 4.8] Rep(SU(p),SU(p)) — {0} = Out(SU(p)) = Z;, the
group of units in the ring of p-adic integers. Relative to this identification
Mono(SU(p), SU(p, p)) = {(u,v) € (Z, U {0V)? |u+wve Z} (2.18)
for [24, 5.2] the morphism ¢(“?) defined as the composition

SU(p) 2 SU(p) x SU(p) ~225 SU(p) x SU(p) — SU(p,p)

is a monomorphism if and only if u+v € Z;. The monoid Rep(SU(p, p), SU(p, p))
is (2.14, 2.15) isomorphic to a submonoid of Rep(SU(p) x SU(p), SU(p) x SU(p))
and, in particular,

Out(SU(p,p)) = {(u,v) € Zy, x Zy, | w = v mod p} x (7)
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where T is the automorphism that swaps the two SU(p)-factors.

The set of monomorphisms (2.18) consists of two orbits, represented by UISEEY)
and Y19 | under the action of the automorphism group Out(SU(p,p)). It follows
that the centralizers of the monomorphisms (") are

Z(SU(p)) ifu#0andv#0

SU(p) fu=0o0rv=0 (2.19)

Csu(p.p) (W “"SU(p)) = {
i.e. that (WY is centric [7] precisely when it is p-toric. (To prove that PO s
centric one uses the fact that Z(SU(p)) 2, Z(SU(p) x SU(p)) — Z(SU(p,p))
is an isomorphism of centers.) In the non-toric case, observe that the projection

morphism SU(p) x SU(p) — SU(p,p) restricts to 9 on the first factor and to
POV on the second factor. This gives a factorization

SU(p) — Csu(pp (@ SU(p)) — SU(p, p)

of OV through the centralizer of 10 where the first map is an isomorphism. We
conclude that if f: SU(p) — SU(p,p) is a non-toric monomorphism, so is the eval-
uation monomorphism SU(p) = Csu(pp) (fSU(p)) — SU(p,p). The Weyl group,
WSU(EP)(@/}(“’”)SU(p)), of any monomorphism “¥) is trivial [24, 8.5].

Finally, we note that by (2.14),

Rep(PU(p),SU(p,p)) = {(u,v) € (Z; U{0})* | u+v € pZ,}
TRep(PU(p), SU(p,p)) = {(u,v) € (Z})* | u+v € pZp}

so that Rep(PU(p),SU(p,p)) = {0} U Mono(PU(p),SU(p,p)) and
Mono(PU(p), SU(p,p)) = TRep(PU(p), SU(p,p)).

Lemma 2.20. Let f: X — Y7 be any morphism and g: Y1 — Yo a monomorphism
between p-compact groups. Then

gof: X =Yy isp-toric= f: X — Y] is p-toric.

Proof. Let T be a maximal torus of X;. Since composition with Bg, Cy, (fiT) —
Cy,(gfiT), is a monomorphism, Cy, (g fiT") is a p-compact toral group if Cy, (fiT")
is a p-compact toral group [21, 3.5.(1)]. O

The converse of (2.20) is not true in general; take for instance Y; to be the
maximal torus of Ys.

3. Lifting p-toric morphisms

In this section I show that all p-toric morphisms between two p-compact groups
lift uniquely to p-toric morphisms between the maximal torus normalizers.

Recall that X; and X5 are p-compact groups or extended p-compact tori and
that ji1: Ny — X1 and jo: Ny — Xo are normalizers of the respective maximal
tOI’i7 ill T1 — X1 and ig: T2 — XQ.
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By the very definition of a p-toric morphism, the maps j; and j2 induce maps
TRep(X1, X2) — TRep(Ny, X3) <~ TRep(N1, N2) (3.1)

of sets of p-toric representations. Our first objective is to prove that the arrow to
the right is a bijection. This will enable us to define a map from TRep(X7, Xs)
to TRep(N1, Na). Note the favorable input provided by the information [22, 3.2]
that

TRep(T1, X2) < TRep(T1, N2) (3.2)
is a bijection and
Cx,(T1) — Cn,(T1) (3.3)

an isomorphism for any p-toric morphism 77 — Ns.
For any set S C Rep(X1, X3), write map(BX;, BXs)g for the space of all
maps BX; — BXs homotopic to a member of S.

Lemma 3.4. The map, induced by js,
map(BN1, BX2)TRep(N,,x5) ¢ Map(BN1, BNa)Trep(N, ,N>)

s a homotopy equivalence.

Proof. The map of the lemma is the map on homotopy fixed point spaces

)hW1

map(BN1, BY2)TRep(Ny,v2) = (map(BT1, BY2)TRep(T:,v2) Yy = Np, Xo,

)

induced by the map
map(BTy, BX2)TRep(T,,X,) ¢ mMap(BT1, BN2)TRep(T:,N,)
which is known to be a homotopy equivalence (3.2, 3.3). O

This lemma immediately leads to the main result of this section.

Theorem 3.5. (Cf. [1, 2.22]) Let X, and X5 be p-compact groups and f: X1 — X
a p-toric morphism. Then there exists a morphism N(f): Ny — Ny between ex-
tended p-compact tori such that

N
N (f) N,

sl s

X1 T>X2

commutes up to conjugacy. Moreover,
o N(f) is unique up to conjugacy
o N(f) is p-toric
o Cx,(fjiN1) <« Cn,(N(f)N1) is an isomorphism of loop spaces
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Proof. The map
N: TRep(X1, X2) — TRep(Ny, Na) (3.6)

is defined as the composition of the map TRep(X;, X2) — TRep(X1, N2) with the
inverse of the bijection TRep(N1, X2) < TRep(Ny, N3) from (3.1). That N(f) is
p-toric is (2.11) and the isomorphism of centralizers is (3.4). O

Example 3.7. If X is simple and N — X the normalizer of the maximal torus,
the map TRep(X,X™) — TRep(N,N™) is injective if eq(X) — Rep(N,N) is
injective (2.13); e.g. if X = PU(p), X = G2 andp =3, or X =Dy andp =3
[24].

The above theorem is intended as a tool to facilitate the computation of
TRep(X1, X2) in concrete cases. We now address injectivity of (3.6).

Remark 3.8. According to the homology decomposition theorem of Jackowski-
McClure [17] and Dwyer-Wilkerson [8], the exists an F,-equivalence

hocolimper BCx, (v) — BX;

where the homotopy colimit is taken over some full subcategory A of the Quillen
category A(X7). Let us assume that
o Any object v: V — X1 of A admits a factorization p: 'V — Ty through the
mazximal torus and
e N: TRep(Cx, (v), X2) — TRep(Chn, (1), Na) is injective for all objects
v:V—X; of A
and let now f and f’ be two p-toric morphisms with N(f) = ¢ = N(f’) for some
© € TRep(Cn;, (1), N2). Then the two possible compositions

v f
CX1 (U) & X1 4; XQ
f/

are again p-toric morphisms for Cx,(fe(v)Cr, (1)) = Cx,(fi1T1) is a p-compact
torus and similarly for the other morphism f'. Since also,
N(foe(v))=poe(n)=N(foe(v))
we have f oe(v) ~ f' oe(v) for all objects v of A by hypothesis. (Here,
e(v): Cx(v) — X stands for the evaluation monomorphism.) The obstructions to
constructing a homotopy between Bf and Bf' lie in
limgm(map(BC’X1 (v), BX2)B(foewy)), 12>1

which is an abelian group for i > 1 but just a set if i = 1 and the fundamental
groups are non-abelian.

It is possible that (3.8) can be generalized to a more general situation using
the preferred lifts of [25].

While (3.8) applies to the case where X; is center-free, the following lemma
can be helpful if X; has a non-trivial center [10] [21].
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Consider the following situation

Z
D
X Y —Y,

g9

of p-compact groups and loop space morphisms. Let Rep(X,Y1),—.., = {f €
Rep(X,Y7) | f oz = 21} denote the set of conjugacy classes of morphisms under
Z and map(BX, BY),_.,, the corresponding mapping space.

Lemma 3.9. (Cf. [9, 8.4].) Assume that z: Z — X is a central monomorphism into
the connected p-compact group X and that composition with Bg is an isomorphism
g: Oy, (z1Z) — Cy,(22Z) of centralizers. Then composition with Bg,

Bg o —: map(BX, BY1)2—>Z1 - map(BXa BY*Q)z—»m
is a homotopy equivalence.

Proof. The fibration [9, 8.3] [21, 4.1] BZ — BX — B(X/Z) allows us to view
BX = BZy(x/z) as a homotopy orbit space [9, 9.10] and

map(BX, BY;) = map(BZy(x,z), BY1) = map(BZ, BY;)"™/%) =12,
as homotopy fixed point spaces. Composition with Bg: BY; — BY5,
map(BX, BY}).—.., = map(BZ, BY;)52\/?) — map(BZ, BY:)y/”)
=map(BX, BY2),_,
is a homotopy equivalence because [9, 10.2] it is induced by the map
map(BZ, BY1)p., = BCy,(21) — BCy,(22) = map(BZ, BY3) .,

which by assumption is a homotopy equivalence. U

Here is a typical application of (3.9). In the diagram

V\
X1 CX2(V)WX2

V' is an elementary abelian p-group, z; a central monomorphism, 2o a monomor-
phism , and Zy the canonical factorization of z through its centralizer [9, 8.2].
Since the evaluation monomorphism e(V): Cx, (V) — X clearly [9, 8.2] satisfies
the hypothesis of (3.9) we see that

map(BX;, BCx,(V)).,—z, — map(BX1,BX2)., -z, (3.10)

is a homotopy equivalence.
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Definition 3.11. Let R be a subset of Rep(X1, X2). We say that R is T-determined
if the implication
fIT(X1) =gIT(X1) = f=yg
holds for all f € R and all g € Rep(X1, X32).
Example 3.12. If the order of W (X}) is prime to p, then
Rep(X1, X2) = W(X2)\ Adm(T'(X1), T(X2)) (3.13)

where Adm(T'(X1),T(X2)) consists of the admissible homomorphisms (2.3). Thus
Rep(X1, X2) is T-determined in this case. The bijection (3.13) follows by exploit-
ing the H*F-equivalence BN (X;) — BX; [23, 3.12].

Remark 3.14. Let S; — G1 — m(G1) and Sy — Go — mo(Ga) be two ex-
tensions of finite groups, mo(G1) and mwo(G2), by p-compact tori, S; and Ss.
Let Hom(G1,G2) = [BG1, *; BGs| denote the set of based and Rep(Gy,G2) =
[BG1, BG2| = mo(G2)\ Hom(G1, G2) the set of free homotopy classes of maps of
BG1 nto BG2

The two functors my and o define a map

Hom(Gl,Gg) — Hom(WO(Gl)’ﬂO(G2))(Sl,Sz) (3.15)

into the set Hom (x(G,),m0(Gs)) (S1,592) of pairs (x,¢) € Hom(mo(G1), m0(G2)) X
Hom(S1,S2) such that ¢ is x-equivariant. The fibre over (x, @) is either empty or
in bijection with the set

mo(map(BSy, BS2) 5, ) = H(mo(G1); ma(BS2)) = Hl(mo(G1); 82)  (3.16)

where 7o(G1) acts on Sy, the discrete approzimation to Sa, through x.

If we put wy - (X, ¢) = (waxwy ', wad) for all wo € mo(G2) and all (x,¢) €
Hom(r(G,),m0(Gs)) (S1,S2) then (3.15) becomes mo(Ga)-equivariant, so it descends
to a map

Rep(Gl, GQ) — 7T0(G2)\ Hom(ﬂo(gl)’ﬂo(%))(&, Sg) (3.17)

of mo(Ga)-orbit sets. The fibre over the orbit wo(G2)(x, @) is either empty or in
bijection with the orbit set

mo(Ga2) X PN\H L (m0(Gh), S2)

for the action of the stabilizer group WO(GQ)(X’¢), consisting of all we € 7y(G2)
such that wox = xwa and wap = ¢, on the fibre (3.16).

Proposition 3.18. Let (x,®) be an element of Hom (x(G,),xe(G2)) (S1,S2) and sup-
pose that the stabilizer subgroup 7T0(G2>(X’¢) acts transitively on the cohomology
group H} (mo(G1), So). Then at most one element of Rep(G1,G2) is mapped to the
orbit mo(G2)(x, ¢) under the map (3.17).

For later reference, I record here a non-realizability result.
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Lemma 3.19. (Cf. [19, 1.8]) Let f: X1 — Xa2 be a p-compact group morphism
where p is odd and Xy is connected. Assume that

o w1 (T(f)) is injective, and

o p divides the order of the Weyl group W7.

Then p does not divide 71 (T(f)) in Hom(my(Ty), 7 (T2)).

Proof. By fixed point theory [10, 2.10, 2.14], f lifts to a morphism
Np(f): Syl,(N1) — Syl,(N2) of the p-normalizers. The assumption that 71 (7'(f))
be injective implies, since W; is faithfully represented in w1 (73) [9, 9.7], that
7o(Np(f)) embeds the Sylow p-subgroup of W7 into Wh.

Choose a  monomorphism  pu:Z/p— Syl (N1) such that also
mo(p): Z/p — Syl,(W1) is injective. This is possible since the epimorphism
Syl,(N1) — Syl (W1) admits a section when p is odd [2]. Note that the composi-
tion N,(f)u is a monomorphism since it induces a monomorphism on component
groups. Consider now the commutative diagram

NP
Syl (V1) 2L syl (V)

S,

JpH X1 X2

R

TN —1T%

T(f)

Z/p

where g is a lift of j,u [9, 4.7, 5.6]. Since N, (f)p is monomorphic, so is isT(f)u' by
commutativity of the diagram. However, this map would be trivial were m (T(f))
divisible by p. O

The rest of the paper consists of an analysis of the special case where X; =
SU(3) or Gy, X = Fy, and the prime p = 3.

4. Embeddings of SU(3) in F,

In this section we apply the concepts of the previous sections to investigate
monomorphisms from SU(3) to F4 at the prime p = 3. First, a few facts about the
Quillen category A(F4) of Fy. (See [28] for more details.)

Lemma 4.1. [14, 7.4][28, 8.2.2] Let E' be an elementary abelian group of order
3L. The set Mono(E',Fy) of conjugacy classes of monomorphisms of E' into Fy
has three elements el, el el. The centralizers of these three elements are connected
3-compact groups with Weyl groups of order 36, 48, and 48, respectively. The cen-
tralizer Cr, (e}) of ei is isomorphic to SU(3,3). The automorphism group Aut(E*)
acts trivially on Mono(E*, Fy).
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Lemma 4.2. [14, 7.4][28, 8.2.4], [27, 7.5] Let E? be an elementary abelian group
of order 3%. The set Mono(E?,F,)/ Aut(E?) of isomorphism classes of conjugacy
classes of monomorphisms of E? into Fy has 5 elements, €3, €3,¢e3,e3,e2, with
Quillen automorphism groups of order 8, 4, 12, 12, 48, and with centralizer Weyl
groups of order 4, 6, 6, 8, 3, respectively. The centralizer, Cr,(€2), of €2 is a 3-
compact toral group of mazimal rank with component group mo(Cr,(e2)) of order

3. There are no maps in the Quillen category from el or el to e?.

Proofs of (4.1) and (4.2). With computer assistance it is easy to determine, using
[24, 2.6] and [22, 3.2], that Mono(E!,Fy) is a trivial Aut(E")-set containing three
elements whose centralizers are connected 3-compact groups with Weyl groups
of order 36, 48, 48, respectively. See [19, 3.3] for the precise structure of Cr,(a).

Since each centralizer of E' is connected, any monomorphism E? — F, will factor
through the maximal torus. O

The Quillen automorphism group referred to in (4.2) consists of all automor-
phism of E? that leaves e? € Mono(E?,F,) invariant.
We now show that for any monomorphism of SU(3) or SU(3,3) to F4 the

/\ /\

>—>F4 33>; ;F4

(4.3)

where z: E1 — SU(3) and z: E' — SU(3,3) are centers, will commute up to con-
jugacy. This observation is the key to the classification of monomorphisms of

Lemma 4.4. 1. Mono(SU(3),F4). .1 = Mono(SU(3),F4).
2. Mono(SU(3,3),F4 1= Mono(SU(?) 3),Fy4).

)Z—>€

The proof of this lemma uses admissible homomorphisms (2.3) which we now
discuss.

Let Z3 denote the ring of 3-adic integers. The Weyl group W7 = W (SU(3)) of
SU(3) is [24, 3.8, 3.13] (0, 7) C Aut(Xo(Z3)) where ¥o(Z3) is the free Zz-module
with basis (1,—1,0),(0,1,—1) € Z3 and ¢ and 7 have matrices

(0 -1 _ 0 -1
7=\1 1) "7 -1 o
with respect to this basis. The Weyl group W (F4) = W (F4) < GL(4,Z3) of Fy4 is

[3] [24, 3.13] the group (of order 1152 = 384 - 3)
W(F4) = W(B4)E U W(B4)H1 U W(B4)H2 (45)
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where W (By) is the reflection group (of order 384 = 2%.4!) of all signed permutation
matrices, and H; and Hy are the matrices

1 1 1 1 1 1 1 1
1 1 -1 1 1 1{1 1 -1 -1
=3 1 1 -1 1 |° H2_§ 1 -1 1 -1
11 1 -1 1 -1 -1 1

satisfying H? = E = H2, HyH, = —Hy, Hy Hy = diag(—1,1,1,1)H;.

We say that a linear map A: %o(Z3) — Z3 is admissible if AW (SU(3)) C
W(F4)A. The linear map A(u,v): $o(Z3) — Z3, u,v € Zs, for instance, with
matrix

—u v -1 0 0 1
u v—u 1 -1 0 1

A(u,v) = 0 veu | =Y o 1 | TV 0 1 (4.6)
—2v v 0 0 -2 1

with respect to the chosen basis for ¥(Z3) and the canonical basis for Z3, is
admissible. Indeed, A(u,v) is x-equivariant where x: W(SU(3)) — W (Fy) is the
group homomorphism given by

1 -1 1 -1 1 -1 11

1 1 -1 -1 -1 1 -1 1 -1 1
X@o=51 1 1 1 4| x(O=3 1 -1 -1 1 (4.7)

1 1 1 -1 1 1 11

The next lemma classifies the admissible homomorphisms. Note that A(u,v) and
—A(u,v) lie in the same orbit under the action of W(Fy) as —E € W(Fy).

Lemma 4.8. 1. Let A: %o(Z3) — Z3 be a linear map. Then A is admissible
with respect to W (SU(3)) and W (Fy) if and only if A € W (F4)A(u,v) for
some 3-adic integers u,v € Zs.

2. A(u,v) is split injective if and only if u+ v is a 3-adic unit.
3. The map

((=1,-1))\(Z3)* — W(F4)\ Homg, (30(Z3), Z3)
+(u,v) — W(F4)A(u,v)

1$ injective.

Proof. 1. Using a computer, it is possible to show that up to inner automorphisms,
any admissible homomorphism Yo(Z3) — Z3 must be y-equivariant. Given this,
one simply solves the system of linear equations Aw = x(w)A for A where w runs
through a generating set for W (SU(3)).
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2. The matrix A(u,v) is equivalent to the matrix

u— 2v 0
0 2v—u
3u 0
—U v

which is split injective if and only if v — 2v or, equivalently, (u — 2v) +3v =u +v
is a 3-adic unit.

3. The claim is that for any w in W (F4) the set of solutions to the homogeneous
system of linear equations

wA(uy,v1) — Aug,v2) =0

in the four unknowns (uq,v1, us2,v2) is contained in the diagonal (u1,v1) = (usg, v2)
or in the anti-diagonal (u1,v1) = —(us2,v2). This is easily verified on a computer.
O

Our interest in the admissible homomorphisms lies in the fact that the in-
duced homomorphism 71 (T'(f)) is admissible for any lift T'(f): T'(SU(3)) — T'(F4)
to the maximal tori of any morphism f: SU(3) — F4. Thus we must have
m1(T(f)) € W(F4)A(u,v) for some 3-adic integers u and v. However, as we shall
shortly see, not all the homomorphisms A(u,v) are induced in this way from mor-
phisms SU(3) — Fy.

The proof of (4.4) follows immediately from (4.8.1).

Proof of Lemma 4.4. 1. Let f: SU(3) — F4 be any monomorphism. Then 71 (T'(f))
is admissible, so we may assume that m (7'(f)) = A(u,v) for some 3-adic integers
u,v € Zs. The restriction fz: E' — Fy of f to the center z: E! — SU(3) of SU(3)
is given by

u—+v

A(u,v)( ) > _ | wty (4.9)

u—+v
0

where we have reduced modulo 3. Since fz is a monomorphism, u + v Z 0 mod 3
and then the stabilizer in W (Fy) of (u +v,u +v,u +v,0) € (Z/3)* has order 36.
Thus fz ~ e} € Mono(E!,Fy).

2. Let f: SU(3,3) — F4 be any monomorphism and choose some monomorphism
g: SU(3) — SU(3,3) such that gz = 2, e.g. g = 10, Then fz = fgz=el. O

Let e: SU(3,3) = CF, (e}) — F4 denote the inclusion of the centralizer of e
into Fy; this map is described in detail in [19, 3.3].

Corollary 4.10. The maps
Mono(SU(3), SU(3,3)).—.. —— Mono(SU(3),Fy)
Out(SU(3,3)).—. —— Mono(SU(3,3),F,)

are bijections.
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Proof. By (3.9) and (4.4),
Mono(SU(3), SU(3,3).—.. = Mono(SU(3), F4)._..1 = Mono(SU(3), F4)
and similarly for morphisms from SU(3, 3). O

Lemma 4.11. Let (%) : SU(3) — SU(3,3) be the morphism (2.17) indexed by
u,v € Z5U{0}. Then W (Fq)mi (T (ep(™))) = W (Fq)A(u,v).

Proof. The monomorphism e: SU(3,3) — Fy is [19, 3.3] realizable on the level
of compact Lie groups as an inclusion SU(3,3) — F,4 such that the restriction
$0(Z3) x $o(Z3) — X2(Z*) to the integral lattices of the composite morphism
SU(3) x SU(3) — SU(3,3) — Fy takes (x1,x2,%3;y1,Y2,Y3) to (z1 + y3,x2 +
Y3, 3 + Y3, Y1 — y2). Thus

1 00 -1 u 0 u -
1 1 0 -1 0 wu v u—v
0 -1 0 —1 v 0 | T 0 —u—o [T AW
0 0 2 -1 0 v 2v v
represents 71 (T'(ex) (). -

Lemma 4.12. Let u and v be 3-adic integers and A(u,v) the corresponding admis-
sible homomorphism.
1. There ezists a morphism f: SU(3) — Fu such that W (F4)m (T(f)) =
W (F4)A(u,v) if and only if both u and v are in the set Z5 U {0}.
2. There exists a monomorphism f: SU(3) — Fy such that W (F4)m1(T(f)) =
W (F4)A(u,v) if and only if u,v € Z5 U {0} and u+ v € Z}.
Proof. We have already seen (4.11) that A(u,v) is realizable for all u,v € Z5U{0}.
Suppose, conversely, that w1 (T(f)) = A(u,v) for some 3-adic integers, u and
v, and some morphism f: SU(3) — Fy. If f is a monomorphism, then f = ex)(*)
for some u,v € Z5 U {0} with u+ v € Z§ by (4.10). If f is not a monomorphism,
A(u,v) is not split injective [24, 5.2] [21, 3.6.1], so u+v is not a 3-adic unit (4.8.2).
O

Theorem 4.13. 1. Mono(SU(3),Fy4) is T-determined.
2. The map

(=1, =1 \{(u,v) € (Z5 U{0})?|u+v € Z5} — Mono(SU(3),F,)
+(u,v) — e
s a bijection.
Proof. 1. The restriction map Mono(SU(3),F4) — Mono(T(SU(3)),F4) can be
identified to the map
{(u,v) € (Z5U{0})? | u+v =1mod 3} — W(F,)\ Hom(Zo(Z3), Z3)
(u,v) = W(Fq)A(u,v)
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which is injective by (4.8.3).
2. This is immediate from (2.18) and (4.10). O

Here is an alternative formulation of (4.10): Consider the commutative dia-
grams

Mono(SU(3),SU(3,3)) .. — (¢~ x =)\ Mono(SU(3), SU(3, 3))

o
€eo—
eo—

Mono(SU(3),F4)

Out(SU(3,3))ss —— (=1 x =1)\ Out(SU(3, 3)

o~
€eo—
eo—

Mono(SU(3,3),Fy)
where the slanted arrows are bijections. The vertical arrows exist because e()~! x
1) = e by [19, 3.3]. Noting (2.17) that
Mono(SU(3),8U(3,3)).—. = {(u,v) € (Z5 U{0})* | u+v =1 mod 3}
Out(SU(3,3)).—. = {(u,v) € (Z5)* |u=1=v mod 3} x (1)

we see that the vertical arrow in each of the diagrams is a bijection, too, and
hence that the vertical arrow of the upper (lower) diagram is a bijection of right
Out(SU(3))- (Out(SU(3, 3))-) sets. Thus the action

Mono(SU(3,3),F4) x Out(SU(3,3)) — Mono(SU(3,3),F4) (4.14)

is transitive and the stabilizer subgroup at the centric monomorphism e, i.e. the
Weyl group [11, 4.3] [24, 8.4]

Wr, (eSU(3,3)) = (" x ™) (4.15)

is cyclic of order two.

The next lemma lists the centralizers of all monomorphisms SU(3) — F4. We
let ¢~ denote the automorphism 1! X zgu(s)) ¥~ of T(SU(3) x z(su(s)) SU(3)
22, 4.3].

Lemma 4.16. Let (u,v) € (235U {0})? and u+v € Z3. If uv # 0, then
Cr, (epSU(3)) = Z(SU(3))
Cr, (e T(SU(3))) = T(Fa)
If uv =0, then
Cr, (ep""SU(3)) = Z(SU(3)) X z(su(3)) SU()
Cr, (e T (SU(3))) = T(SU(3)) X z(su(z)) SU(3)
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In all cases, Cp,(1p~1) ==L,

Proof. Tt only remains to determine the map Cr,()~!) induced by %! since
the centralizers themselves are given by (2.19, 3.9). Let us, for example, consider
the case where (u,v) = (0,1). Consider the morphism p: (SU(3) x T(SU(3))) x
T(SU(3)) — SU(3) x T'(SU(3)) — SU(3, 3) constructed from the multiplication on
the maximal torus and the projection map. Since

ep((1x 1) x ™) = e x v Hu((1x 1) x ™) =ep((™" x9Y™1) x 1)

it follows from (4.17) that Cg,(¢»~1) = ¢~ on Cp,(e(>VT(SU(3))). The other
cases are similar. t

Lemma 4.17. If the diagram of p-compact groups

1 1
Xy x Xo =2 X % xh T Xt < x

~i :

Y N Y’

commutes up to conjugacy, so does the induced diagram

ad(p)

X1 Cy(X2)

fll lch(f’z)
ad(p’

X ") Oy (x5)

where the horizontal arrows are adjoints of u and p'.

Corollary 4.18. Let N be a (topological) group with subgroups g1: G1 — N and
go: Go — N. Suppose that n € N is an element such that conjugation with n,
c(n)(m) = nmn=t, m € N, takes Gy into Ga. Then conjugation with n=! takes
the centralizer Cn(G2) into Cn(G1) and the diagram

BCN(Gl) —_— map(BGl, B]\/v)Bg1

Bc(nl)T TBc(n)

BCN(G2) — map(BGs, BN) gy,
commutes up to homotopy.

Proof. We have p(c(n) x 1) = ¢(n)u(1 x ¢(n™')) where p is group multiplication
and where the induced map Bc¢(n): BN — BN is homotopic to the identity. O
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5. Toric representations of PU(3) in F,

In this section I classify the p-toric morphisms from PU(3) to Fy viewed as 3-
compact groups. The first step is the determination of the admissible homomor-
phisms.

Let X be a connected p-compact group with maximal torus i: T'— X. We
want to describe the integral lattice of the central quotients of X. Suppose that
Z is a subgroup of the discrete approximation 7' = (m(T) ® Q)/m1(T) such that
the composition Z — T — X is a central monomorphism. Then we may form the
p-compact group X/Z [9, 8.3] with induced maximal torus i/Z: T/Z — X/Z |21,
4.6] that fits into the commutative diagram

0 —— k" 10) ——=r"1(2) Z 0

0*>7r1(T)—>771(TJ;®Q “ :lr 0
! N

0 ——m(T/2) —=m(T/Z)® Q /Z 0

with exact rows. From this we get an isomorphism

0 7T1(T) 7T1(T/Z)4>T4>0
0 k~1(0) K HWZ)——=2Z—>0

of extensions of Wr(X) = Wy, z(X/Z)-modules.

In particular, let ¥Xo(Z3) C X0(Q3) be the free Zz-submodule with basis
er = (1,—1,0) and e = (0,1,—1); this is the integral lattice for SU(3). Put
f = 3(ex — e2) and let PXo(Z3) be the free Zz-submodule of Q3 with basis
{e1, f}. Then there is an exact sequence

0— Eo(Zg) N PEO(Zg) —7Z/3—-0

of Z3[¥3]-modules and PX(Z3) corresponds to the maximal torus for PU(3).
Note that there is an extension, B(u,v), of A(u,v),

$0(Z3) —— PXo(Z3)

A(u,v)l B uw)

Ly
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if and only if u 4 v is divisible by 3 and in that case the extension is unique and
given by

11\ ! _u _1%2(u+v;
B =awo (o 5 ) =] b AT
—2v —v

where u and v are 3-adic integers and u + v € 3Z3. Moreover, the inclusion ¢ is
W(SU(3)) = W(PU(3))-equivariant and B(u,v) is x-equivariant where y is the
group homomorphism from (4.7).

Lemma 5.1. 1. A Zs-linear map B: PXo(Z3) — Z3 is admissible with respect
to W(PU(3)) and W (Fy) is and only if B € W (F4)B(u,v) where u and v
are 3-adic integers whose sum is divisible by 3.
2. B(u,v) is split-injective when u and v are 3-adic units.
3. The map

(=1, -1))\{(u,v) € (Z3)*|u +v € 3Z3} — W (F4)\ Homg, (P¥o(Z3), Z3)
+(u,v) = W(F4)B(u,v)
18 injective.
Proof. 1. B is admissible if and only if B o is, i.e. if and only if B is an extension

of A(u,v) (4.8.1) for some 3-adic integers, v and v.
2. If w and v are units then

—u~t 0wt 0
2u=t 0 2u7! —ou!
is a left inverse of B(u,v).
3. If B(uy,v1) € W(F4)B(uz,v2) then also A(uy,v;) € W(F4)A(usz,v2) and
then (4.8.3) (u1,v1) and (us,vs) are equal up to sign. O

When u,v € Z5U{0} with sum u+v € 3Z3 there is a unique conjugacy class,

7('“'"‘/')
(G

, that makes the diagram

P e
SU(3) ——=SU(3,3) ——=Fy4

|
PU(3)
commutes up to conjugation. By construction,
W (F ) (T(e o™
in W (F4)\ Homg, (PX0(Z3), Z3).

)) = W(Fa)B(u,v)

Lemma 5.2. Let u and v be 3-adic integers with sum u + v € 3Zs and let
B(u,v): PXo(Z3) — Z3 be the corresponding admissible homomorphism.
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1. There exists a morphism f:PU(3) — Fy such that W(F4)m (T(f)) =
W(F4)B(u,v) if and only if u=0=v or u,v € Zj.
2. There  exists a  monomorphism  f: PU3) —F4  such  that
W(F)m (T(f)) = W(F4)B(u,v) if and only if u,v € Zj.
Proof. We have already seen that W (F4)B(u,v) is realizable by a morphism
f:PUB)—=F4if u =0 = v oru,v € Z}; if both v and v are non-zero then
f is a monomorphism by (5.1.2). Conversely, if W (F4)B(u,v) is realizable, so is
W (F4)A(u,v) and then (4.12) u,v € Z5 U {0}, u+ v & Z3. O
Alternatively, (5.2) says that any non-trivial morphism PU(3) — Fy is a
monomorphism.

Proposition 5.3. (Cf. [1, 2.27.(ii)]) Suppose that u and v are 3-adic units with
u—+v € 3Zs3. Then

T(PU3)) 24 1R, 2y
is toric if and only if (u,v) & Z5(2,1) U Z3(1,-1).

Proof. Explicit (computer aided) computations of W (F,)B®) = W (F,)A®v),

O
The two generic non-3-toric morphisms
-2 -1 -1 0
2 1 1 1
B(2,1) = 0 1 and B(1,-1)= 0 0
-2 -1 2 1

are related by the equation eB(2,1) = 2B(1, —1) where

0 0 -1 1
0 0 -1 -1
-1 -1 0 0
-1 1 0 0

E =

is the admissible automorphism of Z3 corresponding to the exotic automorphism
of Fy. (In general, W (F4)(cA(u,v)) = W(F4)(A(2v, —u)), cf. [1, 2.11].)

Theorem 5.4. 1. TRep(PU(3),Fy) is T-determined.
2. The map
(=1, =IN\{(u,v) € (Z5)? | u+v € 3Z3}) \ (Z3(2,1) UZ3(1,-1)))
— TRep(PU(3),Fy4)

taking +(u,v) to eo @(u’v)

Consider the set Rep(N(PU(3)), N(F4)) of conjugacy classes of maps from
the maximal torus normalizer N (PU(3)) of PU(3) to the maximal torus normalizer
N(Fy) of Fy. As we have seen (3.17), there is a map

Rep(N(PU(3)), N(F4)) — W (F4)\ Homy pu(sy).w (e (T(PU(3)), T(F4))

, 1S a bijection.
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induced by the functors m; and ms. It is easy to calculate directly that the coho-
mology group H?((x(c)) ;w1 (T(F4))) is trivial. Then also

H{(W(PU(3));m1(T(F4))) =0 (5.5)
for (o) is a Sylow 3-subgroup of the Weyl group of PU(3) and we get

Lemma 5.6. There is at most one element of Rep(N(PU(3)), N(F4)) correspond-
ing to the orbit W (F4)(x, B(u,v)), (u,v) € (Z3)?, u+v € 3Zs.

Proof of Theorem 5.4. Let f1, fo € T Rep(PU(3),F4) be two toric representations
and suppose that their restrictions to the maximal torus of PU(3) agree. Under
the map

TRep(PU(3),F4) — TRep(N (PU(3)), N(Fy4))
- W(F4)\Hom(W(PU(S)),W(F4))(T(PU(?’))vT(F4))

f1 and f2 go to the same element of the target and it follows (5.6) that the lifts
(3.5) N(f1) and N(f2) are conjugate, i.e. that f; and fy have conjugate restrictions
to the maximal torus normalizer N (PU(3)). In fact, N(f1) = B(u,v) X x = N(f2)
for some (u,v) € (Z3)?\ (Z3(2,1) UZ5(1,-1)).

We may approximate BPU(3) by a homotopy colimit over a category I =
I(SL(2,F3),S3) (a full subcategory of the Quillen category that may be described
as formed from the inclusion of a Sylow 3-subgroup S5 into the special linear group
SL(2,F3)) with just two objects, A\: E' — PU(3) and v: E? — PU(3), where E*
and E? are elementary abelian groups of order 3 and 32, respectively [17, 6.8, 7,7];
see [24, §4] for the notation used here. Since f; and fo agree on the centralizers,
Crus)(AE') = N3(PU(3)) and Cpy sy (vE?) = E?, it only remains to compute the
relevant Wojtkowiak obstruction groups [29]. For this we need information about
the centralizer Cr, (f;E?) and Cg, (f;N3(PU(3))).

We must have fi|E? = eZ = fo|E? for only e € Mono(E? Fy4) can contain
in its automorphism group the automorphism group SL(2,F3) of (E?,v). Thus
Cr,(f;E?) is a p-compact toral group of maximal rank with E! as its component
group (4.2).

The centralizer Cr, (f; N3(PU(3))) is (3.4) the p-compact toral group

Crraysw (pa) (T(PU)) 1 (0)) = T(Fa) X = 1(Fy) X7 = E?

where t(F4) C T(F4) denotes the maximal elementary abelian subgroup of the
discrete approximation T'(F4) to T(F4) and

The obstructions to a homotopy between the two maps
Bf1,Bfs: BPU(3) — BF, lie in the abelian groups limjr, and limfm, where m,
and 7, are the abelian I-groups

Bl D SL(2,F3)

SL(2,F S
z/2 C g L@ F)/Ss 74 D SL(2,F3)

~ 5 SL2F3)/Ss
z/2( E2—T—
/2



24 J. M. MOLLER

given by the homotopy groups of the above centralizers. The group SL(2,F3) has
no normal subgroups of index two, so it necessarily acts trivially on E'. It now
follows from [24, 10.7.5] that both obstruction groups are trivial and we conclude
that f1 and fo are conjugate. This shows that TRep(PU(3),Fy) is T-determined.

Let now f: PU(3) — F4 be any toric monomorphism. Then there is (5.1.3,
5.3) a unique, up to sign, pair of units (u,v) € (Z})?, u+v € 3Zs, (u,v) € Z3(2,1)U
Z3(1,—-1), such that W(F4)m(T(f)) = W(F4)B(u,v) and then f = E(u’v) since
the p-toric monomorphisms are T-determined. O

Lemma 5.7. Let (u,v) € (Z3)?, u+v € 3Z3, (u,v) ¢ Z3(2,1) UZ5(1,—1). Then
Cr, (™ ISU(3)) = T Iy VD
Cr, (ep ™" T(SU(3))) = T(F4)
and Cp,(¢¥=1) =9~ in both cases.
Proof. Since ey(™?) is toric, the centralizer in Fy of eyp(")T(SU(3)) equals the
maximal torus of Fy. Proceed as in (4.16) to show that Cg, (v ™1) = ¢~ 1.
The centralizer BCF4(6@(U’U)PU(3)) is the homotopy colimit of the I-space

z/2(_ B(O)ME(DD SL(2,F3)

where B(0) = BT (F4)*(®)) and B(0) = BCp,(e2). We need to be more specific
about the group actions that occur here.

The 3-normalizer N3(PU(3)) = Cn(pu)y (T(PU(3))(7) is the centralizer
in N(PU(3)) of T(PU(3))! = E'. Since conjugation by (0,7) restricts to the
non-trivial automorphism of T(PU(3)){?) we see that the induced action on
N3(PU(3)) = T(PU(3)) x (o) is given by conjugation with (0,7) € N(PU(3)) =
T(PU(3)) x W(PU(3)). V

Since B(u,v) x x: N3(PU(3)) — N(F4) is x-equivariant with the Weyl
groups acting by conjugation, we see (4.17) that Z/2-acts on T(F,)X(@) —=
C’N(F4)(N3(PU(3))) as conjugation with (0, x(7)). With this information it is now
easy to see, using [24, 10.7.5], that

lim{m, = (T(F4)<X(U)>)<X("’)> - T(F4)X(W(SU(3)))

is the only non-trivial contribution from the I-groups m; and m, to the Bousfield-
Kan spectral sequence. This means that the morphisms

Cr, (0" PU3)) = Cip, (N (e ) (N (PU(3))))
— Cyy (N ") (N(PU())))

are isomorphisms. Consider the corresponding group homomorphism
p: T(Fy)X(WEUE)) » N(SU(3)) — N(F4) which is the inclusion on the first
factor and equals N(ey(™*)) on the second factor. Since 1)~ x 1 is inner on
N (F4), we have j(1x (15151 1)) = (15150 (1 x (1 x1)) = pu(~ x (1 1))
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to inner automorphism. This shows (4.17) that Cg, (¢~1) = ¢y~ is the non-trivial
automorphism of Cr, (ey)(“*)SU(3)) = E*. O

6. Non-toric morphisms of PU(3) to Fy

The non-toric morphisms of PU(3) to F4 require special treatment. It is the object
of this section to show that also the non-toric morphisms are T-determined, i.e.
to complete the proof of the following theorem.

Theorem 6.1. 1. Mono(PU(3),Fy) is T-determined.
2. The map

(=1, =1))\{(u,v) € (Z5)*|u+v € 3Z3} — Mono(PU(3),F4)
+(u,v) — e@(u’v)
s a bijection.

Since the toric morphisms were dealt with in (5.4) only the non-toric ones
need be considered in order to finish the proof of (6.1).

The first lemma, which is of a general nature, assures the existence of a kind
of preferred lifts in certain situations.

Let G be a p-compact toral group sitting in short exact sequence S - G —
mo(G) where S is a p-compact torus and mo(G) cyclic p-group. Let j: N — X be
the maximal torus normalizer of a p-compact group, X, and let i5: T'— N be the
inclusion of the identity component. Suppose that we are given a morphisms, B
and f, such that the diagram

525

T
i1 l ijlé
G 7) X
commutes up to conjugacy and B is admissible in the sense that for any £ € my(G)
there exists some w in the Weyl group for X such that B = wB.

Lemma 6.2. Assuming that the component group mo(G) is cyclic there is a unique
representation ¢ € Rep(G, N) such that the diagram
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commutes up to conjugacy and such that the morphism
Cj: On(9G) — Cx (fG),

induced by j, is a mazimal torus normalizer for the centralizer Cx(fG) of G in
X.

Proof. The mo(G)-map induced by j
BCN(i2BS) hro(c) BCx (jiaBS)hry(c)
BTFQ(G)

between the 7y(G)-spaces BCn(i2BS) = map(BS, BN);,p and BCx(ji2aBS) =
map(BS, BX),i,p is a maximal torus normalizer. There is an induced map

map(BG, BN);, —.i,p = BCx (iaBS)"™(@) — BCx (jiyBS) (@)
= map(BG, BX)ij[‘)jigB (63)

of homotopy fixed point spaces.

According to [25, 4.6], the section Bf € BCx/(jizBS)" (%) admits, since
70(G) is assumed to be cyclic, a unique lift B¢ € BCy (io BS) (%) such that the
restriction of (6.3) to the corresponding components,

BCN((bG) = map(BG, BN)B¢ — map(BG, BX)Bf = BCX(fG)
is a maximal torus normalizer for the p-compact group Cx (fG). O

After these general and preparatory remarks, we now return to the discussion
of non-toric morphisms from PU(3) to Fy.

Let f:PU(3) - F4 be a morphism of 3-compact groups such that
fIT(PUB)) = W(F4)B(2,1) € [BT(PU(3)),BF4. By (6.2), there is
a unique ¢(2,1) € Rep(N3(PU(3)),N(F4)), extending B(2,1), such that
Cnry)(9(2,1)N3(PU(3))) is a maximal torus normalizer for Cr,(fN3(PU(3))).
We shall now determine this map ¢(2,1).

Let N3 = Ty x (o) and Ny = Ty x Wy be the discrete approximations to
the the 3-normalizer N5(PU(3)) and the maximal torus normalizer N(Fy), re-
spectively. Also, let B(2,1): Ty — T be a discrete approximation to B(2,1). The
stabilizer subgroup W (F4)?21) at B(2,1) for the action of W (F4) on Hom (T}, T»)
is isomorphic to the permutation group X3 and generated by the two Weyl group
elements

0 0 0 1 0 -1 0 0
w| L 000 and wa— | "L 000
! 0 010 2 0 010
0 -1 0 0 0 0 0 1

of order 3 and 2, respectively.
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Lemma 6.4. The discrete approzimation ¢(2,1): Ty x (0) — Tp x W(F4) to
#(2,1) is conjugate to B(2,1) x x.

Proof. For general reasons, the discrete approximation ¢(2,1) to ¢(2,1) has
the form ¢(2,1)(t,1) = (B(2,1)(t),1) and $(2,1)(0,0) = (a,\(0)) where
A: (o) — W(Fy) is a group homomorphism, B(2,1) is A-equivariant, and a €
ZY((Mo)); T(Fy)) is a 1-cocycle.

Since the homomorphism B(2,1) is y-equivariant we know that A(o) is an
element of order 3 in the coset X(J)WQB (21 This leaves the three possibilities
x(0), x(0)wy, and x(o)w? for A(c). Since wy conjugates (o) into x(o)w? we can
ignore the third possibility. We now rule out the second possibility.

Assume for the moment that A(o) = x(o)w;. Explicit computation
shows that HO((x(c)w;);T(F4)) is a 3-discrete torus of rank 2 and that
HO({x(0)w:); T(Fy)) is cyclic of order 3 generated by the cohomology class of
the 1-cocycle

—_ o O

€ t(Fy) C T(Fy)

0
which is fixed by W (F4)B2D Tt follows that the centralizer
CT(F4)><W(F4)((ZB(2’1)N3)
Cipayawwa) (B(2, )T(PU3)) N Co,y s (e (@5 X (0)w1)
= (T(F4) » W(F4)B(2’1)) n CT(F4)><W(F4)(a’X(G)w1)
= CT'(F4)><W(F4)B<2J>(aa x(o)wr)

= T(Fy)x@wn) 5 W(F4)B(2’1)

is the (discrete) maximal torus normalizer for SU(3) and hence (6.2) that
Cr,(fN5(PU(3))) is isomorphic to the N-determined 3-compact group SU(3) [24,
1.2]. Thus ¢(2,1): N5(PU(3)) — F4 extends to a morphism N3(PU(3)) x SU(3) —
F4 which is a non-toric monomorphism on the second factor and we get a factor-
ization
N3(PU(3)) — Cr,(SU(3)) = SU(3) — F4

of ¢(2, 1) through another non-toric monomorphism of SU(3) to F4. The restriction
of this map to the maximal tori

T(PU(3)) —» T(SU(3)) — T(Fy4)

provides a factorization, up to left action by W (F4), of B(2,1) as the composition
of an isomorphism followed by A(u,0) or A(0,u), u € Z%, and hence we have that
the set

W (F4) - A(2,1) - GL(20(Q3)) € Homq, (Z0(Q3), Qs)
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contains A(1,0) or A(0,1). It is easy to verify, using a computer, that this is not
the case, so we have arrived at a contradiction.

Thus A(o) = x(o)w; can not occur and we are left with A(o) = x(o) as
the only possibility. As H'((x(0));T(F4)) = 0 (5.5), ¢(2,1) = B(2,1) x x is, up
to conjugation, the only extension of the pair (B(2,1),x) to a homomorphism
Ty % (o) — T(Fy) x W(Fy). O

A similar statement holds for the non-toric morphism B(1, —1) which differs
from B(2,1) by an automorphism of Fy.

Proof of Theorem 6.1. It suffices to show that f; =~ fo whenever
f1, f2: PU(3) — F4 are monomorphisms such that f1|T(PU(3)) = W(F4)B(2,1) =
f2|T(PU(3)). We already know (6.4) that the two morphisms become conju-
gate when restricted to N3(PU(3)). Therefore, the situation is now exactly as
in the proof of Theorem 5.4: In order to compute the relevant Wojtkowiak ob-
struction groups [29] we need information about the centralizer Cy,(f;E?) and
Cr,(fiNs(PU(3))).

Again, we must have f1|E? = e2 = f5|E? and CF, (f; E?) is a p-compact toral
group of maximal rank with Z/3 as its component group (4.2).

Also, we know (6.2, 6.4) that the centralizer in T'(F4) x W(Fy4) of ¢(2,1) is
the (discrete) maximal torus normalizer for Cg, (f; N3(PU(3))). Since

CT(F4)>4W(F4)((Z)(27 1)N3) = Creeyaw (B2, 1D)T1) N Cip,ysew 00y (X(0))
= (T'(F4) x W(F9)PED) 0 (T(F )X % Oy, (x(0)))
= T(F4)X) % Cyy (B (x(0))
= t(F4)X) x (wy)
is a finite group (of order 27 and with center of order 3) it follows that also
Cr,(f:N3(PU(3))) is this finite, but non-abelian, 3-group.
The obstructions to a homotopy between the two maps
Bfi,Bf2:BPU(3) — BF, lie in the set limjzm, and in the abelian group
lim§m, where 7, and m, are the I-groups

Z/2 C T m El D SL(Q,Fg)

SL(2,F3)/S:
7/2 C 0 (43)/3> VA D SL(2,F3)

given by the homotopy groups of the above centralizers, e.g. m = t(F4)X(?) x (w1).
The group lim%12 is trivial for general reasons [24, 10.7.5]. That also lim%ﬁl = %
follows from (6.5) below since both the central I-subgroup

s ™
z/2(_ 00— Z/3 J SL(2,Fs)



Toric morphisms 29

as well as the quotient I-group

I/"\

z/2(_m——0 Q SL(2,F3)

where SL(2,F3) necessarily acts trivially, have vanishing lim' by [24, 10.7] and
(6.6). O

The following observations were used to compute the non-abelian lim'.

Let I be a small category. Define an I-group to be a functor from the category
I to the category of groups. Let A — E — G be a central extension of I-groups
meaning that A, F, and G are I-groups, the arrows are natural transformations,
and that the evaluation at each object of I yields a central extension of groups.

Lemma 6.5. Any central extension of I-groups A — E — G induces an exact
sequence

% — lim{ A — lim{ E — lim{G — lim; A — lim; E — lim;G — limj A
of sets. Moreover, the fibres of the map lim%E — lim%G are precisely the orbits for
an induced action of the abelian group lim; A on the set limj E.

Corollary 6.6. Let I be a finite group acting on a finite group w. If the w is a
p-group and p does not divide the order of 1, then lim%ﬂ' = %,

Proof. This follows, using the preceding lemma, by induction over the order of
since any non-trivial p-group has a non-trivial center. O
Proof of Theorem 1.1. Modulo the action of the Weyl group Wg,(SU(3,3)) of
order two (4.15), the sets
Rep(SU(3),SU(3,3)) = {0} UMono(SU(3),SU(3, 3)) U Mono(PU(3),SU(3, 3))
and
Rep(SU(3),F4) = {0} UMono(SU(3),F4) UMono(PU(3),Fy)

are (4.13, 6.1) in correspondence. O

Lemma 6.7. Let (u,v) € Z5(2,1) UZ5(1,—1). Then
Cr, (e ™VISU(3)) = T(F,)XWEVE)D
Cr, (ep™"T(SU(3))) = T(SU(3)) X z(su(a) SU(3)
and Cp,(¢™1) =9~ in both cases.

Proof. We shall apply the Bousfield-Kan spectral sequence [4] to
map(BPU(3), BF4)6E(7L,U) where BPU(3) is viewed as the homotopy colimit of the

I-space

) =
) =

SL(2,F3)/S
Z/2 C B(O)%B(l)@ SL(2,F3) (6.8)

where B(0) = BCF4(6E(U’U)N3(PU(3))) and B(1) = BCp,(e2). It represents no
loss of generality to assume that (u,v) = (2,1).
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As we saw in the proof of (5.7), Z/2-acts on N3(PU(3)) = T(PU(3)) x (o) as
conjugation with (0,7) € N(PU(3)) = T(PU(3)) x W(PU(3)). But this is again
the restriction to

¢(2,1)(N3(PU(3))) € T(Fa) x W (F4)
of conjugation by (0, x(7)). Thus (4.18) the Z/2-action on

—(2,1) v \ T o
Cr, (e " N3(PU(3))) = Cop,ysew () (2(2, 1) N3) = T(F)'7 %1 (wy)
is through conjugation with (0, x(7)).
Note also that the multiplication map
112 Crgeyysaw vy (2(2,1)N3) x N3 — T(Fq) x W (Fa)
satisfies

p™t x ) =y (T x 1) = p(l x N3(yp™)
up to inner automorphism. This means that the induced action on
—(2,1 . _ _
Cr, (6" N3 (PU(3))) s O, (Na( 1) =91 % 1.

Recall from [5] that there is an essentially unique monomorphism ¢: DIy — Fy
inducing a monomorphism #(:): ¢(DIz) — t(F4) and a group monomorphism
x: GL(2,F3) = W(DIy) — W (F4) extending (4.7). Now, ¢(¢) is isomorphic to e2
and from the commutative diagram

t(DIy) ad t(DIy)

t(L)i lt(b)

T(Fa) 3 W(Fy) — > T(Fa) x W(Fa)

we see (4.18) that w € GL(2, F3) acts on Cy g, ({(DL2)) = T(Fy) x W (F)HPL) ag
conjugation with the element (0, x(w)) of the semi-direct product. The restriction
to SL(2,F3) of this action gives the action on Cy,)(t(DIl2)) = Cr,(t(DIz)) in
(6.8).
The conclusion of this is that
1im?ﬂ1 - (T(F4)<X(")> 0 <w1>)<x(f)> - T(F4)X(W(SU(3)))

is the only non-trivial contribution from the groups lim; ilj i+ 7 > 0, of the
Bousfield-Kan spectral sequence. Consequently, Cr, (ey)(>1SU(3)) is isomorphic
to this group of order 3. The action of Cr,(1)~!), which is the restriction of the
action of Cp,(N3(xp™1)), is given by 1.

The centralizer
Creaysw (p) (0P VT(SU))) = T(Fa) x W (Fg)AED

is the (discrete) maximal torus normalizer for Cr, (er)>)T(SU(3))) and the cen-
tralizer

CT(F4)>4W(F4)(ew(OJ)T(SU(?)))) = T(F4) % W(F4)A(0,1)
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is the (discrete) maximal torus normalizer for Cp,(e(@VT(SU(3))) =
SU@B) xzue)) T(SU3)) [22, 3.4.3]. Since the two stabilizer subgroups
W(F4)A2D and W (Fy)AOY are conjugate in W (Fy4), the two maximal torus
normalizers are isomorphic and hence the two centralizers are isomorphic, too, by
N-determinism [23] [24].

The group homomorphism p: (T(F4) x W (F4)AZY — T(F,) x W (F,) which
is the inclusion on the first factor and equals A(2,1) on the second factor satisfies

W16 1) % ) = (6 0 V(150 1) x ) = (@~ 0 1) x 1
up to inner automorphisms. This shows (4.17) that Cp, (=) = ¢~ 1. O

7. Morphisms from G, to F, at the prime p = 3

Using the Jackowski-McClure decomposition of B Gy and the Bousfield-Kan spec-
tral sequence we classify morphisms Gy — F,4 viewed as 3-compact groups and
compute their centralizers.

The Weyl group of Ga, W(Gz2) < GL(X0(Z3)) is the product of the Weyl
group W(SU(3)) = (o, 7) of SU(3) and the central group (—1) of order 2. The group
morphism y from (4.7) extends to a group homomorphism x: W(Gs) — W(Fy)
simply by putting x(—1) = —1. Let I = I(W (Gz), W(SU(3))) denote the category

W(G2)/W(SU
<71>CO (G2)/W(SU(3)) 1QW(G2)
of the central inclusion of W(SU(3)) into W(Gz). Then B Gy is [24, §7] H*F3-
equivalent to the homotopy colimit of an I°P-space

(o) (G BOR T gy Y wian (7.1)
where B(0) = BSU(3) and B(1) = BT (SU(3)).
Theorem 7.2. The restriction map
Rep(Gz,F4) — Rep(SU(3), Fy4)

is bijective. The centralizer Cp, (ey)(“?)Gy), u,v € Z5U{0}, is isomorphic to SU(2)
if uv = 0 and trivial otherwise.

Proof. We must show that any morphism SU(3) — F4 extends uniquely to Ga.
Since this is true for the trivial morphism by [22, 6.7], we only need here to consider
non-trivial morphisms.

Let (u,v) € (Z5U{0})?, (u,v) # (0,0). Since exp(*¥): SU(3) — F, is invari-
ant under ¢!, this map ey(*¥) and its restriction to the maximal torus form a
homotopy coherent set of maps out of the I°P-space (7.1). Thus it suffices to show
that liml_iﬂj (u,v) =0 for i +j > —1 where m;(u,v) is the I-group

W (G2)/W (SU(3))
Z/2 ij(o)#mj(l)g W (G2)
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where the group 7;(0) = m;(u,v)(0) = m;(BCr, (ep(**)SU(3))) and the group
7;(1) = mj(u,v)(1) = m;(BCp,(ep™*)T(SU(3)))). Since the abelian I-groups
m;(u,v) are in fact Zs[I]-modules and W (SU(3)) is normal in W(Ga), it follows
from [24, 10.7.5] that lim?lj(u,v) = 7;(u,v)(0)%/2 = 7;(BC, (epp(¥)SU(3)))%/2
is the subgroup that is invariant under the action of ©y~! and that the higher limits
are automatically trivial. By (4.16, 5.7, 6.7), 7;(u,v)(0)%/? is trivial except when
either u = 0 or v = 0 when it equals the invariants 7; (BSU(3))<B¢’71>.

We now examine the case (u,v) = (0,1) more closely. According to Dynkin
[12, 13] the Lie group F4 contains a copy of (a central quotient of) SU(2) x Go. The
restriction to Gg of this inclusion SU(2) x G — F4 equals, up to an automorphism
of Fy, the map eyp(91) for otherwise the restriction to the other factor, the inclusion
of SU(2) into F4, would factor through the trivial 3-compact group. The homotopy
class of the restriction

BSU(2) x BSU(3) — BSU(2) x BGy — BFy
to SU(2) x SU(3) is determined by its adjoint in
mo(map(BSU(2), map(BSU(3), BF4) g(cy0.ny) = mo(map(BSU(2),BSU(3))) =
Rep(SU(2),SU(3)) so. Since SU(3) contains (7.3) an essentially unique copy of
SU(2), we conclude that the diagram of 3-compact groups

SU(2) x SU(3) — 2 qu(3) x SU(3)

| |

SU(Q) X G2 F4

commutes up to conjugacy. After taking adjoint maps we end up with

BSU(2) —— map(BGa, BF4) g(eyo.1)

BSL(Z,?))\L l

BSU(B) $ map(BSU(3), BF4)B(€,¢)(0,1))

which commutes up to homotopy and where the lower horizontal arrow represents
(4.16) a homotopy equivalence homotopy equivariant under the action <B1/)_1>.
By the above computations with the Bousfield-Kan spectral sequence,

7 (map(BGa, BF,), B(ey®)) = 7, (map(BSU(3), BF4), B(ey@1))(BY ")
and linked with (7.4) this shows that the upper horizontal map is a homotopy

equivalence as well. O

The morphism ey)(“?): Gy — Fy where u,v € Z3 with sum v+ v € 3Zs, is
an example a non-trivial non-monomorphism defined on a center-free 3-compact
group.

The following two results were needed for the proof of Theorem 7.2.
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Lemma 7.3. Let Si(2,3): SU(2) — SU(3) be the canonical inclusion. The map
Rep(SU(2),SU(2)) — Rep(SU(2),SU(3))
P — Si(2,3)y"

is a bijection that identifies Out(SU(2)) = Z%/ (—=1) and Mono(SU(2), SU(3)).
Proof.  This follows from (3.13) that identifies both Rep(SU(2),SU(2)) and
Rep(SU(2),SU(3)) to Z3/ (—1). O

Since ¥~1S51(2,3) = Su(2,3)y~1 = Su(2,3), the image of 7.(BSU(2)) in
m,.(BSU(3)) is invariant under the action of the group (By~1).
Lemma 7.4. There is an isomorphism, induced by St(2,3),

7. (BSU(2)) — ., (BSU(3))(B¥ ")
between the homotopy of BSU(2) and the <B¢*1>—invam'ant subgroup of the ho-
motopy of BSU(3).
Proof. There is a short exact sequence of homotopy groups
0 — m.(SU(2)) — m.(SU(3)) — m.(S°) — 0

of F3-complete spaces induced by the fibration of SU(3) onto S° with fibre SU(2).
This fibration splits since 74(SU(2)) ® Z3 = 0. The homomorphism %!, complex
conjugation of matrices, restricts to the identity on the fibre and induces the degree
—1-map on the base. Using that the 3-completion of S° is an H-space we see that
the degree —1 self-map induces multiplication by —1 on the homotopy groups
7.(S%) ® Z3 and the claim follows. O

8. Morphisms from SU(3) to G, at the prime p = 3

The classification of morphisms SU(3) — G of 3-compact groups proceeds very
much like the classification of morphisms SU(3) — F.

Lemma 8.1. The set Mono(E*, Ga) contains two elements, ei, e}, with central-
izer Weyl groups of order 2, 6, and Quillen automorphism groups of order 2, 2,
respectively. The centralizer Cg,(e3) is isomorphic to SU(3).

The set Mono(E?, G2)/ Aut(E?) contains a unique element, e3 = t(Ga), with
Quillen automorphism group W(Gs) of order 12.

Let x1: W(SU(3)) — W(G2) be the inclusion and x3: W(SU(3)) — W(Gz)
the injection given by xa2(0c) = o and x2(r) = —7. Then the iden-
tity map Aj: Xo(Z3) — Xo(Z3) is xi-equivariant and the Zs-linear map
Ay 26(Z3) — So(Z3) with matrix

1 -2
(s )

is xz-equivariant.
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Lemma 8.2. A Zs-linear map Yo(Z3) — Xo(Z3) is admissible with respect to
W(SU(3)) and W(Gz) is and only it belongs to W(Gz)(uAy) or W(Gz)(uAz)
for some scalar u € Zs.

Proof. Computerized calculations show that any admissible homomorphism must,
up to inner automorphisms, be either xi1- or xs-equivariant. Next, one solves the
two systems of linear equations Aw = y;(w)A4, w € W(SU(3)), i = 1,2. O

Proposition 8.3. Any non-trivial morphism f: SU(3) — Ga is a monomorphism.

Proof. Let f:SU@3)— Gz be any non-trivial morphism and
T(f): T(SU(3)) — T(G2) a lift of f to the maximal tori. Then W (Ga)mi(T(f))
equals W(Gz)(uAy) or W(Gz)(uAs) for some 3-adic integer, u. In fact, since
the order of W(SU(3)) is divisible by 3, u must be a unit (3.19). In the
first case, W(Ga)mi(T(f)) = W(Gz2)(uA1), f is a monomorphism. And if
W (Go)m1(T(f)) = W(Gz)(uAs), the kernel of T(f) equals the center of SU(3)
and f factors through a monomorphism f: PU(3) — Gy. However, such a
monomorphism can not exist since the Quillen category of PU(3) contains an
object E? — PU(3) with Quillen automorphism group SL(2,F3) of order 24
exceeding the order of the Quillen automorphism group of €3 € Mono(E?, G5).

(]
Consider now the diagram
El
SU(?)) SU(S) GH G2

where the SU(3) to the right stands for Cg,(el) and 2 stands for center. Here,
erp! = e since Cq,(v~1) =9y~ L.

Lemma 8.4. For any monomorphism f: SU(3) — G, fz = ei.

Proof. Since m(T(f)) = wA;, u € Z% the reduction mod 3,
t(f): t(SU(3)) — t(Gs2), takes the center, (1,—1), of SU(3) to the element
u(1,—1) € t(Gz) whose stabilizer subgroup is W (SU(3)). O

It follows (3.9) that
Mono(SU(3),SU(3)).—» = Mono(SU(3), G2)._.; = Mono(SU(3), G2)
or, alternatively, that the map
(—1)\Z5 — Mono(SU(3), G2)
+u — e

is a bijection. Also, any monomorphism f: SU(3) — Gy is centric [7] in the sense
that the map given by composition with Bf,

map(BSU(3), BSU(3))B1 - map(BSU(?)), B GQ)Bf
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is a homotopy equivalence. Clearly, f is toric as well (2.12).

Theorem 8.5. 1. Rep(SU(3), G2) = {0} UMono(SU(3), Gz) is T-determined.
2. The action

Mono(SU(3), G2) x Out(SU(3)) — Mono(SU(3), G2)
is transitive and the stabilizer at f € Mono(SU(3),Gz2) equals
Wa, (fSU3) = (v).
Proof. This is clear from the explicit description of the set Rep(SU(3), Gz). For
instance, the restriction map

Mono(SU(3), G2) — Mono(T'(SU(3)), Ga)
can be identified to the map
{u € Z}|u=1mod3} - W(Ga)(ul;)

which clearly is injective. O
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