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Abstract

This project represents an introduction to the theory of characteristic
classes of real and complex vector bundles, that is, cohomology classes
which are assigned naturally to the base spaces of vector bundles and
which encode information of such bundles. Beginning in the first chapter
with a summary of the basics of vector bundles, the project then turns in
chapter 2 to the classification of vector bundles on a paracompact space,
a necessary result to define the notion of a characteristic class. Once we
have proven this result, we invest chapters 3 and 4 to a systematic study
of two important types of characteristic classes associated to real vector
bundles, namely, the Stiefel-Whitney classes and the Euler class. The last
chapter treats mainly characteristic classes of complex vector bundles. In
particular, in this chapter we describe a way of constructing the Chern
classes which will also yield us an alternate construction of the Stiefel-
Whitney classes. This chapter and the whole of the project concludes with
the description of the cohomology rings of the infinite complex and real
Grassmannian manifolds using the coefficients Z and Z2 respectively, and
with a brief introduction to Pontrjagin classes. Throughout this project
all spaces are assumed to be Hausdorff.
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1 Basics about Vector Bundles

In this first chapter we introduce the most basic concepts and results concerning
vector bundles that will be used through out the rest of this monograph. Proofs
in general will be omitted in this chapter since the main focus of this work is
to treat characteristic classes of vector bundles. Nevertheless, the proofs can be
found in complete detail in [5].

1.1 Definitions and Basic Examples

Definition 1.1. A real vector bundle η over a topological space B consists
of the following:

1. a topological space E = E(η) called the total space,

2. a continuous map p : E → B called the projection map, and

3. for each b ∈ B, p−1(b) is a finite dimensional real vector space

Furthermore, this definition is subject to the following local triviality con-
dition: For each point b0 ∈ B there exists an open neighborhood U of b0, an
integer n ≥ 0, and a homeomorphism h : U × Rn → p−1(U) such that for all
b ∈ U the restriction of h to b × Rn is a vector space isomorphism between Rn
and p−1(b).

Complex vector bundles are defined in the exact same way with the only
difference that we use complex Euclidean vector spaces as fibers.

A pair (U, h) as described above is called a local trivialization for η about
b0. A vector bundle is called trivial if there exists a local trivialization (U, h)
with U = B.

The set p−1(b) is called the fiber over b and it will be also denoted some-
times as Fb(η). Observe that by the local triviality condition we have that the
correspondce between b ∈ B and dimp−1(b) is a continuous map. In particular,
this correspondence is constant on connected components of the base space B.
Through out most of this monograph, we shall be mainly interested on vector
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bundles with constant fiber dimension. Such vector bundles are usually called
n−vector bundles or n−plane bundles where n is the dimension of the fibers.

Let η = (E,B, p) and δ = (E′.B′, p′) be two n−vector bundles.

Definition 1.2. A bundle map between η and δ is a pair of maps F : E → E′

and f : B → B′ such that the following diagram commutes

E
F //

p

��

E′

p′

��
B

f // B′

and such that F is a linear isomorphism between the vector spaces p−1(b)
and p′−1(f(b)) for all b ∈ B. The map f : B → B′ is usually called the base
space map.

Now assume that both η and δ are defiined over the same base space B.

Definition 1.3. η and δ are said to be isomorphic, written η ∼= δ, if there
exists a bundle map (F, f) between η and δ such that f = IdB and such that
F is an homeomorphism.

The following lemma however tells us that in the previous definition we can
ommit the condition of F being a homemorphism.

Lemma 1.4. Let η and δ be two n−vector bundles over B and let (F, f) be a
bundle map with f = IdB. Then F is necessarily a homeomorphism. Hence η
is isomorphic to δ.

The following examples of real vector bundles will be of vital importance
throughout the rest of our work.

Example 1.5. The real projective space, denoted by RPn, is the set of all un-
ordered pairs {x,−x} where x is in the unit sphere Sn ⊂ Rn+1. We give the
space RPn the quotient topology.
Let E(γn1 ) be the subset of RPn×Rn+1 consisting of all points ({x,−x} , v) with
v ∈ span {x} and let p : E(γn1 ) → RPn be the map defined as p({x,−x} , v) =
{x,−x}. We prove the following claim:

Claim: γn1 = (E(γn1 ),RPn, p) is locally trivial.

Proof. Let U be an open set in Sn which doesn’t contain pairs of antipodal
points, and let U ′ ⊂ RPn be the image of U under the quotient map q : Sn →
RPn. Since U doesn’t have any pairs of antipodal points we have that the
restriction of q on U is an homeomorphism between U and U ′. Furthermore, U ′

is open since q−1(U ′) is the union of U and −U . Define h : U ′ × R → p−1(U ′)
by h({x,−x} , t) = ({x,−x} , tx). Since clearly this map is an homeomorphism
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and a vector space isomorphism when restricted to fibers we conclude that γn1
is locally trivial.

The bundle γn1 is usually called the canonical line bundle over RPn.

We have the following important result concerning these bundles γn1 .

Proposition 1.6. The bundles γn1 are not trivial for all n ≥ 1.

Definition 1.7. A cross section of a vector bundle η = (E(η), B, p) is a
continuous function s : B → E(η) such that ps = IdB , that is, s(b) lies in
p−1(b).

A collection of sections s1, . . . , sm is said to be no-where dependent if
s1(b), . . . .sm(b) is linearly independent for each b ∈ B.
The applicability of these notions becomes clear with the following proposition.

Proposition 1.8. A n−vector bundle η is trivial if and only if η admits n
no-where dependent sections s1, . . . , sn.

The proof of this result follows from lemma 1.4 as it is explained in [5].

1.2 Construction of Vector Bundles

In this section we shall discuss operations that yield us new vector bundles.
We begin with the notion of a pull-back which shall be of great importance
when we discuss the classificaton of vector bundles in the next chapter. Let
f : B → B′ be a continuous map and let η = (E′, B′, p′) be a n−vector bundle
defined over B′. Consider the subspace E of B×E′ consisting of all pairs (b, e)
with e ∈ p′−1(f(b)). Furthermore, let p : E → B be the usual projection map
and consider the triple f∗η = (E,B, p). We have the following result.

Proposition 1.9. f∗η = (E,B, p) satisfies the local triviality condition and
hence f∗η is a n−vector bundle, which is usually called the pull-back of η by
f .

Details of this proof can be found in [5]. The importance of this notion lies
on the fact that, at least for paracompact base spaces, any n−vector bundle is
the pull-back of a particular n−bundle, called the universal n−plane bundle. A
result related to this concept is the following:

Proposition 1.10. Let (F, f) be a bundle map between vector bundles η =
(E,B, p) and δ = (E′, B′, p′). Then, we have that η ∼= f∗δ.

Another important related proposition, whose proof is left as an excercise to
the reader, is the following

Proposition 1.11. Let f : B → B1 be a continuous map and let ξ1 and ξ2 be
two n−vector bundles on B1 such that ξ1 ∼= ξ2. Then, we have that f∗ξ1 ∼= f∗ξ2.
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Finally, observe that if f : B1 → B is a continuous map and if ξ is a bundle
on B, then the function (Id, f) : f∗ξ → ξ is clearly a bundle map.

Observe that propostion 1.11 allows us to define a contravariant functor
Vectn(−) from the category of topological spaces Top to the category Set
where an object Vectn(B) is the set of isomorphism classes of n−vector bun-
dles defined on B and where a map f : B → B1 induces a function of sets
f∗ : Vectn(B1)→ Vectn(B) given by ξ → f∗ξ.

Cross-products. If η = (E′, B′, p′) is a n−vector bundle and δ = (E′′, B′′, p′′)
is a m−vector bundle we define their cross-product by taking B = B′ × B′′,
E = E′ × E′′ and p : E × E′ → B × B′ with p(e1, e2) = (p′(e1), p′′(e2)). The
triple η × δ = (E,B, b) satisfies also the local triviality condition and thus it is
a (n+m)−vector bundle.

Whitney sum of vector bundles. With the notions of pull-backs and
cross-products we can define in a formal way an ’adding’ operation between
vector bundles defined over the same base space. More explicitely, consider
two vector bundles η = (E′, B, p′) and δ = (E′′, B, p′′) of fiber dimension n
and m respectively over the same base space B. By taking the diagonal map
d : B → B × B and pulling back η × δ by d we obtain a new (n + m)−vector
bundle d∗(η × δ) over B. This new vector bundle, usually denoted by η ⊕ δ, is
called the Whitney sum of δ and η.
As a consequence of proposition 1.4 we have the following proposition concerning
Whitney sums

Proposition 1.12. Let η be a vector bundle over some base space B. If η1 and
η2 are two sub-bundles of η such that Fb(η) = Fb(η1)⊕Fb(η2) for all b ∈ B then
we have η ∼= η1 ⊕ η2

Proof. Consider the map f : E(η1⊕η2)→ E(eta) defined as f(e1, e2) = e1 +e2.
Then, by 1.4 f is a bundle isomorphism.

The previous proposition raises the following question: if we have a vector
bundle η over a space B and a sub-bundle ξ, is it always possible to find another
sub-bundle ξ′ such that η ∼= ξ⊕ξ′? We shall show in one of the following sections
that it is possible to find such a complement if η has a matric.

1.3 Continuous Functors

The Whitney sum falls in a more general method of constructing new vector
bundles out of old ones. To describe this general method consider the category
of finite dimensional (real or complex) vector spaces V and all the isomorphisms
between such vector spaces. A continuous covariant functor T : V×V → V
is a covariant functor from the category V × V to V such that for any finite
dimensional vector spaces V1, V2,W1,W2 we have that the map
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T (·, ·) : Hom(V1,W1)×Hom(V2,W2)→ Hom(T (V1, V2), T (W1,W2))

is continuous. Direct sums is a particular example of a continuous functors.
An analogous definition holds completely when we consider the n−fold product
category V × . . .× V.

Let now T : V × . . . × V → V be a continuous functor on m factors and
consider m vector bundles ξ1, . . . ξm defined over a common base space B. For
each b ∈ B consider the vector space Fb = T (Fb(ξ1), . . . , Fb(ξm)). Let E be the
disjoint union of all such vector spaces and define π : E → B by π(Fb) = b. We
have then the following theorem

Theorem 1.13. There exists a canonical topology for E so that E is the total
space of a vector bundle with projection π and with fibers Fb

This theorem enable us now to apply fiber wise other such vector space op-
erations such as the tensor product ⊗, taking the dual Hom(·,C) or Hom(·,R),
etc, in order to obtain new vector bundles.

1.4 Hermitian and Riemannian Metrics

We begin this section with the following definition

Definition 1.14. Let ξ be a complex vector bundle over B. A hermitian
metric for ξ is a continuous function u : E(ξ⊕ξ)→ C such that when restricted
to each fiber F we have that uF is an inner product for F .

In a totally analogous manner we define riemannian metrics for real vec-
tor bundles.

Let η = (E,B, p) be a n−vector bundle with a metric u and let ξ = (E′, B, p′)
be a sub-bundle of η. For each fiber F (b) of η let F⊥(b) be the orthogonal
complement of p′−1(b). Denote by E(ξ⊥) the union of all such sets F⊥(b) and
let p⊥ : E(ξ⊥)→ B be the usual projection. Then, we have the following result
concerning ξ⊥ = (E(ξ⊥), B, p⊥)

Proposition 1.15. E(ξ⊥) is the total space of a sub-bundle ξ⊥ of η. Further-
more, we have that η ∼= ξ ⊕ ξ⊥.

Definition 1.16. ξ⊥ is called the orthogonal complement of ξ in η.

1.5 Specifics about Complex Vector Bundles

In this section we shall introduce some terminology concerning complex vector
bundles which we shall need for the rest of this project.
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Definition 1.17. Let ξ = (E,B, p) be a complex n−vector bundle. The con-
jugate vector bundle of ξ, denoted by ξ, is the vector bundle with the same
underlying structure (E,B, p) as ξ but where scalar multiplication on each fiber
of ξ is given by λ · a := λa where λ ∈ C and a ∈ E.

A particular important application of the notion of the conjugate of a vector
bundle is summarized in the following proposition

Proposition 1.18. Let ξ = (E, b, p) be a complex line bundle with a hermitian
metric u : E(ξ ⊕ ξ) → C. Then, the complex line bundle ξ ⊗ ξ is a trivial line
bundle.

Proof. A metric on ξ induces a continuous function f : ξ ⊗ ξ → B × C by the
relation f(a⊗ b) = (p(a), u(a, b)). It is clear that this map preserves projections
and it is not hard to verify that it is indeed linear on each fiber. Furhtermore,
since clearly f induces a surjective map ξb⊗ ξ∗b → b×C when restricted to each
fiber then we must have that f is an isomorphism when restricted to fibers and
thus it is a bundle isomorphism.

Definition 1.19. Let ξ = (E,B, p) be a complex n−vector bundle. Then, the
underlying real vector bundle ξR of ξ is the 2n-real vector bundle with the
same underlying structure (E,B, p) but where in each fiber Fb we just consider
the real vector space structure.

1.6 Basics about Paracompact Spaces

We finish this first chapter by introducing the concept of a paracompact space
and state the results which are relevant for the theory of vector bundles.

Definition 1.20. A space B is a paracompact space if it is a Hausdorff
space and if for every open covering {Ui}i∈I of B, there exists an open covering
{Vj}j∈F which

1. is a refinement of {Ui}i∈I , and

2. is locally finite, that is, each b ∈ B has an open neighborhood V (b) which
intersects only finitely many of the sets Vj .

Proposition 1.21. A paracompact space is a normal space.

For a proof of this proposition see [6].

Proposition 1.22. The inductive limit of compacts spaces is a paracompact
space.

The following lemma will be used several times through out this project and
its proof can be found in [5].

Lemma 1.23. For any fiber bundle ξ over a paracompact space B, there exists
a locally finite covering of B by countably many open sets U1, U2, . . . , so that
ξUi is trivial for each i.
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REMARK: For the rest of this project, we shall assume that all spaces
are paracompact spaces. This is not such a harsh restriction since nearly all
familiar topological spaces are paracompact (for example, all CW-complexes
are paracompact), and furthermore, many of the arguments that appear in the
literature of characteristic classes require that the base space of a vector bundle
ξ has a countable covering {Ui}i such that ξUi is trivial for all i.

2 Classification of Vector bundles

2.1 The Homotopy Theorem

Throughout this chapter we shall denote Top the category of paracompact
spaces and by Set the category of sets. Furthermore, let us denote by Vectn(B)
the set of isomrphism classes of n−plane bundles over a paracompact space B.
We shall do everything in this chapter for real vector bundles, since the proofs
for compex vector bundles are completely analogous.

We start off this section by proving that the pullbacks of homotopic maps
are isomorphic. This result, called the homotopy theorem will follow from
the two following auxiliary lemmas.

Lemma 2.1. If η = (E, I, π) is an n-vector bundle defined over the unit interval
I = [0, 1], then η is a trivial bundle.

Proof. For the vector bundle η it is possible to find a partition

0 = r0 < . . . < rm = 1

such that E[ri−1,ri] is a trivial bundle. On [r0, r1] we can contruct n linearly
independent sections s1,1, . . . , s1,n : I → E, and furthermore, on [r1, r2] we
can construct n linearly independent sections s2,1, . . . , s2,n : I → E such that
s1,i(r1) = s2,i(r1) for all i = 1, . . . , n. Following this procedure inductively we
obtain n linearly independent sections s1, . . . , sn : I → E and thus η is a trivial
bundle.

Our main result will be a particular case of the following slightly more tech-
nical result.

Lemma 2.2. Let B be a paracompact space and let ξ = (E,B × I, p) be a n
vector bundle over B × I. Then, the restrictions ξ0 and ξ1 over B × {0} and
B×{1} respectively are isomorphic bundles when considered as bundles over B.

Proof. We divide this proof into several steps:

Step 1: We begin by proving that we can find a locally finite open cover
{Ui}i∈F for B such that ξUi×I is a trivial bundle for each i. Fixing a point
b ∈ B, we can find for each t ∈ I open neighborhoods U(t) and V (t) of b and t
respectively such that ξU(t)×V (t) is a trivial bundle. By the compactness of I we
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can find finitely many points t1, . . . , tm in I such that
⋃
V (ti) = I. Denote by

U(b) the finite intersection
⋂
i U(ti). Using the open sets V (ti) we can find a par-

tition 0 = r0 < . . . < rp = 1 of I such that ξ is trivial on each set U(b)×[ri−1, ri].
It follows now using a totally analogous argument used in the previous lemma
that there exists n linearly independent sections s1, . . . , sn : U(b) × I → E,
which would make the restriction of ξ trivial over U(b) × I. We complete this
first step by observing that, given that the space B is paracompact, we can find
a locally finite open covering {Ui}i∈F which refines {U(b)}b∈B .

Step 2: Consider now the map r : B× I → B× I defined as r(b, t) = r(b, 1).
The vital step of this proof will be to construct a bundle map R : E → E which
has r as a base space map. Consider the locally finite open covering {Ui}i∈F
of B which was constructed in the previous step. For all i ∈ F we denote by
hi : Ui× I×Rn → p−1(Ui× I) the local trivialization on Ui× I. Since the space
B is both paracompact and Hausdorff there exists locally finite open coverings
{Wi}i∈F and {Oi}i∈F such that Oi ⊂ Wi and Wi ⊂ Vi for all i ∈ F (See [M],
page 294) and continuous functions αi : B → [0, 1] such that α−1({1}) = Oi
and α−1({0}) = B −Wi. For all i ∈ F define fi : Ui × I ×Rn → Ui × I ×Rn as
fi(b, t, v) = (b,max{t, αi(b)}, v). Clearly these maps fi are continuous. Finally,
for all i ∈ F define Ri : E → E in the following way:

Ri(x) =

{
x if x ∈ E − p−1(U × I)

hifih
−1
i (x) if x ∈ p−1(U × I)

Clearly Ri is continuous in E − p−1(Wi × I) since in this subset is just the
identity map and the continuity of fi implies that Ri is continuous in p−1(Ui×I)
and thus Ri is a bundle map. Giving F a well-ordering, the desired cover for
r : B×I → B×I is the composition of all the maps Ri according to the ordering
given to F . This map is well defined since every point x ∈ B is contained in
only finitely many of the open sets Ui and the fact that each x is in some Oi
implies that R indeed covers r. For each b ∈ B, there exists an open neighbor-
hood V (b) which intersects finitely many of the sets Ui. Thus, on the open sets
p−1(V (b)× I) we have that R is continuous, which imples that R is continuous
on all of E.

Step 3: The final step of this proof is to observe that when restricted to
ξ0, Rξ0 is a biyective bundle map and the base space map rξ0 is such that
rξ0(b, 0) = (b, 1). Thus, by proposition 1.10, we obtain that Eξ0 and ξ1 are
equivalent bundles when viwed as bundles over B.

We are now ready to prove the promised result

Theorem 2.3. The pullbacks of an n−plane bundle ξ = (E,B, p) along homo-
topic maps f0, f1 : A→ B are isomorphic.
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Proof. Let F : A × I → B be a homotopy between f0 and f1. Then, the
restrictions of F ∗ξ over A×{0} and A×{1} can be identified with the pullbacks
f∗0 ξ and f∗1 ξ respectively. The result now follows from the previous lemma.

An immediate result of this theorem is the following corollary.

Corollary 2.4. Any n−plane bundle defined over a contractible paracompact
space B is trivial.

The aim in the following sections, and really the heart of this chapter, will be
to construct for any natural number n a vector bundle γn, called the ’univer-
sal bundle’ or ’tautological bundle’, over a space Gn(R∞) such that for any
n-vector bundle ξ over a paracompact space B we can construct a bundle map
f : ξ → γn unique up to homotopy. Thus, for any paracompact space B there is
a one to one correspondence between Vectn(B) and [B,Gn(R∞)]. Furhtermore,
it will be shown that this correspondence constitutes a natural equivalence be-
tween the functors Vectn(−) : Top→ Set and [−, Gn(R∞)] : Top→ Set.

2.2 Grassmann Manifolds and Universal Bundles

We begin this subsection by constructing the base space for our universal bun-
dle. This base space Gn(R∞) will be the inductive limit of certain compacts
manifolds Gn(Rn+k), called Grassmann manifolds, making our space Gn(R∞)
paracompact according to proposition 1.22. So let us begin by contructing the
spaces Gn(Rn+k).

Let n ≤ q and consider the n-fold cross product Rq× . . .×Rq. Let Vn(Rq) be
the subspace conformed by all n-frames in Rq and let V 0

n (Rq) be the subspace
of all orthonormal n-frames in Rq. Since for any n-frame (v1, . . . , vn) in Rq
we can find open neighborhoods U1, . . . , Un of v1, . . . , vn such that U1× . . . ×
Un ⊂ Vn(Rq) we have that Vn(Rq) is an open subset of Rq × . . . × Rq and
thus a manifold. Furthermore, taking the map F : (Rq)n → Mn(R) defined as
F (v1, . . . , vn) = (vi · vj)i,j it is easy to see that V 0

n (Rq) = F−1(Idn) making
V n0 (Rq) a closed subset of (Rq)n and thus a compact subspace since it is also
bounded. Let now Gn(Rq) be the set of all n−planes in Rq. The function
q : Vn(Rq) → Gn(Rq) which assigns to a n−frame the n−plane which it spans
is surjective and thus we can topologize Gn(Rq) with the quotient topology.
Analogously, we could have also given Gn(Rq) the quotient topology induced
by the function q0 : V 0

n (Rq)→ Gn(Rq). Nevertheless, the commutativity of the
following diagram shows that both quotient topologies are the same

V 0
n (Rq) i //

q0 %%JJJJJJJJJ
Vn(Rq) GS //

q

��

V 0
n (Rq)

q0yyttttttttt

Gn(Rq)
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where GS denotes the Gram-Schmidt process. Observe that by taking n = 1
we have that G1(Rq) = RP q−1.

We now stray slightly away from the main goal of this chapter to prove the
following proposition concerning the topological nature of Gn(Rq).

Proposition 2.5. Gn(Rq) is a compact topological manifold of dimension
n(q − n).

Proof. The compactness of Gn(Rq) follows easily from the fact that Gn(Rq) is
the quotient of V 0

n (Rq).
Let us now prove that Gn(Rq) is a Hausdorff space. To do this it is enough to
show that any two points in Gn(Rq) are seperated by a real valued function.
For a fixed w ∈ Rq let dw : Gn(Rq) → R be the function which assigns to
X ∈ Gn(Rq) the square of the distance of w toX. If x1, . . . , xn is an orthonormal
basis for X then the identity

dw(X) = (w · w)2 − (w · x1)2 + . . .+ (w · xn)2

implies that the composition

V 0
n (Rq)

q0 // Gn(Rq) dw // R

is continuous and by properties of the quotient topology dw is also conti-
nuous. If X and Y are two different n−planes in Rq and if w is a vector in X
but not in Y then clearly dw(X) 6= dw(Y ). Thus, Gn(Rq) is a Haussdorf space.
Now we prove that each n−plane X ∈ Gn(Rq) has an open neighborhood ho-
meomorphic to Rn(q−n). It will be convenient for this proof to view Rq as the
direct sum X ⊕ X⊥. Let π : Rq → X be the orthogonal projection onto X
and consider the set U of all n−planes Y which are mapped isomorphically
onto X through π, or equivalently, all n−planes Y such that Y ∩ X⊥ = {0}.
U is an open set since if x1, . . . , xn is an n−frame which spans an n−plane
X1 ∈ U then it is possible to find open neighborhoods U1, . . . , Un of x1, . . . , xn
such that U1 × . . . × Un ⊂ q−1(U). Then, q−1(U) is an open set which by
definition implies that U is also an open set. The key observation in order to
prove that U is homeomorphic to Rn(q−n) is that each Y ∈ U determines a
linear transformation TY : X → X⊥ and that each linear map T : X → X⊥

determines an n−plane Y [T ] ∈ U . Indeed, if Y ∈ U then each y ∈ Y can be
written uniquely as y = x + x′ with x ∈ X and x′ ∈ X⊥ and the association
Ty(x) = x′ constitutes a linear homomorphism TY : X → X⊥. Conversely,
if T : X → X⊥ is a linear map then the set YT = {x + T (x) : x ∈ X}
is an n−plane such that Y ∩ X⊥ = {0}. Furthermore, it is easy to verify
that the functions Y → TY and T → YT are mutually inverse. We denote
now by T : U → Hom(X,X⊥) the function Y → TY and we shall now prove
that this is in fact a homeomorphism, which would make U homeomorphic to
Rn(q−n).Take a fixed basis x1, . . . , xn for X. Instead of proving directly that
T : U → Hom(X,X⊥) is continuous we shall prove the continuity of the map
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S : U → (X⊥)n defined as S(Y ) = (TY (x1), . . . , TY (xn)). In order to show that
S is continuous we consider the following continuous maps:

• The orthogonal projection π : Rq → X onto X.

• The orthogonal projection π′ : Rq → X⊥ onto X⊥.

• The map D : q−1(U)→ q−1(U) which assigns to an n−frame (y1, . . . , yn)
the unique n−frame (y′1, . . . , y

′
n) which spans q((y1, . . . , yn)) and which

satisfies π(y′i) = xi for all i = 1, . . . , n.

• The map P : q−1(U)→ (X⊥)n defined as P (y1, . . . , yn) = (π′(y1), . . . , π′(yn)).

Then, since clearly we have that S ◦ q(y1, . . . , yn) = P ◦ D(y1, . . . , yn) it
follows that S ◦ q is continuous and thus S is continuous. The continuity of S
implies then the continuity of T .
In order to show that T−1 is continuous consider the map D′ : Hom(X,X⊥)→
q−1(U) defined as D′(T ) = (x1 + T (x1), . . . , xn + T (xn)). Since we clearly have
that T−1 = q ◦D′ we conclude that T−1 is also continuous.

We delay the construction of our universal bundle a little bit more by defin-
ing first on each Grassman manifold Gn(Rq) the following canonical n−vector
bundle. Consider the subspace E of Gn(Rq)×Rq consisting of pairs (Y, v) with
v ∈ Y and define π : E → Gn(Rq) as the obvious projection. The following
proposition proves that the triple γqn = (E,Gn(Rq), π) is indeed a vector bundle.

Proposition 2.6. γqn = (E,Gn(Rq), π) is a n−vector bundle over Gn(Rq)

Proof. All we have to show is that γqn = (E,B, π) satisfies the local triviality
condition. Take a fixed n−plane X ∈ Gn(Rq) and consider the same open
neighborhood U of X used in proposition 2.5, that is, all n−planes Y such
that the projection of Y onto X is an isomorphism. Then clearly, if pX is
the orthogonal projection onto X, the map h : π−1(U) → U × X defined as
h(Y, v) = (Y, pX(v)) is a continuous map and an isomorphism on each fiber.
Furthermore, the map g : U ×X → π−1(U) given by g(Y, x) = (Y, x + TY (x))
is continuous and it is the inverse of h. Thus, h : π−1(U) → U ×X is a local
trivialization.

Now for the construction of our universal bundle. Identifying Rn as a sub-
space of Rn+1 in the canonical way for all n, we obtain the following inclusion
of Grassmann manifolds

Gn(Rn) ⊂ Gn(Rn+1) ⊂ . . . ⊂ Gn(Rq) ⊂ . . .

We define Gn(R∞) to be the union
⋃
q Gn(Rq) topologized with the weak

topology and the universal bundle γn is defined as the subspace E of Gn(R∞)×
R∞ consisting of pairs (Y, v) with v ∈ Y . By proposition 1.22, we have that
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Gn(R∞) is a paracompact space. Observe that by taking n = 1 we have that
G1(R∞) = RP∞. As we did for vector bundles on Grassmann manifolds we will
prove that γn = (E,Gn(R∞), π) is a vector bundle. The proof of this proposition
will follow from 2.6 and the following technical lemma, which is proved in [5],
page 64.

Lemma 2.7. Let A1 ⊂ A2 ⊂ . . . and B1 ⊂ B2 ⊂ . . . be sequences of locally
compact spaces with direct limits A and B respectively. Then, the Cartesian
product topology on A×B coincides with weak topology which is associated with
the sequence A1 ×B1 ⊂ A2 ×B2 ⊂ . . . .

Proposition 2.8. γn = (E,Gn(R∞), π) is a vector bundle over Gn(R∞).

Proof. Let X ∈ Gn(R∞) and consider the set U ⊂ Gn(R∞) of all n−planes in
R∞ which project onto X under the orthogonal projection p : R∞ → X. This
set U is an open neighborhood of X since in the proof of proposition 2.5 it was
shown that Uk = U ∩Gn(Rn+k) is open for all k. Define h : π−1(U)→ U ×X
as h(Y, v) = (Y, p(v)). It was shown in proposition 2.6 that the restriction of
h on each Uk is continuous and thus applying lemma 2.7 we obtain that h is
continuous. We define h−1 in a totally analogous manner as we did in 2.6 and
applying again 2.7 we can prove that h−1 is continuous. Since h is clearly an
isomorpism when restricted to fibers, we obtain that h is a local trivialization.

The reason for the vector bundle γn to be called ’universal’ follows from the
fact that any vector bundle ξ = (E,B, p) over a paracompact space B can be
mapped through a bundle map into γn. We show now how to construct such a
map. The guiding line for such a construction will be the following somewhat
technical lemma.

Lemma 2.9. Let ξ = (E,B, p) be an n−vector bundle. Then a map f : E →
R∞ which is linear and injective on each fiber of E determines a bundle map
F : E → γn through the identity F (x) = (g(p(x)), f(x)) with g : B → Gn(R∞)
defined as g(b) = f(p−1({b})). Conversely, if F : E → γn is a bundle map and
if pR∞ : Gn(R∞) × R∞ → R∞ is the projection onto R∞ then f : E → R∞
defined as f = pR∞ ◦ F is a map which maps every fiber of E injectively into
R∞.

Proof. The latter statement is trivial. Suppose then that f : E → R∞ is a map
which is linear and injective on each fiber. All that remains to be done in order
to show that F is indeed a bundle map is to prove that g : B → Gn(R∞) is
continuous. Let {Ui}i∈N be an open covering of B such that E is trivial on each
Ui. Consider for each Ui the following functions:

• The local trivialization hi : Ui × Rn → p−1(Ui).

• wi : Ui → (Ui × Rn)n with w(b) = ((b, e1), . . . , (b, en)) where e1, . . . , en is
the canonical basis for Rn.
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• Hi : (Ui×Rn)n → (E)n withHi((b1, v1), . . . , (bn, vn)) = (hi(b1, v1), . . . , hi(bn, vn)).

• Gi : (p−1(Ui))
n → (R∞)n with Gi(x1, . . . , xn) = (f(x1), . . . f(xn))

Since the local trivializations hi are isomorphisms when restricted to fibers
and since f : E → R∞ is injective, we have that Gi ◦ Hi ◦ wi(b) ∈ Vn(R∞)
for all b ∈ Ui. Thus, when restricted to each Ui, g is equal to the composition
q ◦Gi ◦Hi ◦ wi, which makes g continuous.

In the previous proof q denotes the map q : Vn(R∞)→ Gn(R∞) which maps
an n−frame of R∞ to the n−plane which it spans. The continuity of this map
follows from lemma 2.7.

Theorem 2.10. If ξ = (E,B, p) is an n−vector bundle over a paracompact
space B then there exists a bundle map F : ξ → γn.

Proof. Let {Ui}i be a countable locally finite open cover of B such that EUi is
trivial for each Ui (See proposition 1.23). Furthermore, let {Vi}i and {Wi}i be
countable locally finite open covers such that Wi ⊂ Vi and Vi ⊂ Ui for each i
(See [6], page 294). Since B is normal by proposition 1.21 there exists for each
i a continuous map λi : B → [0, 1] such that λi(Wi) = 1 and λi(V

c
i ) = 0. Let

hi : Ui × Rn → p−1(Ui) be again the local trivialization on Ui and denote by
ri : Ui × Rn → Rn the projection map onto Rn. For each i define Hi : E → Rn
as

Hi(x) = λi(p(x)) · rih−1
i (x)

for all x ∈ p−1(Ui) and Hi(x) = 0 for all x ∈ p−1(Ui)
c. Clearly each Hi is

continuous. Define finally f : E → ⊕∞i=1Rn = R∞ as f(x) = (Hi(x))∞i=1. Since
the open cover {Vi}i is locally finite we have that f is well defined. Furhtermore,
since the local trivializations hi are isomorphisms when restricted to fibers we
obtain that f maps each fiber of E injectively into R∞. Applying lemma 2.9 we
conclude that there exists a bundle map F : ξ → γn.

Implicit in the proof of the previous theorem we have the following result
which will be of great applicability in forthcoming sections

Proposition 2.11. Every n−vector bundle ξ over a paracompact space B ad-
mits a metric. In particular, any sub-bundle of a bundle over a paracompact
space has an orthogonal complement.

Proof. Let f : E(ξ)→ R∞ be the map constructed in the proof of theorem 2.10.
Let g : R∞⊕R∞ → R be the map defined as g(v, w) = v ·w, which is continuous
since it is continuous on each subset Rn ⊕ Rn and define µ : E(ξ ⊕ ξ) → R as
µ(x, y) = g(f(x), f(y)). Clearly µ is a continuous map and since f is injective
we have that µ yields an inner product on each fiber of ξ.
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In order to prove that there is a one to one correspondence between Vectn(B)
and [B,Gn(R∞)] for any paracompact space B we will prove that the map
F : ξ → γn constructed in theorem 2.10 is unique up to homotopy. Even more
so, we will prove that such a bundle map F is unique up to bundle homotopy,
i.e., if F0 : ξ → γn and F1 : ξ → γn are two bundle maps then there exists a
homotopy Ht : ξ → γn between F0 and F1 such that each Ht is also a bundle
map for all t ∈ [0, 1]. In the proof of this result we will use the following lemma.

Lemma 2.12. Scalar multiplication and addition are continuous operations in
R∞.

The proof of this result is a direct application of lemma 2.7.

Theorem 2.13. If ξ = (E,B, p) is an n−vector bundle over a paracompact
space B then any two bundle maps F0 : ξ → γn and F1 : ξ → γn are bundle
homotopic.

Proof. Let f0 : E → R∞ and f1 : E → R∞ be the maps induced respectively by
F0 and F1 as it was explained in lemma 2.9. Let us assume first that f0(x) is not
a negative multiple of f1(x) for any x ∈ E. For all t ∈ [0, 1] define ht : E → R∞
as ht(x) = (1 − t)f0(x) + tf1(x). Applying lemma 2.12 we have that ht cons-
titutes an homotopy between f0 and f1. Furthermore, by the condition that
f0(x) is not a negative scalar multiple of f1(x) we have that ht maps each
fiber of E inyectively into R∞. By lemma 2.9 the maps ht induce bundle maps
Ht : ξ → γn. Now, if {Ui}i is a countable locally finite open cover of B such that
EUi is trivial for each Ui and if g0, g1 and gt are the base space maps of F0, F1

and Ht respectively then it is not hard to verify that gt constitutes an homotopy
between g0 and g1 when restricted to each Ui and thus it is an homotopy on all
of B. Thus, the maps Ht(x) can be expressed as Ht(x) = (gt(p(x)), ht(x)) and
it follows that they constitute a bundle homotopy between F0 and F1.

To tackle the general case let d0 : R∞ → R∞ and d1 : R∞ → R∞ be the
linear maps defined as d0(ei) = e2i and d1(ei) = e2i+1 for all elements ei of the
canonical basis for R∞. If F ′0 and F ′1 are the bundle maps induced respectively
by d0f0 and d1f1 then by applying the previous case we obtain that F0

∼= F ′0,
F ′0
∼= F ′1 and F ′1

∼= F1, where all the homotopy equivalences are actually bundle
homotopy equivalences. Thus, F0 and F1 are bundle homotopic.

As a straight forward yet useful corollary of the previous result we have the
following

Corollary 2.14. Let B be a paracompact space. If f : B → Gn(R∞) and
g : B → Gn(R∞) are two maps such that f∗γn ∼= g∗γn then f ∼= g.

2.3 Classification of Vector Bundles

For all paracompact spaces B define ηB : Vectn(B) → [B,Gn(R∞)] to be the
function which sends an equivalnece class [ξ] ∈ Vectn(B) to the homotopy class
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[g] of the base space map of the bundle map (F, g) : ξ → γn constructed in
theorem 2.10. This function is well defined: Indeed, if ξ1 = (E1, B, p1) and
ξ2 = (E2, B, p2) are two n−vector bundles over B such that [ξ1] = [ξ2] then
there exists a bundle map (S, Id) : ξ1 → ξ2 such that S is an homeomorphism.
If (F1, g1) : ξ1 → γn and (F2, g2) : ξ2 → γn are the bundle maps obtained from
theorem 2.10 we have that ηB([ξ1]) = [g1] and ηB([ξ2]) = [g2]. On the other
hand, (F1 ◦ S−1, g1) : ξ2 → γn is another bundle map from ξ2 to γn and by
theorem 2.13 we have that (F2, g2) and (F1 ◦ S−1, g1) are bundle homotopic.
In particular, we obtain that [g1] = [g2]. We have reached the point where we
can prove the central result of this chapter.

Theorem 2.15. The collection of maps ηB : Vectn(B) → [B,Gn(R∞)] cons-
titutes a natural equivalence between the contravariant functors Vectn(−) and
[−, Gn(R∞)].

Proof. We have to show both that each ηB is biyective and that all of the maps
ηB are natural.

• Injectivity of ηB : Suppose that [ξ1] and [ξ2] in Vectn(B) are such that
ηB([ξ1]) = ηB([ξ2]), that is, if (F1, g1) : ξ1 → γn and (F2, g2) : ξ2 → γn
are the bundle maps obtained by theorem 2.10 then [g1] = [g2]. By
proposition 1.10 of chapter 1 we have that ξ1 is isomorphic to g∗1γn and
that ξ2 is isomorphic to g∗2γn. But by theorem 2.3 we must have that
g∗1γn

∼= g∗2γn and thus ξ1 ∼= ξ2.

• Surjectivity of ηB : Let [g] be any element in [B,Gn(R∞)] and consider
the pull-back g∗γn. Then, we clearly have that ηB([g∗γn]) = [g].

• Naturality of ηB : Let B and A be two paracompact spaces and let f : B →
A be any continuous map. We need to verify that the following diagram
commutes:

Vectn(A)
ηA //

f∗

��

[A,Gn(R∞)]

f∗

��
Vectn(B)

ηB // [B,Gn(R∞))]

Let ξ be any n−vector bundle over A. Let (F, g) : ξ → γn and (F ′, g′) :
f∗ξ → γn be the bundle maps obtained by theorem 2.10 and let (S, f) :
f∗ξ → ξ be the obvious bundle map between f∗ξ and ξ. Thus we have
that ηB([f∗ξ]) = [g′] and f∗(ηA([ξ])) = f∗([g]) = [g ◦ f ]. On the other
hand, since (F ′, g′) and (F ◦ S, g ◦ f) are bundle homotopic we have in
particular that g′ ∼= g ◦ f and thus ηB([f∗ξ]) = f∗(ηA([ξ])).

Remark 1 : It is worth noting that everything that has been done in this
chapter holds also for complex vector bundles by making the necessary modifi-
cations and we shall make use of this results throughout the rest of the project.
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In particular, we can also define the complex Grassman manifolds Gn(Cq) with
n ≤ q and Gn(C∞) and the canonical n-plane bundles γqn and γn as we did
in the real case. Furthermore, observe that by taking n = 1 we have that
G1(Cq) = CP q−1 and G1(C∞) = CP∞.

3 Characteristic Classes of Vector Bundles

3.1 Definition of Characteristic Classes

We start this chapter by defining the most central notion of this project, that
of a characteristic class of n−vector bundles.

Definition 3.1. Let R be a ring. A characteristic class c of degree q for
n−vector bundles is a natural assigment of a cohomology class c(ξ) ∈ Hq(B;R)
to an n−bundle ξ over a paracompact space B, i.e., if ξ1 = (E1, B1, p1) and
ξ2 = (E2, B2, p2) are two n−vector bundles and if (F, f) : ξ1 → ξ2 is a bundle
map then f∗(c(ξ2)) = c(ξ1).

Clearly if c is a characteristic class of degree q and if ξ1 and ξ2 are two
isomorphic n−vector bundles over a paracompact space B then c(ξ1) = c(ξ2).
Thus a characteristic class c of degree q actually determines a natural tansforma-
tion cB : Vectn(B) → Hq(B;R) between the contravariant functors Vectn(−) :
Top→ Set and H∗(−;R) : Top→ Set.

Let Λq be the set of all characteristic classes of degree q for n−vector bun-
dles. If c1 and c2 are in Λq then we define c1 + c2 as the natural transforma-
tion which assigns to an n−vector bundle ξ = (E,B, p) the cohomology class
c1(ξ) + c2(ξ) ∈ Hq(B;R). Clearly each Λq becomes an abelian group with this
operation. Furhtermore, if c1 ∈ Λq and c2 ∈ Λp, define c1 · c2 to be the na-
tural transformation which assigns to each n−vector bundle ξ = (E,B, p) the
cohomology class c1(ξ) ∪ c2(ξ) ∈ Hp+q(B;R). With this operation, we obtain
a graded ring Λ =

⊕
q Λq, the ring of characteristic classes for n−vector

bundles over paracompact spaces. Notice that this ring has an identity element:
Indeed, the assigment ξ = (B,E, p)→ 1 ∈ H0(B;R) is a characteristic class of
degree 0 and it acts as an identity in the ring of characteristic classes.

To prove that characteristic classes for n−plane bundles do indeed exist take
k ∈ Hm(Gn(F∞);R) to be any cohomology class of degree m of the infinite
Grassmann manifold Gn(F∞) (Here F stands either for the complex or real
numbers). If ξ = (E,B, p) is a n−vector bundle over a paracompact space B
then there exists a bundle map (F, g) : ξ → γn unique up to bundle homotopy.
We denote by k(ξ) the cohomology class g∗(k) ∈ Hm(B;R). Note that the
definition of k(ξ) does not depend on the bundle map (F, g) : ξ → γn. The
existence of characteristic classes will then follow from the following lemma.

Lemma 3.2. The assigment ξ = (E,B, p)→ k(ξ)) is natural for any cohomo-
logy class k ∈ Hm(Gn(F∞);R).
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Proof. Let ξ1 = (E1, B1, p1) and ξ2 = (E1, B1, p1) be two n−vector bundles and
let (F, g) : ξ1 → ξ2 be a bundle map. Let furthermore (F1, g1) : ξ1 → γn and
(F2, g2) : ξ2 → γn be bundle maps whose existence is guaranteed by theorem
2.10. Since (F1, g1) and (F2F, g2g) are bundle homotopic we have in particular
that g1

∼= g2g and thus g∗1 = g∗g∗2 which imples that g∗(k(ξ2)) = k(ξ1).

From this lemma we thus have that the assigment ξ → k(ξ) is a characteristic
class which we shall denote simply by k. But we can prove an even stronger
result.

Theorem 3.3. The map Γ : H∗(Gn(F∞);R)→ Λ defined as Γ(k) = k is a ring
isomorphism.

Proof. Clearly two different cohomology classes of Gn(F∞) will determine diffe-
rent characteristic classes and hence the map Γ is injective. To prove surjectivity
let c be some characteristic class of n−plane bundles and set k = c(γn). Let
ξ = (E,B, p) be an arbitrary n−plane bundle and let (F, g) : ξ → γn be some
bundle map. Then, by the naturality of c, we must have that c(ξ) = g∗(c(γn)) =
g∗(k) = k(ξ) and thus c = k.

The previous theorem implies that the behaviour of all characteristic classes
for n−plane bundles is determined by the ring H∗(Gn(F∞);R). It is then na-
tural to ask if the cohomology rings H∗(Gn(F∞);R) have an explicit form. In
the last chapter of this project we will show that this can be done for real vector
bundles in the case when the ring of coeffcients is R = Z2 and for complex vector
bundles when R = Z. It will be proven in the last chapter that the ring of cha-
racteristic classes for real n−vector bundles is equal to Z2[ω1, . . . , ωn] where the
characteristic classes ω1, . . . , ωn are called the Stiefel-Whitney classes, which
will be the main focus of the rest of this chapter. Parallel to the real case, it
will be proven also in the last chapter that when working with Z the ring of cha-
racteristic classes for complex n−vector bundles is equal to Z[c1, . . . , cn] where
the classes ci are the Chern classes, which will be treated in absolute detail
in the last chapter. But until then, we shall just focus on the real case and from
now on all vector bundles are assumed to be real unless otherwise stated.

3.2 Stiefel-Whitney Classes

It is the aim of this section to introduce the most important characteristic
classes for real vector bundles when working with the ring Z2: Stiefel-Whitney
classes. As it was hinted at the end of the previous section, such classes are the
building blocks for all charactreisitic classes when dealing with Z2. In particular,
one of the main objectives of this project will be to prove the following.

Theorem 3.4. For real n−plane bundles ξ over base spaces B, n ≥ 0, there are
characteristic classes ωi(ξ) ∈ Hi(B;Z2), called the Stiefel-Whitney classes.
They satisfy and are uniquely determined by the following axioms:
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1. ω0(ξ) = 1 and ωi(ξ) = 0 if i > dimξ.

2. ωi(ξ ⊕ δ) =
∑i
j=0 ωj(ξ) ∪ ωi−j(δ).

3. ω1(γ1) 6= 0 for the universal line bundle defined on RP∞.

Furthermore, every mod 2 characteristic class for n−plane bundles can be
written uniquely as a polynomial in the Stiefel-Whitney classes {ω1, . . . , ωn}.

This theorem will be proven in the last chapter together with its complex
counterpart. It is one of the features of this project to show that both Stiefel-
Whitney and Chern classes have a common origin and that they can be treated
simultaneously. Nevertheless, in this chapter and the next we discuss an alterna-
tive way of defining of Stiefel-Whitney classes relying on the Steenrod squaring
operations and the Thom isomorphism. We close this section by proving the
following trivial consequences of 3.4.

Corollary 3.5. 1. If ε is a trivial m−vector bundle over a space B then ωi(ε) =
0 for all i > 0.
2. If η is a n−vector bundle over a space B then ωi(η ⊕ ε) = ωi(η) for all i.

Proof. 1. This is poved by just considering a bundle mab (F, g) : ε → L where
L is just an m−bundle over a point.
2. Just apply the previous result and axiom 2 of the Stiefel-Whitney classes.

3.3 Definition of The Stiefel-Whitney Classes

In this section we describe one way of proving the existence of the Stiefel-
Whitney classes.

Let ξ = (E,B, π) be an n−vector bundle. If F is a fiber of ξ let us denote by
F0 the set of all non-zero elements of the fiber and similarly, let us denote by E0

the set of all non-zero elements of the total space E. Since for all b ∈ B we have
that the pair (π−1(b), π−1

0 (b)) is homotopy equivalent to the pair (Rn,Rn − 0)
we obtain for all non-negative integers i that

Hi(π−1(b), π−1
0 (b);Z2) =

{
0 if i 6= n

Z2 if i = n

Less trivially however is the following:

Hi(E,E0;Z2) =

{
0 if i < n

Hi−n(B;Z2) if i ≥ n.

This will follow from the following theorem, proved in the chapter 5, and
which is one of the main tools when proving the existence of Stiefel Whitney
Classes.
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Theorem 3.6. The group Hi(E,E0;Z2) is zero for i < n, and Hn(E,E0;Z2)
contains a unique class u such that for each fiber F = π−1(b) the restriction

u |(F, F0) ∈ Hn(F, F0;Z2)

is the unique non-zero class in Hn(F, F0;Z2). Furthermore, the correspondence
x → x ∪ u defines an isomorphism · ∪ u : Hk(E;Z2) → Hk+n(E,E0;Z2) for
every k.

The cohomology class u ∈ Hi(E,E0;Z2) is called the fundamental cohomo-
logy class of ξ.

Observe also that the the total space E deformation retracts onto the zero
section of the bundle ξ which in turn is homeomorphic to B(ξ) making the
projection map π an homotopy equivalence and thus yielding that Hk(E;Z2) ∼=
Hk(B;Z2) for all k. With this remark and the previous unproved theorem we
obtain the following

Definition 3.7. The Thom Isomorphism is defined to be the following com-
position

Hk(B;Z2)
π∗ // Hk(E;Z2)

∪u // Hk+n(E,E0;Z2)

The final ingredient that we will need to prove the existence of the Stiefel
Whitney classes are the so-called Steenrod squaring operations inH∗(E,E0;Z2).
The proof of the existence of such maps lies beyond the scope of this project
and we shall content ourselves by stating the properties that determine such op-
erations and subsequently make use of them. The Steenrod squaring operations
are characterized by the follwing four basic properties:

1. For each pair Y ⊂ X and each pair of integers n, i there exists an additive
homomorphism

Sqi : Hn(X,Y ;Z2)→ Hn+i(X,Y ;Z2)

2. Naturality : If f : (X,Y )→ (X ′, Y ′) is map of pairs then

Sqi ◦ f∗ = f∗ ◦ Sqi

3. If a ∈ Hn(X,Y ;Z2), then Sq0(a) = a, Sqn(a) = a ∪ a, and Sqi(a) = 0 for
i > n.

4. The Cartan Formula: The identity

Sqk(a ∪ b) =
∑
i+j=k

Sqi(a) ∪ Sqj(b)

is valid whenever a ∪ b is defined.

With all these tools at hand, we define for a vector bundle ξ over a base
space B the Stiefel-Whitney class of degree k of ξ to be the cohomology
class of B given by:
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ωk(ξ) = φ−1(Sqk(u))

where u is the fundamental cohomology class of ξ.

Before working any further with the Stiefel-Whitney classes it is useful to
introduce the following terminology, Throughout the rest of this chapter it is
understood that we are working with the ring Z2.

Definition 3.8. Let B be some topological space. H
∏

(B) will denote the set
of all formal series a = a0 + a1 + a2 + . . . where ai ∈ Hi(B). This set can be
made into a ring with the degree-wise addition and the product defined as

(a0 + a1 + a2 + . . .)(b0 + b1 + b2 + . . .) =
(a0b0) + (a1b0 + a0b1) + (a2b0 + a1b1 + a0b2) + . . .

Since we are working with Z2 this ring is commutative.

The total Stiefel-Whitney class of an n−plane bundle η over B is the element

ω(η) = 1 + ω1(η) + . . .+ ωn(η)

With this terminology, the Whitney sum formula can now be simplified as
ω(η ⊕ δ) = ω(η)ω(δ).

An important property of the ring H
∏

(B) is summarized in the following
proposition, whose proof can be found in [MS], page 40.

Proposition 3.9. The set A of all infinite series a = 1+a1 +a2 + . . . ∈ H
∏

(B)
with leading term 1 is a commutative group under multiplication.

From now on, the inverse of an element a ∈ A will be denoted by a. All this
considerations allows us to state and prove the following proposition.

Proposition (Whitney duality theorem) 3.10. If τM is the tangent bundle
of a smooth manifold in Euclidean space and υ is the normal bundle then

ω(υ) = ω(τM )

Proof. Since ω(τM ⊕ υ) = 1 by the Whitney sum formula and by 3.9 we have
that ω(υ) = ω(τM )
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3.4 Verification of the Axioms

For the verification of the axioms for the Stiefel-Whitney classes it will be con-
venient to consider the total Steenrod squaring operation given by

Sq(a) = a+ Sq1(a) + Sq2(a) + . . .+ Sqn(a)

for some cohomology class a ∈ Hn(X,Y ;Z2). With this terminology, the
Cartan formula is simplified as Sq(a ∪ b) = Sq(a) ∪ Sq(b) and the total Stiefel-
Whitney class of a vector bundle ξ can be expressed simply as ω(ξ) = φ−1(Sq(u)),
where we are viewing the Thom isomorphism as an isomorphism between the
abelian groups H

∏
(B;Z2) and H

∏
(E,E0;Z2).

Using this new terminology we prove the following lemma which will be used
in the verification of the Whitney sum formula.

Lemma 3.11. If a ∈ Hn(A,A′;Z2) and b ∈ Hn(B,B′;Z2) then Sq(a × b) =
Sq(a)× Sq(b)

Proof. Let p1 : (A × B,A′ × B) → (A,A′) and p2 : (A × B,A× B′) → (B,B′)
be the usual projection maps. We have the following:

Sq(a× b) = Sq(p∗1(a) ∪ p∗2(b)) = Sq(p∗1(a)) ∪ Sq(p∗2(b)) =
p∗1(Sq(a)) ∪ p∗2(Sq(b)) = Sq(a)× Sq(b)

Now we set out to verify the axioms which will characterize uniquely the
Stiefel-Whitney classes.

Naturality : Let ξ and ξ′ be two n-vector bundles and let (G, f) : ξ → ξ′

be a bundle map. Clearly this map will induce a map G : (E,E0) → (E′, E′0)
and the fundamental cohomology class u′ ∈ Hn(E′, E′0;Z2) will be mapped to
a cohomology class G∗(u′) ∈ Hn(E,E0;Z2). But since for each fiber F of ξ we
have that G : (F, F0) → (G(F ), G(F )0) is an homotopy equivalence we must
have that G∗(u′) is the fundamental cohomology class u of ξ. This together with
the fact that cup products are maintained by maps we obtain commutativity in
the following diagram:

Hn+k(E′, E′0)
G∗ //

OO

·∪u′

��

Hn+k(E,E0)
OO

·∪u
��

Hn(E′)
G∗ //

OO

π∗

��

Hn(E)
OO

π∗

��
Hn(B′)

f∗ // Hn(B)

23



The commutativity of this diagram gives us now that f∗(ωk(ξ′)) = ωk(ξ).

Axiom 1. Given an n-bundle ξ the pre-image of the fundamental class u ∈
Hn(E,E0;Z2) under the isomorphism

· ∪ u : H0(E;Z2)→ Hn(E,E0;Z2)

is the the unit element of the cohomology ringH∗(E;Z2) and thus we obtain that
ω0(ξ) = φ−1(u) = 1. Furthermore, if m > n then by property 3 of the Steenrod
squaring operations we obtain Sqm(u) = 0 which implies that ωm(ξ) = 0.

Axiom 2 : Stiefel Whitney classes of Whitney sums: Let ξ = (E,B, p) and
ξ′ = (E′, B, p′) be two vector bundles defined on B of dimension n and m
respectively, and let u and u′ be their corresponding fundamental cohomology
classes. In order to verify this axiom we start off by proving that

ω(ξ × ξ′) = ω(ξ)× ω(ξ′)

Let us then denote by ξ′′ the vector bundle ξ × ξ′, whose total space is
E′′ = E × E′. Observe first that E′′0 = E × E′0 ∪ E0 × E′ and thus the relative
cross product u × u′ is an element of Hn+m(E′′, E′′0 ). We wish to show that
u×u′ is indeed the fundamental cohomology class u′′ of ξ′′. In order to do this,
it just suffices to verify that the restriction of u × u′ to each fiber F ′′ of ξ′′ is
the non-zero element of Hn+m(F ′′, F ′′0 ). So let F and F ′ be any two fibers of
ξ and ξ′ respectively, let F ′′ = F × F ′ and consider the following commutative
diagram

Hn+m(E × E′, E0 × E′ ∪ E × E′0) // Hn+m(F × F ′, F0 × F ′ ∪ F × F ′0)

Hn(E,E0)⊗Hm(E′, E′0) //

OO

Hn(F, F0)⊗Hm(F ′, F ′0)

OO

where the vertical maps are the ones induced by the relative cross product
operation and the horizontal maps are restrictions. Since the right vertical map
is an isomorphism by the relative version of the Kunneth theorem we have that
u(F,F0)×u′(F ′,F ′0) is mapped to the generator of Hn+m(F ×F ′, F0×F ′∪F ×F ′0)

and by the commutativuty of the previous diagram we have that the restriction
of u × u′ to the fiber F is the generator of Hn+m(F × F ′, F0 × F ′ ∪ F × F ′0).
Since the fundamental cohomology class of ξ′′ is unique we can conclude that
u′′ = u× u′.

Our second step is to show that the Thom ismomorphisms φ, φ′ and φ′′ of ξ,
ξ′ and ξ′′ are related via the formula φ′′(a× b) = φ(a)×φ′(b). Indeed, if for any
spaces C ⊂ A and D we denote by pA : A×D → A p(A,C) : (A×D,C ×D)→
(A,C) the usual projections then using the identity u′′ = u× u′′ we have that
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φ′′(a× b) = (a× b) ∪ (u× u′) = (π × π′)∗(a× b) ∪ (u× u′)
= (π∗(a)× π′∗(b)) ∪ (u× u′)
= (p∗E(π∗(a)) ∪ p∗E′(π′∗(b))) ∪ (p∗(E,E0)(u) ∪ p∗(E′,E′0)(u

′))

= (p∗E(π∗(a)) ∪ p∗(E,E0)(u)) ∪ (p∗E′(π
′∗(b)) ∪ p∗(E′,E′0)(u

′))

= p∗(E,E0)(π
∗(a) ∪ u) ∪ p∗(E′,E′0)(π

′∗(b) ∪ u′)

= φ(a)× φ′(b)
(1)

where the above equality holds for elements a ∈ H
∏

(B;Z2) and b ∈ H
∏

(B′;Z2).
Then, taking the total Stifel Whitney classes ω(ξ) and ω(ξ′) we obtain φ′′(ω(ξ)×
ω(ξ′)) = φ(ω(ξ)) × φ′(ω(ξ′)) = Sq(u) × Sq(u′). On the other hand, by the de-
finition of the Stiefel-Whitney classes we also have φ′′(ω(ξ × ξ′′)) = Sq(u′′) =
Sq(u × u′) = Sq(u) × Sq(u′), where the last equality holds by lemma 3.11.
Since the map φ′′ is inyective we must have that ω(ξ × ξ′) = ω(ξ)× ω(ξ′).

Taking now ξ and δ to be two vector bundles over a base space B, consider
their Whitney sum ξ ⊕ δ, the vector bundle ξ × δ on B × B and the diagonal
map d : B → B × B. Then, by naturality of the Stiefel-Whitney classes we
obtain that d∗(ω(ξ) × ω(δ))) = ω(ξ ⊕ δ). On the other hand, since pid = IdB
where pi : B × B → B is the projection onto the i − th component we obtain
that d∗(ω(ξ)× ω(δ))) = ω(ξ)ω(δ) and thus

ω(ξ ⊕ δ) = ω(ξ)ω(δ)

Axiom 3. Let γ1
1 = (E,S1, p) be the canonical line bundle on S1 and consider

the cohomology group H1(E,E0;Z2). It is not hard to see that the subspace E1

of E conformed by all vectors of norm ≤ 1 is homeomorphic to the Möbious band
M and that E0 deformation retracts to the boundary circle of M (See [5], page
17). Furthermore, by an excision argument we have that H1(M,∂M ;Z2) ∼=
H1(RP 2, O;Z2) where O is a subspace homeomorphic to D2 and since O is
contractible, we also have the isomorphism H1(RP 2, O;Z2) ∼= H1(RP 2;Z2). All
the previous arguments yield thus the following chain of natural isomorphisms

H1(E,E0;Z2) ∼= H1(M,∂M ;Z2) ∼= H1(RP 2, O;Z2) ∼= H1(RP 2;Z2)

Denote by f : H1(E,E0;Z2) → H1(RP 2;Z2) the previously obtained iso-
morphism. Since the fundamental cohomology class u of γ1

1 cannot be zero we
must have that f−1(a) = u where a is the generator of H1(RP 2;Z2). Then,
since a ∪ a is non zero (since it is the generator of H2(RP 2;Z2)) we must have
then that u ∪ u 6= 0 which implies that ω1(γ1

1) 6= 0.

Consider now the usual inclusion map i : S1 → RP∞. Since we have that
i∗γ1

∼= γ1
1 it follows that i∗(ω(γ1)) = ω(γ1

1), and the fact that ω1(γ1
1) 6= 0 implies

that ω(γ1) is the non-zero element of H1(RP∞).
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3.5 Examples of Computations

Now we turn our focus to actually computing Stiefel- Whitney classes for some
particular vector bundles.

Example 3.12. Consider the unit sphere Sn in the Euclidean space Rn+1.
Since in this case we have that the normal bundle on Sn is trivial it follows by
the Whitney duality theorem that ω(τSn) = 1.

This example wasn’t at all that interesting. Nevertheless, if we take the real
projective spaces things start to shape up. For this examples, we shall need the
following result.

Lemma 3.13. The group Hi(RPn) is isomorphic to Z2 for 0 ≤ i ≤ nand is
zero for higher values of i. Furthermore, if a denotes the non-zero element of
H1(RPn) then each Hi(RPn) is generated by the i−th fold cup product ai.

A proof of this result is usually given in any introductory text of algebraic
topology.

Example 3.14. Taking the real projective space RPn we have that the canon-
ical inclusion map j : S1 → RPn is such that j∗γn1 = γ1

1 . Since we have already
that ω(γ1

1) = 1 + a then clearly we must have ω1(γn1 ) = a. This together with
the first axiom of Stiefel-Whitney classes imply that ω(γn1 ) = 1 + a.

Example 3.15. Taking again the real projective space RPn we have that the
canonical line bundle γn1 is a subbundle of the trivial bundle εn+1 defined over
RPn. Thus, denoting γn1 temporarily as γ we obtain that

ω(γ)ω(γ⊥) = 1

which implies that ω(γ⊥) = 1 + a+ . . .+ an since taking the product of this
element with 1 + a gives us the identity element in H0(RPn).

Now we proceed to tackle a less trivial example.

Example 3.16. Let τ denote the tangent bundle of the real projective space
RPn. We begin proving the following lemma (Compare with [5])

Lemma 3.17. The tangent bundle τ of RPn is isomorphic to Hom(γn1 , γ
⊥).

Proof. Consider the canonical quotient map q : Sn → RPn and the induced
map Dq : τSn → τ between the corresponding tangent bundles. Then, it is
not hard to verify that Dq is a 2 to 1 map where the points (x, v), (−x,−v) of
τSn are sent to the same point in τ and thus τ can be identified as the set of
points {(x, v), (−x,−v)} with x · x = 1 and x · v = 0. Consider now the map
f : τ → Hom(γn1 , γ

⊥) defined as f({(x, v), (−x,−v)}) = ({x,−x} , α(x,v)) with

α(x,v) : F{x,−x} → (F{x,−x})
⊥ given by α(x,v)(x) = v. This map is continuous

and clearly it is an isomorphism when restricted to fibers. Thus, by lemma 1.4
we have that f is a bundle isomorphism.

The following proposition will give us the Stiefel-Whitney classes of τ .

26



Proposition 3.18. The Whitney sum τ⊕ε1, where ε1 is the trivial line bundle,
is isomorphic to the (n+ 1)−fold Whitney sum γn1 ⊕ . . .⊕ γn1 . Hence,

ω(τ) = (1 + a)n+1 = 1 +
(
n+1

1

)
a+

(
n+1

2

)
a2 + . . .+

(
n+1
n

)
an

Proof. The line bundle Hom(γn1 , γ
n
1 ) over RPn has a nowhere zero section,

namely s : RPn → E(Hom(γn1 , γ
n
1 )) given by s({x,−x}) = α{x,−x} where

α{x,−x} is defined as α{x,−x}(x) = x, and thus Hom(γn1 , γ
n
1 ) is isomorphic to

the trivial line bundle ε1. Thus we have the following

τ ⊕ ε1 ∼= Hom(γn1 , γ
⊥)⊕Hom(γn1 , γ

n
1 )

∼= Hom(γn1 , γ
⊥ ⊕ γn1 )

∼= Hom(γn1 , ε
n+1)

∼= Hom(γn1 , ε
1)⊕ . . .⊕Hom(γn1 , ε

1)

(2)

Observe now that since γn1 has a riemannian metric, the function γn1 →
Hom(γn1 , ε

1) defined as v →< ·, v > defines a bundle isomorphism and thus we
obtain that τ ⊕ ε1 is isomorphic to the (n+ 1)−fold Whitney sum γn1 ⊕ . . .⊕γn1 .

3.6 Stiefel-Whitney Numbers

Stiefel-Whitney classes have an extensive application to give insight about prob-
lems in differential geometry as it can be consulted in texts such as [5] and [2].
Since the main topic of this project is to give a description of characteristic
classes as it was explained in the first section of this chapter, we shall only limit
ourselves to give one such application, namely, that the Stiefel-whitney classes
of tangent bundles of smooth manifolds can be used to determine whether or
not two smooth manifolds of the same dimension are cobordant, that is, if their
disjoint union constitutes the boundary of a manifold one dimension higher.
Namely, we have the following

Theorem 3.19. Two smooth closed n-manifolds are cobordant if and only if
their corresponding Stiefel-Whitney numbers are equal.

In this section we shall make sense of this theorem and give a partial proof for
it. Let M be a closed (compact and with no boundary) smooth n- dimensional
manifold. By means of excicion arguments we have for any point of x ∈M that

Hi(M,M − {x}) =

{
0 if i 6= n

Z2 if i = n

The generator µx of the homology group Hn(M,M − {x}) is called the
Z2−orientation of M at x. For such manifolds we have the following

27



Proposition 3.20. For a closed n dimensional smooth manifold M there exists
a homology class µM ∈ Hn(M) such that (ix)∗(µM ) = µx for all x ∈ M where
the map ix : (M,�)→ (M,M − x) is the usual inclusion map.

The homology class µM is defined as the fundamental homology class of
M. In a similar fashion, consider a compact n dimensional smooth manifold M
with boundary ∂M and let Rn≥0 be the subset of Rn with xn ≥ 0. In a similar
fashion we define Rn>0. For every point x in ∂M there is an open neighborhood
Vx and a smooth map f : Rn≥0 → Vx such that f(∂Rn≥0) = Vx

⋂
∂M and

f(0) = x. Thus, for every point x in ∂M we have that Hn(Vx, Vx − x) ∼=
Hn(Rn≥0,Rn≥0 − 0) = 0. For such manifolds we have the following analogous
version of 3.20.

Proposition 3.21. 1. If M is a compact manifold with boundary ∂M then there
is a unique fundamental homology class of M µM ∈ Hn(M,∂M) such that
for all x ∈ M − ∂M we have that (ix)∗(µM ) = µx where ix : (M,∂M) →
(M,M − x) is the usual inclusion map.

2. If ∂ denotes the connecting homophormisms for the long exact sequence
of the pair (M,∂M ) then we have that ∂(µM ) = µ∂M .

The proofs of the previous two results shall be ommited and can be found
in [1], page 253, and [8], page 304.

Let M be any closed smooth n dimensional manifold and consider the
tangent bundle τM . If r1, . . . , rn are non-negative integers such that r1 +
2r2 + . . . + nrn = n then the cohomology class ω1(τM )r1 . . . ωn(τM )rn is an
element in Hn(M) and thus we can evaluate the fundamnetal class µM on
ω1(τM )r1 . . . ωn(τM )rn to obtain < ω1(τM )r1 . . . ωn(τM )rn , µM > which is an
element in Z2. This yield us the following definition

Definition 3.22. The Stiefel-Whitney number ofM associated to the n−tuple
(r1, . . . , rn) is the element < ω1(τM )r1 . . . ωn(τM )rn , µM >.

We say that two closed n−dimensional manifolds M and M ′ have the same
Stiefel-Whitney numbers when for all n−tuples (r1, . . . , rn) of non-negative in-
tegers satisfying r1 + 2r2 + . . .+ nrn = n we have that

< ω1(τM )r1 . . . ωn(τM )rn , µM >=< ω1(τ ′M )r1 . . . ωn(τ ′M )rn , µ′M >

The following result and its proof represent the core of this section

Theorem 3.23. Let B be a smooth n dimensional manifold with boundary M .
Then, all the Stiefel-Whitney numbers of M are zero.

Proof. By proposition 3.21 we have that the connencting homomorphism ∂ of
the long extact sequence of homology groups of the pair (B,M) satisfies ∂(µB) =
µM . Thus, for any cohomology class v ∈ Hn(M) we have the following equalities
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< v, µM >=< v, ∂µB >=< δv, µB >

where δ is the connecting homomorphism δ : Hn(M) → Hn+1(B,M). The
second equality holds because of the following commutative diagram

Hn(M)
δ //

h

��

Hn+1(B,M)

h

��
HomZ2

(Hn(M);Z2)
∂∗ // HomZ2

(Hn+1(B,M);Z2)

where h is just the map that maps a cohomology class a ∈ Hn(X,A) to
the element in HomZ2

(Hn(X,A);Z2) defined v →< a, v > for all v ∈ Hn(X,A)
(See [1], page 200).

Using the Collar Neighborhood theorem (See [1], page 253) it can be proven
that the tangent bundles τM and τB satisfy the following relation on M

(τB)M ∼= τM ⊕ ε1
where ε1 is the trivial line bundle on M . Thus the inclusion map i : M → B

satisfies

i∗ω(τB) = ω(τM )ω(ε1) = ω(τM )

Taking any n−tuple (r1, . . . , rn) of non-negative integers satisfying r1+2r2+
. . .+ nrn = n we have by the previous equality

< ω1(τM )r1 . . . ωn(τM )rn , µM > =

< i∗(ω1(τB)r1 . . . ωn(τB)rn), ∂µB > =

< δi∗(ω1(τB)r1 . . . ωn(τB)rn), µB > = 0

(3)

where in the last equality we applied the exactness of the long exact sequence
of the pair (B,M). This concludes the proof.

The converse of this result is a classic application of algebraic topology in
geometry and its proof falls out a little bit beyond the scope of this project

Theorem(René Thom) 3.24. Let M be a closed smooth n−dimensional ma-
nifold. If all the Stiefel-Whitney numbers of M are zero then M = ∂B where B
is a smooth (n+ 1)-dimensional manifold.

Let M1 and M2 be two closed n−dimensional smooth manifolds. We say that
M1 and M2 are cobordant if there exists a smooth manifold B one dimension
higher such that M1

∐
M2 = ∂B. The following is now an immediate corollary

of all the previous results
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Theorem 3.25. Two closed n-dimensional smooth manifolds M1 and M2 are
cobordant if and only if all of their Stiefel-Whitney numbers are equal.

4 Oriented Bundles, the Thom Isomorphism and
the Euler Class

4.1 The Euler Class

In this chapter we introduce the class of oriented vector bundles and discuss
their most relevant characteristic class: The Euler class. The main theoreti-
cal ingredient to prove the existence of the Euler class will be Thom Ismorphism,
which in the non-oriented case will yield us the existence of the Stiefel-Whitney
classes. In the big scheme of this project, the relevance of this chapter lies on
the fact that we will give a description of the cohomology ring H∗(CP∞;Z)
in terms of characteristic classes. Such a description will be of great impor-
tance for the next chapter when we begin to construct the Chern classes. In
this chapter, all vector bundles are assumed to be real unless otherwise specified.

Before defining oriented vector bundles properly we must first give a definiton
of orientability for finite dimensional vector spaces in terms of (co)homology.
Through out the rest of this chapter, for any vector bundle ξ and for any vector
space V we denote respectively by E0 and V0 the total space E minus the zero
section and the space V minus the origin. Also, in this chapter we shall always
assume that we are working with the ring R = Z unless otherwise specified.

Definition 4.1. Let V be a real vector space of dimension n. An orientation
for V is an equivalence of ordered bases, where two bases are said to be equivalent
if and only if their transition matrix has positive determinant.

We would like however to translate this definiton of orientation to the context
of algebraic topology. Thus we prove the following

Lemma 4.2. A choice of orientation of Rn corresponds to a choice of one of
the generators of the group Hn(Rn,Rn0 ).

Proof. Consider the canonical basis (e1, . . . , en) for Rn and let σ1 : Rn →
Rn be the map which translates the barycenter of the standard n−simplex
∆n = (0, e1, . . . , en) to the origin. Then the map σ1 is a singular n−simplex
which represents an element in Zn(Rn,Rn0 ) since the boundary of σ1 would lie
in Rn0 . Furthermore, observe that since (Rn,Rn0 ) is homotopy equivalent to
(σ1(∆n), ∂σ1(∆n)) and since σ1(∆n) has a simplicial structure with only one
n−simplex, namely itself, then we can conclude that the homology class of σ1

generates Hn(Rn,Rn0 ). Take now the ordered basis (e1, . . . ,−en) of Rn. De-
fining σ2 analogously as we did in the previous step we obtain that the singular
n−simplex σ2 also generates Hn(Rn,Rn0 ). Consider finally the linear transfor-
mation T : Rn → Rn which leaves e1, . . . , en−1 fixed and sends en to −en. Then
the map σ2Tσ

−1
1 maps the homology class [σ1] to [σ2]. Since the map induced
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on Hn(Rn,Rn0 ) by σ2Tσ
−1
1 is multiplication by −1 (See [1], page 155, exercise

7) we obtain that [σ1] and [σ2] are additive inverses to each other.

As a corollary we obtain the following

Lemma 4.3. A choice of orientation of V corresponds to a choice of one of the
generators of the group Hn(V, V0).

Observe that by the Universal Coefficient theorem (See [1], page 195) we
have that Hn(V, V0) ∼= HomZ(Hn(V, V0),Z) and thus a preferred generator µV
of Hn(V, V0) will induce an orientation λV in terms of cohomology, namely, the
element λV ∈ Hn(V, V0) such that < λV , µV >= 1. Conversely, a preferred
generator in cohomology will induce a preferred generator in homology. From
now on, when we talk about the orientation of a particular space V we mean a
preferred generator of Hn(V, V0). Also, from now on the preferred orientation
we consider for Rn is the generator for Hn(Rn,Rn0 ) induced by the canonical
basis (e1, . . . , en).

Definition 4.4. Let ξ = (E,B, p) be an n−vector bundle. An orientation for
ξ is a function which assigns an orientation to each fiber F of ξ subject to the
following local compatability condition: For every point b0 ∈ B there should
exist an open neighborhood U of b0 and a local trivialization h : U×Rn → p−1(U)
such that for each b ∈ U the map h|b×Rn is orientation preserving considering
the orientation for Rn specified above.

From now on, an oriented n− vector bundle will mean an n−vector bun-
dle with an orientation. Observe that an equivalent way of stating the local
compatability condition is that there exists sections s1, . . . , sn : U → E such
that s1(b), . . . , sn(b) determines the specified orientation in Fb for all b ∈ B.

An immediate yet useful consequence of the previous definition is the fo-
llowing.

Lemma 4.5. Any trivial n−vector bundle ε = (E,B, p) is orientable.

Observe that the local compatability condition given in the previous defini-
tion implies the following lemma.

Lemma 4.6. Let ξ = (E,B, p) be an oriented n−vector bundle. Then, for
each b ∈ B there exists an open neighborhood U of b for which there exists
u ∈ Hn(p−1(U), p−1

0 (U)) such that for each fiber F in p−1(U) the restriction
uF ∈ Hn(F, F0) of u in F is the orientation of F .

Proof. Let b0 ∈ B and let U be an open neighborhood of b0 for which the local
compatibility condition is satisfied. Let b be any point in U , let F be the fiber
over b and consider now the following commutative diagram
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Hn(Rn,Rn0 )
π∗//

Id∗

��

Hn(U × Rn, U × Rn0 )
(h−1)∗ //

i∗

��

Hn(p−1(U), p−1
0 (U))

i∗

��
Hn(Rn,Rn0 )

π∗ // Hn(b× Rn, b× Rn0 )
(h−1
F )∗ // Hn(F, F0)

where π : U × Rn → Rn is the projection onto the second component.
Then if u′ is the preferred generator for Hn(Rn,Rn0 ), the cohomology class
u = (h−1)∗π∗(u′) satisfies the required condition.

The importance of the Thom Isomorphism Theorem, to be proven in the
next section, is that such a cohomology class exists globally for the whole vector
bundle. Namely we have the following theorem.

Theorem 4.7. Let ξ = (E,B, p) be an oriented n−vector bundle. Then the
cohomology group Hn(E,E0) is zero for i < n and Hn(E,E0) contains a unique
class u such that the restriction

u(F,F0) ∈ Hn(F, F0)

of u is equal to the preferred generator uF for any fiber F of ξ. Futhermore,
the correspondence y → y ∪ u maps Hk(E) isomorphically onto Hk+n(E,E0)
for every integer k.

Assuming this result, we introduce the Euler class for an oriented bundle.
Let i∗ : H∗(E,E0;Z) → H∗(E;Z) be the map in cohomology induced by i :
E → (E,E0).

Definition 4.8. The Euler class of an oriented n−vector bundle ξ = (E,B, p)
is the cohomology class e(ξ) = p∗i∗(u) ∈ Hn(B;Z).

We state now some basic properties of the Euler class.

Proposition 4.9. If f : B → B′ is covered by an orientation preserving bundle
map ξ → ξ′, then e(ξ) = f∗e(ξ′).

The proof of this result follows from the fact that the fundamental coho-
mology class of ξ′ is mapped to the fundamental cohomology class of ξ. In
particular, by this proposition we have that the Euler class of any trivial bundle
is zero.

Proposition 4.10. If the orientation of ξ is reversed, then the Euler class e(ξ)
changes sign.

This last proposition follows from the fact that a change of orientation on ξ
implies that the fundamental cohomology class is then −u.

Proposition 4.11. If η is an n−vector bundle with n odd then e(η)+e(η) = 0.
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Proof. For any vector bundle the map defined as f : (b, v) → (b,−v) is a bun-
dle isomorphism. If n is odd then this map reverses the orietation and thus
f∗(e(η)) = −e(η). On the other hand, since the base space map is the identity,
we must have that e(η) = −e(η).

The following proposition establishes a relationship between the Euler class
and the Stiefel-Whitney classes.

Proposition 4.12. The natural homomorphism Γ : Hn(B;Z) → Hn(B;Z2)
sends the Euler class to the top Stiefel-Whitney class.

Proof. Since clearly u∪u = i∗u∪u, where i : E → (E,E0) is the usual inclusion
map, then by the definition of the Thom isomorphism we obtain that

φ−1(u ∪ u) = e(ξ)

Since also the natural homomorphism Hn(E,E0;Z)→ Hn(E,E0;Z2) maps
the fundamental cohomology class u to the corresponding fundamental coho-
mology class u in the non-oirented case, applying Γ to both sides of the last
equality we obtain that

Γ(e(ξ)) = φ−1(Sqn(u)) = ωn(ξ)

The Euler class satisfies almost the same multiplicative propeties as the
Stiefel-Whitney Classes. In particular, we have the following proposition whose
proof can be found in [5].

Proposition 4.13. The Euler class of a Whitney sum is given by e(ξ ⊕ ξ′) =
e(ξ) ∪ e(ξ′). Also, the Euler class of a cartesian product is given by e(ξ × ξ′) =
e(ξ)× e(ξ′).

We finish this chapter with the following proposition

Proposition 4.14. If the oriented vector bundle ξ posseses a nowhere zero cross
section s, then the Euler class must be zero.

Proof. Since ξ is defined over paracompact space B then by 2.11 we have that
ξ has an Euclidean metric. Let then ε be the trivial line bundle spanned by
the cross-section s. Then e(ξ) = e(ε) ∪ e(ε⊥). Since e(ε) = 0 we conclude our
proof.
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4.2 The Thom Isomorphism

In this chapter we finally prove the Thom isomorphism theorem and establish
the existence of the Stiefel Whitney classes and the Euler class. We shall prove
only the oriented version of this theorem since the unoriented case is completely
analogous.

Theorem (Thom Isomorphism) 4.15. Let ξ = (E,B, p) be an oriented
n−vector bundle. Then the cohomology group Hn(E,E0;Z) is zero for i < n
and Hn(E,E0;Z) contains a unique class u such that the restriction of u

u(F,F0) ∈ Hn(F, F0;Z)

is equal to the preferred generator uF for any fiber F of ξ. Futhermore, the
correspondence y → y ∪ u maps Hk(E;Z) isomorphically onto Hk+n(E,E0;Z)
for every integer k. In particular, Hi(E,E0) = 0 for i < n.

Proof. We shall divide this proof into three steps.

Step 1. Suppose ξ = (B,E = B × Rn, p) is a trivial vector bundle. Let
µ ∈ Hn(Rn,Rn0 ) be the fixed preferred generator for the cohomology group
Hn(Rn,Rn0 ). By the relative version of the Kunnteth formula we have that the
map

γ : H0(B)→ Hn(B × Rn, B × Rn0 )

given by α → α × µ is an isomorphism. For any point b ∈ B let F b be the
fiber on b and consider the following commutative diagram

Hn(E,E0)
iF∗
b // Hn(F b, F b0 )

H0(B)
i∗b //

γ

OO

H0({b})

γb

OO

where γb is the map obtained using the Kunneth theorem for {b} and
(Rn,Rn0 ). Observe that the preferred orientation for F b0 is uF b = 1 × µ and
by the commutativity of the previous diagram the element 1×µ ∈ Hn(E,E0) is
such that iF∗b (1× µ) = uF b . Furthermore, since 1 ∈ H0(B) is the only element
which restricts to 1 for each point b ∈ B we conclude by the commutativity
of the diagram that 1× µ is the only element in Hn(E,E0) which satisfies the
required property.

Applying yet again the relative version of the Kunneth Formula we have that
the map Hj(B)⊗Hn(Rn,Rn0 )→ Hj+n(B×Rn, B×Rn0 ) given by y⊗µ→ y×µ
is an isomorphism. Then, any element in Hj+n(B×Rn, B×Rn0 ) can be written
uniquely as y × µ for some y ∈ Hj(B). Since by the Kunneth theorem we also
have that any element in Hj(B × Rn) can be written uniquely as y × 1 with
y ∈ Hj(B) we can conclude that the assigment
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y × 1→ (y × 1) ∪ (1× µ) = y × µ

is an isomorphism. Thus the theorem is proven for trivial bundles.

Step 2 : Suppose that B is the union of two open sets U and V such that the
theorem holds for E′ = p−1(U), E′′ = p−1(V ) and E∩ = p−1(U ∩ V ). Consider
the following Mayer-Vietoris sequence:

. . .→ Hi−1(E∩, E∩0 )→ Hi(E,E0)→ Hi(E′, E′0)⊕Hi(E′′, E′′0 )→ Hi(E∩, E∩0 )→ . . .

By assumption, there exists fundamental cohomology classes u′ and u′′ for
ξU and ξV respectively. By the uniquness of the fundamental cohomology class
for ξU∩V , the cohomology classes u′ and u′′ have the same image in Hn(E∩, E∩0 )
and therefore there exists a cohomology class u ∈ Hn(E,E0) such that when
restricted to U and V gives us u′ and u′′ respectively. Clearly the restriction of
u on each fiber gives us the orientation of the vector bundle. Furthermore, this
cohomology class u is unique given that Hn−1(E∩, E∩0 ) = 0 by assumption.
Consider now the Mayer-Vietoris sequence

. . . Hj−1(E∩)→ Hj(E)→ Hj(E′)⊕Hj(E′′)→ Hj(E∩)→ . . .

with i = n + j. Mapping this sequence to the previous Mayer-Vietoris se-
quence by the correspondence y → y∪u and applying the Five lemma it follows
that Hj(E) ∼= Hj+n(E,E0).

Case 3 : Suppose that B has a finite open covering U1, . . . , Um such that the
vector bundles ξUi are trivial for each i. We will prove by induction on m that
the result holds for this case. Clearly the result holds for m = 1 since this just
means that ξ is a trivial bundle. Assume now that the result holds for m − 1.
Then we will have that the theorem is true for the vector bundles ξU1∪...∪Um−1

and ξUm . Applying case 2 we obtain the result for ξ.

In particular, this means that the previous result holds for compact spaces.
For the general case, we recommend the reader to consult [5].

4.3 The Gynsin Sequence

Let ξ = (E,B, p) be an oriented n−vector bundle and let E0 be the total space
with the zero section removed. Now that we have the Thom isomorphism at
our disposal we shall give a tool which relates the cohomology groups of B and
E0. More explicitly, we have the following theorem.

Theorem(Gynsin) 4.16. For an oriented n−vector bundle ξ = (E,B, p) we
have the following long exact sequence of cohomology groups
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· · · // Hi(B)
·e(ξ) // Hi+n(B)

p∗ // Hi+n(E0)
Γ // Hi+1(B) // · · ·

Proof. We have the following commutative diagram with the top row exact

// Hi+n(E,E0)
j∗ // Hi+n(E) // Hi+n(E0) // Hi+n+1(E,E0) //

// Hi(B) //

φ

OO

Hi+n(B)
p∗ //

p∗

OO

Hi+n(E0)
Γ //

Id

OO

Hi+1(B) //

φ

OO

Where j is the inclusion map. Since all the vertical maps are isomorphisms
we also have then that the bottom row is exact. In addition, we also have the
following calculation

(p∗)−1j∗φ(a)

= (p∗)−1j∗(p∗(a)uξ)

= (p∗)−1(p∗(a)j∗(uξ))

= a[(p∗)−1j∗(uξ)] = a · e(η)

This concludes our proof.

4.4 The Cohomology Rings of Complex Projective Spaces

We want now with our available tools of characteristic classes to give a de-
scription of the cohomology rings of complex projective spaces. This will be of
extreme importance when defining the Chern classes of complex vector bundles.
As a first step, the following result, whose proof can be found in [5], says that
the underlying real vector bundle of a complex vector bundle has a canonical
preferred orientation.

Proposition 4.17. If ω is a complex vector bundle over a base space B, then
the underlying real vector bundle ωR has a canonical preferred orientation and
thus the Euler class e(ωR) ∈ H2n(B;Z) is well defined.

Using a cellular cohomology argument we have that the cohomology groups
of the complex projective space CPn are the following:

Hk(CPn;Z) =

{
Z if k = 0, 2, . . . , 2n
0 otherwise

Nevertheless, with our available tools we can refine this result one step fur-
ther.
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Theorem 4.18. The cohomology ring H∗(CPn;Z) is a truncated polynomial
ring terminanting in dimension 2n, and generated by the Euler class e((γ1

n)R)
where γ1

n is the canonical line bundle over CPn.

Proof. Let (γ1
n)R = (E,CPn, p) be the underlying real vector bundle of the

canonical line bundle on CPn. Applying the Gynsin sequence to this real vector
bundle we obtain

· · · // Hi+1(E0) // Hi(CPn)
·∪e // Hi+2(CPn)

p∗ // Hi+2(E0) // · · ·

All the points of the space E0 = E0(γn1 ) are of the form (L =Line through
the origin, x) with x ∈ L and thus E0 can be identified with Ck+1 − 0 and thus
has the same homotopy type as S2k+1. From the Gynsin exact sequence we
obtain then short exact sequences of the form

0 // Hi(CPn)
·∪e // Hi+2(CPn) // 0

for 0 ≤ i ≤ 2k − 2. From these short exact sequences we obtain

H0(CPn) ∼= H2(CPn) ∼= . . . ∼= H2n(CPn)

and that Hi(CPn) is generated by e((γn1 )R)i if i ≤ n. This completes the
proof.

As a corollary of this result we have the following

Corollary 4.19. H∗(CP∞;Z) is the polynomial ring generated by e((γ1)R).

Proof. Let n ∈ N be any natural number and consider the usual CW - complex
structures for CPn and CP∞ (See [7], page 6). Then, it is clear that the
inclusion map i : CPn → CP∞ induces a chain map φ• between the cellular
co-chain complex of CPn and CP∞ such that φi = Id for 0 ≤ i ≤ 2n and
φi = 0 otherwise. Thus, i∗ : Hi(CP∞) → Hi(CPn) is a an isomorphism for
0 ≤ i ≤ 2n, which implies in this case that Hi(CP∞) is generated by e((γ1)R)i.
Letting n tend to infinity we obtain the stated result.

In the next chapter we shall also make use of the real counterpart of the
previous proven result

Propostition 4.20. H∗(RP∞;Z2) = Z2[a] where a is the non-zero element of
H1(RP∞;Z2).
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5 Chern Classes

This chapter is devoted to the analogs of the Stiefel-Whitney classes when wor-
king with complex vector bundles and when working with the ring of coefficients
Z: Chern classes. It is the aim of this chapter to present a contruction of
the Chern classes which also yields us an alternate way of constructing the
Stiefel Whitney classes by restricitng all of the arguments to real vector bundles
and the ring of coefficients Λ = Z2 and to prove the complex counterpart of
theorem 3.4. Namely we will prove the following

Theorem 5.1. For complex n−plane bundles ξ over base spaces B, n ≥ 0,
there are characteristic classes ci(ξ) ∈ H2i(B;Z), called the Chern classes.
They satisfy and are uniquely determined by the following axioms:

1. c0(ξ) = 1 and ci(ξ) = 0 if i > dimξ.

2. ci(ξ ⊕ δ) =
∑i
j=0 cj(ξ) ∪ ci−j(δ).

3. c1(γ1) is the element e((γ1)R) for the universal line bundle defined on
CP∞.

Furthermore, every integer characteristic class for complex n−plane bundles
can be written uniquely as a polynomial in the Chern classes {c1, . . . , cn}.

5.1 The Leray-Hirsh Theorem

The first theorem of this chapter will be the main theoretical tool for the joint
construction of Chern and Stiefel-Whitney classes. We assume that the ring of
coefficents Λ is either Z or Z2.

Theorem 5.2. Let p : E → B be a bundle with typical fiber F which is of finite
type, that is, trivial over a finite covering U1, . . . , Un with local trivializations
fi : Ui × F → p−1(U). Let E0 be an open subspace of E, let a1, . . . , ar be
homogeneous elements in H∗(E,E0; Λ) and let F0 be an open subspace of F such
that fi : (Ui×F,Ui×F0)→ (p−1(U), p−1(U)∩E0) is an homeomorphism of pair
of spaces. Furthermore, if b ∈ Ui, denote by jb,i : (F, F0)→ (p−1(b), p−1(b)∩E0)
the composition of maps

(F, F0)
ib // (b× F, b× F0)

fi // (p−1(b), p−1(b) ∩ E0).

Then, if for all b ∈ B we have that j∗b,i(a1), . . . , j∗b,i(ar) is a Λ-basis for
H∗(F, F0; Λ) then a1, . . . , ar is a H∗(B; Λ)−basis for H∗(E,E0; Λ), where the
H∗(B; Λ) action is given by b · e = p∗(b) ∪ e.

Proof. The proof of this theorem will follow the same guidelines as the proof
of the Thom Isomorphism theorem. We shall for this proof omit writing the
coefficient ring Λ. We divide the proof in three steps.

Step 1: Take one of the sets Ui on which the bundle is trivial, denote p−1(Ui)
by EUi and take the homeomorphism fi : (Ui × F,Ui × F0) → (EUi , EUi ∩ E0)
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which preserves projections onto Ui. Furthermore, denote by jUi : EUi → E
the inclusion map of EUi into E. Observe that the cohomology class j∗b,i(aj) in
H∗(F, F0) doesn´t depend on the chice of the element b ∈ Ui. Then , using the
Kunneth theorem and the fact that the elements j∗b,i(a1), . . . , j∗b,i(ar) are homo-
geneous in H∗(F, F0) we obtain that j∗Ui(a1), . . . , j∗Ui(ar) is a H∗(Ui)−basis for
H∗(EUi , EUi ∩ E0). Thus, the theorem holds on all the open sets Ui.

Step 2 : Take now two of the open sets Ui and Uj with i 6= j. Clearly the
result also holds for the open set Ui∩Uj and we shall argue that the result holds
for Ui ∪ Uj . Let r(i) be the degree of the cohomology class ai and consider for
any open set U of B and any natural number n ∈ N the following two groups:

• Kn(U) = ⊕1≤i≤rH
n−n(i)(U)

• Ln(U) = Hn(EU , EU ∩ E0)

Furthermore, let θn : Kn(U)→ Ln(U) be the map defined as

θn(b1, . . . , br) =
∑

1≤j≤r

p∗(bi) ∪ ai

Observe that the result of this theorem holds on U if and only if θn is an
isomorphism for all n. By the use of Mayer- Vietoris sequences we construct a
commutative diagram with exact rows of the form:

· · · // Kn−1(Ui)⊕Kn−1(Uj) //

θn−1⊕θn−1

��

Kn−1(Ui ∩ Uj) //

θn−1

��

Kn(Ui ∪ Uj)

θn

��
· · · // Ln−1(Ui)⊕ Ln−1(Uj) // Ln−1(Ui ∩ Uj) // Ln(Ui ∪ Uj)

· · · // Kn(Ui)⊕Kn(Uj) //

θn⊕θn
��

Kn(Ui ∩ Uj) //

θn

��

· · ·

· · · // Ln(Ui)⊕ Ln(Uj) // Ln(Ui ∩ Uj) // · · ·

Then, by the Five-Lemma we obtain that the result also holds for Ui ∪ Uj .

Step 3 : Finally, since B = U1 ∪ . . . ∪ Un, an easy induction argument will
yield us the result on all of B.

Remark. By the use of spectral sequences, the Leray-Hirch theorem can be
proved for bundles which are not of necessarily of finite type, although the tech-
niches that require such a proof fall out of the scope of this project. Nevertheless
we shall use this more general result throughout this chapter.

39



5.2 The Projective Bundle

This section is devoted to a particular fiber bundle which can be associated to
any vector bundle and which will play a central in both the definition of Chern
and Stiefel-Whitney classes and to prove that such characteristic classes are
uniquely determined by their axioms. As a means of simplification, from now
on we shall restrict ourselves only to complex vector bundles since the arguments
in the real case are merely simplifications of the arguments that follow.

Definition 5.3. Let ξ be a n−vector bundle ξ = (E,B, p). Let E0 be the
subspace obtained when removing from E the zero section and let p0 = pE0

. Let
E′ be the quotient space obtained by identifying in E0 points in a fiber which lie
in the same one dimensional linear subspace and let q : E′ → B be the map that
factorizes p0 : E0 → B. We define the projective bundle Pξ associated to ξ
to be the fiber bundle q : E′ → B.

We have the following lemma concerning this fiber bundle.

Lemma 5.4. For any n−vector bundle ξ = (E,B, p)) we have that Pξ is locally
trivial.

Proof. Let U be an open subset of B where EU is trivial. Let Q : E0 → E′ be
the quotient map with which we obtain E′ and let Q : U × Cn0 → U × CPn−1

be the obvious quotient map. If hU : U × Cn0 → p−1
0 (U) is a local trivialization

for E0 on U then define fU : U ×CPn−1 → q−1(U) as the map which factorizes
the composition Qhu. Thus, we have the following commutative diagram:

U × Cn0
Q //

OO

hU
��

U × CPn−1

fU

��
p−1

0 (U)
Q // q−1(U)

It is easy to verify that fU is a bijective map. Furthermore, applying this
exact argument using h−1

U we obtain an inverse f−1
U . Thus, Pξ is locally trivial.

Observe that the total space of Pξ consists of points of the form (b, L) where
b ∈ B and L is a one dimensional linear subspace inside the fiber p−1(b). Taking
the projection q : E′ → B of the projective bundle we can consider the pull-
back q∗ξ over E′. Consider the subpace Eλξ of E(q∗ξ) consisting of all points
((L, b), x) such that x ∈ L and define pλξ : Eλξ → B to be the restriction of
the projection map pq∗ξ of the bundle q∗ξ over E′. It is not hard, but rather
cumbersome, to prove that λξ is indeed a line bundle. Furthermore, we have
the following result concerning the topological nature of E(P (ξ)).

Lemma 5.5. If ξ is an n−vector bundle over paracompact space B then E(Pξ)
is a paracompact space.
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This lemma now enables us to use proposition 2.11 of chapter 2 to guaran-
tee the existence of a complement σ for the line bundle λξ. Thus, we have that
q∗ξ = λξ ⊕ σ.

The following proposition, which states another property worth noting of
the projective bundle, will enable us to apply the Leray-Hirch theorem in the
context of projective bundles.

Proposition 5.6. let ξ = (E,B, p) be an n−vector bundle over a paracompact
space B, let Pξ = (E(Pξ), B, q) be its projective vector bundle, let b ∈ B and let
U be an open neighborhood of b for which there exists a local trivialization f :
U ×Cn → EU . Consider also the local trivialization f ′ : U ×CPn−1 → q−1(U)
obtained from f and let jb : CPn−1 → E(P (ξ)) be the composition of maps

CPn−1
ib // b× CPn−1

f ′ // q−1(b)

Then j∗b (λξ) is isomorphic to the canonical line bundle γn1 .

Proof. Consider the following commutative diagram

Cn0
fib //

��

p−1(b)0

��
CPn−1

jb // q−1(b)

where the vertical maps are the usual quotient maps. Consider now the map
F : CPn−1 × Cn0 → q−1(b) × p−1(b)0 defined as F = (jb, fib). Then, by the
commutativity of the previous diagram, we have that if h is the restriction of F
on E(γn1 ) then h is a bundle map between γn1 and (λξ)q−1(b). In a completely
similar fashion we can construct an inverse h−1 : (λξ)q−1(b) → γn1 for h. Thus,
by proposition 1.10 of chapter 1 we obtain that j∗b (λξ) ∼= γn1 .

5.3 Definition of the Chern Classes

In this section we finally define the Chern classes of a complex vector bundle.
Remember that in the previous chapter we proved that the cohomology ring
H∗(CP∞;Z) is isomorphic to the polynomial algebra Z[e((γ1)R)]. Through out
the rest of this chapter we shall denote e((γ1)R) by z and we shall assume that
we are always working with the ring Z.

Since the space E(P (ξ)) is a paracompact space given that the base space
B of ξ is paracompact we have, by theorem 2.10, that there exists a map
f : E(P (ξ)) → CP∞ such that f∗(γ1) ∼= λξ. Denote by aξ the cohomology
class f∗(z) which is independent of the choice of f since this map is unique up
to homotopy.
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The following result, which is just a consequence of the Leray-Hirch theorem,
is what will bring Chern classes to life.

Proposition 5.7. The cohomology classes 1, aξ, . . . , a
n−1
ξ conform a basis for

the H∗(B)−module H∗(E(P (ξ))). In particular, the map q∗ : H∗(B)→ H∗(E(P (ξ)))
is a monomorphism.

Proof. Observe first of all that that we have akξ ∈ H2k(E(P (ξ))) for all k. In
order to prove this result we just need to verify that the conditions of the
Leray-Hirch Theorem hold. Applying proposition 1.23 of chapter 1, we can find
a countable open cover {Ui}i of B such that P (ξ) is trivial on each Ui. Let Ui be
one of these open sets, let b be an element in Ui and define jb,i : CPn−1 → q−1(b)
as it was defined in the Leray-Hirch theorem. By proposition 5.6 we have that
j∗b,if

∗(γ1) ∼= γn1 . But on the other hand we also have that the inclusion map i :

CPn−1 → CP∞ is such that i∗γ1
∼= γn1 . Thus, by corollary 2.14 of chapter 2 we

must have that fjb,i and i are homotopy equivalent. Since by proposition 4.18
of chapter 4 we have that H∗(CPn−1;Z) ∼= Z[e((γn1 ))R]/(e((γn1 )R)n) and since
j∗b,i(a

k
ξ ) = e((γn1 )R))k for all k we can conclude that 1, j∗b,i(aξ), . . . , j

∗
b,i(a

n−1
ξ ) is

a Z−basis for H∗(CPn−1) and thus by the Leray-Hirsh theorem we obtain the
desired result.

Since 1, aξ, . . . , a
n−1
ξ conform a basis for the H∗(B)−module H∗(E(P (ξ)))

we can find cohomology classes ci(ξ) ∈ H2i(B;Z) such that c0(ξ) = 1, ci(ξ) = 0
for i > n and such that

anξ =

n∑
j=1

(−1)j+1cj(ξ)a
n−j
ξ

Definition 5.8. For a complex vector bundle ξ, the cohomology class ci(ξ) ∈
H2i(B;Z) is the i-th Chern class of ξ and 1 + c1(ξ) + . . .+ cn(ξ) is called the
total Chern class of ξ.

5.4 Properties of the Chern Classes

The focus of this section will be to discuss the axioms that characterize uniquely
the Chern classes of complex vector bundles. In particular, we shall prove that
the Chern Classes satisfy the following four axioms:

1. For each natural number i there is a Chern class ci ∈ H2i(B;Z) with the
condtion that c0(ξ) = 1 and ci(ξ) = 0 if i > n.

2. Naturality If f : B′ → B is a continuous map then f∗(ci(ξ)) = ci(f
∗ξ) for

all i.

3. Whitney sum formula. For two vector bundles ξ and δ we have that cm(ξ⊕
δ) =

∑
i+j=m ci(ξ) ∪ cj(δ).

4. For the universal line bundle γ1 over CP∞ we have that c1(γ1) = e((γ1)R).
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Clearly the Chern Classes satisfy property (1). To verify the naturality
condition observe that a map f : B′ → B induces a fiber bundle map u :
E(P (f∗ξ))→ E(P (ξ)) which makes the following diagram commute

E(P (f∗ξ))
u //

q′

��

E(P (ξ))

q

��
B′

f // B

Since clearly we have that λf∗ξ ∼= u∗(λξ) we also have then that af∗ξ =
u∗(aξ). Thus, when applying u∗ to both sides of the equality anξ =

∑n
i=1(−1)i+1ci(ξ)a

n−i
ξ

we obtain by the commutativity of the above diagram that

anf∗ξ =

n∑
i=1

(−1)i+1f∗(ci(ξ))a
n−i
f∗ξ

Thus, applying propostion 5.7 we obtain that f∗(ci(ξ)) = ci(f
∗ξ).

For the verification of axiom (4) we observe first that E(P (γ1)) = CP∞
and that λγ1 = γ1. In this case we have thus c1(γ1) = aγ1 = Id∗(e((γ1))R) =
e((γ1)R) and thus we also have that the Chern classes satisfy this axiom.

The proof of the third axiom is a little bit more elaborate and will be post-
poned until a later section.

5.5 Splitting Maps and Uniqueness of the Chern Classes

We have now all the technical machinery to introduce the following concept.

Definition 5.9. Let ξ be a vector bundle over B. A splitting map for ξ is
a map f1 : B1 → B such that f∗ξ is the whitney sum of line bundles and
f∗ : H∗(B)→ H∗(B1) is an injective map.

With the next proposition we establish the actual existence of splitting maps

Proposition 5.10. Any n−vector bundle ξ over a space B has a splitting map.

Proof. We prove this theorem by induction on the dimension of the fibers of ξ.
If ξ is a 1−bundle then clearly the map Id : B → B is a splitting map for ξ.
Suppose now that the result holds for vector bundles of dimension n− 1 and let
ξ be an n−vector bundle. Remember that we have proved that the n−bundle
q∗ξ = (E(q∗ξ), E(P (ξ)), p′) can be decomposed as the whitney sum λξ⊕σ where
λξ is a line bundle and σ is a n − 1−bundle. Then, if f : B1 → E(P (ξ)) is a
splitting map for σ we have that qf : B1 → B is a splitting map for ξ since
q∗ : H∗(B)→ H∗(E(P (ξ))) is a monomorphism by proposition 5.7.

The previous result can be furhter refined in the following way.

43



Corollary 5.11. If ξ1, . . . , ξn are vector bundles over a space B then there
exists a map f : B1 → B which is a splitting map for all the vector bundles ξi
with i = 1, . . . , n.

Proof. We shall prove this corollary by induction on the number of vector bun-
dles defined on B. Clearly, by the previous proposition we have our result for
n = 1. Suppose then that the result holds for vector bundles ξ1, . . . , ξk−1 over B
where each ξi has fibers of dimension n(i). Then there exists a map g : B′ → B
such that g∗ξi ∼= λi1 ⊕ . . .⊕ λin(i)

for all i and such that g∗ : H∗(B)→ H∗(B′)
is a monomorphism. If ξk is an additional vector bundle over B we have that
there exists a splitting map f : B1 → B′ for the vector bundle g∗ξk. Then
clearly gf : B1 → B is a splitting map for all the vector bundles ξ1, . . . , ξk and
this concludes the proof.

We can now prove that the axioms stated in the previous section determine
completely the Chern classes.

Theorem 5.12. If c′i is another sequence of characteristic classes which satisfies
the axioms of the previous section then we must have that c′i(ξ) = ci(ξ) for any
n−vector bundle ξ.

Proof. Since ci and c′i satisfy the same set of axioms we have that c1(γ1) =
c′1(γ1) and thus by naturality we have that c1(δ) = c′1(δ) for any line bundle δ.
Furthermore, suppose ξ is some n−bundle over a paracompact space B and let
f : B1 → B be a splitting map for ξ, i.e, f∗ is injective and f∗ξ ∼= δ1 ⊕ . . .⊕ δn
for some line bundles δi. Then, applying the Whitney sum formula and the fact
that c and c′ coincide for line bundles we have that ci(f

∗ξ) = c′i(f
∗ξ) for all i

and thus f∗(ci(ξ)) = f∗(c′i(ξ)). Since f∗ is a monomorphism we obtain finally
that ci(ξ) = c′i(ξ).

5.6 The Whitney Sum Formula

This entire section will be devoted to the proof of the Whitney sum formula for
Chern classes. We begin with the following proposition definition

Definition 5.13. Let ξ = (E,B, p) and δ = (E1, B1, p1) be two complex vector
bundles. The exterior product ξ⊗δ of ξ and δ is defined to be the complex
vector bundle over B ×B1 such that the fiber on (b, b1) is p−1(b)⊗ p−1

1 (b1).

The following proposition allows us to compute the Chern class of the tensor
product of line bundles.

Proposition 5.14. If δ1 and δ2 are line bundles over a paracompact space B
then we have the relation c1(δ1 ⊗ δ2) = c1(δ1) + c1(δ2).
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Proof. Let γ1 be the universal line bundle on CP∞ and let k : CP∞ ×CP∞ →
CP∞ be the classifying map for γ1⊗γ1. Let i : CP∞ → CP∞ × CP∞ be the
map given by x → (x, x0) for some fixed x0, let pi : CP∞ × CP∞ → CP∞
be the projection onto the i-th component and denote by ei the cohomology
class p∗i (c1(γ1)). By the Kunneth theorem we have that e1 and e2 conform a
Z−basis for H2(CP∞ × CP∞;Z) and thus there exists unique a1, a2 ∈ Z such
that a1e1 + a2e2 = k∗(c1(γ1)). Our first step is to prove that we have in fact
a1 = a2 = 1. In order to do this, first observe that we have p1i = Id and that
p2i is constant .Thus, it follows that i∗(e1) = c1(γ1) and i∗(e2) = 0. Using these
relations we compute the following:

a1c1(γ1) = a1i
∗(e1) = a1i

∗(e1) + a2i
∗(e2)

= i∗(a1e1 + a2e2) = i∗(k∗(c1(γ1)))

= c1(i∗k∗γ1) = c1(i∗γ1⊗γ1)

= c1(i∗(p∗1γ1 ⊗ p∗2γ1)) = c1(i∗p∗1γ1 ⊗ i∗p∗2γ1) = c1(γ1)

(4)

For the last equality we applied the fact that i∗p∗2γ1 is a trivial line bundle.
Since we have that c1(γ1) constitutes a Z−basis for H1(CP∞;Z), by the previ-
ous calculations we obtain that a1 = 1. In a totally analogous fashion it can be
proven that a2 = 1 and thus k∗(c1(γ1)) = c1(γ1⊗γ1) = e1 + e2.

Now let δ1 and δ2 be line bundles over a paracompact space B and let k1 :
B → CP∞ and k2 : B → CP∞ be classifying maps for δ1 and δ2 respectively.
Taking the diagonal map d : B → B × B it is not hard to verify that we have
δ1⊗ δ2 ∼= d∗(δ1⊗δ2) ∼= d∗(k1× k2)∗(γ1⊗γ1). These isomorphisms allows then to
do the following calculations:

c1(δ1 ⊗ δ2) = c1(d∗(k1 × k2)∗(γ1⊗γ1)) = d∗(k1 × k2)∗(e1 + e2)

= d∗(k1 × k2)∗(p∗1(c1(γ1))) + d∗(k1 × k2)∗(p∗2(c1(γ1)))

= k∗1(c1(γ1)) + k∗2(c1(γ1)) = c1(δ1) + c1(δ2)

(5)

The second last equality follows from the fact that ki = pi(k1 × k2)d for
i = 1, 2 and thus we have completed the theorem.

As a useful consequence of this proposition we obtain the following

Corollary 5.15. c1(δ) = −c1(δ) for any line bundle δ.

The following proposition is the essential step for proving the Whitney sum
formula for Chern classes.
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Proposition 5.16. For line bundles δ1, . . . , δn over a paracompact space B we
have the relation c(δ1 ⊕ . . .⊕ δn) = (1 + c1(δ1)) . . . (1 + c1(δn)).

Proof. Denote by η the n−vector bundle δ1 ⊕ . . .⊕ δn. Taking the pull-back of
η on q : E(P (η))→ B we obtain the equality

q∗δ1 ⊕ . . .⊕ q∗δn = λη ⊕ σ

Tensoring both sides with λη we thus obtain

(q∗δ1 ⊗ λη)⊕ . . .⊕ (q∗δn ⊗ λη) = (λη ⊗ λη))⊕ (σ ⊗ λη))

By the previous equality we have that q∗η ⊗ λη admits a section s which is
nowhere zero and that projects to a section si on each q∗δi⊗λη. For i = 1, . . . , n
let Vi be the open set of E(P (η)) such that si 6= 0. Observe that since s is
nowhere zero we must have that

⋃
1≤i≤n Vi = E(P (η)). If for all i = 1, . . . , n

we denote by ji : Vi → E(P (η)) the usual inclusion map, then by the way we
defined the open sets Vi we must have j∗i (c1(q∗δi⊗λη)) = 0. Thus, by taking the
long exact sequence of the pair (E(P (η)), Vi) we must have that c1(q∗δi⊗λη) can
be represented by a cocycle τi ∈ C1(E(P (η)),Z) which vanishes on all 1−chains
contained in Vi. However, the cup product [τ1] ∪ . . . ∪ [τn] is an element of
H∗(E(P (η)),

⋃
1≤i≤n Vi) = H∗(E(P (η)), E(P (η)) = 0. Thus we obtain the

following identity

c1(q∗δ1⊗λη) . . . c1(q∗δn⊗λη) = (q∗(c1(δ1))+c1(λη)) . . . (q∗(c1(δn))+c1(λη) = 0

Applying the fact that c1(λη) = −c1(λη) and that aη = c1(λη), the previous
identity turns into

(q∗(c1(δ1))− aη) . . . (q∗(c1(δn))− aη) = 0

If we denote by αk the element
∑
c1(δi(1)) . . . c1(δi(k)) with 1 ≤ i(1) < . . . <

i(k) ≤ n then the previous identitity can be rewritten as:

anη =
∑

1≤i≤n(−1)i+1q∗(α1)an−iη

Observe that in order to obtain the last equality we relied heavily on the
fact that the cohomology classes q∗(c1(δj)) and aη are in H2(E(P (η));Z) and
thus there is no problem with signs when permuting any two of these elements.
Since we also must have

anη =
∑

1≤i≤n(−1)i+1q∗(ci(η))an−iη

it follows from theorem 5.7 that c(η) = (1 + c1(δ1)) . . . (1 + c1(δn)).

We can now proceed to prove the Whitney sum formula for Chern classes.

Theorem 5.17. For two vector bundles η and δ over a paracompact space B
we have that c(η ⊕ δ) = c(η)c(δ).
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Proof. By corollary 5.11 we have that there exists a map f : B1 → B which is
a splitting map for both η and δ. That is, we have that f∗ : H∗(B)→ H∗(B1)
is a monomorphism and that f∗η = λ1 ⊕ . . . ⊕ λn and f∗δ = λn+1 ⊕ . . . λn+m

for some line bundles λi over B1. Thus, applying the previous proposition we
obtain

f∗(c(η ⊕ δ)) = (1 + c1(λ1)) . . . (1 + c1(λn))(1 + c1(λn+1)) . . . (1 + c1(λn+m))

But on the other hand it is plain that we also have

f∗(c(η)c(δ)) = (1 + c1(λ1)) . . . (1 + c1(λn))(1 + c1(λn+1)) . . . (1 + c1(λn+m))

Then, since f∗ is injective we must have that c(η ⊕ δ) = c(η)c(δ).

Remark : Absoloutely everything we have done in this chapter can be re-
produced using real vector bundles, real projective spaces and the ring Λ = Z2

by making the necessary simplifications. For example, in the definition 5.8
the minus signs can be omitted since we would be working with Z2 coefficients.
This will then yields us an alternate construction of the Stiefel-Whitney classes
which is preferred by the author since it only relies on tools belonging to the
theory of vector bundles (as opposed to the use of Steenrod squaring operations)
and since it manifests that Stiefel-Whitney and Chern classes have a common
origin.

5.7 The Cohomology Rings H∗(Gn(C∞));Z) and H∗(Gn(R∞);Z2)

This section is devoted to describe the cohomology rings H∗(Gn(C);Z) and
H∗(Gn(R);Z2) and give an explicit description of the ring of characterisitc
classes for comlex and real vector bundles when working respectively with the
rings Z and Z2. Before jumping into the main core of this section we discuss
the following algebraic technicalities.

Let Λ be a ring with unit 1, let R[x1, . . . , xn] be the ring of polynomials in
n variables and let Sn be the symmetric group of order n. If P ∈ R[x1, . . . , xn]
and if τ ∈ Sn then we define Pτ ∈ R[x1, . . . , xn] by the relation Pτ (x1, . . . , xn) =
P (xτ(1), . . . , xτ(n)).

Definition 5.18. A polynomial P ∈ R[x1, . . . , xn] is called symmetric if P =
Pτ for all τ ∈ Sn.

Examples of symmetric polynomials in R[x1, . . . , xn] (the most important
ones as we shall soon see) are σn0 = 1, σn1 (x1, . . . , xn) = x1+. . .+xn, σnn(x1, . . . , xn) =
x1 . . . xn and σnk (x1, . . . , xn) =

∑
xi(1) . . . xi(k) where 1 ≤ i(1) < . . . < i(k) ≤ n.

The following theorem, whose proof can be found in [Hu], is one of the key
ingredients for the material of this section.
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Theorem 5.19. The subring R[σ1, . . . , σn] of R[x1, . . . , xn] contains all the
symmetric functions and the functions σ1, . . . , σn, called the elementary sym-
metric functions, are algebraically independent, that is, they don’t satisfy any
polynomial relations.

Now we focus on proving the main result of this section and indeed of the
whole project. Our first step will be to prove the following.

Proposition 5.20. Let hn : CP∞ × . . . × CP∞ → Gn(C∞) be a classifying
map for γ1 × . . . × γ1. Then hn is a splitting map for the canonical bundle γn
over Gn(C∞).

Proof. we start off by observing that if pi : CP∞ × . . . × CP∞ → CP∞ is the
projection map onto the i-th component then we have that

h∗nγn
∼= γ1 × . . .× γ1

∼= p∗1γ1 ⊕ . . .⊕ p∗nγ1

Thus, the only thing we have to prove is that h∗n is a monomorphism. Let
f : B → Gn(C∞) be a splitting map for γn with f∗γn ∼= λ1 ⊕ . . .⊕ λn where λi
is a line bundle over B. Let gi : B → CP∞ be a classifying map for λi, i.e, a
map gi such that λi ∼= g∗i γ1. Then, if we define g : B → CP∞ × . . .× CP∞ as
g = (g1, . . . , gn) we obtain

g∗(γ1×. . .×γ1) ∼= g∗(p∗1γ1)⊕. . .⊕g∗(p∗nγ1) ∼= g∗1(γ1)⊕. . .⊕g∗n(γ1) ∼= λ1⊕. . .⊕λn

Thus, by corollary 2.14 of chapter 2, we have that f ∼= hng and consequently
we have f∗ = g∗h∗n. Since f∗ is injective we must have that h∗n is also injective.

The following lemmas will also be needed

Lemma 5.21. Consider the n-fold product

A = A1 × . . .×An = CP∞ × . . .× CP∞

Let τ ∈ Sn and let ai denote the element p∗i (c1(γ1)) where pi is the projection
onto the i−th component. If fτ : A → A is the map which maps Ai identically
to Aτ(i) we have that f∗τ (aτ(i)) = ai and (f−1

τ )∗(ai) = aτ(i)

Proof. This result just follows from the following commutative diagram

A
fτ //

pi

��

A

pτ(i)

��
Ai

fτ // Aτ(i)

Lemma 5.22. With the notation of the previous lemma we have that H∗(CP∞×
. . .× CP∞) = Z[a1, . . . , an].
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Proof. This is just a direct application of the Kunneth theorem.

Now we can prove the main result

Theorem 5.23. Let ci denote ci(γn), where γn is the canonical universal
n−bundle. Then the cohomology ring H∗(Gn(C∞);Z) is isomorphic to Z[c1, . . . , cn]
and the classes c1, . . . , cn are algerbaically independent.

Proof. Consider a classifying map hn : CP∞ × . . . × CP∞ → Gn(C∞) for
ξ = γ1 × . . . × γ1, which by the previous proposition is a splitting map for γn.
As it was mentioned in the proof of 5.20, we have that ξ ∼= p∗1γ1 ⊕ . . . ⊕ p∗nγ1

and thus c(ξ) = (1 + a1) . . . (1 + an) . In particular we have that

• c1(ξ) = a1 + . . .+ an

• cn(ξ) = a1 . . . an

• ck(ξ) =
∑
ai(1) . . . ai(k) with 1 ≤ i(1) < . . . < i(k) ≤ n.

that is, ci(ξ) is the i−th elementary symmetric function σi with the variables
a1, . . . , an. If τ ∈ Sn and if fτ : A→ A is the map which was defined in lemma
5.22 we have that both hn(fτ )−1 and hn are classifying maps for the bundle
ξ and thus hn(fτ )−1 ∼= hn. Thus, from lemma 5.21 it follows that Imh∗n lies
in the subring Z[σ1, . . . , σn] of Z[a1, . . . , an]. Since h∗n(ci) = σi and since hn is
injective we conclude that

H∗(Gn(C∞);Z) = Z[c1, . . . , cn]

and since the σi are algebraically independent then so are the Chern classes
ci of γn.

As an immediate corollary of this theorem we obtain the following result.

Corollary 5.24. If ξ is an n−vector bundle over a paracompact space B then
each characteristic class of ξ is of the form φ(c1(ξ), . . . , cn(ξ)) where φ is some
polynomial of n indeterminates and with integer coefficients. Conversely, any
element of the form φ(c1(ξ), . . . , cn(ξ)) is a characteristic class for ξ.

Remark: The version of theorem 5.23 and corollary 5.24 for real vector
bundles and coefficients in Z2 are proven in a totally analogous manner. In par-
ticular, we have given a proof of theorem 3.4, which describes all characteristic
classes for real vector bundles when dealing with Z2.

5.8 Pontrjagin Classes... and Good Bye

We finish this project by introducing yet another variety of characteristic classes
for real vector bundles: Pontrjagin Classes. Eventhough our discussion of
such classes will be brief it would be a shame to not mention them with all the
machinery we have at our disposal.

Let then ξ be a real n−vector bundle. We begin with the following definition
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Definition 5.25. The complex n−vector bundle (ξ⊗C), obtained by tensoring
each fiber of ξ with C, is called the complexification of ξ.

By means of continuous functors (see chapter 1) we have that (ξ ⊗C) has a
natural topology which makes it into a n−complex vector bundle. The following
propositions are the key ingredients to define the Pontrjagin classes

Proposition 5.26. For any real n− vector bundle ξ we have that (ξ ⊗ C) ∼=
(ξ ⊗ C)∗.

Proof. Consider the function F : E((ξ⊗C))→ E((ξ⊗C)∗) defined fiberwise as
F (a⊗ z) = F (a⊗ z). Then, it is not hard to verify that this is will indeed give
us a bundle isomorphism.

Proposition 5.27. Let ξ = (E,B, p) be a complex n−vector bundle. Then, the
Chern classes for ξ∗ are given by ci(ξ

∗) = (−1)ici(ξ).

Proof. By corollary 5.15 we have that c1(δ∗) = −c1(δ) for complex line bundles.
Let ξ be then any n−complex vector bundle and consider a splitting map f :
B1 → B for ξ such that f∗ξ ∼= λ1 ⊕ . . . λn. In this case, it is not hard to verify
that we have f∗ξ∗ ∼= λ∗1 ⊕ . . . λ∗n. With this relation at hand we obtain

c(f∗ξ∗) = (1− c1(λ1)) . . . (1− c1(λn)) =
∑

0≤i≤n(−1)ici(f
∗(ξ))

Since f∗ is a monomorphism we obtain the desired relation.

Corollary 5.28. If a complex vector bundle ξ is isomorphic to ξ∗ then c2i+1(ξ) =
0 for all i ≥ 0.

Proof. This is just an immediate consequence of the naturality of the Chern
classes and the previous propositions.

In particular, we have that the previous proposition applies to the complex-
ification ξ ⊗ C. We have reached thus the following definition

Definiton 5.29. Let ξ be a real n−vector bundle. The i−th Pontrjagin
class of ξ is defined to be pi(ξ) = c2i(ξ⊗C), which is an element in H4i(B;Z).
Naturality of these classes is an obvious consequence of the naturality of the
Chern classes.
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