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Abstract

Let G be a �nite group and let Sp+∗
G be the associated Brown poset

consisting of all non-trivial p-subgroups of G ordered by inclusion.

Let |G|p denote the maximal power of p dividing |G|. We prove that

Brown's theorem, stating that |G|p divides the reduced Euler char-

acteristic of the poset Sp+∗
G , is equivalent to a theorem by Frobenius'

which says that |G|p divides the number of p-singular elements in G. In

order to show this we introduce the concept of the Euler characteristic

of a �nite category and use this de�nition to �nd an Euler characteris-

tic for subgroup categories of G. We will be particularly interested in

the orbit category of G.

Resumé

Lad G v÷re en endelig gruppe og lad Sp+∗
G v÷re den partielt or-

denede m÷ngde der består af alle ikke-trivielle p-undergrupper af G

ordnet efter inklusion. Lad |G|p betegne den maksimale potens af p der

går op i |G|. Vi viser at Browns s÷tning, som siger, at |G|p går op i den

reducerede Euler karakteristik af Sp+∗
G , er ÷kvivalent med en s÷tning

vist af Frobenius, som siger at |G|p går op i antallet af p-singul÷re

elementer i G. For at vise dette introducerer vi konceptet Euler ka-

rakteristikken af en endelig kategori. Vi bruger denne de�nition til at

�nde en Euler karakteristik for undergruppe-kategorier af G. Specielt

vil vi kigge på orbit kategorien af G.
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1 Introduction

Given a �nite group G we look at the Brown poset of this group Sp+∗G which

consists of all non-trivial p-subgroups of G ordered by inclusion. We look

at this poset in hope that it will tell us something about our group. When

we view this poset as a category we can realize it to get a topological space

and use tools from topology to get information about our group G. As a

topological invariant we can use the Euler characteristic since it depends

only on the homotopy-type of a given space.

Let |G|p denote the maximal power of p dividing |G|. We will prove that

the Euler characteristic of Sp+∗G is congruent to 1 mod |G|p, a theorem �rst

proved by Brown in 1975, is equivalent to a theorem shown by Frobenius in

1907, namely that given a group G, |G|p divides the number of p-singular

elements in G.

In this paper we look at a rather new de�nition of the Euler characteris-

tic of a category taken from Tom Leinster's article "The Euler characteristic

of a category" and use this de�nition to show that the two theorems are

equivalent. To do this we �rst need some basic knowledge about categories,

which will be the subject in the �rst chapter. We only include the de�ni-

tions and theorems we need for later use. This chapter does not include

many examples as we will see examples of their application later on. In the

second chapter we introduce the realization of a category and the connection

between categories and topology. In the third chapter we de�ne the Euler

characteristic of a category. We show that for a poset P we can take the

geometric realization and �nd the Euler characteristic in the usual way or

we can view it as a category and �nd the Euler characteristic in the sense

of Leinster. We show that these to numbers will be equal. In the fourth

chapter we will look at homotopy equivalences of subgroup-categories of G

and we will �nd an Euler characteristic for the orbit category OpG. We will

obtain the following

∑
[H]

−χ̃(Sp+∗OG(H))

|OG(H)|
|G| = |Gp|

where H is a p-subgroup of G. This will show that theorems of Frobenius

and Brown are indeed equivalent.
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2 Categories

2 Categories

In this chapter we will introduce some basic category theory. We will look

at categories, functors and the relationship between functors, all of which

we will need later. This chapter is based on Mac Lane's "Categories for the

working mathematician."

2.1 Categories

De�nition 2.1. A category consists of a collection of objects and a collection

of morphisms that satisfy the following conditions :

• To every morphism f there is an object a = dom f , called the domain of

f and an object b = cod f called the codomain of f. We write f : a→ b.

• For every object a there is a morphism called the identity morphism

of a denoted 1a : a → a satisfying 1a ◦ f = f and g ◦ 1a = g for all

morphisms g and f satisfying codf = a and domg = a.

• If f and g are morphisms with cod f = dom g then the composition

g ◦ f is a morphism with dom(g ◦ f) = dom f and cod(g ◦ f) = cod g.

• The composition of morphisms is associative, that is (f ◦ g) ◦ h =

f ◦ (g ◦ h) for composable morphisms f, g, h.

For a category C we let obC denote the objects of C and C(a, b) the

morphisms from a to b in C and ζ(a, b) is the number of morphisms from

a to b. Two objects a and a′ are said to be isomorphic if there exist two

morphisms f : a→ a′ and g : a′ → a with g ◦ f = 1a and f ◦ g = 1a′ .

De�nition 2.2. We call a category small if both the collection of objects and

the collection of morphisms are sets. If this is not the case, we call it large.

We call a category C discrete if the only morphisms are the identity mor-

phisms.

Example

1. The category of sets, Set, has as objects sets, and morphisms are

function between sets. This is a large category.
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2 Categories

2. Grp denotes the category of groups and group homomorphisms.

3. Topological spaces and all continuous maps between them form a cat-

egory, Top.

4. 0 denotes the empty category with no objects and no morphisms. 1

is the category with one object and one morphism, the identity mor-

phism.

5. We can consider every partially ordered set, P , as a category. The

objects are the elements of P , and there is exactly one morphism from

x to y if x ≤ y. The relation x ≤ x gives us the identity morphism

and transitivity gives the composition. The category of all partially

ordered sets is denoted Poset.

De�nition 2.3. For a category C we denote by Cop the category C where

we have reversed all the morphisms.

De�nition 2.4. Let C be a category.

1. An object a ∈ C is said to be initial if for every object c ∈ C there is a

unique morphism a→ c.

2. An object b ∈ C is said to be terminal if for every object c ∈ C there

is a unique morphism c→ b.

Initial and terminal objects are unique up to isomorphism. To show this

let a and a′ be two initial objects. Then we have the following commutative

diagram

a a′

a a′

g

1a f

g

1a′

and we see that 1a = f ◦ g and 1a′ = g ◦ f hence a and a′ are isomorphic. In

Grp, the trivial group is both an initial and a terminal object.

2



2 Categories

De�nition 2.5. A morphism from an object to itself is called an endomor-

phism. If all endomorphisms in a category are also isomorphisms, we call

the category an EI-category.

De�nition 2.6. Given two categories A and B we can construct the product

category A × B. The objects in A × B are pairs (a, b) where a is an object

of A and b is an object of B. The morphisms (a, b)→ (a′, b′) are pairs (f, g)

where f : a→ a′ and g : b→ b′. Composition is given coordinate wise as in

A and B.

2.2 Functors

We now look at functors which are mappings of categories that respect do-

main and codomain of morphisms and preserve the structure of composition

and identities. Then we look at the relationship between them.

De�nition 2.7. For categories C and D, a functor T : C → D, is a map

which assigns to each object c in C an object Tc in D, and to each arrow

f : c→ c′ in C an arrow Tf : Tc→ Tc′ in D, such that

• T preserves composition: T (g ◦f) = Tg ◦Tf for every composable pair

of morphisms f, g in C.

• T preserves identity: T (1c) = 1Tc.

Examples of functors

1. For two categories C andD we can construct a functor F : C → D that

maps every object of C to a �xed object d0 ∈ D and every morphism

of C to the identity morphism on d0.

2. The map U : Grp → Set that assigns to each group the set of its

elements and to each group homomorphism itself regarded as a function

is a functor, called the forgetful functor.

We can compose functors. Given functors T : C → D and S : D → E we can

de�ne the composite functor ST : C → E by c 7→ S(Tc) and f 7→ S(Tf) on

objects c and morphisms f in C. For every category C there is the identity

functor 1C : C → C.
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2 Categories

We can consider the category of small categories Cat whose objects are all

small categories and whose morphisms are functors between categories.

De�nition 2.8. Let C and D be categories. Suppose we have functors F :

C → D and G : D → C such that GF = 1C and FG = 1D . Then we call F

and G isomorphisms and say that C and D are isomorphic.

This is a very strong condition as it only allows the category to di�er

in the notation of their objects and morphisms. Weaker conditions such as

equivalence and adjunction will turn out to be su�cient for our purposes.

De�nition 2.9. A functor F : C → D is full when to every pair c, c′ of

objects in C and to every morphism g : Fc → Fc′, there is a morphism

f : c→ c′ in C with g = Ff .

A functor F : C → D is faithful when for every pair c, c′ of objects in C and

every pair of morphisms f1, f2 : c→ c′ in C, the equality Ff1 = Ff2 : Tc→
Tc′ implies f1 = f2.

If f is an isomorphism in C then F (f) is also an isomorphism in D by

the de�nition of a functor. The converse holds if F is fully faithful. Indeed,

let c and c′ be objects of C and let f : c → c′ be a morphism in C. Let

F (f) be the morphism between F (c) and F (c′) and assume F (f) is an iso-

morphism with inverse h. Then F (f) ◦ h = idF (c′) and h ◦ F (f) = idF (c)

Since F is full there is a morphism g in C with F (g) = h. We can write

F (f ◦ g) = F (f) ◦ F (g) = F (f) ◦ h = idFc′ . Since F is faithful we get that

f ◦ g = idc′ and in the same way we get that g ◦ f = idc.

De�nition 2.10. A subcategory A of C is a collection of some of the objects

and some of the morphisms of C such that to each morphism in A, A con-

tains both the domain and codomain and for each object a in A, A contains

the identity morphism and for each pair of composable morphisms A also

contains their composition. These conditions makes A into a category.

The inclusion functor K : A → C sends each object to itself and each mor-

phism to itself. We say that a subcategory is full if the inclusion functor is

full.
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2 Categories

De�nition 2.11. For a category C, a skeleton of C is any full subcategory

A such that each object in C is isomorphic to exactly on object of A.

A category is called skeletal when any two isomorphic objects are identi-

cal, i.e. when the category is its own skeleton. We will denote any skeleton

of C by sk(C) or [C].

De�nition 2.12. Let F,G : C → D be two functors. A natural transforma-

tion t : F → G assigns to each object c ∈ ob(C) a morphism tc : F (c)→ G(c)

such that for every morphism f : c→ c′ in C the diagram

F (c) G(c)

F (c′) G(c′)

tc

F (f) G(f)

tc′

commutes. If for every object c in C the morphism tc is an isomorphism in

D we call t a natural isomorphism.

De�nition 2.13. Let C and D be categories. Suppose we have functors

F : C → D and G : D → C and suppose we have two natural isomorphisms

1C → GF and FG → 1D. Then the categories C and D are said to be

equivalent and we call F an equivalence.

Theorem 2.14. A category C is equivalent to any of its skeletons.

Proof. Let A be a skeleton of C, and let K : A → C be the inclusion. For

each object c in C we have that c ∼= Tc for a unique object Tc ∈ A. We call

this isomorphism θc. We can make a functor T : C → A which sends each

object c of C to the representative in A. For a morphism f : c→ d in C we

de�ne Tf = θdfθ
−1
c . This makes the following diagram commute

5



2 Categories

c d

KTc KTd

f

θc θd

KT (f)

Hence θ is a natural isomorphism between the functors KT and 1C . And

TK = 1D, so K is an equivalence and C and A are equivalent.

Theorem 2.15. F : C → D is an equivalence if and only if F is full and

faithful and essentially surjective on objects, meaning that each object d ∈ D
is isomorphic to Fc for some object c ∈ C

Proof. ⇐ : We want to �nd a functor G : D → C and natural isomorphisms

θ : 1D → FG and ε : 1C → GF .

For each object d ∈ D, there exists c ∈ C such that d ∼= Fc. De�ne G(d) = c

and let θd be this isomorphism. For each h : d → d′ the following diagram

commutes

d FGd

d′ FGd′

θd

h θd′ ◦ h ◦ θ−1
d

θd′

Since F is full and faithful, there is a unique G(h) : G(d)→ G(d′). Then

E is a functor with FG(h) = θd′hθ
−1
d which makes θ natural.

We now need to �nd ε : 1C → GF . Let c be an object in C. Consider

θFc : F (c) ∼= FGF (c). Since F is full and faithful, there is a unique εc : c ∼=
GFc with F (εc) = θFc. And since θ is natural we know that the following

6



2 Categories

commutes

Fc Fc′

FGFc FGFc′

Ff

θFc θFc′

FGFf

Hence

FGFf ◦ θFc = θFc′ ◦ Ff
F (GFf ◦ εc) = F (εc′ ◦ f)

GFf ◦ εc = εc′ ◦ f

so ε is natural and we have an equivalence.

⇒ : Since F : C → D is an equivalence there exists a functor G : D → C

and two natural isomorphisms GF → 1C and FG→ 1D. Hence each object

d ∈ D has the form d ∼= FGd for some c = Gd ∈ obC.
Let θ : GF ∼= 1C be the natural isomorphism making the following diagram

commute

c c′

GFc GFc′

f

θc θc′

GFf

Assume Ff = Ff ′. Then GFf = GFf ′ and by the commutativity of the

square f = θc′
−1GF (f)θc = f ′, hence F is faithful. By symmetry, G is also

faithful.

To show that F is full, consider any h : Fc → Fc′ and let f = θ−1
c′ Ghθc.

The above diagram also commutes if we replace Ff by h, thus we see that

GFf = Gh, and since G is faithful, we get that Ff = h, so F is full.
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2 Categories

Theorem 2.16. An equivalence of categories induces an isomorphism be-

tween their skeletons.

Proof. Suppose we have an equivalence F : C → D. For an object c in C

we write [c] = {c′ ∈ C | c ∼= c′}. De�ne F∗ : [c] → [Fc]. Since F is an

equivalence, [c] = [c′]⇔ [Fc] = [Fc′]. Hence F∗ is an isomorphism.

De�nition 2.17. We call a category C thin if for any two objects a, b ∈ C
there is a most one morphism from a to b.

Notice that if C is a thin category then sk(C) is a poset. This follows from

the fact that if f : a → b and g : b → b in sk(C) then the composition

fg = 1b and gf = 1a, hence a and b are isomorphic and then a = b.

De�nition 2.18. An adjunction between two categories C and D consists of

two functors F : C → D and G : D → C and two natural transformations

ε : FG→ 1D and η : 1C → GF called the counit and unit, respectively, such

that the compositions

F
εF−−→ FGF

Fη−−→ F

G
Gη−−→ GFG

εG−−→ G

are both the identity. We say that G is left adjoint to F.

An adjunction like this induces an isomorphism between the morphism

sets D(Fc, d) ∼= C(c,Gd) for any c ∈ obC and d ∈ obD. For every g : Fc→ d

in D and f : c → Gd in C, we can de�ne ϕ(g) = Gg ◦ ηc and this is an

isomorphism with inverse ψ(f) = εd ◦ Ff .

2.3 Slice and coslice category

De�nition 2.19. For a category C, we denote by a/C the coslice category

of C under a. It has as objects all morphisms in C with domain a. The

morphisms between two objects of a/C, say ϕ1 : a → x1 and ϕ2 : a → x2,

are any morphisms f ∈ C(x1, x2) that makes the following diagram commute
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2 Categories

a x1

x2

ϕ1

ϕ2
f

The slice category C/a has as objects all morphisms in C with codomain a.

The morphisms between two objects of C/a, say ϕ1 : x1 → a and ϕ2 : x2 → a,

are any morphisms f ∈ C(x1, x2) that makes the following diagram commute

a x1

x2

ϕ1

ϕ2
f

a//C is the full subcategory of a/C with objects all non-isomorphisms with

domain a. Similarly, C//a is the full subcategory of C/a with objects all

non-isomorphisms with codomain a.

Notice that 1a : a → a is an initial object in a/C and a terminal object in

C/a.

Example

If we consider a poset P as a category and an object K ∈ P , then the slice

category P/K = {H ∈ P | H ≤ K}.

De�nition 2.20. Let C be a �nite category and let S and T be two full

subcategories of C. If

a ∈ ob(S) and C(a, b) 6= ∅ ⇒ b ∈ ob(S)

C(a, b) 6= ∅ and b ∈ ob(T )⇒ a ∈ ob(T )

holds for all a, b ∈ ob(C) then we call S a left ideal in C and T a right ideal

in C.

Proposition 2.21. For an EI-category a//C is a left ideal in a/C

9



2 Categories

Proof. Assume ϕ : a→ b is an object in a//C. Then ϕ is a non-isomorphism

in C. Let ψ : a→ c be an element of a/C. Assume also that there is a mor-

phism g ∈ (a/C(ϕ,ψ)). Assume for contradiction that ψ is an isomorphism.

Then we have the following commutative diagram

a b

c

g

ϕ

ψ−1

and since we C is an EI-category ϕ would also be an isomorphism. Hence

ψ ∈ ob(a//C) and a//C is a left ideal in a/C.

10



3 The Geometric realization of a category

3 The Geometric realization of a category

In this section we see how categories produce topological spaces and functors

produce continuous maps between these topological spaces. We also see that

a natural transformation between two functors produces a homotopy between

the maps de�ned by the functors. My treatment of the subject is based on Ib

Madsen's lecture notes and on Quillen's article "Higher algebraic K-theory".

Once again this is mostly a preliminary presentation and also includes some

theorems stated without proofs.

3.1 The Geometric realization of a category

Let C be a small category. The topological space associated to a category is

constructed in two steps. First we de�ne the nerve of a category which is a

simplicial set and then we de�ne the geometric realization of this simplicial

set which gives us a topological space. We denote by NC the nerve of C,

which is a simplicial set. The n-simplices are the compositions x0 → ...→ xn
in C. The 0-simplices are the objects of C. The geometric realization of the

nerve, BC, is called the classifying space of C: This is a CW-complex and

the n-cells are in a one-to-one correspondence with the n-simplices of the

nerve where non of the arrows are the identity. If an n-simplicex contains

the identity as one of its arrows we call it degenerate.

For an integer n ≥ 0 we de�ne the category [n] which has as objects

{i ∈ Z | 0 ≤ i ≤ n} and there is exactly one morphism from i to j provided

i ≤ j. The functors from [n] to [m] consist of weakly increasing functions

θ : [n] → [m]. The category ∆ has as objects [n] and the morphisms from

[n] to [m] are the functors from [n] to [m].

A simplicial set is a functor X[−] : ∆op → Set. The morphisms in ∆

are generated by the face maps di : [n − 1] → [n], the map that skips i

and the degeneracy maps si : [n + 1] → [n], the map that repeats i. De�ne

di : X[n] → X[n − 1] and si : X[n] → X[n + 1]. These maps satisfy the

11



3 The Geometric realization of a category

simplicial identities [7]

didj = dj−1di for i < j

sisj = sj+1si for i ≤ j

disj =


sj−1dk if i < j

1 if i = j or i = j + 1

sjdi−1 if i > j + 1

The nerve NC[−] of a category C is the simplicial set given by NC[n] =

{c0 → c1 · · · → cn} = {F : [n] → C} and for θ : [n] → [m] we de�ne

θ∗ : NC[m]→ NC[n] given by θ∗([m]
F−→ C) = [n]

θ−→ [m]
F−→ C.

Simplicial sets form a category sSet. The morphisms f [−] : X[−] → Y [−]

are the functions f [n] : X[n]→ Y [n] that make the diagrams commute

X[m] Y [m]

X[n] Y [n]

f [m]

θ∗ θ∗

f [n]

for each θ : [n]→ [m] in ∆. A functor F : C0 → C1 induces a map of simpli-

cial sets NF [−] : NC0[−] → NC1[n]. In degree n we have

F (c0 → · · · → cn) = Fco → · · · → Fcn and this makes the above dia-

grams commute.

Let ∆n be the standard n-simplex

{(t0, · · · tn) ∈ Rn+1 |
∑
i

ti = 1 and ti ≥ 0 for all i}

A morphism θ : [n] → [m] induces a continuous map θ∗ : ∆n → ∆m given

by θ∗(
∑
tiei) =

∑
tieθ(i)

12



3 The Geometric realization of a category

Example

If we have a functor θ : [1]→ [2] de�ned by θ(0) = 0 and θ(1) = 1, then we

have a continuous function θ∗ : ∆1 → ∆2 that maps 1e0 + 0e1 + 0e2 + · · · to
1eθ(0) + 0eθ(1) + 0e2 + · · · = 1e0 + 0e2 + 0e1 + · · · and 0e0 + 1e1 + 0e2 + · · ·
to 0eθ(0) + 1eθ(1) + 0e2 + · · · = 0e0 + 1e2 + 0e1 + · · · .

We now associate to each simplicial set a topological space, its geometric

realization.

|X[−]| =
∞⊔
n=0

X[n]×∆n/ ∼

where (xn, d
i(tn−1)) ∼ (dixn, tn−1) for xn ∈ X[n], tn−1 ∈ ∆n−1 and

(xn, s
i(tn+1)) ∼ (sixn, tn+1) or xn ∈ X[n], tn+1 ∈ ∆n+1.

A morphism f [−] : X[−] → Y [−] of simplicial sets induces a continu-

ous map of geometric realizations |f [−]| : |X[−]| → |Y [−]| induced from⊔
f [−]× id :

⊔
X[n]×∆n →

⊔
Y [n]×∆n

To sum up: a functor F : C0 → C1 induces a continuous map BF :

BC0 → BC1. The composition C0
F−→ C1

G−→ C2 is given by B(G ◦ F ) →
BG ◦ BF and for the identity functor 1C : C → C we have B(1C) = 1BC .

Hence B is a functor from Cat to Top

One can show that the resulting topological space is a CW-complex and

the n-cells are in a one-to-one correspondence with the non-degenerate n-

simplices of the nerve. [7]
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3 The Geometric realization of a category

Example

Consider the following category C

a b

c

1

1

1 1

1

The nerve of this category is

NC[0] = {a, b, c}
NC[1] = {a→ a, b→ b, c→ c, a→ b, a→ c}
NC[2] = {a→ a→ a, b→ b→ b, c→ c→ c, a→ b→ b,

a→ c→ c, a→ a→ b, a→ b→ b, }
...

...
...

...
...

...

and so on.

In the realization |NC[−]|, the relation (xn, s
i(tn+1)) ∼ (sixn, tn+1) will

collapse all chains containing the identities {a → a, b → b, c → c} to the

points {a, b, c} and the relation (xn, d
i(tn−1)) ∼ (dixn, tn−1) tells us to glue

the simplices together such that the resulting space looks like this

a b

c

Example

The cyclic group of order 2, C2, form a category with one object and two

morphisms, the identity, 1 and g where gg = 1. The nerve NC2[n] has

exactly non-degenerate simplex for each n ≥ 0 and the resulting space BC2

has one n-cell in each dimension n ≥ 0, hence is homeomorphic to RP∞.

14



3 The Geometric realization of a category

3.2 Properties of the geometric realization

Theorem 3.1. [7] Milnor: The geometric realization preserves product, that

is

|(X × Y )[−]| → |X[−]| × |Y [−]|

is a homeomorphism.

We have to be a bit careful choosing our topology on the target, but if

X[−] and Y [−] are both countable we can equip it with the usual product

topology.

The classifying space of the category [1] is homeomorphic to the unit interval

I = [0, 1].

Corollary 3.2. A functor F : C×[1]→ D induces a homotopy of classifying

spaces BF : BC × I → BD

A natural transformation t between functors F0, F1 : C → D is equivalent

to a functor

F : C × 1→ D

De�ned as F (c, 0) = F0(c), F (c, 1) = F1(c) for all c ∈ obC
The morphisms of C × [1] are generated by

f × id0 : (c, 0)→ (c′, 0)

f × id1 : (c, 1)→ (c′, 1)

idc × ι : (c, 0)→ (c, 1)

since all morphisms can be constructed by composing the above. We de�ne

F (f × id0) = F0(f) : F0c→ F0c
′

F (f × id1) = F1(f) : F1c→ F1c
′

F (idc × ι) : tc : F0c→ F1c

An arbitrary morphism in C × [1] is the composition

(f, ι) = (id, ι) ◦ (f, id0) = (f, id1) ◦ (id, ι)

15



3 The Geometric realization of a category

F is well-de�ned since the diagram

F0(c) F0(c′)

F1(c) F1(c′)

F0(f)

tc tc′

F1(f)

commutes.

On the other hand, given a functor F : C × 1 → D, the two functors

F0, F1 : C → D given by F0 = F |C×{0} and F1 = F |C×{1} we have the

following commutative diagram

F0(c) F0(c′)

F1(c) F1(c′)

F (f, id0)

F (idc, ι) F (idc′ , ι)

F (f, id1)

Hence the two functors are related by the natural transformation

tc = F |{c}×ι : C × {0} → D × {1}

It follows from Theorem 3.1 that a natural transformation t : F0 → F1

between functors F0, F1 : C → D induces a homotopy from BF0 to BF1.

Theorem 3.3. An adjunction between categories induces a homotopy equiv-

alence.

Proof. Let F and G, C
G
�
F
D, be functors such that we have natural trans-

formations 1C
∼−→ GF and 1D

∼−→ FG. Then we have homotopies 1BC '
BG◦BF and 1BD ' BF ◦BG and BC and BD are homotopy equivalent.

16



3 The Geometric realization of a category

We call a functor F a homotopy equivalence if it induces a homotopy

equivalence of classifying spaces. We call a category C contractible if the

classifying space is contractible.

Corollary 3.4. If a category C has either an initial or a terminal object,

then it is contractible.

Proof. We prove the case where C has a terminal object. Assume C has

a terminal object c0. Let ∗ denote the 1-category with one object and one

morphism 1∗. We have functors F : C → {∗} and G : ∗ → C. The functor F

sends all the objects of C to the only object in ∗ and all morphisms to 1∗. G

sends the only object in ∗ to the terminal object c0 and the only morphism

to 1c0 . The composition F ◦ G = 1∗ and the composition G ◦ F send all

objects in C to c0. We have a natural transformation t : 1C
∼−→ G ◦ F . For

all objects c ∈ C de�ne tc : c→ c0 to be the unique morphism into c0. This

is a natural transformation since the diagram

c c0

c′ c0

tc

f idc0

tc′

commutes for all f : c→ c′. So we have BF ◦BG = B(F ◦G) = idB(∗) and

a homotopy between idC and BG◦BF = B(G◦F ). Hence BC is homotopy

equivalent to B(∗) which is a single point.

De�nition 3.5. Let F : C → D be a functor. For an object d0 ∈ D the

category d0/F has as its object all morphisms in D with domain d0 and

codomain Fc for some object c ∈ C. The morphisms from g : d0 → Fc to

g′ : d0 → Fc′ are the morphisms f : c → c′ in C that make the following

diagram commute

17



3 The Geometric realization of a category

d0 Fc′

Fc

g′

g
Ff

When F is the identity functor d0/F is the coslice category.

We will need the following result shown by Quillen.

Theorem 3.6. [9](Theorem A) If the category d/F is contractible for all

d ∈ D then F is a homotopy equivalence.

18



4 The Euler characteristic of a category

4 The Euler characteristic of a category

This chapter is based on Tom Leinster's article. We de�ne the Euler char-

acteristic of a category and investigate some of its properties. A category C

is called �nite if both the set of objects and the set of morphisms are �nite.

We will only consider �nite categories in this section.

4.1 Weighting and Coweighting

De�nition 4.1. Let A be a �nite category. A weighting on A is a function

k• : obA→ Q such that for all objects a ∈ A∑
b∈obB

ζ(a, b)kb = 1

.

A coweighting k• is a function k• : obA→ Q such that∑
a∈obA

kaζ(a, b) = 1

.

One can also think of weightings and coweightings as matrices. If we arrange

ζ(a, b) in an n× n matrix a weighitng is a column vector satisfying
ζ(a, a) ζ(a, b) · · ·
ζ(b, a) ζ(b, b) · · ·

...
...



ka

kb

kc

...

 =


1

1

1
...


and a coweighting is a row vector satisfying

(
ka kb kc · · ·

)

ζ(a, a) ζ(a, b) · · ·
ζ(b, a) ζ(b, b) · · ·

...
...

 =
(

1 1 1 · · ·
)

.

If the matrix of ζ is invertible the category C is said to have Möbius inver-

sion. We call the inverse, µ = ζ−1, the Möbius function of C. A category C
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4 The Euler characteristic of a category

has Möbius inversion if and only if it has a unique weighting and coweighting.

Examples

1. Let C be the following category

To �nd a weighting for this category we need to �nd a column vector

satisfying 3 1 3

0 1 0

0 0 3


kXkY
kZ

 =

1

1

1



We see that a weighting for C is

kXkY
kZ

 =

−2

1

1


2. If a category C has an initial object a, then(

ka kb kc · · ·
)

=
(

1 0 0 · · ·
)

is a coweighting for C and if C has a terminal object a, then
ka

kb

kc

...

 =


1

0

0
...


is a weighting for C.

For a �nite category C we could also have de�ned weightings and coweight-

ings such that it would be constant on isomorphism classes.

Let [C] be any skeletal category of C and let ζ([a], [b]) be the number of

morphisms from [a], [b] ∈ [C].

De�nition 4.2. A weighting for [C] is a function l• : [C]→ Q such that for

all [a] ∈ [C] we have ∑
[b]∈[C]

ζ([a], [b])l[b] = 1
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4 The Euler characteristic of a category

The category C has a weighting if and only if [C] has a weighting and

we have

k[b] =
∑
b∈[b]

kb and kb =
k[b]

|[b]|

We could have done the same for coweightings.

4.2 Euler Characteristic

Lemma 4.3. Let A be a �nite category, k• a weighting for A and k• a

coweighting for A. Then
∑
a
ka =

∑
a
ka.

Proof.
∑
b

kb =
∑
b

(
∑
a
kaζ(a, b))kb =

∑
a
ka(
∑
b

ζ(a, b)kb) =
∑
a
ka

De�nition 4.4. Let A be a �nite category that admits both a weighting and

a coweighting. Its Euler Characteristic is given by

χ(A) =
∑
a

ka =
∑
a

ka

for any weighting and coweighting.

Any category C with Möbius inversion has Euler characteristic, χ(C) =∑
a,b µ(a, b), the sum of the entries in µ(C).
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4 The Euler characteristic of a category

Examples

1. If A is a �nite discrete category then χ(A) = |obA| since for all objects
a ∈ A ka = 1 will be a weighting.

2. If a �nite category C has an initial or terminal object then χ(C) = 1.

3. The category

a b

2

2

1

1

does not admit a weighting or a coweighting, hence it does not possess

Euler Characteristic as de�ned here.

Proposition 4.5. If F : A→ B is an equivalence, then χ(A) = χ(B).

Proof. We know that F induces an isomorphism F∗ : sk(A) → sk(B) so

χ(sk(A)) = χ(sk(B)). And we know that χ(A) = χ(sk(A)) since∑
[a]∈[A]

k[a] =
∑
a∈A

ka

Hence χ(A) = χ(B).

Proposition 4.6. Let A and B be �nite categories. If there is an adjunction

A
F
�
G
B and both A and B have Euler characteristic, then χ(A) = χ(B).

Proof. Let A
F
�
G
B be an adjunction. We have a natural transformation

1A → GF and a natural transformation FG→ 1B. We know that ζ(Fa, b) =

ζ(a,Gb) for all objects a ∈ A and b ∈ B. Let k• be a coweighting on A. For
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4 The Euler characteristic of a category

every b we have 1 =
∑
a
kaζ(a,Gb). We can write

χ(B) =
∑
b

kb =
∑
b

kb(
∑
a

kaζ(a,Gb))

=
∑
a

ka(
∑
b

ζ(a,Gb)kb)

=
∑
a

ka(
∑
b

ζ(Fa, b)kb)

=
∑
a

ka

= χ(A)

4.3 Euler Characteristic of a Finite Poset

Proposition 4.7. A �nite poset S has Euler Characteristic
∑
n≥0

(−1)ncn

where cn is the number of chains in S of length n.

Proof. We look at the Möbius function µ(a, b)a,b∈S = µ(S) = ζ−1(a, b)a,b∈S
for a �nite poset. For a, b ∈ S we have that

ζ(a, b) =

{
1 if a ≤ b
0 otherwise

Hence, µ(S) = ζ−1(S) = (E + (ζ − E))−1 = E − (ζ − E) + (ζ − E)2 − · · ·
where E is the identity matrix.

The matrix ζ(a, b) can be arranged such that we have one in the diagonal

and zero below and 1 above if a ≤ b. Notice that (ζ−E)(a, b) is the number

of 1-simplices from a to b in S and (ζ−E)k(a, b) is the number of k-simplicies

from a to b in S for k ≥ 0. Hence
∑

a,b∈S(ζ − E)k(a, b) is the number of

k-simplicies in S.

So χ(S) =
∑
a,b

µ(a, b) =
∑
a,b

E(a, b) −
∑
a,b

(ζ − E)(a, b) +
∑
a,b

(ζ − E)2(a, b)... =∑
k

(−1)kck where ck is the number of k-simplicies in S.

For a �nite poset S, we can �nd the usual Euler characteristic of the classify-

ing space of S or we can see S as a category and �nd the Euler characteristic
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4 The Euler characteristic of a category

as de�ned in this chapter. The above result tells us that the two Euler char-

acteristics will be the same.

Example

We have seen that the cyclic group C2 is a category with one object and

two morphisms and that BC2 = RP∞. This is not a �nite CW-complex and

traditionally it does not have Euler characteristic but according to our new

de�nition the Euler characteristic of this category is χ(C2) = 1/2.

4.4 Euler Characteristic of Slice Categories

We will show how the Euler characteristic can be expressed using the slice

and coslice category.

Lemma 4.8. If S is a left ideal in C then any weighting for C restricts to

a weighting for S. And if T is a right ideal in C then any coweighting for C

restricts to a coweighting for T

Proof. Let S be a left ideal in C. If a ∈ obS and an object b ∈ obC is

not in S then ζ(a, b) = 0. Hence a weighting k• : C → Q restricts to a

weighting k• : S → Q where we have deleted kb. The proof for coweighting

is similar.

Lemma 4.9. Let C be a �nite category admitting a weighting: k• : ob(C)→
Q and let a ∈ ob(C). Then kcod(•) : ob(a/C) → Q is a weighting for the

coslice category a/C.

Proof. The objects in a/C are exactly the morphisms in C with domain

a. So we can partition the objects of a/C by their codomain ob(a/C) =∐
b∈ob(C)C(a, b). Also the set of morphisms from b to c in C is the union

of all morphisms from ϕ to ψ in a/C where ϕ : a → b and ψ : a → c

in C. This means that for ϕ ∈ C(a, b) and an object c ∈ C we can par-

tition the morphisms from b to c in C into a/C morphisms: C(b, c) =∐
ψ∈C(a,c)(a/C)(ϕ,ψ). We have to show that∑

ψ∈ob(a/C)

| (a/C)(ϕ,ψ) | kcod(ψ) = 1

.
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4 The Euler characteristic of a category

We use the above to conclude :

∑
ψ∈ob(a/C)

| (a/C)(ϕ,ψ) | kcod(ψ) =
∑

b∈ob(C)

∑
ψ∈C(a,b)

| (a/C)(ϕ,ψ) | kcod(ψ)

=
∑

b∈ob(C)

| C(cod(ϕ), b) | kb

= 1

If C is a �nite EI-category we can arrange the objects such that the ma-

trix of ζ for the skeletal category [C] is an upper triangle matrix. Indeed, if

we have morphisms f : a→ b and g : b→ a, then a ∼= b since all morphisms

from an object to itself are isomorphisms. Hence an EI-category has a unique

weighting and coweighting that is constant on isomorphism classes.

De�nition 4.10. For a category C we denote by χ̃(C) the reduced Euler

characteristic χ(C)− 1.

Theorem 4.11. Let C be a �nite EI-category and let k• and k• be the weight-

ing and coweighting that is constant on isomorphism classes of object in C.

Then for a, b ∈ ob(C)

ka =
−χ̃(a//C)

| [a] || C(a) |
and kb =

−χ̃(C//b)

| [b] || C(b) |

is a weighting and a coweighting for C, respectively. The Euler characteristic

for C is ∑
[a]∈[C]

−χ̃(a//C)

| C(a) |
=
∑

[b]∈[C]

−χ̃(C//b)

| C(b) |

Proof. Since C is a �nite EI-category, a/C and a//C are also �nite EI-

categories and thereby possess Euler characteristics. Since a//C is a left

ideal in a/C the weighting for a/C restricts to a weighting for a//C. The

category a/C has an initial object, and therefore it has Euler characteristic
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4 The Euler characteristic of a category

1:

1 =
∑

ϕ∈Ob(a/C)

kcod(ϕ)

= |[a]||C(a)|ka +
∑

ϕ∈Ob(a//C)

kcod(ϕ)

= |[a]||C(a)|ka + χ(a//C)

since the weighting is constant on isomorphism classes. The proof for

coweightings is similar.
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5 Equivalence of Brown and Frobenius

5 Equivalence of Brown and Frobenius

For a �nite group G and a prime p, we let |G|p be the maximal power of

p dividing |G| and |G|p′ be the non-p-part of the order of G, hence |G| =

|G|p|G|p′ . We write Gp for the set of p-singular elements in G, that is the set

of elements in G of order some power of p and we let 1 denote the identity

element of the group. For a �nite group G, we denote by SpG the Brown

poset of G. It consists of all p-subgroups of G ordered by inclusion. Sp+∗G

denotes the poset of all non-trivial p-subgroups of G.

The purpose of this chapter is to show that Brown's theorem which states

|G|p divides χ̃(Sp+∗G ) [1] is equivalent to a theorem proved by Frobenius [2]

that |G|p divides |Gp|
This chapter is based on Jesper Møllers article "Euler Characteristic of

Equivariant Subcategories" and "Homotopy Equivalences between

p-Subgroup Categories" by Gelvin and Møller.

5.1 The orbit category

LetG be a �nite group. The orbit category OG is a category whose objects

are all subgroups H of G and the morphisms between two subgroups H and

K are the sets

OG(H,K) = NG(H,K)/K

= {g ∈ G | Hg 5 K}/K
= {g ∈ G | g−1Hg 5 K}/K
and

OG(H) = NG(H)/H

= {g ∈ G | Hg 5 H}/H
= {g ∈ G | g−1Hg 5 H}/H

This is a category since the identity 1 ∈ NG(H)/H and the composition

of morphisms is given by the following: Let H, K and J be subgroups of G

and let x ∈ NG(H,K) and let y ∈ NG(K,J). Then xy ∈ NG(H,J) and is

a morphism from H to J since (xy)1Hxy 5 y−1Ky 5 J . We could equiv-

alently have de�ned the orbit category OG as a category whose objects are

the G-sets G/H for all subgroups H of G, and the morphisms G/H → G/K
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5 Equivalence of Brown and Frobenius

are G-maps. The restriction that this has to be a well-de�ned G-map will

lead to the same morphism set as before.

The orbit category is an EI-category. This follows from the fact that if

gH ∈ OG(H) then g ∈ NG(H)⇔ g−1Hg 5 H and since G is �nite we have

that g−1Hg = H. Hence gHg−1 = gg−1Hgg−1 = H so g−1 ∈ NG(H) and

g−1H ∈ OG(H)

For a subgroup K 5 G we will also need to look at the slice category OG/K

with objects being morphisms in OG with codomainK and where morphisms

from g1K : H1 → K to g2K : H2 → K are the morphisms gH2 ∈ OG(H1, H2)

that makes the following diagram commute

H1 K

H2

g1K

gH2
g2K

That is, the morphisms from g1K : H1 → K to g2K : H2 → K is the set

{g ∈ G | Hg
1 5 H2, g1K = gg2K}/H2. This is well-de�ned. The category

OG//K has as objects all morphisms H → K such that |H| < |K|, otherwise
we would have an isomorphism gK : H → K. Notice that this is a thin cate-

gory. In the same way we can de�ne the coslice category K/OG and K//OG.

We want to �nd weightings and coweightings for the orbit category. To

start with we look at the category OV , where V is an elementary abelian

p-group, and �nd a coweighting for this category.

De�nition 5.1. Let Cp be the cyclic group of order p. A group G is an

elementary abelian p-group if it is of the form G = Cp × Cp × · · · × Cp. We

call the number of copies of Cp the dimension of G.

Lemma 5.2. Let V be an elementary abelian group and let U be a subgroup
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5 Equivalence of Brown and Frobenius

of V. The function K• : ob(OV )→ Q

KU =


| V |−1 if dimU=0

(p− 1) | V |−1 if dimU=1

0 otherwise

is a coweighting for OV .

Proof. Let U1 and U2 be two subgroups of V . If U2 is a proper subgroup of

U1 then there are no morphisms from U1 to U2. So it is enough to show that∑
U1≤U2

KU1 |OV (U1, U2)| = 1. Since V is abelian there are |V ||U2| morphisms

from U1 to U2. The statement is then that
∑

U1≤U2
KU1

|V |
|U2| = 1. When

U2 = {1} this is true. An elementary abelian group (Cp)
n has pn−1 elements

of order p and each of them generates a subgroup of order p. But every

subgroup of order p has p − 1 generators hence the number of distinct p-

subgroups is pn−1
p−1 . Therefore if |U2| = pn :

∑
U1≤U2

KU1

|V |
|U2|

=
1

|V |
|V |
|U2|

+
∑

U1≤U2 of order p

(p− 1)

|V |
|V |
|U2|

=
1

|U2|
+
∑
pn−1
p−1

(p− 1)

|U2|

= 1

So KU is a coweighting for V .

Example

Let G be the elementary abelian group C2×C2. The orbit category OG has

as objects the following subgroups C2×C2, C2, C2, C2, 1. For two subgroups

H and K with K < H the morphism set OG(H,K) is empty. When H 5 K,

the morphism set is {gK ∈ G | g−1Hg 5 K} = G/K since G is an abelian

group. For example the morphisms from any subgroup H to C2 × C2 is the

set OG(H,C2 × C2) = {1}. The function

KU =


1/4 if dimU=0

1/4 if dimU=1

0 otherwise
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5 Equivalence of Brown and Frobenius

is a coweighting for G.

Let O
[1,V )
V be the full subcategory of OV that consists of all but the ter-

minal object V .

Theorem 5.3. The Euler characteristic of the category O
[1,V )
V is

χ(O
[1,V )
V ) =


0 if dimV=0

p−1 if dimV=1

1 dimV>1

Proof. When the dimension of V is 0 O
[1,V )
V is the 0-category and has Euler

characteristic 0. When V has dimension 1, V has only one proper sub-

group, the trivial group. It has dimension 0 so the assertion follows from the

above Lemma 5.2. When dimV > 1 the coweighting for OV restricts to a

coweighting for O
[1,V )
V because O

[1,V )
V is a right ideal in OV . By the Lemma

5.2 KV = 0, so we have that χ(OV ) = χ(O
[1,V )
V ). OV has a terminal object,

hence χ(O
[1,V )
V ) = 1

5.2 Homotopy equivalences of the orbit category

In this section we will categories that are homotopy equivalent to the orbit

category. First we will need some results from algebra.

Lemma 5.4. Let G be a group. The number of p-singular elements in G is

|Gp| = 1 +
∑

1<C≤G
(1− p−1)|C| = p−1 +

∑
1≤C≤G

(1− p−1)|C|

where C is a cyclic p-subgroup of G.

Proof. Instead of counting the p-singular elements in G, we count the cyclic

p-subgroups generated by the p-singular elements of G and use that for a

cyclic group Cpi , we know the number of elements of order pi. First, the

subgroup generated by 1 is the trivial group and it has one element. Two

distinct cyclic subgroups of order p cannot share any element except for 1

and in general two distinct cyclic groups of order pi cannot share an element

of order pi since this element will generate the entire subgroup. There are
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(p − 1) elements of order p in each Cp. For a subgroup of order pi we can

use Eulers ϕ function to count the elements of order pi.

ϕ(pi) = pi−1(p− 1)

hence the elements of Cpi of order p
i are pi−1(p− 1). Thus

|Gp| = 1 +
∑

1<C≤G
(1− p−1)|C|

De�nition 5.5. For a group G, the Frattini subgroup of G is the intersection

of all maximal subgroups of G and it is denoted Φ(G).

Φ(G) is a normal subgroup. One can show that for a p-group P , Φ(P ) is the

smallest subgroup such that P/Φ(P ) is elementary abelian.

Lemma 5.6. A p-group P is cyclic if and only if P/Φ(P ) is one-dimensional.

Proof. Let P be a cyclic p-group that is P ∼= Cpi for some i. Then Φ(Cpi) =

Cpi−1 and Cpi/Φ(Cpi) = Cp hence the Frattini quotient is one dimensional.

Let now P be any p-group, P = Cpi1×Cpi2×· · ·×Cpir and assume P/Φ(P ) ∼=
Cp. Then the order of |Φ(P )| = pi1pi2 ···pir

p = pi1−1pi2 · · · pir . Since Φ(P )

is the smallest subgroup making P/Φ(P ) elementary abelian, P has to be

cyclic. If not, the subgroupN = Cpi1−1×Cpi2−1 ...Cpir−1 is a smaller subgroup

making the quotient P/N elementary abelian.

Also every subgroup Q of P containing the Frattini subgroup is normal.

This is because we have a surjective group homomorphism P
ϕ−→ P/Φ(P )

and since P/Φ(P ) is abelian the subgroup Q/Φ(P ) is normal in P/Φ(P )

and hence QΦ(P ) is normal in P .

Let O
[Φ(P ),P )
P be the orbit category with objects proper subgroups of P

containing Φ(P ) and let O
[1,P/Φ(P ))
P/Φ(P ) be the category with objects all proper

subgroups of P/Φ(P )

Lemma 5.7. Let P be a �nite p-group.There is an isomorphism between the

categories

O
[Φ(P ),P )
P

≈−→ O
[1,P/Φ(P ))
P/Φ(P )
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5 Equivalence of Brown and Frobenius

Proof. We will show that the objects and the morphisms are in a one-to-one

correspondence. The objects are in a one-to-one correspondence since we

can use the fact that for a normal subgroup N of G, every subgroup of G/N

is of the form H/N where H is a subgroup of G containing N . There is also

a one-to-one correspondence between the morphisms of the two categories.

Let Q1 and Q2 be two subgroups of P containing Φ(P ) with Q1 5 Q2. Since

every subgroup of P containing the Frattini subgroup is normal we have that

the morphism set from Q1 to Q2 in O
[Φ(P ),P )
P is the set

N
O

[Φ(P ),P )
P

(Q1, Q2)/Q2 = P/Q2 =
P/Φ(P )

Q2/Φ(P )

The morphism set from Q1/Φ(P ) to Q2/Φ(P ) in O
[1,P/Φ(P ))
P/Φ(P ) is also the set

P/Φ(P )
Q2/Φ(P ) . Thus we have an isomorphism.

Now we look at the orbit category OpG of a �nite group G, which has as

objects all p-subgroups of G and �nd a coweighting for this category.

Theorem 5.8. The function

kK =


|G|−1 if K = {1}
|G|−1(1− p−1)|K| if K > 1 is cyclic

0 otherwise

is a coweighting for OpG and the Euler characteristic is

χ(OpG) =
|Gp|
|G|

Proof. We use Lemma 4.11 to �nd a coweighting for OpG de�ned as

kK =
−χ̃(OpG//K)

|[K]||OpG(K)|

where K is a p-subgroup of G and [K] is the isomorphism class of K in OpG,

that is the set {Kg | g ∈ G}.
First we show that we have equivalences of categories

iK : OK → OpG/K and i∗K : O
[1,K)
K → OpG//K
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5 Equivalence of Brown and Frobenius

First we de�ne iK . The element 1 ∈ NG(H,K)/K. Let H be an object

in OpK . The functor iK assigns to every object H in OpK , the morphism

1K : H → K. For a morphism fH2 ∈ OpG(H1, H2) we have to assign

a morphism from 1K : H1 → K and 1K : H2 → K, e.i. a morphism

g : H1 → H2 that makes the following diagram commute

H1 H2

K

g

1K
1K

If we let g = f , the diagram commutes since 1K = K = gK because

g ∈ K. We can restrict this functor to i∗K : O
[1,K)
K → OpG//K since O

[1,K)
K

only contains subgroup H < K

By construction the functor i∗K is full and faithful and essentially surjective

on objects, and by Theorem 2.15 it is an equivalence. We now know that

O
[1,K)
K and OG//K have identical Euler characteristic.

We claim that we have an adjunction between the categories O
[1,K)
K and

O
[Φ(K),K)
K . We want to show that L is left adjoint to R, where

O
[1,K)
K

R
�
L
O

[Φ(K),K)
K

≈←− O[1,K/Φ(K))
K/Φ(K)

and L and R are given by L(Q) = QΦ(K) and R(Q) = Q for any subgroup

Q 5 K.

We �rst check that these are indeed functors. Since the Frattini subgroup is

a normal subgroup QΦ(K) is again a subgroup of K containing Φ(K), hence

is an object of O
[Φ(K),K)
K . A morphism g : H → J in O

[1,K)
K will also be a

morphism from H to K in O
[Φ(K),K)
K . This holds since

g−1HΦ(K)g = g−1Hgg−1Φ(K)g 5 JΦ(K)

This is also well-de�ned since

O
[1,K)
K (H,J) = {gJ | g−1Hg 5 J}

and

O
[Φ(K),K)
K (HΦ(K), JΦ(K)) = {gJΦ(K) | g−1HΦ(K)g 5 JΦ(K)}
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5 Equivalence of Brown and Frobenius

and if gJ = g′J then g−1g′ ∈ J so g−1g′ ∈ JΦ(K) that is gLΦ(K) =

g′JΦ(K).

The functor R does nothing to objects and morphisms. We have to show that

there are natural transformations s : LR→ 1
O

[Φ(K),K)
Φ(K)

and t : 1
O

[1,K)
K

→ RL.

The �rst is easy since it is actually equal to the identity functor.

For the second one we have to show that for all object H in O
[1,K)
K there

exists a morphism tH : H → HΦ(K) such that for every gJ : H → J the

following diagram commutes

H J

HΦ(K) JΦ(K)

gJ

tH tJ

gJΦ(K)

We can choose tH = 1HΦ(K) since 1−1H1 = H 5 HΦ(K) and this will

make the diagram commute since tHgJΦ(K) = gJΦ(K) = gtJJΦ(K)

Thus there is an adjunction between the two categories and they have iden-

tical Euler characteristic χ(Opg//K) = χ(O
[1,K)
K .

We use the Orbit-Stabilizer Theorem ([4] Chapter II, Theorem 4.3) to obtain

the following equality |[K]||OpG(K)| = [G : K]. Hence

kK =
−χ̃(OpG//K)

|[K]||OpG(K)|
=
−χ̃(O[1,V ))

|G : K|

where V = K/Φ(K) is the Frattini quotient of K.

Since V is elementary abelian we can use Theorem 5.3 and we see that we

only get a contribution to kK when the dimension of K/Φ(K) is 0 or 1 since

−χ̃(O
[1,V )
V ) =


1 if dimV=0

1− p−1 if dimV=1

0 dimV>1

If the dimension of K/Φ(K) is 0, then kK = 1/|G|. Since K is cyclic if and
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5 Equivalence of Brown and Frobenius

only if V is one-dimensional we have that

kK =
−χ̃(O[1,V ))

|G : K|
=

(1− p−1)

|G : K|
= |K|(1− p−1)|G|−1

. Hence a coweighting for OpG is

kK =


|G|−1 if K = {1}
|G|−1(1− p−1)|K| if K > 1 is cyclic

0 otherwise

for any p-subgroup K of G. To �nd the Euler characteristic of this category

we have to take the sum of the values of the coweightings and we can use

Lemma 5.4 to conclude that χ(OpG) =
|Gp|
|G|

Now we �nd a weighting for the category OpG and use the fact that for a

category admitting both a weighting and a coweighting their sum must be

the same.

Theorem 5.9. The function

kH =
−χ̃(Sp+∗OG(H))

| G : H |

is a weighting for OpG and the Euler characteristic is given by

χ(OpG) =
∑
H

−χ̃(Sp+∗OG(H))

| G : H |
=
∑
[H]

−χ̃(Sp+∗OG(H))

| OG(H) |

where H is a p-subgroup of G and [H] is the conjugacy class of H .

Proof. Again we use Lemma 4.11 to de�ne a weighting for OpG.

kH =
−χ̃(H//OpG)

|[H]||OG(H)|
=
−χ̃(H//OpG)

|G : H|

We want to show that the categories H//OpG and Sp+∗OG(H) are homotopy

equivalent.

We start by looking at a functor rH : H/OpG → SpOG(H). An object in H/OpG
is a morphism in OpG(H,K) where H and K are p-subgroups of G. Let
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5 Equivalence of Brown and Frobenius

gK ∈ OpG(H,K) = NG(H,K)/K. The functor rH sends takes this object to

NgK(H)/H. This is an object in SpOG(H) since it is a p-subgroup of OpG(H)

as gK = gKg−1 is a subgroup of G. Let xK2 be a morphism from g1K1 to

g2K2 in H/OpG that is a morphism in OpG that makes the following diagram

commute

H K1

K2

g1K1

g2K2
xK2

Then x−1K1x 5 K2 and g1xK2 = g2K2 i.e. g
−1
2 g1x ∈ K2. Since S

p+∗
OG(H) is a

poset rH can only send morphisms to the inclusion, so we have to make sure

that rH(g1K1) 5 rH(g2K2) if there is a morphism between them in H/Opg ,

i.e. that Ng1K1(H)/H 5 Ng2K2(H)/H. This holds since g1K1 5 g2K2. This

is true because Kx
1 5 K2 ⇔ x−1

K1 5 K2 ⇔ g−1
2 g1xx−1

K1 5 g−1
2 g1xK2 = K2.

Hence rH is a functor.

We now want to show that rH is a homotopy equivalence. We show that

for all L̄ 5 NG(H)/H the category L̄/rH has an initial object and hence

is contractible. Then we use Quillen's theorem A to conclude that rH is a

homotopy equivalence.

Let L be an object in SpOG(H) that is let L be a p-subgroup satisfying H 5

L 5 NG(G). Let L̄ = L/H be the image of L in NG(H)/H. The category

L̄/rH with objects all morphisms in SpOG(H) with domain L̄ and codomain

rH(gK) for all objects gK ∈ OpG(H,K). Hence L̄/rH is the full subcategory

of OpG(H)/H generated by all morphisms gK ∈ OpG(H,K) such that L 5
NgK(H).

The inclusion 1L : H → L is an object in L̄/rH since L = NL(H). We

want to show that this object is initial. Let gK be any object in L̄/rH
that is L 5 NgK(H). The morphism gK : H → K extends to a morphism

gK : L → K because Lg 5 NgK(H)g = NK(Hg) 5 K. We have the

following commutative diagram in L̄/rH
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5 Equivalence of Brown and Frobenius

H L

K

gK
gK

This shows that the object, the inclusion H → L, is an initial object in

the category L̄/rH and it is thereby contractible. By Theorem 3.6 it follow

that rH is a homotopy equivalence and H/OpG ' S
p
OG(H).

rH restricts to a homotopy equivalence r∗H : H//OpG → Sp+∗OG(H)

hence H//OpG ' Sp+∗OG(H)
. We know that any category is equivalent to its

skeleton and that an equivalence of categories induces a homotopy equiva-

lence between their classifying spaces, hence sk(H//OpG) ' H//OpG ' S
p+∗
OG(H)

thus their usual Euler characteristic are identical. We know that H//OpG
is a thin category so both sk(H//OpG) and Sp+∗OG(H)

are posets hence these

Euler characteristics equals the ones de�ned by Leinster and we get that

χ(H//OpG)) = χ(Sp+∗OG(H)
).

Now we can write kH =
−χ̃(H//Op

G)

|[H]||OG(H)| =
−χ̃(Sp+∗

OG(H)
)

|[H]||OG(H)| This weighting is constant

on conjugacy classes, so the Euler characteristic is

χ(OpG) =
∑
H

kH =
∑
[H]

| [H] | kH =
∑
[H]

−χ(Sp+∗
OG(H)

|OG(H)| .

By combining Theorem 5.9 and Theorem 5.8 we obtain

∑
[H]

−χ̃(Sp+∗OG(H))

|OG(H)|
|G| = |Gp|

Notice that the contribution from the trivial subgroup H = 1 is −χ̃(Sp+∗G )

since OG(1) = G. So we can rewrite the above to

|Gp|+ χ̃(Sp+∗G ) +
∑

[H]6=1

χ̃(Sp+∗OG(H))

|OG(H)|p
|G|

|OG(H)|p′
= 0 (1)

We will use this expression to show that Frobenius' and Brown's theorems

are equivalent.
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5 Equivalence of Brown and Frobenius

Theorem 5.10. Given (1), Frobenius' and Brown's theorems are equivalent.

Proof. Assume Frobenius theorem is true. By induction we can show that

χ̃(Sp+∗OG(H)) divides |OG(H)|p.
Notice that for the trivial group G = {1} we have that χ̃(Sp+∗G ) = −1

since this category is empty and |G|p = 1 hence |G|p divides χ̃(Sp+∗G ). As-

sume |H|p divides χ̃(Sp+∗H ) for all group H of order < |G|. Then χ̃(Sp+∗OG(H))

also divides |OG(H)|p for H 6= {1} since |OG(H)| < |NG(H)| ≤ |G|.

Also |G|
|OG(H)|p′

is an integer divisible by |G|p. Since every term is divisible

by |G|p so is χ̃(Sp+∗G ). This is Brown's theorem.

Assume Browns theorem holds. Then
χ̃(Sp+∗

OG(H)
)

OG(H) is an integer and |G|
|OG(H)|p′

is

an integer divisible by |G|p and by assumption χ̃(Sp+∗G ) is divisible by |G|p.
Then so is |Gp|. This is Frobenius' theorem.

Example

We look at the group S3 × S3. This group has order 36, thus |G|2 = 22 = 4.

The poset S2+∗
G consists of the subgroups of order 2 and 4. There are 15

subgroups of order 2 and 9 subgroups of order 4. Each of the subgroups of

order 4 contains 3 subgroups of order 2. This means that |S3×S3| has 24 0-
simplices and 27 1-simplices. The reduced Euler characteristic is ˜χ(S2+∗

G ) =

−1 + 24− 27 = −4, which is congruent to 0 mod |G|p = 4.
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