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Abstract

For a fixed prime p, let H∗(G) denote the mod p cohomology ring of a finite
group G, that is, Ext∗FpG(Fp,Fp) interpreted algebraically and H∗(K(G, 1); Fp)
interpreted topologically. The cohomology ring is a graded commutative Noethe-
rian ring, or equivalently, a finitely generated graded commutative Fp-algebra.
Although the ring is not strictly commutative, the usual concepts from com-
mutative ring theory apply, e.g., Krull dimension and depth. The prime ideal
spectrum is well understood due to the work by Quillen. The depth and asso-
ciated primes appear to be more mysterious. It is well known that the depth of
H∗(G) is bounded above by the minimum of the Krull dimensions of H∗(G)/p
of all associated primes p of H∗(G). For general finitely generated (graded)
commutative Fp-algebras the bound is not tight. In 1995 J. F. Carlson asked if
the cohomology rings of finite groups are special in the sense that the bound is
always tight. The question is related to a question about detection on certain
collections of subgroups. This thesis is an introduction to these fairly unknown
questions for which affirmative answers are known as Carlson’s depth conjec-
ture.

Abstrakt

For et fast primtal p lad H∗(G) betegne mod p kohomologiringen af en en-
delig gruppe G, dvs. Ext∗FpG(Fp,Fp) fortolket algebraisk og H∗(K(G, 1); Fp)
fortolket topologisk. Kohomologiringen er en gradueret kommutativ Noethersk
ring, eller ækvivalent, en endeligt frembragt gradueret kommutativ Fp-algebra.
Selvom ringen ikke er strengt kommutativ, er det muligt at anvende de sæd-
vanlige begreber fra kommutativ ringteori, f.eks. Krull dimension og dybde.
Primidealerne er velbeskrevet af Quillen. Dybden og de associerede primide-
aler forekommer mere mystiske. Det er velkendt, at minimummet af Krull
dimensionerne af H∗(G)/p af alle associerede primidealer p i H∗(G) er en øvre
grænse for dybden af H∗(G). Der findes endeligt frembragte (graduerede) kom-
mutative Fp-algebraer, hvor dybden er strengt mindre end minimummet. I 1995
stillede J. F. Carlson spørgsm̊alet, om kohomologiringe af endelig grupper er
specielle i den forstand, at dybden altid er lig minimummet. Spørgsm̊alet er
relateret til et spørgsm̊al om detektion p̊a en bestemt samling af undergrupper.
Dette speciale er en introduktion til disse forholdsvis ukendte spørgsm̊al, for
hvilke bekræftende svar er kendt som Carlsons dybde-formodning.
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Preface 1

Preface

This constitutes my Master thesis for the Cand.Scient. degree in Mathematics
at the University of Copenhagen, Denmark. The field is cohomology of finite
groups (Mathematics Subject Classification (2000): 20J06). The purpose is
to study a conjecture by J. F. Carlson about depth, detection and associated
primes in the cohomology rings of finite groups. Another goal is to investigate
the conjecture for some concrete groups.

My interest in this particular conjecture began one afternoon in the office
of my advisor, Jesper M. Møller. Some formulas involving depth and group co-
homology on the blackboard in his office caught my attention. Knowing some
group cohomology and commutative algebra through graduate courses in alge-
braic topology and homological algebra – two of my primary fields of interest –
I curiously inquired about the formulas. After a brief introduction I was imme-
diately fascinated by the question: How is the group structure related to the
structure of the cohomology ring? In particular, I found the speculations about
possible characterizations of the depth interesting. At the time I was searching
for a subject for my thesis. Intrigued by these fairly unknown questions about
the depth, known to some as Carlson’s depth conjecture, my search came to an
end.

A few words on prerequisites: Beside basic knowledge of group theory such
as permutation groups and group actions, we require some knowledge of commu-
tative ring theory and homological algebra. I will not give references to elemen-
tary definitions and theorems. A few references on group theory are Robinson
[41] and Rotman [42]. Good textbooks on commutative algebra are Matsumura
[34], Atiyah & MacDonald [3] and Eisenbud [22]. Cartan & Eilenberg [19], Mac
Lane [32] and Weibel [49] are good books on homological algebra. Familiar-
ity with group cohomology is also necessary, either the algebraic or topological
approach. Nevertheless, section 1 provides a brief review of some elementary
facts from group cohomology. For a thorough introduction to group cohomol-
ogy, recommended references are the classic textbooks by Brown [12] and Evens
[24]. Other recommended references are Adem & Milgram [2], Benson [6, 7] and
Carlson et al. [18]. Note that the books [2] and [7] are more topological in their
approach while [18] and [24] are purely algebraic. The books on homological
algebra also contain some group cohomology. Knowledge of spectral sequences
especially the Lyndon-Hochschild-Serre spectral sequence of a group extension
is required to understand the computations in appendix B. Information about
spectral sequences may be found in all of the references on homological algebra
and group cohomology. Cohomology of finite groups draws heavily on topolog-
ical methods. Beside the possible topological definition of group cohomology,
the topological presence in this thesis is mainly felt in the use of Steenrod oper-
ations. The basic facts about Steenrod operations are given when needed. See
e.g. Hatcher [28], a modern classic on algebraic topology, for more information.



2 Preface

Concerning the content of this thesis, I have used a mix of many different
sources. Some results are classic as well as the proofs, some proofs are developed
by the author and a few results are original. With this in mind, I continuously
account for the used source. In general, a reference to the original source is (if
possible) provided with the exceptions of section 1 and appendix A.

First and foremost, I would like to thank Jesper M. Møller for being a good
advisor, for the countlessly many rewarding discussions and for enthusiastically
teaching a course in algebraic topology which sparked my interest for alge-
braic topology. I also thank Jesper Grodal for introducing me to the beautiful
computation of the mod 2 cohomology ring of the dihedral group of order 8.
Hans-Werner Henn helped me with the proof of theorem 3.47 for which I am
grateful.

Next is an overview of the content of this thesis.

Copenhagen, August 2007

Morten Poulsen
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Introduction

Fix a prime p and let H∗(G) denote the mod p cohomology ring H∗(G; Fp)
of a finite group G, that is, H∗(K(G, 1); Fp) interpreted topologically, where
K(G, 1) is an Eilenberg-Mac Lane space of G, and Ext∗FpG(Fp,Fp) interpreted
algebraically, where FpG is the group algebra over Fp. The cohomology ring is
a graded commutative Fp-algebra.

A fundamental result in group cohomology is the Evens-Venkov theorem
which states that H∗(G) is a graded commutative Noetherian ring, or equiv-
alently, a finitely generated graded commutative Fp-algebra. In 1959 Golod
[25] proved the theorem for finite p-groups using the Lyndon-Hochschild-Serre
spectral sequence. Also in 1959 Venkov [48] proved it for all finite groups (or
more generally for compact Lie groups) using topological methods. A few years
later, in 1961, Evens [23] gave a purely algebraic proof for all finite groups. In
any event, this provides the Noetherian hypothesis ubiquitous in commutative
algebra.

Although graded commutative rings are not entirely the same as strictly
commutative rings, the usual concepts from commutative ring theory apply,
e.g., prime ideals, Krull dimension and depth. As a rule of thumb, graded
commutative Noetherian rings with a field in degree zero behave like local rings,
and all the well known results hold.

In 1971 in his landmark paper Quillen [38] described the cohomology ring
in terms of the elementary abelian p-subgroups up to nilpotent phenomena. An
elementary abelian p-group of rank n is a group isomorphic to (Z/p)n. As a
consequence he settled an earlier conjecture by Atiyah and Swan that the Krull
dimension is equal to the p-rank, denoted rkp(G), of G, that is, the maximal
rank of an elementary abelian p-subgroup of G. A truly satisfying result in that
it relates the cohomological structure directly to the group structure. Quillen
also proved that the minimal prime ideals of H∗(G) correspond to the conju-
gacy classes of maximal elementary abelian p-subgroups of G, i.e., the maximal
elements in the partial ordered set of elementary abelian p-subgroups of G or-
dered under inclusion. The minimal rank of these maximal elements is denoted
mrkp(G).

The depth is more difficult to compute and so far the best group theoretical
characterizations only provide bounds on the depth. Duflot [20] proved in 1981
that the p-rank of the center of a Sylow p-subgroup is a lower bound. An upper
bound is given by the Krull dimension.

The depth of H∗(G) is also bounded above by the minimum

ωa = ωa(G) = min{ dimH∗(G)/p | p associated prime of H∗(G) }.

Remember that an associated prime is a prime ideal in H∗(G) which is the
annihilator of an element in H∗(G), and that there are only finitely many since
H∗(G) is Noetherian. Every associated prime p correspond to some elementary
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abelian p-subgroup E of G, and the Krull dimension of H∗(G)/p is the rank of
E, a result first proved by Duflot [21] in 1981 for odd primes. Unfortunately,
very little is known about which subgroups actually correspond to the associated
primes. However, the minimal primes are always among the associated primes,
i.e., mrkp(G) ≤ rkp(G) is an improved upper bound of the depth.

There are examples of finitely generated (graded) commutative Fp-algebras
such that the depth is strictly less than ωa. In 1995 Carlson [15] raised several
questions about the depth. One is if the cohomology rings are special in the
sense of the question:

Question. Suppose H∗(G) has depth d. Is there an associated prime p in
H∗(G) such that dimH∗(G)/p = d?

Other bounds are determined by the depth of the cohomology ring of a
subgroup, e.g., a Sylow p-subgroup provides a lower bound. Finally, in 2006
Notbohm [36] proved an equality. Specifically, the depth is equal to the mini-
mum

min{ depthH∗(CG(E)) |E elementary abelian p-subgroup of G }.

We offer an improvement in the sense that the depth is equal to the depth of
H∗(CG(E)) for any E elementary p-subgroup contained in the center of a Sylow
p-subgroup of G.

Summarizing, let P be a Sylow p-subgroup of G and E a central elementary
abelian p-subgroup of P . Then

rkp(Z(P )) ≤ depthH∗(P ) ≤ depthH∗(CG(E)) =

depthH∗(G) ≤ mrkp(G) ≤ rkp(G) = dimH∗(G).

A collection H of subgroups of G is said to detect the cohomology of G if
the intersection of the kernels of the restriction maps, the maps induced by the
inclusion maps, to the subgroups in H is trivial.

Returning to Carlson’s questions about the depth, he related the depth and
associated primes of the cohomology ring to detection on the collection, denoted
Hs(G), of centralizers of elementary abelian p-subgroups of G of rank s via the
following theorem.

Theorem. If H∗(G) is not detected on Hs(G), then H∗(G) has an associated
prime p such that the dimension of H∗(G)/p is strictly less than s. In particular,
the depth of H∗(G) is strictly less than s.

In other words, the maximum

ωd = ωd(G) = max{ s |H∗(G) is detected by Hs(G) }

is an upper bound of ωa. In particular, if depthH∗(G) ≥ s, then H∗(G) is
detected by the centralizers of the elementary abelian subgroups of rank s.
Carlson raised the question about the converse:
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Question. Suppose H∗(G) is detected by Hs(G). Is depthH∗(G) ≥ s?

The affirmative answers to the above questions are known to some as Carl-
son’s depth conjecture which is the subject of this thesis. For emphasis we state
the conjecture:

Carlson’s depth conjecture. Let G be a finite group. Suppose the depth of
H∗(G) is d. Then

(1) H∗(G) has an associated prime p such that dimH∗(G)/p = d, and

(2) if H∗(G) is detected by Hs(G), then d ≥ s.

In other words, d = ωa = ωd.

Carlson raised another intriguing question for which an affirmative answer
in fact implies the conjecture:

Question. Let H be a subgroup of G. Is depth resG,H H∗(G) ≥ depthH∗(H)?

Carlson & Henn [16] computed the depths of the cohomology rings of the
symmetric groups and verified the conjecture for these groups. An obvious
question is: What about the alternating groups? For odd primes, the situation
is completely determined by the symmetric groups. The case p = 2 seems more
difficult. Using properties of the Sylow 2-subgroups and of the ranks of the
elementary 2-subgroups of the alternating groups we establish the conjecture
for the alternating groups An for n ≡ 2, 3 (mod 4). As an application of our
improved version of the theorem by Notbohm we use the structure of centralizers
of the symmetric groups to establish the conjecture for the wreath products
Z/p o Sn for all n at the prime p. In addition, we offer a delightful result on
p-fusion in the alternating groups.

For other aspects of commutative algebra in the cohomology of groups, the
interested reader is referred to the survey [8] by Benson.

The outline of this thesis is as follows: Section 1 contains a cursory sur-
vey, without any proofs, of some elements of the theory of cohomology rings of
finite groups.

In section 2 we go through some of Quillen’s classic results on the prime
ideal spectrum of a cohomology ring. The main purpose is to establish the
results necessary in the investigation of the associated primes. The results are
naturally also interesting in themselves.

The next two sections constitutes the primary parts of the thesis: Section
3 is devoted to the depth of cohomology rings, in particular the conjecture and
an alternative proof of the above theorem by Carlson using results from the
theory of unstable modules over the Steenrod algebra. Section 4 is dedicated
to the symmetric and alternating groups.



6 Introduction

Appendix A provides the necessary background theory from commutative
ring theory in the realm of graded commutative rings. Since every book on com-
mutative ring theory only studies strictly commutative rings, another purpose
of the appendix is also to address the issue that our rings of interest are not
strictly commutative. The reader unfamiliar with commutative algebra and/or
concerned with the issue that our rings are graded commutative may jump
to appendix A after reading section 1 and afterwards continue with section 2.
Since we in general refer to the appendix when needed, the reader acquainted
with the concepts mentioned above in case of a commutative local ring may
be better off accepting that the usual concepts hold and simply lookup up the
references if needed and thus keeping focus on the rings of interest, the coho-
mology rings of finite groups. For readability, some essential definitions are also
included in the main text.

A few words on the notation: The tensor product ⊗ always denotes the
graded tensor product ⊗Fp . For the convenience of the reader a list of some of
the notation used in this thesis is available on page 107. Note that ⊂ denotes
subset with the possibility of equality and proper inclusion is denoted by (.
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1 Cohomology rings of finite groups

Let G be a finite group and k a field. In later sections we restrict our attention
to the case where k is the Galois field Fp with p elements. Let kG denote the
group algebra over k, that is, the free k-module with basis the elements of G
and a k-bilinear product kG × kG → kG given by extending the product in
G. The augmentation map kG → k,

∑
λgg 7→

∑
λg allows us to view k as a

module over kG.
The nth cohomology group of G with coefficients in k is defined to be the

abelian group
Hn(G; k) = ExtnkG(k, k) ∼= ExtnZG(Z, k).

The cohomology of G is the graded group

H∗(G; k) = Ext∗kG(k, k) =
⊕
n≥0

ExtnkG(k, k).

More generally, for a (left) kG-module M the cohomology of G with coefficients
in M is

H∗(G;M) = Ext∗kG(k,M) =
⊕
n≥0

ExtnkG(k,M).

Group cohomology H∗(−;−) is a bifunctor, contravariant in the first variable
and covariant in the second. The main references for this review of group
cohomology are [12], [24] and [28]. The diligent reader should have no problem
looking up wanted details.

Let X = K(G, 1) be an Eilenberg-Mac Lane space of type (G, 1), that is,
a based connected CW complex X such that π1(X) ∼= G and πn(X) is trivial
for n > 1, or equivalently, such that π1(X) ∼= G and the universal cover X̃ is
contractible. An Eilenberg-Mac Lane space is unique up to homotopy equiva-
lence. For example, the real projective plane RP∞ is a K(Z/2, 1). The singular
chain complex C∗(X̃) is a complex of ZG-modules via the action of π1(X) ∼= G

on X̃ by deck transformations. The cohomology H∗(X;M) of X with (local)
coefficients in M is the homology of the chain complex HomZG(C∗(X̃),M).
Since X̃ is contractible, C∗(X̃) is a free resolution of Z considered a mod-
ule over ZG via the augmentation map C0(X̃) → Z → 0. In other words,
H∗(X;M) = H∗(G;M) and we may study the cohomology of G from a topo-
logical viewpoint. In particular, the mod p cohomology H∗(G; Fp) of G has
Steenrod operations.

For kG-modules M and N , G acts on Homk(N,M) by (gf)(n) = gf(g−1n)
for n ∈ N . Let MG denote the G-invariant subgroup of M , i.e., the elements
m ∈M such that gm = m for all g ∈ G.

Cohomology in low degrees has nice interpretations,

H0(G;M) = HomkG(k,M) = Homk(k,M)G ∼= MG.
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Furthermore, if M is a trivial kG-module, that is, gm = g for all g in G, then

H1(G;M) = Hom(G,M) = Hom(G/[G,G],M).

For nontrivial modules H1(G;M) is described by derivations.
Another definition of group cohomology is as the right derived functors

R∗(−G)(M) of the invariant subgroup functor (−)G from the category of kG-
modules to the category of abelian groups. The functors H∗(G;−) are universal
δ-functors in the sense of Grothendieck, see e.g. [49] ch. 2 and 6.

The cohomology of G may be endowed with a graded ring structure in sev-
eral ways such as Yoneda splices, composition products, and via cross products.
Fortunately, they all produce the same ring structure on H∗(G; k), see e.g. [18]
ch. 4, known as the cup product. For example, consider the cohomology cross
product

× : H∗(G; k)⊗k H∗(G; k)→ H∗(G×G; k),

and the diagonal map ∆: G → G × G, ∆(g) = (g, g) which induces a homo-
morphism ∆∗ : H∗(G; k)→ H∗(G×G; k). The cup product is the composite

∪ : H∗(G; k)⊗k H∗(G; k) × // H∗(G×G) ∆∗ // H∗(G; k),

and x ∪ y ∈ Hm+n(G; k), or simply xy, for x ∈ Hm(G; k) and y ∈ Hn(G; k).
The cup product is graded commutative,

xy = (−1)mnyx.

Since H0(G; k) = k, H∗(G; k) is a graded commutative k-algebra. More gen-
erally, there is a cup product ∪ : H∗(G; k) ⊗k H∗(G;M) → H∗(G;M), i.e.,
H∗(G;M) is a module over H∗(G; k).

Our objects of interest are the cohomology rings, henceforth we restrict our
attention to these.

A group homomorphism ϕ : H → G induces a homogeneous homomorphism
of graded rings

ϕ∗ : H∗(G; k)→ H∗(H; k).

In the particular case of ϕ being an inclusion the induced map is called the
restriction of G to H and is denoted resG,H .

Suppose H is a subgroup of G and g is an element of G. Then conjugation
cg−1 : gHg−1 → H, h 7→ g−1hg, induces an isomorphism

·g : H∗(H; k)→ H∗(gHg−1; k), gx = c∗g−1(x)

for x ∈ H∗(H; k). It is well known that ·g is the identity map on H∗(G; k) for
any g in G. In particular, if H is a normal subgroup of G, then G/H acts on
H∗(H; k).
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The transfer map and the Evens norm map are useful maps in the other
direction which are not induced by group homomorphisms. LetH be a subgroup
of G.

The transfer map,

trH,G : H∗(H; k)→ H∗(G; k),

is a homomorphism of groups but not a ring homomorphism. The following
proposition gives a few elementary properties of the transfer map.

Proposition 1.1. Consider groups K ⊂ H ⊂ G. If x ∈ H∗(G; k) and y ∈
H∗(H; k), then

(1) trK,G = trH,G trK,H ,

(2) trH,G(y resG,H(x)) = trH,G(y)x,

(3) trH,G(resG,H(x)y) = x trH,G(y), and

(4) trH,G resG,H(x) = [G : H]x.

In particular, the transfer map is H∗(G; k)-linear when H∗(H; k) is viewed
as a module over H∗(G; k) via the restriction map. Furthermore, the image of
the transfer map is an ideal in H∗(G; k). Another immediate consequence is
that |G|Hn(G; k) = 0 for all n > 0 since Hn({1}; k) = 0 for n > 0.

The Evens norm map,

normH,G : H2n(H; k)→ H2n[G:H](G; k),

is multiplicative but not additive. It may be defined for elements of arbitrary
degree using other coefficients, see e.g. [7] or [18]. We only need the following
property, known as the Mackey formula, of the norm map.

Proposition 1.2. Suppose G =
⋃
g∈DHgK is a double coset decomposition of

G. Then for x ∈ H2n(K; k),

resG,H normK,G(x) =
∏
g∈D

normH∩gKg−1,H resgKg−1,H∩gKg−1(gx) ∈ H∗(H; k).

Suppose k has characteristic zero or characteristic not dividing the order
of G. Then multiplication by |G| is an isomorphism on the k-vector space
Hn(G; k), i.e., Hn(G; k) = 0 for n > 0. Consequently, the interesting cases are
when the characteristic of k divides the order of G.

Any field k of characteristic p > 0 may be viewed as an algebra over Fp
and there is an isomorphism of k-algebras H∗(G; k) ∼= k ⊗Fp H

∗(G; Fp), see
[24] section 3.4. In other words, only the characteristic of the field is really
important.

The computation of the cohomology rings of the cyclic groups is classic,
see [19] section XII.7 for a algebraic computation or [28] example 3.41 for a
topological computation.
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Theorem 1.3. Let G be a cyclic group of prime power order pn. Then

H∗(G; Fp) =

{
Fp[x], |G| = 2
∧Fp(x)⊗Fp Fp[y], |G| > 2,

where |x| = 1 and |y| = 2.

The Künneth formula (the cross product is an isomorphism) determines the
cohomology ring of any finitely generated abelian group.

The elementary abelian p-groups play an important role in the cohomology
of groups. Recall that an elementary abelian p-group of rank n is a finite
group E isomorphic to the direct product of n cyclic groups of order p, i.e.,
E ∼= (Z/p)n. In other words, an elementary abelian p-group E is a finite
dimensional vector space over Fp with the obvious scalar multiplication, that
is, cx = x+· · ·+x (c times) for 0 ≤ c ≤ p−1 and x ∈ E. Furthermore, any group
homomorphism E → Z/p is Fp-linear, i.e., Hom(E,Z/P ) = HomFp(E,Fp). The
p-rank of a finite group G, denoted rkp(G), is the maximal rank of an elementary
abelian p-subgroup of G.

The Bockstein operation β : Hn(Z/p; Fp)→ Hn+1(Z/p; Fp) of the sequence
0→ Z/p→ Z/p2 → Z/p→ 0 is an isomorphism in odd degrees and zero in even
degrees, see e.g. [24] section 3.5 or [28] section 3.E. This gives the following
description of the cohomology rings of elementary abelian p-groups.

Corollary 1.4. Let E be an elementary abelian p-group of rank n. Then

H∗(E; Fp) =

{
Fp[x1, . . . , xn], p = 2
∧Fp(x1, . . . , xn)⊗Fp Fp[β(x1), . . . , β(xn)], p > 2,

where |xi| = 1.

For nonabelian groups the computations are in general more difficult. In the
calculation of cohomology one often ends up with applying spectral sequences.
Appendix B contains computations of the mod 2 cohomology of the dihedral
group of order 8 and the quaternion group using the Lyndon-Hochschild-Serre
spectral sequence. These groups will be used as examples throughout the text.
The computations illustrate nicely how complicated it usually is to compute
the cohomology ring by hand even for very small groups. Rusin [43] computed
by hand the mod 2 cohomology of the groups of order 32 using the Eilenberg-
Moore spectral sequence. Carlson [14] has computed the mod 2 cohomology of
all groups of order dividing 64 by computer calculations, see also [18] for more
information on these computer computations. Green [26] has computed the
mod p cohomology of some small p-groups also using computer calculations.
These computer computations are great sources of examples and as tools in
testing ideas. Note that they also provide a lot of other information beside the
actual ring structure, e.g., restriction maps to certain subgroups et cetera.
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Example 1.5. The mod 2 cohomology of D8, the dihedral group of order 8, is

H∗(D8; F2) = F2[x, y, v]/(x(x+ y))

with x and y in degree 1 and v in degree 2, see appendix B.

Example 1.6. The mod 2 cohomology ring of Q8 is

H∗(Q8; F2) = F2[x, y, v]/(x2 + xy + y2, x2y + xy2)

with x and y in degree 1 and v in degree 4, see appendix B.

We finish this overview with the Evens-Venkov theorem, see e.g. [24] section
7.4 for more information, which provides the Noetherian property essential to
applying the concepts from commutative ring theory.

Theorem 1.7. Let M be a kG-module. If M is Noetherian as a k-module, then
H∗(G;M) is Noetherian as a module over H∗(G; k). In particular, H∗(G; k) is
a graded commutative Noetherian ring.

In other words, H∗(G; k) is a finitely generated graded commutative k-
algebra by proposition A.5. The following consequence is used extensively
throughout the text and follows by an application of the Eckmann-Shapiro
lemma. It says that the restriction map is always close to being surjective.

Corollary 1.8. Suppose H is a subgroup of G. Then H∗(H; k) is finitely
generated as a module over H∗(G; k) via the restriction map.
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2 The prime ideal spectrum of a cohomology ring

In this section we study the prime ideal spectrum of the mod p cohomology ring
of a finite group. A part from introducing Quillen’s description of the prime
ideal spectrum in group theoretic terms we give a characterization of the ideals
that are closed under Steenrod operations.

Let G denote a finite group and p be a prime divisor of G. Since we shall
apply Steenrod operations, and in later sections use results from the theory of
unstable modules over the Steenrod algebra, we restrict our attention to mod
p cohomology and abbreviate H∗(G; Fp) to H∗(G).

2.1 Quillen’s theorem

Let A(G) be the category with objects the elementary abelian p-subgroups of
G and morphisms inclusions and the homomorphisms of elementary abelian p-
subgroups induced by conjugation by an element in G. This category is called
the Quillen category. Associating H∗(E) to an elementary abelian p-subgroup
E of G gives a contravariant functor from the Quillen category to the category
of rings.

Consider the product of the restriction maps

res : H∗(G)→
∏

E∈A(G)

H∗(E), x 7→ (resG,E(x))E∈A(G).

An element in the image clearly has to satisfy relations given by conjugation
and inclusion.

Recall that the limit limE∈A(G)H
∗(E) is the subring of the direct product

of the rings H∗(E), E ∈ A(G), consisting of the sequences (xE)E∈A(G) such
that

resE,E′(xE) = xE′ if E′ ⊂ E

and
gxE = xE′ if E′ = gEg−1 for some g ∈ G.

The map res induces a map

H∗(G)→ lim
E∈A(G)

H∗(E).

The following theorem is due to Quillen [38] and is also known as Quillen’s
theorem.

Theorem 2.1. The map

H∗(G)→ lim
E∈A(G)

H∗(E)

induced by the product of the restriction maps is an F-isomorphism, that is, the
kernel consists of nilpotent elements and every element x ∈ limE∈A(G)H

∗(E)
satisfies that xp

n
is in the image for some n.
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An F-isomorphism induces a bijection on prime ideal spectra, see proposi-
tion A.16.

Example 2.2. Consider the cyclic group Z/pn. The restriction map to the
cyclic subgroup of order p is zero in odd degrees and an isomorphism in even
degrees, see e.g. [2] corollary II.5.7. In particular, the homomorphism from
Quillen’s theorem is in general neither injective nor surjective.

Example 2.3. The quaternion group Q8 has only one elementary abelian 2-
subgroup, namely the center which is cyclic of order 2. The homomorphism
from Quillen’s theorem

H∗(Q8; F2) = F2[x, y, v]/(x2 + xy + y2, x2y + xy2)→ F2[w] = H∗(Z(Q8); F2),

where |x| = |y| = |w| = 1 and |v| = 4, maps x and y to zero and v to w4, see
appendix B.

Quillen’s original proof uses equivariant cohomology. However, Quillen &
Venkov [40] proved the following part of Quillen’s theorem using only the co-
homology of finite groups.

Theorem 2.4. Let x ∈ H∗(G). If x restricts to zero on all elementary abelian
p-subgroups of G, then x is nilpotent.

With the previous theorem as a starting point we shall derive a series of
consequences about the prime ideals of the cohomology ring. The primary
references are [24] ch. 8 & 9, [37], [38] and [7] ch. 5. Our view on the prime
ideal spectrum is basic, we simply view it as the set of prime ideals contrary
to most other expositions which employ tools from classic algebraic geometry.
Readers interested in more information such as the proofs of the above theorems
are referred to the above sources. The notation is standard. For example, the
radical of an ideal I of a ring R is denoted

√
I, e.g., the nilradical Nil(R) =

√
0,

and V (I) is the set of prime ideals p ⊃ I. See appendix A for more information.
We begin with a basic description of the prime ideal spectrum.

The cohomology of an elementary abelian p-group E modulo its nilradical
is a polynomial ring, particularly an integral domain. Thus, the nilradical is a
prime ideal of H∗(E). Furthermore, the pullback of the nilradical,

pE = res−1
G,E(Nil(H∗(E))) =

√
Ker resG,E ,

is a homogeneous prime ideal in H∗(G). The latter equality follows since if
resG,E(x) ∈ Nil(H∗(E)), then resG,E(x)n = 0 for some n, i.e., xn ∈ Ker resG,E .
Conversely, if xn ∈ Ker resG,E , then resG,E(x)n = resG,E(xn) = 0. Homogeneity
follows by proposition A.6 since Ker resG,E is clearly homogeneous.

In other words, pE is the kernel of the homomorphism

H∗(G)
resG,E // H∗(E) // H∗(E)/Nil(H∗(E)).
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Remember that H∗(E) is finitely generated as a module over H∗(G) via
the restriction map, i.e., as a module over Im resG,E which is isomorphic to
H∗(G)/Ker resG,E . By the going-up theorem, see theorem A.14, the map

i−1 : SpecH∗(E)→ Spec Im resG,E

of prime ideal spectra induced by the inclusion map i : Im resG,E → H∗(E) is
surjective. It follows that

res−1
G,E(SpecH∗(E)) = V (Ker resG,E) = V (

√
Ker resG,E).

Corollary 2.5. SpecH∗(G) =
⋃
E∈A(G) V (

√
Ker resG,E).

Proof. Theorem 2.4 gives that the product of the restriction maps,

res : H∗(G)→
∏

E∈A(G)

H∗(E),

has nilpotent kernel. In particular, SpecH∗(G) = V (Ker res).
The product

∏
E∈A(G)H

∗(E) is finitely generated as a module over H∗(G)
via res and the going-up theorem implies that

res−1 : Spec
∏

E∈A(G)

H∗(E)→ V (Ker res) = SpecH∗(G)

is surjective. Furthermore,

Spec
∏

E∈A(G)

H∗(E) =
⋃

E∈A(G)

π−1
E (SpecH∗(E)),

where πE′ :
∏
E∈A(G)H

∗(E)→ H∗(E′) is the projection map. Here we used the
fact that the prime ideals in a product ring are precisely the pullbacks under
the projection maps: Suppose R = R1×· · ·×Rn. Let ei = (0, . . . , 0, 1, 0, . . . , 0)
with 1 in the ith place. Since eiej = 0 for i 6= j, any prime ideal of R contains
all but one ei.

For a prime ideal p in H∗(E),

res−1(π−1
E (p)) = (πE res)−1(p) = res−1

G,E(p).

This finishes the proof.

We shall work with the standard definition of Krull dimension.

Definition 2.6. The Krull dimension, or simply the dimension, of a graded
commutative Noetherian ring R, R0 = Fp, is denoted dimR and is defined to
be the supremum of lengths n of strictly increasing chains of prime ideals

p0 ( p1 ( · · · ( pn

in R. For an R-module M the dimension of M is defined to be the dimension
of R/AnnRM and is denoted dimRM .
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Example 2.7. The cohomology of an elementary abelian p-group E modulo its
nilradical is a polynomial ring in rkp(E) variables. In particular, dimH∗(E) =
rkp(E).

Lemma 2.8. Suppose E is an elementary abelian p-subgroup of G. Then the
dimension of H∗(G)/

√
Ker resG,E is rkp(E).

Proof. Recall that H∗(E) is finitely generated as a module over H∗(G) via the
restriction map. Corollary A.15 gives that Im resG,E ∼= H∗(G)/Ker resG,E and
H∗(E) has the same dimension, which is rkp(E). Noting that V (Ker resG,E) =
V (
√

Ker resG,E) finishes the proof.

An important consequence of Quillen’s theorem is that it determines the
dimension of a cohomology ring:

Corollary 2.9. The dimension of H∗(G) is the p-rank of G.

Proof. Corollary 2.5 and lemma 2.8 gives that

dimH∗(G) = max{ dimH∗(G)/
√

Ker resG,E |E ∈ A(G) }
= max{ rkp(E) |E ∈ A(G) }
= rkp(G).

Our next objective is a group theoretic characterization of the minimal prime
ideals. First some results due to Quillen [37].

Lemma 2.10. Let E and E′ be elementary abelian p-subgroups of G. Then
there exists τE ∈ H∗(G) such that τE /∈ pE and τE ∈ pE′ if E is not conjugate
to a subgroup of E′.

Proof. Consider the element

ρE =
∏

0 6=x∈H1(E)

β(x) ∈ H∗(E),

where β is the Bockstein homomorphism. Note that ρE is not nilpotent.
For 0 6= x ∈ H1(E) = Hom(E,Z/p), the restriction of x to the kernel of x is

zero. On the other hand, any maximal proper subgroup of E correspond to a
homomorphism x : E → Z/p. Consequently, the restriction of ρE to any proper
subgroup E′ of E is zero since

resE,E′(β(x)) = β resE,E′(x) = β resE,E′ resE,Kerx(x) = 0

for some x : E → Z/p with E′ ⊂ Kerx.
Also consider the element

σE = normE,G(1 + ρE) ∈ H∗(G).
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Write [NG(E) : E] = pkq with (p, q) = 1. Let G =
⋃
g∈D EgE be a double

coset decomposition of G.
Let g ∈ G. Observe that if g /∈ NG(E), then E∩gEg−1 is a proper subgroup

of gEg−1. Since multiplication by g is an isomorphism H∗(E)→ H∗(gEg−1),

gρE = ρgEg−1 .

It follows that

resgEg−1,E∩gEg−1(gρE) =

{
ρE if g ∈ NG(E)
0 if g /∈ NG(E).

Note that D ∩NG(E) contains exactly [NG(E) : E] double coset represen-
tatives. The Mackey formula, see proposition 1.2, gives that

resG,E(σE) = resG,E normE,G(1 + ρE)

=
∏
g∈D

normE∩gEg−1,E resgEg−1,E∩gEg−1(1 + gρE)

=
∏

g∈D∩NG(E)

normE∩gEg−1,E resgEg−1,E∩gEg−1(1 + gρE)

=
∏

g∈D∩NG(E)

normE,E(1 + ρE)

= (1 + ρE)[NG(E):E].

By an application of the binomial formula,

resG,E(σE) = (1 + ρp
k

E )q = 1 + qρp
k

E + terms of higher degree.

Define τE in H∗(G) to be 1/q times the homogeneous part of σE of degree
the degree of ρp

k

E . By the above calculation, resG,E(τE) = ρp
k

E which is not
nilpotent, that is, τE /∈ pE .

Suppose E′ be an elementary abelian p-subgroup of G such that E is not
conjugate to a subgroup of E′. Then E′∩gEg−1 is a proper subgroup of gEg−1

and
resgEg−1,E′∩gEg−1(gρE) = resgEg−1,E′∩gEg−1(ρgEg−1) = 0.

Let G =
⋃
g∈D′ E

′gE be double coset decomposition of G. Again, the
Mackey formula gives that

resG,E′(σE) = resG,E′ normE,G(1 + ρE)

=
∏
g∈D′

normE′∩gEg−1,E′ resgEg−1,E′∩gEg−1(1 + gρE)

= 1.

In particular, resG,E′(τE) = 0, that is, τE ∈ pE′ if E is not conjugate to a
subgroup of E′.
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In other words, the cohomology ring H∗(G) distinguishes between the el-
ementary abelian p-subgroups of G. In the sense that given two elementary
abelian p-subgroups of G which are not conjugated there exists an element in
H∗(G) which is nilpotent on restriction to one subgroup but not on the other.

Theorem 2.11. Suppose E and E′ are elementary abelian p-subgroups of G.
Then pE ⊃ pE′ if and only if E is conjugate to a subgroup of E′. In particular,
pE = pE′ if and only if E and E′ are conjugate in G.

Proof. Suppose E is not conjugate to a subgroup of E′. By lemma 2.10 there
exists τE ∈ pE′ such that τE /∈ pE .

Conversely, suppose that E is conjugate to a subgroup of E′, i.e., gEg−1 ⊂
E′ for some g ∈ G. To prove that pE ⊃ pE′ it suffices to prove that resG,E(x)
is nilpotent for all x in pE′ . To see this consider the commutative diagram

E

cg

��

// G

cg

��
gEg−1 // E′ // G

where the unlabeled arrows denote inclusion. Since conjugation induces the
identity on G, see e.g. [24] proposition 4.1.1, commutativity of the diagram
gives that

resG,E = c∗g resE′,gEg−1 resG,E′ .

Suppose x ∈ pE′ , i.e., resG,E′(x) is nilpotent, say of degree n. Then

resG,E(x)n = c∗g resE′,gEg−1(resG,E′(x))n = 0,

that is, resG,E(x) is nilpotent.

Remark 2.12. A consequence of theorem 2.11 is that in

SpecH∗(G) =
⋃

E∈A(G)

V (
√

Ker resG,E)

it suffices to take the union over a set of representatives of the conjugacy classes
in G of the elementary abelian p-subgroups of G.

Corollary 2.13. Suppose E and E′ are elementary abelian p-subgroups of G.
Then

τE /∈ pE′ ⇔ E conjugate in G to a subgroup of E′ ⇔ pE ⊃ pE′ .

Proof. By lemma 2.10, if τE /∈ pE′ , then E is conjugate in G to a subgroup of
E′. Theorem 2.11 gives that pE ⊃ pE′ if E is conjugate in G to a subgroup of
E′. Clearly, if pE ⊃ pE′ , then τE /∈ pE′ .
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Now, we are able to prove Quillen’s characterization of the minimal prime
ideals. By a maximal elementary abelian p-subgroup we always mean a maximal
element in the partial ordered set A(G) ordered under inclusion.

Theorem 2.14. There is a one-to-one correspondence between the conjugacy
classes of maximal elementary abelian p-subgroups of G and the minimal primes
in H∗(G). For a maximal elementary abelian p-subgroup E of G the corre-
sponding minimal prime is pE =

√
Ker resG,E. In addition, the dimension of

H∗(G)/pE is rkp(E).

Proof. Let Ei, 1 ≤ i ≤ n, be representatives for the conjugacy classes in G of
maximal elementary abelian p-subgroups.

The nilradical is the intersection of all prime ideals, see proposition A.6. By
corollary 2.5 and theorem 2.11,

Nil(H∗(G)) =
⋂

E∈A(G)

pE = pE1 ∩ · · · ∩ pEn ,

and the prime ideals pE1 , . . . , pEn are distinct.
Let p be a prime ideal of H∗(G). Note that Nil(H∗(G)) ⊂ p. We claim

that p contains pEi for some i: Suppose pEi − p contains an element xi for all
i. Then

x1 · · ·xn ∈ pE1 ∩ · · · ∩ pEn ⊂ p,

i.e., xi ∈ p for some i which is a contradiction.
The statement about the dimension follows from lemma 2.8.

Example 2.15. Recall that the mod 2 cohomology ring of the dihedral group
D8 = 〈σ, τ |σ4 = τ2 = 1, τστ = σ−1 〉 of order 8 is

H∗(D8; F2) = F2[x, y, v]/(x(x+ y))

with |x| = |y| = 1 and |v| = 2. The conjugacy classes of elementary abelian
2-subgroups are

D8

{〈σ2, τ〉}

qqqqqqqqqqq
{〈σ2, τσ〉}

NNNNNNNNNNNN

{〈τ〉, 〈τσ2〉} {〈σ2〉}

MMMMMMMMMM

pppppppppp
{〈τσ3〉, 〈τσ〉}

{1}

MMMMMMMMMMM

pppppppppppp
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This also illustrates the Quillen category A(D8). The corresponding prime
ideals are

0

p〈σ2,τ〉 = (x)

mmmmmmmmmmmmmm
p〈σ2,τσ〉 = (x+ y)

SSSSSSSSSSSSSSSS

p〈τ〉 = (x, v) p〈σ2〉 = (x, y)

PPPPPPPPPPPP

lllllllllllll
p〈τσ〉 = (x+ y, v)

H∗(D8; F2)

PPPPPPPPPPPP

lllllllllllll

See appendix B for the computational details.

For an elementary abelian p-group E of G set

V +
G,E = V (

√
Ker resG,E)−

⋃
E′<E

V (
√

Ker resG,E′)

and
V +
E = SpecH∗(E)−

⋃
E′<E

V (
√

Ker resE,E′),

where E′ < E denotes that E′ is a proper subgroup of E.
Notice that V +

G,E only depends on the conjugacy class in G of E. The
following is an improvement of corollary 2.5. The proof given here is adapted
from the proof of [24] theorem 9.1.3.

Theorem 2.16. The prime ideal spectrum SpecH∗(G) is the disjoint union∐
1≤i≤n V

+
G,Ei

where {E1, . . . , En} is a set of representatives of the conjugacy
classes of elementary abelian p-subgroups of G.

We begin with a few of technical lemmas.

Lemma 2.17. Suppose 0 6= x ∈ H1(E) = Hom(E,Z/p). Then

(1) if p = 2, then Ker resE,Kerx = (x), and

(2) if p odd, then Ker resE,Kerx ∩H∗(E)ev = β(x)H∗(E)ev, where H∗(E)ev

denotes
⊕

n≥0H
2n(E).

Proof. Note that every subgroup of E is a direct factor of E. In particular,
E = Kerx× Z/p. Let e1, . . . , en−1 be generators of Kerx and e a generator of
Z/p such that x(e) = 1. In other words, we have chosen generators of E such
that x is the projection onto the last factor.

Let x1, . . . , xn−1, x be the dual basis of e1, . . . , en−1, e, i.e., an Fp-basis
of Hom(E,Z/p) = H1(E). Similarly, let x′1, . . . , x

′
n−1 be the dual basis of
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e1, . . . , en−1, i.e., an Fp-basis of Hom(Kerx,Z/p) = H1(Kerx). Observe that
resE,Kerx(xi) = x′i for 1 ≤ i ≤ n − 1, and resE,Kerx(x) = 0. In particular,
resE,Kerx(β(xi)) = β(x′i) and resE,Kerx(β(x)) = 0.

As a consequence, for p = 2, resE,Kerx maps the unique factorization domain
F2[x1, . . . , xn−1] ⊂ H∗(E) isomorphically onto F2[x′1, . . . , x

′
n−1] = H∗(Kerx).

In case of p odd, resE,Kerx maps the UFD Fp[β(x1), . . . , β(xn−1)] ⊂ H∗(E)
isomorphically onto Fp[β(x′1), . . . , β(x′n−1)] ⊂ H∗(Kerx).

(1) Let y ∈ Ker resE,Kerx, |y| > 0. Suppose y /∈ (x). Note that H |y|(E) is
the F2-vector space generated by the homogeneous polynomials of degree |y|.
Since y /∈ (x), y = f + gx, where f 6= 0 is a polynomial in x1, . . . , xn−1 and
g is a polynomial in x1, . . . , xn−1, x. Since resE,Kerx is an isomorphism on the
subring F2[x1, . . . , xn−1], it follows that

resE,Kerx(y) = resE,Kerx(f) + resE,Kerx(gx) = resE,Kerx(f) 6= 0,

which is a contradiction. We conclude that y ∈ (x).
Conversely, since resE,Kerx(x) = 0, (x) ⊂ Ker resE,Kerx(x).
(2) Similar to the case p = 2, simply replace xi with β(xi), 1 ≤ i ≤ m− 1,

and x by β(x).

Remember the element

ρE =
∏

0 6=x∈H1(E)

β(x) ∈ H∗(E)

from the proof of lemma 2.10.

Lemma 2.18. Suppose E is an elementary abelian p-group. Then V (ρE) =⋃
E′<E V (

√
Ker resE,E′).

Proof. Note that

V (ρE) = V (
∏

06=x∈H1(E)

β(x)) =
⋃

06=x∈H1(E)

V (β(x)),

see proposition A.7. Next, we investigate V (β(x)). As usual, we may view x as
a homomorphism E → Z/p.

V (β(x)) = V (
√

Ker resE,Kerx): Suppose (β(x)) ⊂ p ∈ SpecH∗(E). If p = 2,
then β(x) = x2. It follows that x ∈ p, and lemma 2.17 gives that

(x) = Ker resE,Kerx ⊂ p.

If p odd, then

β(x)H∗(E)ev = Ker resE,Kerx ∩H∗(E)ev ⊂ p.

Since elements of odd degree are nilpotent, Ker resE,Kerx ⊂ p. Consequently,
p ∈ V (

√
Ker resE,Kerx). Conversely, if

√
Ker resE,Kerx ⊂ p, then β(x) ∈ p since

x ∈ Ker resE,Kerx.
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Suppose E′ is a subgroup of Kerx, then

resE,E′(β(x)) = resKerx,E′ resE,Kerx(β(x)) = 0.

It follows that

V (
√

Ker resE,E′) ⊂ V (
√

Ker resE,Kerx) = V (β(x)).

Noting that every proper subgroup of E is contained in Kerx for some 0 6= x ∈
H1(E) finishes the proof.

Corollary 2.19. Suppose E is an elementary abelian p-group. Then V +
E are the

prime ideals of H∗(E) not containing ρE, that is, V +
E = SpecH∗(E)− V (ρE).

We are now able to proof theorem 2.16.

Proof of theorem 2.16. Recall that

V +
G,E = V (pE)−

⋃
E′<E

V (pE′)

= res−1
G,E(SpecH∗(E))−

⋃
E′<E

res−1
G,E′(SpecH∗(E′)).

By corollary 2.13, there exists τE ∈ H∗(G) such that τE /∈ pE , and τE /∈ pE′

if and only if E is conjugate to a subgroup of E′ if and only if pE ⊃ pE′ .
Define UE to be the subset of res−1

G,E(SpecH∗(E)) of prime ideals not con-
taining τE , that is,

UE = V (
√

Ker resG,E)− V (τE).

We claim that the theorem follows if V +
G,E = UE :

The sets V +
G,E are disjoint: Suppose p ∈ V +

G,E ∩ V
+
G,E′ . Since τE /∈ p and

pE′ ⊂ p, τE /∈ pE′ hence E is conjugate to a subgroup of E′. Similarly, E′ is
conjugate to a subgroup of E. So E and E′ are conjugate, i.e., V +

G,E = V +
G,E′ .

SpecH∗(G) =
⋃
E∈A(G) V

+
G,E : Consider a prime ideal p of H∗(G). Let E be

the smallest elementary abelian p-subgroup of G such that pE ⊂ p, i.e., pE is the
largest prime ideal of the form pE′ for E′ ∈ A(G) contained in p. Consequently,
p ∈ V +

G,E due to corollary 2.5.
Since V +

G,E only depend on the conjugacy class of E, it follows that

SpecH∗(G) =
∐

1≤i≤n
V +
G,Ei

.

It remains to prove that V +
G,E = UE :

By construction, UE is disjoint from the set
⋃
E′<E V (pE′). In particular,

UE ⊂ V +
G,E . To prove that UE = V +

G,E it suffices to show that

V +
G,E ⊂ res−1

G,E(V +
E ) and res−1

G,E(V +
E ) ⊂ UE .
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Note that this also implies that V +
G,E = res−1

G,E(V +
E ).

V +
G,E ⊂ res−1

G,E(V +
E ): Consider p = res−1

G,E(q) ∈ V +
G,E , q ∈ SpecH∗(E). Since

p ∈ V +
G,E , pE′ is not contained in p for all E′ < E. Suppose q /∈ V +

E , i.e.,√
Ker resE,E′ ⊂ q for some E′ < E. Then

pE′ =
√

Ker resG,E′ ⊂ res−1
G,E(

√
Ker resE,E′) ⊂ p,

contradicting that p ∈ V +
G,E . We conclude that q ∈ V +

E .
res−1

G,E(V +
E ) ⊂ UE : Let q ∈ V +

E . By corollary 2.19,

V +
E = SpecH∗(E)− V (ρE) = SpecH∗(E)− V (

√
ρE).

Recall from the proof of 2.10 that resG,E(τE) = ρp
k

E for some k. In other words,
resG,E(τE) ∈ √ρE which implies that resG,E(τE) /∈ q, i.e., res−1

G,E(q) ∈ UE .
This finishes the proof.

During the previous proof we observed:

Corollary 2.20. Let E be an elementary abelian p-subgroup of G. Then V +
G,E =

res−1
G,E(V +

E ).

2.2 Steenrod operations

For the reader’s convenience we recall a few basic facts about Steenrod opera-
tions. The mod p cohomology of a group G has Steenrod squares

Sqi : Hn(G; F2)→ Hn+i(G; F2)

for p = 2, and reduced Steenrod powers

P i : Hn(G; Fp)→ Hn+2i(p−1)(G; Fp)

for p odd. The square Sq1 is the Bockstein operation. For p odd the Bockstein
operation is a separate Steenrod operation. Classically, the Steenrod operations
are cohomology operations of the mod p cohomology of a space, see e.g. [28]
section 4.L. These cohomology operations have many nice properties such as
Sq0 and P 0 are both the identity map, additivity, and naturality with respect
to group homomorphisms. The multiplicative structure is given by the Cartan
formula,

Sqn(xy) =
∑
i+j=n

Sqi(x)Sqj(y)

and
Pn(xy) =

∑
i+j=n

P i(x)P j(y).

The Steenrod operations also satisfy the instability property,

Sq|x|(x) = x2 and, Sqi(x) = 0 for i > |x|
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and
P |x|/2(x) = xp for |x| even, and P i(x) = 0 for 2i > |x|.

The total Steenrod operations

Sq =
⊕
i≥0

Sqi and P =
⊕
i≥0

P i

are (by the Cartan formula) ring homomorphisms.
Under composition the Steenrod operations satisfy certain, somewhat com-

plicated, relations known as the Adem relations. The mod 2 Steenrod algebra
is the graded algebra over F2 generated by Sqi subject to the Adem relations.
For p odd the mod p Steenrod algebra is the graded algebra over Fp gener-
ated by P i and the Bockstein β subject to the Adem relations and β2 = 0.
Consequently, the mod p cohomology of a group is a module over the Steen-
rod algebra. These concepts are the starting point of the theory of unstable
modules over the Steenrod algebra, see [44].

We now investigate the so called invariant ideals.

Definition 2.21. A homogeneous ideal I in H∗(G) is called invariant if it is
closed under the reduced Steenrod operations, that is, Sqi(I) ⊂ I if p = 2, and
P i(I) ⊂ I if p odd.

Remark 2.22. The Cartan formula gives that the radical of an invariant ideal
is also invariant. A reason for not including the Bockstein for odd primes is
that the radical of the zero ideal in H∗(Z/p) = ∧Fp [x]⊗Fp[β(x)], |x| = 1, is not
invariant under the Bockstein.

The following theorem by Quillen, see [38] theorem 12.1, shows that the
invariant prime ideals are special. It relies on the corresponding result for
elementary abelian p-groups which is due to Serre, see [45] proposition 1. Note
that Serre’s proof is purely geometric. The proof of the case of an elementary
abelian p-group given here is a modified version of the proof of [46] proposition
11.4.1 and uses techniques from Adams & Wilkerson [1].

Theorem 2.23. A prime ideal p of H∗(G) is of the form p =
√

Ker resG,E for
some E elementary abelian p-subgroup of G if and only if it is invariant.

Proposition 2.24. Let E be an elementary abelian p-group. If p is an invariant
prime ideal of H∗(E), then p =

√
Ker resE,E′ for some subgroup E′ of E.

Proof of theorem 2.23. We treat the cases p = 2 and p odd simultaneously.
Let P i denote Sqi if p = 2 and P i if p odd, and P denote the total Steenrod
operation.

Consider the homogeneous prime ideal pE =
√

Ker resG,E and a homoge-
neous element x in pE , i.e., resG,E(xn) = 0 for some n. Note that

0 = P resG,E(xn) = resG,E(P(x)n).
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that is, P(x) ∈ pE . Since pE is homogeneous, it follows that each homogeneous
term of P(x) is in pE , i.e., P i(x) ∈ pE for all i. In other words, it is invariant.

Conversely, suppose p is an invariant prime ideal of H∗(G). Recall that
p ∈ V +

G,E for some elementary abelian p-subgroup of G and pE is the largest
prime ideal of the form pE′ , E′ ∈ A(G), contained in p.

We claim that p = pE : Since p ∈ V +
G,E ⊂ V (pE), corollary 2.20 gives that p

is equal to res−1
G,E(q) for some prime ideal q in V +

E .
Remember that H∗(E) is finitely generated as a module over H∗(G) via

restriction. Furthermore, V (pE) and SpecH∗(G)/Ker resG,E coincide and is
via restriction identified with Spec Im resG,E , that is, if pE ⊂ p′, then the cor-
responding prime ideal of Im resG,E is the image resG,E(p′).

q is homogeneous: Let q∗ be the ideal generated by the homogeneous el-
ements in q, i.e., the largest homogeneous ideal contained in q. Note that
q∗ is a prime ideal of H∗(E), see proposition A.9. Since p is homogeneous,
p = res−1

G,E(q∗). Thus, q and q∗ are two prime ideals lying over resG,E(p). By
the going-up theorem, see theorem A.14, there are no strict inclusions between
prime ideals lying over a prime ideal, which implies that q = q∗. In other words,
q is homogeneous.

q is invariant: Note that if P(x) = x+
∑

i>0 P i(x) ∈ p for x homogeneous,
then x ∈ p since p homogeneous. In particular, P−1(p) = p.

Since resG,E P = P resG,E , it follows that

res−1
G,E P

−1(q) = P−1 res−1
G,E(q) = P−1(p) = p.

Hence, P−1(q) ⊂ q is a prime ideal lying over resG,E(p). As above, it follows
that q = P−1(q). Consequently, q is invariant.

Since q ∈ V +
E and invariant, proposition 2.24 gives that q = Nil(H∗(E)).

Hence,

p = res−1
G,E(Nil(H∗(E))) = pE .

We proceed with proposition 2.24. Recall that a derivation ∂ of an Fp-
algebra R is a Fp-homomorphism ∂ : R → R such that ∂(x+ y) = ∂(x) + ∂(y)
and ∂(xy) = ∂(x)y + x∂(y) (Leibniz rule) for all x, y ∈ R. See e.g. [34] ch. 9
or [10] III §10 for background on derivations.

A classic example of a derivation is the partial derivative ∂/∂xi, 1 ≤ i ≤ n,
on the polynomial algebra Fp[x1, . . . , xn].

A more complicated example is the derivations Qi : H∗(G; F2)→ H∗(G; F2)
defined inductively by Q1 = Sq1 and Qi+1 = Sq2iQi −QiSq2i . Similarly for p
odd. See [1] section 2 for more information.

To prove proposition 2.24 we need the following technical lemmas, see [1]
lemmas 3.1 and 5.9.
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Lemma 2.25. Suppose ∂1, . . . , ∂n : R→ R are derivations and x1, . . . , xn ∈ R.
If the matrix ∂i(xj), 1 ≤ i, j ≤ n, has nonzero determinant. Then x1, . . . , xn
are algebraically independent over Fp.

Lemma 2.26. The determinant of the matrix

A =


x1 xp1 · · · xp

n−1

1

x2 xp2 · · · xp
n−1

2
...

... · · ·
...

xn xpn · · · xp
n−1

n


is the polynomial in Fp[x1, . . . , xn] given by the product

det(A) =
∏

(c1x1 + · · · cnxn),

where (c1, . . . , cn) ∈ Fnp are nonzero and the last nonzero ci is 1.

Proof of proposition 2.24. Let p be an invariant prime ideal of H∗(E). Consider
the quotient map π : H∗(E) → H∗(E)/p. Since p is invariant, the Steenrod
operations also act on the quotient algebra. In particular, Qi is a derivation on
H∗(E)/p for all i.

Let y1, . . . , yn be an Fp-basis of π(H1(E)) for p = 2 or π(H2(E)) for p odd.
Note that y1, . . . , yn generate H∗(E)/p as an algebra over Fp.

Let A be the matrix with entries Ai,j = Qi(yj) for 1 ≤ i, j ≤ n.
Qi(yj) = yp

i

j : Suppose p = 2. Then Q1(yj) = Sq1(yj) = y2
j for 1 ≤ j ≤ n.

Assume inductively that Qi(yj) = y2i
j . Then, using that |yj | = 1,

Qi+1(yj) = Sq2iQi(yj)−QiSq2i(yj) = Sq2iQi(yj) = Sq2i(y2i

j ) = y2i+1

j .

The case of p odd is similar.
The transpose of A is the matrix

yp1 yp
2

1 · · · yp
n

1

yp2 yp
2

2 · · · yp
n

2
...

... · · ·
...

ypn yp
2

n · · · yp
n

n


Substituting xi = ypi and using lemma 2.26 gives that

det(A) =
∏

(c1y
p
1 + · · · cnypn) =

∏
(c1y1 + · · · cnyn)p,

where we used that the Frobenius map, x 7→ xp, is a homomorphism. Since
H∗(E)/p is an integral domain generated by y1, . . . , yn, it follows that det(A) 6=
0. By lemma 2.25, y1, . . . , yn are algebraically independent over Fp, i.e., H∗(E)/p
is a polynomial algebra.
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For p = 2 it follows that p is generated by the elements of H1(E) it
contains. The proposition follows from the fact that subspaces of H1(E) =
Hom(E,Z/p) correspond to subgroups of E. More specifically, choose an F2-
basis x1, . . . , xm+n of H1(E) such that x1, . . . , xm constitute an F2-basis of the
subspace H1(E) ∩ p. Furthermore, choose an F2-basis e1, . . . , em+n of E with
dual basis x1, . . . , xm+n. Let E′ = 〈em+1, . . . , em+n〉 ⊂ E and x′m+1, . . . , x

′
m+n

be the dual basis, i.e., H∗(E′) = F2[x′m+1, . . . , x
′
m+n] ∼= H∗(G)/p. Then

resG,E′(xi) =

{
0, 1 ≤ i ≤ m
x′i, m+ 1 ≤ i ≤ m+ n,

and p = res−1
E,E′({0}) = res−1

E,E′(Nil(H∗(E′))) =
√

Ker resE,E′ .
Similarly for p odd using that p (modulo the nilradical) is generated by

the elements of H2(E) it contains and that the Bockstein homomorphism
β : H1(E) → H2(E) is an isomorphism. The gory details are left to the
reader.



Depth, detection and associated primes 27

3 Depth, detection and associated primes

The Krull dimension is completely determined by the group structure. The
depth seems to be more mysterious. This section is all about the depth of the
cohomology ring of a finite group especially Carlson’s depth conjecture.

As usual, let G be a finite group, p a prime divisor of the order of G and let
H∗(G) denote the mod p cohomology of G.

3.1 Depth and associated primes

We begin with the definitions of regular elements and sequences, depth and
associated primes.

Definition 3.1. Let R be a graded commutative Noetherian ring with R0 = Fp
and M a finitely generated graded R-module. A homogeneous element x of
positive degree is called an M -regular element in R if x is not a zero divisor of
M , or equivalently, if multiplication by x is injective.

A sequence x1, . . . , xn of homogeneous elements of positive degree R is called
an M -regular sequence in R if xi is M/(x1, . . . , xi−1)M -regular for 1 ≤ i ≤ n

((∅) = 0).
The depth of a finitely generated R-module M is the maximal length of an

M -regular sequence and is denoted depthRM . The depth of R is simply denoted
depthR.

Definition 3.2. Let R be a graded commutative Noetherian ring with R0 = Fp.
An ideal in R is said to be associated to an R-module M if it is the annihilator
of some nonzero element in M . An associated prime ideal, or simply associated
prime, of M is a prime ideal associated to M . The set of prime ideals associated
to M is denoted AssRM , that is,

AssRM = { p ∈ SpecR | p = AnnR(m) for some m ∈M }.

The associated primes of R is simply denoted AssR.

In fact, any associated prime is homogeneous and the annihilator of a homo-
geneous element. Furthermore, the associated primes are among the minimal
primes of H∗(G) and there are only finitely many since H∗(G) is Noetherian,
see proposition A.8. See appendix A for more information. However, keep the
following fundamental result in mind, see propositions A.11 and A.33.

Proposition 3.3.

depthH∗(G) ≤ min{dimH∗(G)/p | p ∈ AssH∗(G) } ≤ dimH∗(G).

In the case where the depth and dimension coincide we say that the ring is
Cohen-Macaulay.
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Suppose E is a maximal elementary abelian p-subgroup of G. Then the ideal√
Ker resG,E is a minimal prime ideal, and an associated prime, of H∗(G) such

that the dimension of H∗(G)/
√

Ker resG,E is rkp(E), see theorem 2.14. Let
mrkp(G) denote the minimal rank amongst the maximal elementary abelian
p-subgroups of G. Summarizing, we have proved the following result.

Proposition 3.4. depthH∗(G) ≤ mrkp(G).

Example 3.5. The cohomology of an elementary abelian p-group is

H∗(E) =

{
Fp[x1, . . . , xn], p = 2
∧Fp(x1, . . . , xn)⊗ Fp[β(x1), . . . , β(xn)], p > 2,

where |xi| = 1 and n = rkp(E). The sequence x1, . . . , xn is a maximal reg-
ular sequence in the case p = 2, and β(x1), . . . , β(xn) is a maximal regular
sequence for odd primes. So depthH∗(E) = rkp(E) = dimH∗(E), that is, the
cohomology of an elementary abelian p-group is Cohen-Macaulay.

Example 3.6. Remember that the mod 2 cohomology ring of the dihedral
group D8 of order 8 is

H∗(D8; F2) = F2[x, y, v]/(x(x+ y))

with |x| = |y| = 1 and |v| = 2. Clearly, v is a regular element and

H∗(D8; F2)/(v) = F2[x, y]/(x(x+ y)).

Evidently, y is a regular element of H∗(D8; F2)/(v) and

H∗(D8; F2)/(v, y) = F2[x]/(x2),

that is, an exterior algebra. So depthH∗(D8; F2) = 2.

Example 3.7. The mod 2 cohomology ring of Q8 is

H∗(Q8; F2) = F2[x, y, v]/(x2 + xy + y2, x2y + xy2)

with x and y in degree 1 and v in degree 4. Clearly, v is a regular element. The
dimension of H∗(Q8; F2) is 1 hence depthH∗(Q8; F2) = 1.

Lemma 3.8. Suppose H is a subgroup of G such that [G : H] is coprime to p.
Then resG,H is injective, trH,G is surjective and

0 // Ker trH,G // H∗(H)
resG,H trH,G // Im resG,H // 0

is a split-exact sequence of H∗(G)-modules via restriction.
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Proof. Remember that the transfer map and the restriction map are H∗(G)-
linear via the restriction map, and that trH,G resG,H : H∗(G)→ H∗(G) is mul-
tiplication by [G : H], see proposition 1.1. It follows that the composite is an
isomorphism and has an inverse ϕ : H∗(G) → H∗(G). In particular, resG,H is
injective and trH,G is surjective.

Consequently, the sequence

0 // Ker trH,G // H∗(H)
trH,G // H∗(G) // 0

is an exact sequence of H∗(G)-modules. Since trH,G(resG,H ϕ) is the identity
on H∗(G), the sequence splits. Noting that resG,H is injective finishes the
proof.

An immediate consequence is that the restriction to any Sylow p-subgroup
is injective.

The following theorem is traditionally stated for a Sylow p-subgroup of G,
see e.g. [18] proposition 12.3.1. However, we need the slightly more general
version later, and the usual proof goes through in this case.

Theorem 3.9. Suppose H is a subgroup of G with [G : H] coprime to p. Then

depthH∗(H) ≤ depthH∗(G).

In addition, if x1, . . . , xn is a sequence of homogeneous elements in H∗(G) such
that resG,H(x1), . . . , resG,H(xn) is a regular sequence in H∗(H), then x1, . . . , xn
is a regular sequence in H∗(G).

Proof. Lemma 3.8 gives that

H∗(H) = Ker trH,G⊕ Im resG,H = Ker trH,G⊕H∗(G)

as H∗(G)-modules. Proposition A.37 gives that

depthH∗(G)H
∗(H) ≤ depthH∗(G).

Since H∗(H) is finitely generated as a module over H∗(G) via restriction, propo-
sition A.38 gives that

depthH∗(G)H
∗(H) = depthH∗(H),

which proves the first statement.
Suppose resG,H(x1), . . . , resG,H(xn) is a regular sequence in H∗(H). By

theorem A.22, H∗(H) is a free module over Fp[x1, . . . , xn]. Since H∗(G) is a
direct summand of H∗(H), H∗(G) is also a free module over Fp[x1, . . . , xn].
Again by theorem A.22, x1, . . . , xn is a regular sequence in H∗(G).
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A Sylow p-subgroup P of G is a canonical example of a subgroup of G
satisfying that [G : P ] is coprime to p. However, as the following example
shows, the depth of H∗(G) may be strictly greater than the depth of H∗(P ).

Example 3.10. The Mathieu group M11 is a sporadic simple group of order
7920. The mod 2 cohomology ring is

H∗(M11; F2) = F2[x, y, z]/(x2y + z2)

with |x| = 3, |y| = 4 and |z| = 5. The calculation is due to Benson & Carlson
[9], see also [2]. It is straightforward to verify that the depth of H∗(M11; F2)
is 2 and that y, x is a maximal regular sequence in H∗(M11; F2). The Sylow
2-subgroup P of M11 is a semidihedral (or quasidihedral) group of order 16.
The cohomology ring is

H∗(P ; F2) = F2[a, b, c, d]/(ab, b3, bc, a2d+ c2)

with |a| = |b| = 1, |c| = 3 and |d| = 4, see [14]; the Hall-Senior number is 16
and the Magma small group library number is 8. Note that the annihilator
of b2 is the ideal (a, b, c), which is a prime ideal since H∗(P ; F2)/(a, b, c) =
F2[d] is an integral domain. Thus, AnnH∗(P ;F2)(b2) is an associated prime with
dimH∗(P ; F2)/AnnH∗(P ;F2)(b2) = 1. Since d is a regular element, the depth of
H∗(P ; F2) is 1. That the depth is positive also follows by Duflot’s theorem, see
theorem 3.11. Summarizing,

depthH∗(P ; F2) = 1 < 2 = depthH∗(M11; F2).

A classic result that relates properties of the group to the depth of the
cohomology ring is the following theorem which was first proved Duflot [20]
and is known as Duflot’s theorem.

Theorem 3.11. The depth of H∗(G) is greater than or equal to the p-rank
of the center of a Sylow p-subgroup of G. More specifically, if P is a Sylow
p-subgroup of G, then rkp(Z(P )) ≤ depthH∗(G).

A few immediate consequences:

Corollary 3.12. The depth of H∗(G) is positive.

Proof. The center of any p-group contains an element of order p.

Of course, here we used the assumption that p is a prime divisor of G.

Corollary 3.13. Suppose G has abelian Sylow p-subgroups. Then H∗(G) is
Cohen-Macaulay. In particular, if G abelian, then H∗(G) is Cohen-Macaulay.
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Duflot’s proof uses equivariant cohomology. Broto & Henn [11] gave a
conceptually easier proof of Duflot’s theorem. The idea is to construct a se-
quence x1, . . . , xn of elements inH∗(G) whose restriction to a central elementary
abelian p-subgroup C of P , i.e., C ⊂ Z(P ), is a regular sequence in H∗(C) and
prove that x1, . . . , xn is a regular sequence in H∗(G). Carlson et al. [18], see
proposition 12.3.3, generalized this idea slightly and proved that any sequence
x1, . . . , xn in H∗(G) whose restriction to C is a regular sequence in H∗(C) is
indeed a regular sequence in H∗(G). We shall follow the latter approach. The
basic ingredient is the following construction.

For a central subgroup C of a group G, the multiplication in G gives a group
homomorphism

µ : C ×G→ G, (c, g) 7→ cg,

which induces a map µ∗ : H∗(G)→ H∗(C×G). Using the cross product we get
a map

∆: H∗(G)→ H∗(C)⊗H∗(G),

that is, ∆ is defined by commutativity of the diagram

H∗(G)
µ∗ //

∆

''PPPPPPPPPPP
H∗(C ×G)

H∗(C)⊗H∗(G)

× ∼=

OO

where the tensor product is the graded tensor product with the usual sign
convention.

An important property of ∆ is that for any x ∈ Hn(G), n > 0, we have

∆(x) = resG,C(x)⊗ 1 + 1⊗ x+
∑
i

x′i ⊗ x′′i ,

where |x′i|, |x′′i | > 0: Let iC : C → C × G, c 7→ (c, 1) and iG : G → C × G,
g 7→ (1, g) be the canonical inclusion maps, and consider the commutative
diagram

H∗(G)
µ∗ //

∆

))SSSSSSSSSSSSSSS H∗(C ×G)
resC×G,C // H∗(C)

H∗(C)⊗H∗(G)

π

44hhhhhhhhhhhhhhhhhhh
× ∼=

OO

id⊗ resG,{1} // H∗(C)⊗H∗({1})

× ∼=

OO

where π is defined by commutativity. Note that π(x⊗1) = x, and π(x⊗ y) = 0
if |y| > 0. Since µiC is the inclusion C ⊂ G, we have that π∆ = resG,C .
Hence, the component of ∆(x) in Hn(C) ⊗H0(G) is resG,C(x) ⊗ 1. A similar
argument, using that µiG is the identity map, gives that the component of ∆(x)
in H0(C)⊗Hn(G) is 1⊗ x.

Consider H∗(C × G) as a module over H∗(G) via the homomorphism µ∗.
The fact that µiG is the identity on G gives that resC×G,G µ∗ is the identity
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on H∗(G). Therefore, the restriction map resC×G,G : H∗(C ×G)→ H∗(G) is a
map of H∗(G)-modules. More specifically, if x ∈ H∗(G) and y ∈ H∗(C × G),
then

resC×G,G(µ∗(x)y) = resC×G,G(µ∗(x)) resC×G,G(y) = x resC×G,G(y).

Furthermore, since resC×G,G µ∗ is the identity, the exact sequence

0 // Ker resC×G,G // H∗(C ×G)
resC×G,G// H∗(G) // 0

of H∗(G)-modules splits. Thus, H∗(G) is a direct summand in H∗(C × G) as
a module over H∗(G). Of course, the same results hold if we consider H∗(C)⊗
H∗(G) as a module over H∗(G) via ∆.

Now, we are ready to prove the result about regular sequences and restriction
to central subgroups.

Theorem 3.14. Suppose C is a central subgroup of G. If x1, . . . , xn is a se-
quence of homogeneous elements in H∗(G) such that resG,C(x1), . . . , resG,C(xn)
is a regular sequence in H∗(C), then x1, . . . , xn is a regular sequence in H∗(G).

Proof. Remember that H∗(C)⊗H∗(G) is a module over H∗(G) via the homo-
morphism ∆ and for x ∈ Hm(G),

∆(x) = resG,C(x)⊗ 1 + 1⊗ x+
∑
j

x′j ⊗ x′′j ,

where |x′j |, |x′′j | > 0.
The idea is to use theorem A.22 and prove that H∗(C) ⊗ H∗(G) is free

as a module over Fp[x1, . . . , xn] and use that H∗(G) is a direct summand in
H∗(C)⊗H∗(G) as a H∗(G)-module.

For i ≥ 0, let H≥i(G) =
⊕

j≥iH
j(G) be the ideal generated by the ho-

mogeneous elements of degree at least i. In particular, H∗(C) ⊗ H≥i(G) is a
H∗(G)-submodule of H∗(C)⊗H∗(G) for all i ≥ 0. Furthermore, the quotient

(H∗(C)⊗H≥i(G))/(H∗(C)⊗H≥i+1(G))

is a module over H∗(G). Let a ∈ Hk(C) and b ∈ H≥i(G) of degree s. If s > i,
then [a⊗ b] = 0 in the quotient module. Henceforth, we assume b has degree i.
The H∗(G)-module structure on the quotient module is given by

x[a⊗ b] = [∆(x)(a⊗ b)]

= [(resG,C(x)⊗ 1 + 1⊗ x+
∑
j

x′j ⊗ x′′j )(a⊗ b)]

= [(resG,C(x)a)⊗ b],

in the latter equality we used that |xb|, |x′′j b| > i.
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The map

ϕ : (H∗(C)⊗H≥i(G))/(H∗(C)⊗H≥i+1(G))→ H∗(C)⊗H i(G),

defined by ϕ([a⊗ b]) = a⊗ b is clearly an isomorphism of vector spaces over Fp.
Consider H∗(C)⊗H i(G) as a module over H∗(G) in the natural way, i.e.,

with multiplication given by x(a⊗b) = (resG,C(x)a)⊗b. So ϕ is an isomorphism
of H∗(G)-modules.

Recall that H i(G) is a finite dimensional vector space over H0(G) = Fp.
Therefore, H i(G) = Fp{e1, . . . , ed} ∼= H0(G)d for some e1, . . . , ed ∈ H i(G) and
d = dimFp H

i(G).
Consider the canonical isomorphism of Fp-vector spaces,

ψ : H∗(C)⊗H i(G)→ (H∗(C)⊗H0(G))d → H∗(C)d,

where ψ(a⊗b) = ar1 + · · ·+ard for b = r1e1 + · · · rded ∈ H i(G), r1, . . . , rd ∈ Fp.
Consider H∗(C)d as a module over H∗(G) in the obvious way, that is, H∗(G)

acts on each factor via restriction. Note that

ψ(x(a⊗ b)) = ψ((resG,C(x)a)⊗ (r1e1 + · · ·+ rded))

= resG,C(x)ar1 + · · ·+ resG,C(x)ard.

So ψ is also an isomorphism of H∗(G)-modules.
Summarizing, the composite

ψϕ : H∗(C)⊗H≥i(G))/(H∗(C)⊗H≥i+1(G))→ H∗(C)d

is an isomorphism of H∗(G)-modules.
Since resG,C(x1), . . . , resG,C(xn) is a regular sequence in H∗(C), it is also

a regular sequence in H∗(C) of the H∗(C)-module H∗(C)d. In other words,
x1, . . . , xn is a regular sequence of the H∗(G)-module H∗(C)d. By theorem
A.22, H∗(C)d is a free module over Fp[x1, . . . , xn]. It follows that the quo-
tient module (H∗(C) ⊗ H≥i(G))/(H∗(C) ⊗ H≥i+1(G)) is a free module over
Fp[x1, . . . , xn] for all i ≥ 0.

Consequently,

H∗(C)⊗H∗(G) =
⊕
i≥0

H∗(C)⊗H i(G)

∼=
⊕
i≥0

(H∗(C)⊗H≥i(G))/(H∗(C)⊗H≥i+1(G))

is a free module over Fp[x1, . . . , xn]. Since H∗(G) is a direct summand of
H∗(C) ⊗ H∗(G) as an H∗(G)-module, it follows that H∗(G) is a free module
over Fp[x1, . . . , xn]. Finally, by theorem A.22, x1, . . . , xn is a regular sequence
in H∗(G).
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Corollary 3.15. Suppose C is a central subgroup of a Sylow p-subgroup P of
G. If x1, . . . , xn ∈ H∗(G) is a sequence of homogeneous elements in H∗(G) such
that resG,C(x1), . . . , resG,C(xn) is a regular sequence in H∗(C), then x1, . . . , xn
is a regular sequence in H∗(G).

Proof. By assumption, resP,C(resG,P (x1)), . . . , resP,C(resG,P (xn)) is a regular
sequence in H∗(C). Theorem 3.14 gives that resG,P (x1), . . . , resG,P (xn) is a
regular sequence in H∗(P ), and theorem 3.9 implies that x1, . . . , xn is a regular
sequence in H∗(G).

Duflot’s theorem is an easy application of this result.

Proof of theorem 3.11. Let E be a maximal elementary abelian p-subgroup con-
tained in the center Z(P ) of a Sylow p-subgroup P of G. The cohomology ring
H∗(E) is Cohen-Macaulay and has depth n = rkp(E) = rkp(Z(P )), see example
3.5. Since H∗(E) is finitely generated as a module over H∗(G) via restriction,
proposition A.38 gives that depthH∗(G)H

∗(E) = depthH∗(E). In particular,
there exists x1, . . . , xn in H∗(G) such that resG,E(x1), . . . , resG,E(xn) is a regu-
lar sequence of maximal length. Corollary 3.15 gives that x1, . . . , xn is a regular
sequence in H∗(G). This finishes the proof of Duflot’s theorem.

So far, the bounds provided by the minimal associated primes, see proposi-
tion 3.4, and Duflot’s theorem are the best known results linking the depth of
the cohomology ring directly to the group structure.

Theorem 3.9 gives a lower bound on the depth by the depths given by certain
subgroups, e.g., the Sylow p-subgroups. Recently, Notbohm [36] proved that the
depth is determined by the depths of the cohomology rings of the centralizers
of the elementary abelian p-subgroups. More concisely:

Theorem 3.16. depthH∗(G) = min{ depthH∗(CG(E)) |E ∈ A(G) }.

One of Notbohm’s main results is the succeeding theorem which gives part
of the previous theorem.

Theorem 3.17. Suppose E is an elementary abelian p-subgroup of G. Then

depthH∗(G) ≤ depthH∗(CG(E)).

The proofs of these results use the theory of unstable modules over the
Steenrod algebra and rely heavily on the properties of Lannes’ T-functor. In
fact, Notbohm proves that an application of Lannes’ T-functor only increases
depth.

As noted by Notbohm, it suffices to take the minimum over the cyclic sub-
groups of order p. To see this suppose E = 〈g〉 × E′. Then E ⊂ CG(g) and
CG(E) = CCG(g)(E). Using theorem 3.17 with G = CG(g) gives that

depthH∗(CG(g)) ≤ depthH∗(CCG(g)(E)) = depthH∗(CG(E)).
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The theorem possibly reduces the problem of computing the depth to the
computation of the depths of a collection of smaller subgroups. The reduction
being in the size of the involved groups. Of course, if G is a p-group, then one
of the centralizers is G itself so no reduction in this case.

A simple observation and theorem 3.9 allow us to point out subgroups on
which the minimum in Notbohm’s theorem is attained:

Theorem 3.18. Let P be a Sylow p-subgroup of G. Suppose E is a central
elementary abelian p-subgroup of P . Then

depthH∗(G) = depthH∗(CG(E)).

Proof. Note that E ⊂ Z(P ) ⊂ P ⊂ CG(E) ⊂ G, i.e., [G : CG(E)] is coprime to
p. By theorem 3.9,

depthH∗(CG(E)) ≤ depthH∗(G).

Theorem 3.17 gives the reverse inequality.

Suppose E is a central elementary abelian p-subgroup of a Sylow p-subgroup
P of G such that P = CG(E), then the depth of H∗(G) is equal to the depth of
H∗(P ). This gives a sufficient group theoretic condition on when these depths
are equal.

Let us summarize what we so far know about the relation between the group
structure, the depth and dimension of the cohomology ring of a finite group.

Corollary 3.19. Let P be a Sylow p-subgroup of G, and E a central elementary
abelian p-subgroup of P . Then

0 < rkp(Z(P )) ≤ depthH∗(P ) ≤ depthH∗(CG(E))

= depthH∗(G) ≤ mrkp(G) ≤ rkp(G) = dimH∗(G).

Remark 3.20. For the cohomology ring to be Cohen-Macaulay it is necessary
that all maximal elementary abelian p-subgroups have the same rank. However,
the next example shows that it is not sufficient.

Example 3.21. The semidihedral group G of order 16 has depth 1, see example
3.10. A presentation of G is

G = 〈σ, τ |σ8 = τ2 = 1, τστ = σ3 〉.

The two maximal elementary abelian 2-subgroups 〈σ4, τ〉 and 〈σ4, σ2τ〉 both
have rank 2. So in this case the depth is strictly less than the minimal rank of
a maximal elementary abelian 2-subgroup.
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Remember that the minimum

ωa = ωa(G) = min{ dimH∗(G)/p | p ∈ AssH∗(G) }

is an upper bound on the depth. As the following example shows there ex-
ists finitely generated graded commutative Fp-algebras such that the depth is
strictly less than this minimum.

Example 3.22. Consider the graded polynomial Fp-algebra Fp[x, y] on two gen-
erators x and y of positive even degree. The subring R generated by x2, x3, xy, y

consists of polynomials in x and y such that the coefficient of the x term is zero.
Since R is an integral domain, every element is regular, e.g., the element y. Since
xy /∈ (y) ⊂ R and every element in R/(y) of positive degree annihilate xy, it
follows that depthR = 1. Since Fp[x, y] is finitely generated, by x and 1, as
a module over R, corollary A.15 gives that dimR = dim Fp[x, y] = 2. On the
other hand, the only associated prime of R is 0 since R is an integral domain.

However, there is no known example of a cohomology ring where the upper
bound ωa is strict. In [15] Carlson asks if the cohomology ring of a finite group
is special in the sense of the following question.

Question 3.23. Suppose H∗(G) has depth d. Is there an associated prime p

in H∗(G) such that dimH∗(G)/p = d?

Beside the difficult problem of the actual computation of the depth of the
cohomology ring, the question also raises the question of determining the min-
imum ωa as well as the associated primes.

We already know that the minimal primes are associated primes and they
are of the form

√
Ker resG,E for some maximal elementary abelian p-subgroup

of G. It turns out that all the associated primes are of this form. The first step
is to prove that the radical of an annihilator ideal is an invariant ideal. We give
a slightly modified version of a proof in [18], see proposition 12.7.3. Benson [8]
notes that it is a theorem by C. Wilkerson in private correspondence with F.
Adams.

Proposition 3.24. The radical of an annihilator of a homogeneous element x
in H∗(G) is invariant, that is, if I = AnnH∗(G)(x), then

√
I is an invariant

ideal.

Proof. Clearly, the annihilator of a homogeneous element is a homogeneous
ideal. By proposition A.6,

√
I is also a homogeneous ideal. It remains to prove

that
√
I is closed under the reduced Steenrod operations.

We treat the cases p = 2 and p odd simultaneously. Let P i denote Sqi if
p = 2 and P i if p odd, and P denote the total Steenrod operation.
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Let y be a homogeneous element in
√
I. Choose n such that |x| < 2pn and

yp
n
x = 0. Then Ppnm(yp

n
x) = 0 for all m > 0. By the Cartan formula,

Ppnm(yp
n
x) =

pnm∑
i=0

Ppnm−i(ypn)P i(x) = 0.

Using the Frobenius map,∑
i≥0

P i(ypn) = P(yp
n
) = P(y)p

n
= (

∑
i≥0

P i(y))p
n

=
∑
i≥0

P i(y)p
n
.

In particular, the nonzero terms of P(yp
n
) occur in degrees divisible by pn.

Note that, if i = pnj, then |P i(ypn)| = |(Pj(y))p
n | = pn(|y| + j). Comparing

degrees gives that

P i(ypn) =

{
0, pn - i
Pj(y)p

n
, i = pnj.

Thus, the equation above becomes
m∑
j=0

(Pm−j(y))p
nPpnj(x) = 0.

Since |x| < 2pn, instability gives that Ppnj(x) = 0 unless j = 0. Hence,

(Pm(y))p
n
(x) = 0

for all m > 0. In other words,
√
I is invariant.

The following characterization of the associated primes was first proved by
Duflot [21] for equivariant cohomology and odd primes.

Proposition 3.25. Any associated prime in H∗(G) is of the form
√

Ker resG,E
for some elementary abelian p-subgroup E of G.

Proof. Suppose p is an associated prime of H∗(G). Propositions 3.24 and A.6
gives that

√
p = p is invariant. By theorem 2.23, any invariant ideal is of the

desired form. This finishes the proof.

The obvious question is: Which elementary abelian p-subgroups correspond
to the associated prime ideals? This is still an open and very interesting ques-
tion. A more specific question:

Question 3.26. Is there a group theoretic characterization of the elementary
abelian p-subgroups corresponding to the associated primes?

Remember that dimH∗(G)/
√

Ker resG,E = rkp(E). Positive answers to the
previous question and the question about the minimum of the dimensions of
quotients by the associated primes would provide a description of the depth
solely in terms of the group structure.

A partial answer to the previous question excludes certain elementary abelian
p-subgroups and is due to Carlson & Henn [17].
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Proposition 3.27. Let E be an elementary abelian p-subgroup of G. If pE =√
Ker resG,E is an associated prime, then E contains all central elements of G

of order p.

Proof. Suppose pE is an associated prime and x is a central element of G of
order p not contained in E. Clearly, 〈x〉 is an elementary abelian p-subgroup of
G and 〈x〉 is not conjugate to a subgroup of E since x is central.

Remember that, by lemma 2.10, there exists τ〈x〉 ∈ H∗(G) such that τ〈x〉 /∈
p〈x〉 and τ〈x〉 ∈ pE . However, since resG,〈x〉(τ〈x〉) is not nilpotent and H∗(〈x〉)
modulo its nilradical is an integral domain, resG,〈x〉(τ〈x〉) is not a zero divisor.
Theorem 3.14 gives that τ〈x〉 is not a zero divisor. In particular, τ〈x〉 is not in
any annihilator, that is, τ〈x〉 /∈ pE , a contradiction.

Example 3.28. The associated primes of

H∗(Q8; F2) = F2[x, y, v]/(x2 + xy + y2, x2y + xy2),

|x| = |y| = 1 and |v| = 4: The center of the quaternion group is the only
elementary abelian 2-subgroup. The corresponding minimal prime ideal, and
associated prime, is

√
Ker resQ8,Z(Q8) = (x, y). So (x, y) is the annihilator of a

homogeneous element. Actually, (x, y) = AnnH∗(Q8;F2)(x2y). See appendix B
for some computational details.

The next example shows that even though an elementary abelian p-subgroup
contains all elements of order p it need not correspond to an associated prime.

Example 3.29. The associated primes of

H∗(D8; F2) = F2[x, y, v]/(x(x+ y)),

|x| = |y| = 1 and |v| = 2: The dihedral group D8 has five conjugacy classes
of elementary abelian 2-subgroups, see example 2.15. The depth of H∗(D8; F2)
is 2, see example 3.6. So none of the cyclic elementary abelian 2-subgroups
correspond to associated primes, in particular the center. The kernels of the
restriction maps to the two maximal elementary abelian 2-subgroups are the
prime ideals (x) and (x+y) and they are equal to their radicals, see proposition
A.6. Evidently, (x) = AnnH∗(D8;F2)(x+y) and (x+y) = AnnH∗(D8;F2)(x). Thus,
both the two maximal elementary abelian 2-subgroups correspond to associated
primes.

3.2 Depth and detection

We begin with the concept of detection:

Definition 3.30. The cohomology H∗(G) of G is said to be detected by a col-
lection H of subgroups of G if⋂

H∈H
Ker(resG,H : H∗(G)→ H∗(H)) = 0.
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Remark 3.31. If the collection H detects the cohomology, the cohomology
ring can be studied using the restriction maps. The important property is that
the ideal of relations between generators is the intersection of the kernels of the
restrictions to the subgroups in the detecting family. In other words, it reduces
the computation to finding generators of the cohomology ring and determine
their restriction to the subgroups in the detecting collection.

Remark 3.32. Any family of subgroups containing a Sylow p-subgroup or more
generally a subgroup with index coprime to p is a detecting collection since the
restriction to this subgroup is injective.

Example 3.33. The cohomology H∗(D8; F2) is detected by the two maximal
elementary abelian 2-subgroups: The kernels of the restriction maps to the
maximal elementary 2-subgroups of D8 are (x) and (x + y), see example 3.29.
The intersection of the kernels is (x)∩ (x+ y) = (x(x+ y)) which is zero in the
cohomology ring.

Example 3.34. The quaternion group Q8 is an example of a group that have
no detecting collection consisting of proper subgroups: Recall that

H∗(Q8; F2) = F2[x, y, v]/(x2 + xy + y2, x2y + xy2)

with |x| = |y| = 1 and |v| = 4, and thatQ8 has four nontrivial proper subgroups,
three are cyclic of order 4 and one cyclic of order 2. Let Z/4 be one of the three
cyclic subgroups of order 4. Remember that

H∗(Z/4; F2) = ∧F2(x1)⊗ F2[x2]

with |xi| = i. The restriction of x2 and y2 is zero. To see this note that
resG,Z/4(x) and resG,Z/4(y) is both either 0 or x1. In any event, the square
of the restrictions of x and y is zero. It follows that the restriction of every
element in H2(Q8; F2) and H3(Q8; F2) to any of these three subgroups is zero.
The restriction of x and y to the sole elementary abelian 2-subgroup of Q8

is also zero. Summarizing, the restriction of all elements in H2(Q8; F2) and
H3(Q8; F2) to any proper subgroup of Q8 is zero.

For a group G set

As(G) = {E ∈ A(G) | rkp(E) = s }

and
Hs(G) = {CG(E) |E ∈ As(G) }.

Example 3.35. The collection H1(G) always detects the cohomology of G:
Let g be a central element of a Sylow p-subgroup of G. Then CG(g) contains a
Sylow p-subgroup of G. Hence, the restriction to CG(g) is injective.
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Our interest in detection is due to the following theorem by Carlson [15]
which, using the transfer map, relates depth, detection on centralizers of ele-
mentary abelian p-subgroups and associated primes. From now on this theorem
is also referred to as Carlson’s theorem.

Theorem 3.36. Suppose a nonzero element x in H∗(G) restricts to zero on
every subgroup in Hs(G). Then dimH∗(G)/AnnH∗(G)(x) < s. In particular,
there exists an associated prime p of H∗(G) such that dimH∗(G)/p < s, and
depthH∗(G) < s.

The proof uses a rather technical theorem by Benson [4]:

Theorem 3.37. Suppose H is a non empty collection of subgroups of G. Let
K be the collection of all subgroups K of G such that the Sylow p-subgroups of
the centralizer CG(K) are not conjugate to a subgroup of the subgroups in H.

Let
J =

⊕
H∈H

Im trH,G and J ′ =
⋂
K∈K

Ker resG,K .

In case K is empty, the intersection is taken to be the ideal generated by all
elements of positive degree in H∗(G). Then

√
J =

√
J ′. In particular, V (J) =

V (J ′).

Remark 3.38. A few notes on the case where K is empty. If H contains a
subgroup H such that p - [G : H], then trH,G is surjective since trH,G resG,H is
multiplication by [G : H]. Thus, J = H∗(G). On the other hand, suppose K is
empty. In particular, any Sylow p-subgroup of CG({1}) = G is conjugate to a
subgroup of a subgroup in H, i.e., there exists a subgroup of G in H with index
not divisible by p.

Proof of theorem 3.36. Abbreviate Hs(G) to Hs. Let Js =
⊕

H∈Hs Im trH,G
and z be the p-rank of the center of a Sylow p-subgroup of G.

Let y =
∑

H∈Hs trH,G(yH) ∈ Js, yH in H∗(H). Since the transfer map
is H∗(G)-linear via restriction, see proposition 1.1, and resG,H(x) = 0 for all
H ∈ Hs, it follows that

yx =
∑
H∈Hs

trH,G(yH)x

=
∑
H∈Hs

trH,G(yH resG,H(x))

= 0.

In other words, Js ⊂ AnnH∗(G)(x). Hence,

dimH∗(G)/AnnH∗(G)(x) ≤ dimH∗(G)/Js.

To prove the first statement, it remains to show that the dimension of
H∗(G)/Js is less than s.
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Let Ks be the collection of subgroups corresponding to Hs in theorem 3.37.
Suppose s ≤ z. Then there exists E ∈ As(G) such that E is contained in

the center of a Sylow p-subgroup of G. It follows that CG(E) contains a Sylow
p-subgroup of G, that is, [G : CG(E)] is not divisible by p. Hence, Js is the
ideal generated by elements of positive degree, i.e., dimH∗(G)/Js = 0 < s.

Suppose s > z. Then for E ∈ As(G), the centralizer CG(E) do not contain
a Sylow p-subgroup of G, that is, [G : CG(E)] is divisible by p.

Let K ∈ Ks. Suppose E ⊂ K for some E ∈ As(G). Then CG(E) ⊃ CG(K),
i.e., CG(K) contains the Sylow p-subgroups of CG(K) which is a contradiction.
Thus, K contains no elementary abelian p-subgroups of rank s. In other words,
rkp(K) < s.

Consider the finite intersection J ′s =
⋂
K∈Ks Ker resG,K . Theorem 3.37 im-

plies that dimH∗(G)/Js = dimH∗(G)/J ′s. Thus, it suffices to prove that the
dimension of H∗(G)/J ′s is less than s.

As always, H∗(K) is finitely generated as a module over H∗(G) via restric-
tion, and corollary A.15 implies that

dimH∗(G)/Ker resG,K = dimH∗(K).

An application of proposition A.12 gives that

dimH∗(G)/J ′s = max
K∈Ks

{ dimH∗(K) } = max
K∈Ks

{ rkp(K) } < s.

This proves the first statement of the theorem.
By proposition A.8, maximal annihilators are associated primes. Thus, there

exists an associated prime p containing AnnH∗(G)(x), i.e., dimH∗(G)/p < s and
depthH∗(G) < s.

The next corollary is just another formulation of Carlson’s theorem but is
included for emphasis.

Corollary 3.39. Suppose ωa ≥ s. Then H∗(G) is detected by Hs(G). In
particular, if depthH∗(G) ≥ s, then H∗(G) is detected by Hs(G).

The following corollary, also due to Carlson, explains in some cases using
group theoretic terms why the cohomology rings are not Cohen-Macaulay.

Corollary 3.40. Suppose G is a p-group and G has a proper subgroup H such
that CG(E) ⊂ H for all E ∈ As(G). Then depthH∗(G) < s.

Proof. We may assume H is a maximal subgroup. Any maximal subgroup of
a p-group is normal and has index p, see e.g. [42] theorem 4.4.6. Thus, H
is the kernel of a homomorphism x ∈ Hom(G,Z/p) = H1(G). In particular,
resG,H(x) = 0, i.e., resG,CG(E)(x) = 0 for all E ∈ As(G). Applying theorem
3.36 finishes the proof.
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Example 3.41. Consider the semidihedral group G of order 16 discussed in
examples 3.10 and 3.21. Recall that H∗(G) has depth 1 and dimension 2. A
presentation of G is 〈σ, τ |σ8 = τ2 = 1, τστ = σ3 〉. The two maximal elemen-
tary abelian 2-subgroups 〈σ4, τ〉 and 〈σ4, σ2τ〉 are conjugated (σ3〈σ4, τ〉σ5 =
〈σ4, σ2τ〉), both have rank 2 and are self centralizing. Moreover, they are con-
tained in the proper subgroup 〈σ2, τ〉. So corollary 3.40 explains (using only the
group structure) why in this case the depth is strictly less than the dimension.

The following lemma is straightforward but is stated for emphasis.

Lemma 3.42. Suppose H∗(G) is not detected by Hs(G). Then H∗(G) is not
detected by Ht(G) for all t ≥ s.

Proof. Let E be an elementary abelian p-subgroup of G with rkp(E) = t > s,
and E′ an elementary abelian p-subgroup of rank s of G contained in E. Since
CG(E) ⊂ CG(E′) ⊂ G, the kernel of resG,CG(E′) is contained in the kernel of
resG,CG(E). Thus,

0 6=
⋂

E′∈As(G)

Ker resG,CG(E′) ⊂
⋂

E∈At(G)

Ker resG,CG(E),

that is, H∗(G) is not detected by Ht(G) for all t ≥ s.

In example 3.35 we saw that H∗(G) is always detected by the collection
H1(G). So the maximum

ωd = ωd(G) = max{ s |H∗(G) is detected by Hs(G) }

is a well defined integer between 1 and rkp(G). By the previous lemma, H∗(G)
is detected byHt(G) for all t less than or equal to the maximum. A consequence
of corollary 3.39 is that ωd ≥ ωa and in particular ωd is an upper bound of the
depth of H∗(G).

Perhaps more illustratively, if d denotes the depth of H∗(G), then in the
figure below we have that the product of the restriction maps,

H∗(G)→
∏

E∈As(G)

H∗(CG(E)),

is injective for 1 ≤ s ≤ ωd and not injective for ωd < s ≤ rkp(G).

1 rkp(G)d ωd

Observe that if H∗(G) is Cohen-Macaulay, then ωd is equal to both the
depth and dimension. More generally, there are no known examples where ωd
is strictly greater that the depth. In [15] Carlson raises the question:

Question 3.43. Suppose H∗(G) is detected by the centralizers of the elementary
abelian subgroups of rank s. Is depthH∗(G) ≥ s?
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In other words, is ωd always equal to the depth of H∗(G)? Or equivalently,
if the depth of H∗(G) is d and H∗(G) is not Cohen-Macaulay, is H∗(G) not
detected by Hd+1(G)? As noted above, ωd ≥ ωa so an affirmative answer to the
previous question implies an affirmative answer to question 3.23. We return to
the relationship between these questions in the next section.

We end this section with an alternative proof of Carlson’s theorem. Carl-
son [15] states that Henn has pointed out that theorem 3.36 may be proved
using methods from the theory of unstable modules over the Steenrod algebra.
More specifically, by using results from [29]. Since such a proof has never been
published we provide one here.

For n > 0, let (H∗(G))<n denote the quotient of H∗(G) by the ideal
H≥n(G) =

⊕
m≥nH

m(G) generated by the homogeneous elements of degree
greater than or equal to n.

The alternative proof uses the following technical lemma by the author.

Lemma 3.44. Let C be a central subgroup of G. For any positive integer n,
H∗(C)⊗(H∗(G))<n is integral over H∗(G) via the map induced by ∆: H∗(G)→
H∗(C)⊗H∗(G).

Proof. The elements in H∗(C) ⊗ (H∗(G))<n which are integral over H∗(G)
constitute a subring, see theorem A.13, i.e., it suffices to prove that any homo-
geneous element x⊗ y is integral.

Suppose |y| > 0. Since

(x⊗ y)n = ±xn ⊗ yn = ±xn ⊗ 0 = 0,

x⊗ y is integral.

Suppose |y| = 0. Then we may assume y = 1. Recall that H∗(C) is finitely
generated as a H∗(G)-module via restriction. In particular, H∗(C) is integral
over H∗(G). Thus, x is a root of a monic polynomial f with coefficients in
H∗(G), i.e., there exists c1, . . . , cm ∈ H∗(G) such that

f(x) = xm + resG,C(c1)xm−1 + · · · resG,C(cm−1)x+ resG,C(cm) = 0.

Suppose |ci| > 0 for all 1 ≤ i ≤ m. Recall that

∆(ci) = resG,C(ci)⊗ 1 + ri,

where ri = 1 ⊗ ci +
∑

j c
′
i,j ⊗ c′′i,j , |c′i,j |, |c′′i,j | > 0. Notice that ri is nilpotent,

being a sum of nilpotent elements.



44 Depth, detection and associated primes

Now,

(x⊗ 1)m +
∑

1≤i≤m
∆(ci)(x⊗ 1)m−i = (xm ⊗ 1) +

∑
1≤i≤m

∆(ci)(xm−i ⊗ 1)

= (xm ⊗ 1) +
∑

1≤i≤m
(resG,C(ci)⊗ 1 + ri)(xm−i ⊗ 1)

= f(x)⊗ 1 +
∑

1≤i≤m
ri(xm−i ⊗ 1)

=
∑

1≤i≤m
ri(xm−i ⊗ 1).

Since ri is nilpotent, this is an element in the nilradical of H∗(C)⊗ (H∗(G))<n,
that is,

((x⊗ 1)m +
∑

1≤i≤m
∆(ci)(x⊗ 1)m−i)l = 0

for l sufficiently large. In other words, x⊗ 1 is integral.
The case where |ci| = 0 for at least one i is straightforward, use that ∆ and

resG,C both are the identity on Fp = H0(G) = H0(C)⊗H0(G) = H0(C ×G).
The details are left to the reader.

Remark 3.45. An obvious question is, does a more general result hold, for
example is H∗(C)⊗H∗(G) finitely generated as a module over H∗(G) via ∆?
However, this is not true in general. Consider the cyclic group Z/2 of order
two. The kernel of the group multiplication map µ : Z/2 × Z/2 → Z/2 has
order two. By [38] corollary 2.4, H∗(Z/2) ⊗H∗(Z/2) is not finitely generated
as a module over H∗(Z/2) via ∆. It is unknown to the author whether or not
H∗(C)⊗ (H∗(G))<n is finitely generated as a module over H∗(G) via ∆.

The main tool in the alternative proof of Carlson’s theorem is the following
theorem by Henn, Lannes & Schwartz [29], see corollary 5.6.

Theorem 3.46. For n sufficiently large, the map

λn : H∗(G)→
∏

E∈A(G)

H∗(E)⊗ (H∗(CG(E)))<n

induced by the maps E × CG(E)→ G, (e, g) 7→ eg, is injective.

Now, we are ready to reprove Carlson’s theorem. For convenience, we restate
the essential part of the theorem.

Theorem 3.47. Suppose a nonzero element x in H∗(G) restricts to zero on
every subgroup in Hs(G). Then dimH∗(G)/AnnH∗(G)(x) < s.
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Proof. Choose n sufficiently large such that the map

λn : H∗(G)→
∏

E∈A(G)

H∗(E)⊗ (H∗(CG(E)))<n

from theorem 3.46 is injective. Notice that λn is induced by the product of the
composites

∆ resG,CG(E) : H∗(G)→ H∗(CG(E))→ H∗(E)⊗H∗(CG(E))

for E ∈ A(G). In particular, λn factors through the product of the restriction
maps

H∗(G)→
∏

E∈A(G)

H∗(CG(E)).

Consider the maps

λ′n : H∗(G)→
∏

E∈At(G), t<s

H∗(E)⊗ (H∗(CG(E)))<n

and
λ′′n : H∗(G)→

∏
E∈At(G), t≥s

H∗(E)⊗ (H∗(CG(E)))<n

both given by λn, that is, λn is the product of λ′n and λ′′n.
Recall that if x restricts to zero on every subgroup in Hs(G), then x restricts

to zero on every subgroup in Ht(G), t ≥ s, see lemma 3.42.
Consequently, the principal ideal (x) is contained in the kernel of λ′′n. Fur-

thermore, since any nonzero element in (x) ∩ Kerλ′n is in the kernel of λn, it
follows that λ′n is injective on (x).

Multiplication by x is a homomorphism H∗(G) → H∗(G) with image (x)
and kernel AnnH∗(G)(x). The reader concerned with the sign issues involved in
multiplication by an element being a homomorphism is referred to remark A.21.
In any event, H∗(G)/AnnH∗(G)(x) and (x) are isomorphic as H∗(G)-modules.

Consider ∏
E∈At(G), t<s

H∗(E)⊗ (H∗(CG(E)))<n

as a H∗(G)-module via λ′n.
Now,

dimH∗(G)/AnnH∗(G)(x) = dimH∗(G)H
∗(G)/AnnH∗(G)(x)

= dimH∗(G)(x)

≤ dimH∗(G)

∏
E∈At(G), t<s

H∗(E)⊗ (H∗(CG(E)))<n

≤ dim Imλ′n.



46 Depth, detection and associated primes

The first equality follows from proposition A.12. The second equality above
follows from the fact that the H∗(G)-modules are isomorphic. The first in-
equality follows since the restriction of λ′n to (x) is injective. More specifically,
injectivity of λ′n implies that

I = AnnH∗(G)

∏
E∈At(G), t<s

H∗(E)⊗ (H∗(CG(E)))<n ⊂ AnnH∗(G)(x),

i.e., dimH∗(G)/AnnH∗(G)(x) ≤ dimH∗(G)/I. The second inequality follows
from the fact that dim Imλ′n is an upper bound of the dimension of any module
over Imλ′n, see proposition A.12.

Combining that H∗(CG(E)) is finitely generated as a module over H∗(G)
via restriction with lemma 3.44 gives that

Imλ′n ⊂
∏

E∈At(G), t<s

H∗(E)⊗ (H∗(CG(E)))<n

is an integral extension. Thus,

dim Imλ′n = dim
∏

E∈At(G), t<s

H∗(E)⊗ (H∗(CG(E)))<n

= max{ dimH∗(E)⊗ (H∗(CG(E)))<n |E ∈ At(G), t < s }
= max{ dimH∗(E) |E ∈ At(G), t < s } < s.

The first equality is corollary A.15. The second follows from the structure of
prime ideals in a product of rings, see the proof of corollary 2.5. The third
follows from the fact that H∗(E) ⊗ (H+(G)/H≥n(G)) is a nilpotent ideal in
H∗(E)⊗ (H∗(CG(E)))<n and proposition A.12.

This finishes the proof of the theorem.

3.3 Carlson’s depth conjecture

Carlson’s depth conjecture is affirmative answers to the questions 3.23 and 3.43:

Carlson’s depth conjecture. Let G be a finite group. Suppose the depth of
H∗(G) is d. Then

(1) there exists p ∈ AssH∗(G) such that dimH∗(G)/p = d, and

(2) if H∗(G) is detected Hs(G), then d ≥ s.

In other words, the numbers

ωa = min{dimH∗(G)/p | p ∈ AssH∗(G) }

and
ωd = max{ s |H∗(G) is detected by Hs(G) }

are both equal to d.
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In fact, the two statements of the conjecture are equivalent, a fact that the
author has not been able to find explicitly stated in the literature. However, it
is an immediate consequence of the following result due to Carlson [15]. There
are a few small misleading errors/typos in the proof which have been corrected
in the given proof.

Proposition 3.48. Suppose dimH∗(G)/AnnH∗(G)(x) = d for x ∈ H∗(G).
Then x restricts to zero on every subgroup in Hs(G), s > d.

Proof. Suppose resG,CG(E)(x) 6= 0 and rk(E) > d. Let I = AnnH∗(G)(x), and
J = AnnH∗(CG(E))(resG,CG(E)(x)). Note that I ⊂ res−1

G,CG(E)(J).
The restriction map resG,CG(E) : H∗(G) → H∗(CG(E)) induces an isomor-

phism

ϕ : H∗(G)/ res−1
G,CG(E)(J)→ resG,CG(E)H

∗(G)/(J ∩ resG,CG(E)H
∗(G)),

where ϕ([y]) = [resG,CG(E)(y)]. As usual, H∗(CG(E)) is finitely generated as a
module over H∗(G) via restriction. Corollary A.15 gives that

dimH∗(G)/ res−1
G,CG(E)(J) = dim resG,CG(E)H

∗(G)/(J ∩ resG,CG(E)H
∗(G))

= dimH∗(CG(E))/J.

Consequently,

d = dimH∗(G)/I ≥ dimH∗(G)/ res−1
G,CG(E)(J) = dimH∗(CG(E))/J.

Since maximal annihilators are associated primes, it follows that H∗(CG(E))
has an associated prime p such that dimH∗(CG(E))/p ≤ d. In particular,
depthH∗(CG(E)) ≤ d. But, by Duflot’s theorem,

depthH∗(CG(E)) ≥ rkp(E) > d,

which is a contradiction. This finishes the proof.

Corollary 3.49. The numbers ωa and ωd are equal.

Proof. Recall that ωa ≤ ωd by Carlson’s theorem. The previous proposition
implies the reverse inequality.

Thus, to prove Carlson’s depth conjecture it suffices to prove either state-
ment.

The trivial case is when the cohomology ring is Cohen-Macaulay, e.g., all
abelian groups or more generally groups with abelian Sylow p-subgroups. A
classic family of finite groups is the general linear groups GLn(Fq), where Fq is
a finite field with q elements. The calculation of H∗(GLn(Fq); Fp), where p does
not divide q, is due to Quillen [39], see also [2] section VII.4. The cohomology
ring is the tensor product of a polynomial algebra and an exterior algebra. In
particular, it is Cohen-Macaulay.

The next theorem, see [15] proposition 3.2, establishes the conjecture for all
groups of p-rank at most 2.
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Theorem 3.50. Suppose G has p-rank 2. Then the depth of H∗(G) is 2 if and
only if the dimension of H∗(G)/p is 2 for all p ∈ AssH∗(G).

Green [27] settled the conjecture in the special case where G is a p-group
and depthH∗(G) = rkp(Z(G)). Using computer calculations, Carlson [14] has
verified the conjecture for all the 340 2-groups of order dividing 64. These
examples are what led Carlson to ask the questions about depth, detection and
associated primes. Green [26] has also computed the cohomology rings of some
small p-groups. It is not explicitly stated in the computations by Green that the
conjecture has been verified for these groups. However, using the results above
and the computer computations, the author has checked that this is indeed the
case.

Due to the computational issues in determining the cohomology ring of a
finite group, it is in general not easy for a specific group to check the conjecture
hence the evidence of interesting (not Cohen-Macaulay) cases is not overwhelm-
ing. However, given a group it is sometimes possible to use information about
subgroups and their cohomology rings, e.g., Sylow p-subgroups or normal sub-
groups of index coprime to p, to get information about the cohomology ring of
the group. For example, if the depth of a Sylow p-subgroup P of G is d and is
equal to mrkp(G), then the depth of H∗(G) is equal to d, and G satisfies the
conjecture.

Appendix C describes a program written in Magma with functions that
given a group try to determine the depth of the cohomology ring and/or if
the group satisfies the conjecture using information about the subgroups. The
program uses theoretical results and the calculations by Carlson and Green. If
the reader is interested in investigating some small groups, the appendix also
contains a table of the 69 groups out of the 3775 nonabelian groups of order
strictly less that 256 and not a power of 2 for which the program can not
determine whether or not they satisfy the conjecture for p = 2.

In the next section we add more groups to the list of examples of groups
without Cohen-Macaulay cohomology rings. We end this section with another
intriguing question, also asked by Carlson [15]:

Question 3.51. Suppose H is a subgroup of G. Is

depth resG,H H∗(G) ≥ depthH∗(H)?

The mod 2 cohomology of Mathieu group M11 and its Sylow 2-subgroup is
an example where the inequality is strict since the restriction to any Sylow p-
subgroup is injective, see example 3.10. The next theorem also due to Carlson
shows that an affirmative answer to the previous question implies Carlson’s
depth conjecture.

Theorem 3.52. Let s, 1 ≤ s ≤ rkp(G), be a fixed integer. Suppose

depth resG,CG(E)H
∗(G) ≥ depthH∗(CG(E))
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for all E ∈ As(G) and H∗(G) is detected by the collection Hs(G). Then
depthH∗(G) ≥ s.

Proof. By Duflot’s theorem,

depth resG,CG(E)H
∗(G) ≥ depthH∗(CG(E)) ≥ s.

By theorem A.24, any regular sequence can be extended to a regular se-
quence of maximal length. Therefore it suffices to prove that for any regular
sequence x1, . . . , xr, 0 ≤ r < s, in H∗(G) there exists an H∗(G)/(x1, . . . , xr)-
regular element xr+1 in H∗(G) with the usual convention that (∅) = 0. Let
H(r) denote H∗(G)/(x1, . . . , xr).

Suppose resG,CG(E)(xr+1) ∈ resG,CG(E)H
∗(CG(E)) is a regular element of

H(E, r) = resG,CG(E)H
∗(G)/(resG,CG(E)(x1), . . . , resG,CG(E)(xr))

for all E ∈ As(G). The restriction maps resG,CG(E) : H∗(G) → H∗(CG(E))
induce maps

ϕE,r : H(r)→ H(E, r),

where ϕE,r([x]) = [resG,CG(E)(x)]. The product of these maps,∏
ϕE,r : H(r)→

∏
E∈As(G)

H(E, r),

is injective since resG,CG(E)((x1, . . . , xr)) = (resG,CG(E)(x1), . . . , resG,CG(E)(xn))
as ideals in resG,CG(E)H

∗(G). Moreover, the diagram

H∗(G)/(x1, . . . , xr) = H(r)
Q
ϕE,r //

·xr+1

��

∏
E∈As(G)H(E, r)

·
Q

resG,CG(E)(xr+1)

��
H∗(G)/(x1, . . . , xr) = H(r)

Q
ϕE,r //

∏
E∈As(G)H(E, r)

commutes. It follows that xr+1 is an H(r)-regular element. Hence, it suffices
to choose xr+1 such that resG,CG(E)(xr+1) is an H(E, r)-regular element for all
E ∈ As(G).

Let AssH(E, r) denote the associated primes of H(E, r) as a module over
resG,CG(E)H

∗(G) and let

Ass(r) =
⋃

E∈As(G)

AssH(E, r).

Recall that AssH(E, r) is a finite set since H(E, r) is finitely generated as a
module over resG,CG(E)H

∗(G), see proposition A.8. In particular, Ass(r) is a
finite set.
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Since the zero divisors of H(E, r) are the union of the associated primes,
see proposition A.8, it suffices to choose xr+1 such that

resG,CG(E)(xr+1) /∈
⋃

p∈Ass(r)

p,

or equivalently, to choose xr+1 such that

xr+1 /∈
⋃

p∈Ass(r)

res−1
G,CG(E)(p).

Suppose ⋃
p∈Ass(r)

res−1
G,CG(E)(p) = H+(G),

where H+(G) is the ideal generated by all elements of positive degree. Then
lemma A.25 gives that H+(G) = res−1

G,CG(E)(p) for some p ∈ Ass(r).
Let q ∈ AssH(E, r). Using proposition A.33 and proposition A.36,

dimH∗(G)/ res−1
G,CG(E)(q) = dim resG,CG(E)H

∗(G)/q

≥ depthresG,CG(E) H
∗(G)H(E, r)

= depth resG,CG(E)H
∗(G)− r

≥ s− r > 0.

In particular,

dimH∗(G)/H+(G) = 0 < dimH∗(G)/ res−1
G,CG(E)(p).

Consequently, H+(G) 6= res−1
G,CG(E)(p), i.e., H+(G) contains an H(r)-regular

element.



The symmetric and alternating groups 51

4 The symmetric and alternating groups

Carlson & Henn [16] determined the depths of the mod p cohomology rings of
the symmetric groups and verified Carlson’s depth conjecture for these groups.
In this section we exploit their results to compute the depths of the cohomol-
ogy rings of some of the alternating groups and establish the conjecture in these
cases. For p odd, we get a complete picture. In the case p = 2, the conjecture
is verified for “half” of the alternating groups. The remaining cases seem more
difficult. The results rely on properties of the Sylow p-subgroups and the ranks
of maximal elementary abelian p-subgroups. In addition, we verify the conjec-
ture for the wreath products Z/p o Sn, and give some p-fusion properties of the
symmetric and the alternating groups.

As usual, p denotes a fixed prime and we only consider mod p cohomology.
A few words on the notation. In general, we use standard notation. The
symmetric (alternating) group on a finite set Ω is denoted SΩ (AΩ). More
concretely, the symmetric (alternating) group on the set {1, . . . , n} is denoted
Sn (An). Entries in cycles are separated by commas, e.g., (1, 2, 3, 4) ∈ S4.

4.1 Sylow p-subgroups of the symmetric groups

The Sylow p-subgroups of the symmetric groups are well known, see e.g. [41].
We begin by determining the order of a Sylow p-subgroup of Sn:

Lemma 4.1. Let n = b0 + b1p + · · · bmpm be the p-adic expansion of n. The
largest power of p dividing n! is

n−
∑m

i=0 bi
p− 1

.

Proof. The number of the integers 1, . . . , n divisible by p is [n/p], the number of
integers divisible by p2 is [n/p2] et cetera. So the largest power of p dividing n!
is [n/p] + [n/p2] + · · · [n/pm]. Now, if n =

∑m
i=0 bip

i, then [n/pj ] =
∑m

i=j bip
i−j .

Hence,

[n/p] + [n/p2] + · · · [n/pm] =
m∑
j=1

m∑
i=j

bip
i−j

=
m∑
i=1

bi(pi−1 + · · ·+ p+ 1)

=
m∑
i=1

bi
pi − 1
p− 1

=
n−

∑m
i=0 bi

p− 1
.
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To describe the Sylow p-subgroups of the symmetric groups we need the
wreath product construction: Let G be a subgroup of the symmetric group
Sn and H a subgroup of Sm, both H and G are assumed nontrivial. Then G

acts on the product Hn by permutation of tuples. More concretely, define a
homomorphism ϕ : G→ Aut(Hn) by

ϕ(g)(h1, . . . , hn) = (hg−1(1), . . . , hg−1(n))

for (h1, . . . , hn) ∈ Hn. It is straightforward to verify that ϕ is indeed a homo-
morphism. The wreath product H o G of H and G is the semidirect product
Hn oϕ G. More specifically, H oG is the set Hn ×G with multiplication

(h1, . . . , hn, g)(h′1, . . . , h
′
n, g
′) = (h1h

′
g−1(1), . . . , hnh

′
g−1(n), gg

′).

Notice that |H oG| = |H|n|G|.
Let Λ = {1, . . . ,m} and Ω = {1, . . . , n}. An element σ = (h1, . . . , hn, g) in

H oG may be considered as a permutation of the set Λ× Ω via

σ(i, j) = (hj(i), g−1(j))

for (i, j) ∈ Λ× Ω. Consider Λ× Ω as the ordered set

{(1, 1), (2, 1), . . . (m, 1)︸ ︷︷ ︸
m

, (1, 2), . . . , (m, 2)︸ ︷︷ ︸
m

, . . . , (1, n), (2, n), . . . , (m,n)︸ ︷︷ ︸
m︸ ︷︷ ︸

n

},

i.e., Λ×Ω is ordered using a reverse lexicographic order. Consequently, we may
consider H oG as a subgroup of Smn. Whenever we say H oG is a subgroup of a
symmetric group we mean via this identification. The next example illustrates
the identification.

Example 4.2. Let G = H = S2 = Z/2 = 〈τ〉 where τ is the nontrivial
permutation (1, 2) in S2. Consider the element σ = (τ, τ, 1) in Z/2 o Z/2. We
compute the corresponding element in S4 as a permutation of the ordered set
{(1, 1), (2, 1), (1, 2), (2, 2)}:

σ(1, 1) = (2, 1), σ(2, 1) = (1, 1), σ(1, 2) = (2, 2), σ(2, 2) = (1, 2),

i.e., as an element in S4, σ is the permutation (1, 2)(3, 4).

Example 4.3. The wreath product Z/2 o Z/2 is isomorphic to the dihedral
group of order 8: It is easily verified that x = (τ, 1, τ) and y = (1, τ, 1) generate
Z/2 o Z/2 and satisfy the relations x4 = y2 = 1 and yxy = x−1, i.e., Z/2 o Z/2
is the dihedral group of order 8.

Next, we describe the Sylow 2-subgroups of S2n . Set W1 = Z/2 and Wn+1 =
Wn o Z/2 for n > 1. Iteration gives that Wn is a subgroup of S2n . An easy
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induction shows that Wn has order 2(2n−1). By lemma 4.1, this is exactly the
order of a Sylow 2-subgroup of S2n . It follows that Wn is a Sylow 2-subgroup
of S2n .

Let n = 2n1 + · · · + 2nm , 0 ≤ n1 < · · · < nm, be the 2-adic expansion of n.
A natural way to view Sn1 × · · · × Snm as a subgroup of Sn is to view Sni as
the subgroup of Sn of permutations which only permutes the subset

{n1 + · · ·+ ni−1 + 1, . . . , n1 + · · ·+ ni} ⊂ {1, . . . , n}.

In particular, this gives an embedding of Wn1 × · · · ×Wnm into Sn. Note that

|Wn1 × · · · ×Wnm | = 22n1−1 · · · 22nm−1 = 22n1+···+2nm−m = 2n−m.

By lemma 4.1, the order of a Sylow 2-subgroup of Sn is 2n−m. It follows that
Wn1 × · · · ×Wnm is a Sylow 2-subgroup of Sn.

Let p be an odd prime and W1 = Z/p the subgroup of Sp generated by the
p-cycle (1, . . . , p), and Wn+1 = Wn o Z/p for n > 1. Using lemma 4.1, Wn is a
Sylow p-subgroup of Spn . Let n = b0 +b1p+ · · ·+bmp

m be the p-adic expansion
of n. As above, consider

S1 × · · · × S1︸ ︷︷ ︸
b0

×Sp × · · · × Sp︸ ︷︷ ︸
b1

× · · · × Spm × · · · × Spm︸ ︷︷ ︸
bm

as a subgroup of Sn in the natural way. Again, using lemma 4.1, W b1
1 ×· · ·×W bm

m

has the order of a Sylow p-subgroup of Sn, i.e., it is a Sylow p-subgroup.
Summarizing, we have proved the following theorem. The essential case

where n is a prime power is originally due to Kaloujnine [30].

Theorem 4.4. Let n = b0 + b1p + · · · + bmp
m be the p-adic expansion of n.

Then the product W b1
1 × · · · ×W bm

m of iterated wreath products is (isomorphic
to) a Sylow p-subgroup of Sn.

Remark 4.5. If p - n + 1, then a Sylow p-subgroup of Sn (or An) is a Sylow
p-subgroup of Sn+1 (or An+1). Moreover, since An has index 2 in Sn, a Sylow
p-subgroup, p odd, of Sn is contained in An.

The following result on the center of a Sylow p-subgroup of Sn and its
immediate consequences are important to us. These results are surely well
known but no explicit reference is known to the author. We begin with a
description of the center of a wreath product.

Consider the wreath product H o G, where H is a subgroup of Sm and G

is a subgroup of Sn. For a subgroup K of H, the diagonal of K in Hn is the
subgroup ∆(K) = { (x, . . . , x) |x ∈ K }. Obviously, ∆(K) is isomorphic to K,
and ∆(K) embeds into H oG via the homomorphism (x, . . . , x) 7→ (x, . . . , x, 1).
So we may view ∆(K), and K, as a subgroup of H oG.
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Proposition 4.6. If G is a transitive subgroup of Sn, then Z(HoG) = ∆(Z(H)).

Proof. The nontrivial inclusion is that the center of H o G is contained in the
diagonal of the center of H.

Let σ = (h1, . . . , hn, g) ∈ Z(H oG). For all x = (x1, . . . , xn, f) ∈ H oG,

(h1xg−1(1), . . . , h1xg−1(n), gf) = σx = xσ = (x1hf−1(1), . . . , xnhf−1(n), fg).

In particular, σ commutes with (h, . . . , h, 1) for all h ∈ H, i.e., hih = hhi for
all 1 ≤ i ≤ n and all h ∈ H, that is, hi ∈ Z(H).

If (x1, . . . , xn, 1) ∈ H oG, then hixg−1(i) = xihi. Since hi ∈ Z(H), xg−1(i) =
xi for all 1 ≤ i ≤ n and all (x1, . . . , xn) ∈ Hn. It follows that g is the identity.

It remains to prove that h1 = · · · = hn: For each 1 < i ≤ n, there exits f ∈ G
such that f−1(1) = i. Since σ = (h1, . . . , hn, 1) commutes with (1, . . . , 1, f),

(hf−1(1), . . . , hf−1(n), g) = (h1, . . . , hn, f),

i.e., hf−1(1) = hi = h1 for all i. This finishes the proof.

The center of the Sylow 2-subgroup Wn of S2n : The center of S2 = Z/2
is generated by τ = (1, 2). By proposition 4.6, the center of Z/2 o Z/2 is
∆(〈τ〉), i.e., 〈(τ, τ, 1)〉, where (τ, τ, 1) considered as an element in S4 is the
permutation (1, 2)(3, 4), see example 4.2. Assume inductively that the center
of Wn is generated by the permutation τ ′ = (1, 2) · · · (2n − 1, 2n). As before,
the center of Wn+1 is generated by the element σ′ = (τ ′, τ ′, 1). Since

σ′(1, 1) = (2, 1), σ′(2, 1) = (1, 1), . . . , σ′(2n, 1) = (2n − 1, 1),

σ′(1, 2) = (2, 2), . . . , σ′(2n − 1, 2) = (2n, 2), σ′(2n, 2) = (2n − 1, 2),

the center of Wn+1 is generated by the permutation (1, 2) · · · (2n − 1, 2n).
A similar analysis apply for the odd primes. So we have the following result.

Proposition 4.7. Let p be a prime. The center of Wn is cyclic of order p and
is, as a subgroup of Spn, generated by (1, . . . , p) · · · (pn − p+ 1, . . . , pn).

Corollary 4.8. Suppose n ≡ 0, 1 (mod 4). Then the center of a Sylow 2-
subgroup of Sn is equal to the center of a Sylow 2-subgroup of An.

Proof. We may assume n is divisible by 4. Let n = 2n1 + · · · + 2nm , 1 < n1 <

· · · < nm, be the 2-adic expansion of n. A Sylow 2-subgroup of Sn is isomorphic
to

Wn1 × · · · ×Wnm .

Recall that the center of a product is the product of the centers. By proposition
4.7, the center of each factor consists of even permutations.

Corollary 4.9. Suppose n ≡ 2, 3 (mod 4). Then a Sylow 2-subgroup of An is
isomorphic to a Sylow 2-subgroup of Sn−2.
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Proof. We may assume n − 2 is divisible by 4. Let n = 2 + 2n1 + · · · + 2nm ,
1 < n1 < · · · < nm, be the 2-adic expansion of n. A Sylow 2-subgroup of Sn is
isomorphic to

P = W1 ×Wn1 × · · · ×Wnm .

Recall that W1 is generated by the transposition (1, 2). It follows that W1 is
contained in the center of P . Note that P contains a Sylow 2-subgroup Q of
An, and P = W1Q since Q has index 2 in P . Since W1 and Q are normal
subgroups of P and W1 ∩Q is trivial, P is the product W1 ×Q. Consequently,
Q is isomorphic to a Sylow 2-subgroup of Sn−2.

Another situation where wreath products appear naturally is in the de-
scription of centralizers in the symmetric groups, see [47] p. 295: Suppose a
permutation σ in Sn is a product σ = σ1 · · ·σm of disjoint permutations such
that σi is a product of ri si-cycles, i.e., n = r1s1 + · · ·+ rmsm. Write

σi = (a(i)1,1, . . . , a(i)1,si) · · · (a(i)ri,1, . . . , a(i)ri,si)

and Ωi = {a(i)u,v | 1 ≤ u ≤ ri, 1 ≤ v ≤ si } ⊂ {1, . . . , n}.
Recall that for any τ ∈ Sn, τστ−1 = τσ1τ

−1 · · · τσmτ−1 and

τσiτ
−1 = (τ(a(i)1,1), . . . , τ(a(i)1,si)) · · · (τ(a(i)ri,1), . . . , τ(a(i)ri,si)).

Observe that σ and τ commute if and only if τ(Ωi) = Ωi and the restriction of
τ to Ωi and σi commute for all i. It follows that

CSn(σ) = CSΩ1
(σ1)× · · · × CSΩm

(σm).

It remains to consider the case where σ is a product of cycles of the same length:

Proposition 4.10. Suppose σ ∈ Srs is a product of r disjoint s-cycles. Then
CSrs(σ) is isomorphic to Z/s o Sr.

Proof. Write

σ = (a1,0, a1,1, . . . , a1,s−1) · · · (ar,0, ar,1, . . . , ar,s−1).

Let Z/s be the subgroup 〈(0, . . . , s− 1)〉 of the permutations of {0, . . . , s− 1}.
Let τ ∈ CSrs(σ). For 1 ≤ i ≤ r and 0 ≤ l ≤ s− 1,

τ(ai,l) = τ(σl(ai,0)) = σl(τ(ai,0)).

It follows that τ is determined by its values on the elements a1,0, . . . , ar,0. Fur-
thermore, suppose τ(ai′,0) = σlτ(ai,0) = τ(ai,l) for some l. Then i′ = i and
l = 0, i.e., τ(a1,0), . . . , τ(ar,0) are in different cycles of σ.

Consequently, setting ψ(τ)(i) = j if τ(ai,0) = aj,k defines a permutation
ψ(τ) ∈ Sr. Moreover, define elements ϕi(τ) in Z/s by ϕi(τ) = (0, . . . , s− 1)k.
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Define a map θ : CSrs(σ)→ Z/s oSr by θ(τ) = (ϕ1(τ), . . . , ϕr(τ), ψ(τ)). The
claim is that θ is an isomorphism:

θ homomorphism: Suppose τ ′, τ ∈ CSrs(σ) with τ(ai,0) = aj,k and τ ′(aj,0) =
aj′,k′ . Since

τ ′τ(ai,0) = τ ′(σk(aj,0)) = σk(τ ′(aj,0)) = aj′,k′+k,

it follows that ψ(τ ′τ)(i) = j′ = ψ(τ ′)ψ(τ)(i). Moreover, because ψ(τ ′)−1(j′) =
j, we get ϕψ(τ ′)−1(j′)(τ) = (0, . . . , s−1)k. This shows that ϕj′(τ ′)ϕψ(τ ′)−1(j′)(τ) =
(0, . . . ,m− 1)k

′+k. Thus,

θ(τ ′τ) = (ϕ1(τ ′τ), . . . , ϕr(τ ′τ), ψ(τ ′τ))

= (ϕ1(τ ′)ϕψ(τ ′)−1(1)(τ), . . . , ϕr(τ ′)ϕψ(τ ′)−1(r)(τ), ψ(τ ′)ψ(τ))

= (ϕ1(τ ′), . . . , ϕr(τ ′), ψ(τ ′))(ϕ1(τ), . . . , ϕr(τ), ψ(τ))

= θ(τ ′)θ(τ),

that is, θ is indeed a homomorphism.
θ injective: Suppose θ(τ) = (1, . . . , 1, 1). Then τ(ai,0) = ai,0 for all i, i.e., τ

is the identity.
θ surjective: Suppose (ϕk1 , . . . , ϕkr , ψ) ∈ Z/s o Sr, ϕki = (0, . . . , s − 1)ki .

Consider the permutation τ in Srs defined by τ(ai,l) = aψ(i),kψ(i)+l
. Then

τσ(ai,l) = τ(ai,l+1) = aψ(i),kψ(i)+l+1
= στ(ai,l)

and θ(τ) = (ϕk1 , . . . , ϕkr , ψ) by construction. This finishes the proof.

4.2 Maximal elementary abelian p-subgroups

Consider the elementary abelian group En = (Z/p)n as a subgroup of Spn via
the left regular representation ρ : En → Spn , i.e., the permutation representa-
tion given by the transitive action of En on the set En via left multiplication
ρ(g)(h) = gh for g, h ∈ En.

Remark 4.11. A characteristic of the regular representation of an elementary
abelian p-subgroup is that every nontrivial permutation is a product of n disjoint
cycles of length p: Let g be a nontrivial element in En. Note that if g has a
fixed point then g is the identity; if gx = x, x ∈ E, then g = 1. So g has no
fixed points. The cycle type of g is given by the orbits of the action of 〈g〉 on
En. Since the length of an orbit divides |g| = p, every orbit has length p.

Theorem 4.12. Let n = b0 + b1p + · · · bmpm be the p-adic expansion of n. If
n = a0 + a1p+ a2p

2 + · · ·+ amp
m is a decomposition of n with 0 ≤ a0 < p and

0 ≤ ai for 1 ≤ i ≤ m. Then

E1 × · · · × E1︸ ︷︷ ︸
a1

× · · · × Em × · · · × Em︸ ︷︷ ︸
am

⊂ Sp × · · · × Sp︸ ︷︷ ︸
a1

× · · · × Spm × · · · × Spm︸ ︷︷ ︸
am

,
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as a subgroup of Sn in the natural way, is a maximal elementary abelian p-
subgroup of Sn, and different decompositions of n give distinct conjugacy classes.

Furthermore, the maximal p-rank of a maximal elementary abelian p-subgroup
is

rkp(Sn) =
[
n

p

]
= b1 + b2p+ · · ·+ bmp

m−1,

and the minimal p-rank is

mrkp(Sn) = b1 + 2b2 + · · ·+mbm.

The minimal p-rank is only obtained by the maximal elementary p-subgroup
corresponding to the p-adic expansion of n, except for p = 2 and 3 < n < 8.

The proof of the statement about the conjugacy classes is from [2], see
theorem VI.1.3. Concerning the ranks, it is not easy to find a proof in the
literature. Especially for the part regarding the minimal rank of a maximal
elementary abelian p-subgroup, so we give a somewhat detailed proof here.
However, it should not come as a surprise that the minimal rank is determined
by the p-adic expansion.

Proof. Let E ⊂ Sn be an elementary abelian p-subgroup. Furthermore, let
Ox1 , . . . ,Oxm be the orbits of E. Since the length of an orbit Oxi divides the
order of E, every orbit has length a power of p, i.e., Oxi = pti for some ti.
Restriction gives a transitive action of E on each orbit Oxi , or equivalently, a
homomorphism fi : E → SOxi .

Suppose g is in the stabilizer Exi of xi. Then g stabilizes all x ∈ Oxi since
E abelian. More specifically, if x = g′xi for some g′ ∈ E, then gx = gg′xi =
g′gxi = x. Thus, the kernel of fi is the stabilizer Exi of xi. So fi induces
an injective homomorphism f̃i : E/Exi → SOxi , and the stabilizer in E/Exi of
every x ∈ Oxi is trivial. It follows that f̃i is the regular representation of E/Exi ,
see e.g. [41] 1.6.7.

Note that Ex1 ∩ · · · ∩ Exm is the identity. Consequently, the map

E

Q
fi //
∏

1≤i≤m SOxi ⊂ Sn

is injective, and it follows that E is, up to conjugacy, one of the listed groups.
Elementary abelian p-subgroups corresponding to different decompositions

of n are not conjugated since they contain elements with different cycle type.
This proves the statement about the conjugacy classes of maximal elementary
abelian p-subgroups of Sn.

Next is the statements about the p-ranks. We may assume p divides n
since the Sylow p-subgroups are the same, i.e., b0 = a0 = 0. Observe that
the rank of a maximal elementary abelian p-subgroup corresponding to a given
decomposition is

a1 + 2a2 + · · ·+mam.
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Since i ≤ pi−1 for i ≥ 1,

m∑
i=1

aii ≤
m∑
i=1

aip
i−1 =

n

p
.

Thus, rkp(Sn) = n
p . In particular, the maximal rank is obtained when a1 is

maximal.
To prove that mrkp(Sn) is given by the p-adic expansion we need to prove

that
b1 + · · · (m− 1)bm−1 +mbm ≤ a1 + · · · (m− 1)am−1 +mam

for all decompositions a1p+ · · · ampm of n. The idea is to iteratively transform
the p-adic expansion into any decomposition and keep track of what happens
to the ranks of the corresponding elementary abelian p-subgroups. The result
is obvious for m = 1 since there is only one maximal elementary abelian p-
subgroup.

Suppose n = a1p + · · · ampm is a decomposition of n with m > 1. Change
the p-adic expansion by changing bm to am by adding (bm − am)p to bm−1.
Thus, the p-adic expansion is changed into the decomposition

b1p+ · · ·+ (bm−1 + (bm − am)p)pm−1 + amp
m.

The rank of the corresponding elementary abelian p-subgroup is

b1 + · · ·+ (m− 1)(bm−1 + (bm − am)p) +mam,

and

b1 + · · ·+ (m− 1)bm−1 +mbm ≤ b1 + · · ·+ (m− 1)(bm−1 + (bm − am)p) +mam

if and only if
mbm ≤ (m− 1)(bm − am)p+mam.

Note that m ≤ (m− 1)p since m > 1, and bm ≥ am by the greedy nature of the
p-adic expansion. Now,

mbm ≤ (m− 1)(bm − am)p+mam ⇔ m(bm − am) ≤ (m− 1)(bm − am)p

⇔ m ≤ (m− 1)p.

In other words, the rank of the elementary abelian p-subgroup corresponding
to the new decomposition is at least as large as the rank corresponding to the
p-adic expansion. Note that equality occur exactly when m = (m− 1)p.

Observe that

b1p+ b2p
2 + · · ·+ (m− 1)(bm−1 + (bm − am)p)pm−1
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is the p-adic expansion of n− ampm. Repeating the above process gives that

b1 + 2b2 + · · ·+mbm ≤ b1 + 2b2 + · · ·+ (m− 1)(bm−1 + (bm − am)p) +mam

≤ · · ·
≤ b1 + 2c2 + 3a3 + · · ·+mam

≤ a1 + 2a2 + · · ·+mam,

where b1p+ c2p
2 is the p-adic expansion of n− ampm − · · · − a3p

3. This proves
that the minimal rank of a maximal elementary abelian p-subgroup correspond
to the p-adic expansion.

Finally, we investigate when a decomposition gives the same rank as the
p-adic expansion. If m = 1, then the p-adic expansion is the only possible
decomposition.

Suppose m > 1. As noted above, equality occurs exactly when i = (i− 1)p
for all 1 < i ≤ m. Now, if i = (i − 1)p for i > 1, then p = i(p − 1). Since p
prime, i = 1 or p−1 = 1. By assumption i > 1, so p = 2. Note that i = 2(i−1)
if and only if i = 2. Thus, i < (i− 1)p except for p = i = 2.

It follows that for p odd the minimal rank of a maximal elementary abelian
p-subgroup is only obtained by the p-adic expansion. For p = 2 the only cases
where a decomposition of n different from the 2-adic expansion obtain the
minimal rank is when m = 2. More specifically, when the 2-adic expansion has
the form n = b0 + b12 + b222, that is, 3 < n < 8.

Our next theorem on the maximal elementary abelian p-subgroups of An
is important in determining the depth of the mod p cohomology rings of the
alternating groups.

Theorem 4.13. If p is an odd prime, then the elementary abelian p-subgroups
of An are precisely the elementary abelian p-subgroups of Sn.

The maximal elementary abelian 2-subgroups of An are the subgroups E∩Sn,
where E is a maximal elementary abelian 2-subgroup of Sn.

Let n = b0 + b12 + · · · bm2m be the 2-adic expansion of n, and let n =
a0 + a12 + · · ·+ am2m be a decomposition of n with 0 ≤ a0 < 2 and 0 ≤ ai for
1 ≤ i ≤ m.

If E is the maximal elementary abelian 2-subgroup of Sn corresponding to
the decomposition of n, see theorem 4.12. Then

rk2(E ∩An) =

{
rk2(E), a1 = 0
rk2(E)− 1, a1 > 0.

Furthermore,

rk2(An) =

{
rk2(Sn), n ≡ 0, 1 (mod 4)
rk2(Sn)− 1, n ≡ 2, 3 (mod 4),
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and

mrk2(An) =

{
mrk2(Sn), n ≡ 0, 1 (mod 4)
mrk2(Sn)− 1, n ≡ 2, 3 (mod 4).

Proof. For an odd prime p the Sylow p-subgroups of Sn are also the Sylow p-
subgroups of An. So in this case theorem 4.12 describes the maximal elementary
abelian p-subgroups of An.

Any maximal elementary abelian 2-subgroup of An is contained in a maxi-
mal elementary abelian 2-subgroup in Sn, which gives the second statement.

As usual, we may assume n is divisible by 2.
Suppose a1 = 0. Then E contains no transpositions, see remark 4.11. In

other words, it is contained in An.
Suppose a1 > 0. Then E contains a transposition. Hence, EAn = Sn.

By a Noether isomorphism, [E : E ∩ An] = [Sn : An] = 2. It follows that
rk2(E ∩An) = rk2(E)− 1.

Suppose n ≡ 0 (mod 4). Then the decomposition n = a24 = a222 gives a
maximal elementary abelian 2-subgroup of maximal rank n/2 in An. Note that
b1 = 0 in the 2-adic expansion of n. So the corresponding maximal elementary
abelian 2-subgroup in Sn is contained in An. By theorem 4.12, the 2-adic
expansion is the only decomposition with minimal rank except for perhaps
n = 4. However, S4 only contains 3 double transpositions which constitutes the
only maximal elementary abelian 2-subgroup of A4.

Suppose n ≡ 2 (mod 4). Then a1 ≥ 1 in every decomposition of n. Hence,
rk2(E ∩An) = rk2(E)− 1 for all maximal elementary abelian 2-subgroups E of
Sn.

4.3 p-fusion in the symmetric and alternating groups

Let H be a subgroup of the finite group G. An element x ∈ H∗(H) is called
stable if

resH,H∩gHg−1(x) = g resH,g−1Hg∩H(x)

for all g ∈ G, that is, if the diagram

H∗(H)
res

wwnnnnnnnnnnn
res

''PPPPPPPPPPP

H∗(g−1Hg ∩H)
·g // H∗(H ∩ gHg−1)

commutes for all g ∈ G.
The following theorem by Cartan & Eilenberg, [19] theorem XII.10.1, is

classic.

Theorem 4.14. Let P be a Sylow p-subgroup of G. Then

resG,P : H∗(G)→ H∗(P )

is injective and the image consists of the stable elements of H∗(P ).
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Definition 4.15. A subgroup H of the group G is said to control p-fusion in
G if the following two conditions are satisfied:

(1) [G : H] is coprime to p, and

(2) if Q is a p-subgroup of H and g ∈ G is such that gQg−1 ⊂ H, then g = hc

for some h ∈ H and c ∈ CG(Q).

The requirement that [G : H] is coprime to p gives that H contains a Sylow
p-subgroup of G. The following immediate consequence of the theorem is well
known, see e.g. [6] proposition 3.8.4.

Proposition 4.16. Suppose H controls the p-fusion in G. Then

resG,H : H∗(G)→ H∗(H)

is an isomorphism.

Proof. Let P be a Sylow p-subgroup of G contained in H. By theorem 4.14, it
suffices to show that the stable elements in H∗(P ) are the same.

Let g ∈ G. Note that Q = g−1Pg ∩ P is a p-subgroup of H such that
gQg−1 = P ∩ gPg−1. Since H controls the p-fusion in G, there exists h ∈ H
and c ∈ CG(Q) such that g = hc.

Suppose x ∈ Q, i.e., x = g−1yg ∈ P for some y ∈ P . Then

x = cxc−1 = cg−1ygc−1 = h−1yh.

Hence, Q = h−1Ph ∩ P . Furthermore,

P ∩ gPg−1 = gQg−1 = hQh−1 = h(h−1Ph ∩ P )h−1 = P ∩ hPh−1.

Since c = h−1g centralizes Q, gz = hz for all z ∈ H∗(Q). It follows that the
stable elements in H∗(P ) are the same.

Remark 4.17. G. Mislin [35] proved the converse, that if the restriction map
resG,H : H∗(G) → H∗(H) is an isomorphism, then H controls p-fusion in G.
It is quite surprising that the cohomology controls the subgroup structure of a
group in such a strong way.

The following result on p-fusion in the symmetric groups is widely known.
However, it is not easy to find an explicit reference, so we provide a proof here.

Theorem 4.18. Suppose p - n+ 1. Then Sn controls p-fusion in Sn+1.

Proof. Consider Sn as the subgroup of Sn+1 that fixes n + 1. Since p - n + 1,
[Sn+1 : Sn] and p are coprime. Suppose Q ⊂ Sn is a p-subgroup and σ ∈ Sn+1

is such that σQσ−1 ⊂ Sn. There is nothing to prove if σ fix n + 1. Assume
σ(n+ 1) 6= n+ 1.
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Write σ = σ1 · · ·σk as a product of disjoint cycles such that σ1, . . . , σk−1 ∈
Sn and σk has the form

σk = (a1, . . . , am, n+ 1).

Let x be an element in Q. If x(am) 6= am, then

σxσ−1(n+ 1) = σx(am) 6= n+ 1.

This contradicts that σxσ−1 ∈ Sn. Hence, x(am) = am for all x in Q. Now,

σ = σ1 · · ·σk−1(a1, . . . , am)(am, n+ 1),

where σ1 · · ·σk−1(a1, . . . , am) ∈ Sn and (am, n+1) ∈ CSn+1(Q) since all elements
in Q fix am and n+ 1.

Corollary 4.19. Let n be a positive integer. Then H∗(Snp) ∼= H∗(Snp+m) for
1 ≤ m ≤ p− 1.

Note that H∗(Sn) = Fp for n < p. We continue with a result on the p-fusion
of the alternating groups.

Theorem 4.20. Suppose p - n+ 1 and p - n− 1. Then An controls p-fusion in
An+1.

Proof. Consider An as the subgroup of An+1 that fix n + 1. Since p - n + 1,
[An+1 : An] and p are coprime. Suppose Q ⊂ An is a p-subgroup and σ ∈ An+1

is such that σQσ−1 ⊂ An. We may assume σ(n+ 1) 6= n+ 1.
As in the case of the symmetric group, write σ = σ1 · · ·σk as a product of

disjoint cycles such that σ1, . . . , σk−1 ∈ Sn and σk has the form

σk = (a1, . . . , am, n+ 1).

Recall from the proof of theorem 4.18 that all elements in Q fix am and
n + 1. In particular, Q ⊂ An−1, where An−1 is considered as the subgroup
of An+1 that fixes am and n + 1. So Q is contained in a Sylow p-subgroup
P of An−1. Since p - n − 1, P is conjugate to a Sylow p-subgroup of An−2,
where An−2 is considered as the subgroup of An−1 that fixes an element b in
{1, . . . , n+ 1}−{am, n+ 1}. Thus, τQτ−1 ⊂ An−2 for some τ ∈ An−1. In other
words, τxτ−1(b) = b for all x in Q, that is, x(τ−1(b)) = τ−1(b).

Summarizing, all elements in Q fix n+ 1, am and τ−1(b). Thus,

σ = σ1 · · ·σk−1(a1, . . . , am)(τ−1(b), am)(τ−1(b), am)(am, n+ 1),

where σ1 · · ·σk−1(a1, . . . , am)(τ−1(b), am) ∈ An and (τ−1(b), am)(am, n + 1) ∈
CAn+1(Q) since all elements in Q fix n+ 1, am and τ−1(b).
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Note that it is essential to the proof that n−1 is not divisible by p so we can
conjugate a Sylow p-subgroup of An−1 to a Sylow p-subgroup of An−2, providing
the crucial extra fixed point. The next example shows that the theorem can
not be improved.

Example 4.21. Suppose p - n + 1 and p | n − 1, i.e., n − 1 = mp for some
m. Note that p is necessarily an odd prime. Then An does not control p-
fusion in An+1: For 1 ≤ i ≤ m, let xi be the p-cycle ((i − 1)p + 1, . . . , ip) and
Ωi = {(i− 1)p+ 1, . . . , ip}. The subgroup

E = 〈x1〉 × · · · × 〈xm〉

is an elementary abelian p-subgroup of An−1 ⊂ An+1. Note that E ⊂ CAn+1(E).
By proposition 4.10, 〈xi〉 ⊂ CAΩi

(xi) ⊂ CSΩi
(xi) = 〈xi〉. It follows that

CAn+1(E) = CAΩ1
(x1)× · · · × CAΩm

(xm)×A2 = E.

Let σ = (1, 2)(n, n + 1). Then σEσ−1 ⊂ An. However, if σ = τc for some
τ ∈ An and c ∈ CAn+1(E) = E, then σ ∈ An which is a contradiction.

Corollary 4.22. Let n be a positive integer. Then H∗(Anp) ∼= H∗(Anp+1) and
H∗(Anp+2) ∼= H∗(Anp+m) for 2 < m ≤ p− 1.

Note that H∗(An) = Fp for n < p.

Theorem 4.23. Let p be an odd prime. Then Anp+2 controls p-fusion in Snp+2.

Proof. Suppose Q ⊂ Anp+2 is a p-subgroup and σ ∈ Snp+2 is such that σQσ−1 ⊂
Anp+2. Assume that σ /∈ Anp+2. Consider Anp as the subgroup of Anp+2 that
fixes np + 1 and np + 2. A Sylow p-subgroup P of Anp is a Sylow p-subgroup
of Anp+2. Since Q is conjugated to a subgroup of P , i.e., τQτ−1 ⊂ P for
some τ ∈ Anp+2. For all x ∈ Q, τxτ−1(np+ 1) = np+ 1, i.e., x(τ−1(np+ 1)) =
τ−1(np+1), and x(τ−1(np+2)) = τ−1(np+2). In other words, all elements in Q
fix a = τ−1(np+1) and b = τ−1(np+2). Consequently, σ = σ(a, b)(a, b), where
σ(a, b) ∈ Anp+1 since σ /∈ Anp+2, and (a, b) ∈ CSnp+2(Q) since all elements in Q
fix a and b.

Corollary 4.24. Let n be a positive integer. Then H∗(Anp+m) ∼= H∗(Snp) for
2 ≤ m ≤ p− 1.

4.4 Depth and the symmetric groups

The cohomology rings of the symmetric groups have been much studied. We
do not need the actual ring structure to determine the depth as it turns out the
depth is completely determined by the Sylow p-subgroups. However, a good
introduction to the cohomology of symmetric groups may be found in [2] ch.
VI. As an example,

H∗(S6; F2) = F2[v, x, y, z]/((y + vx)z),
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where |v| = 1, |x| = 2 and |y| = |z| = 3.
The computation of the depths of the mod p cohomology rings of the sym-

metric groups is an easy consequence of the following theorem by Carlson &
Henn [16].

Theorem 4.25. If the depth of H∗(G) is d, then the depth of H∗(G o Z/p) is
d+ 1.

Corollary 4.26. Let n = b0 + b1p + · · · + bmp
m be the p-adic expansion of n

and P a Sylow p-subgroup of Sn. Then

depthH∗(Sn) = depthH∗(P ) = b1 + 2b2 + · · ·+mbm,

and there exists an associated prime p of H∗(Sn) such that the dimension of
H∗(Sn)/p is equal to the depth.

Proof. Recall that, by theorem 3.9, the depth of H∗(Sn) is greater than or
equal to the depth of H∗(P ). By theorem 4.4, P is isomorphic to the product
W b1

1 × · · · ×W bm
m of iterated wreath products. Hence, H∗(P ) is isomorphic to

H∗(W1)⊗ · · · ⊗H∗(W1)︸ ︷︷ ︸
b1

⊗ · · · ⊗H∗(Wm)⊗ · · · ⊗H∗(Wm)︸ ︷︷ ︸
bm

.

Theorem 4.25 implies that depthH∗(Wn) = n, and proposition A.35 gives that

depthH∗(Sn) ≥ depthH∗(P ) ≥ b1 + 2b2 + · · ·+mbm.

Remember that Sn has a maximal elementary abelian p-subgroup of rank
b1 + 2b2 + · · · + mbm, see theorem 4.12, and that the prime ideals in H∗(Sn)
given by maximal elementary 2-subgroups are always among the associated
primes and the dimension of the quotient is equal to the rank, see theorem
2.14. Consequently,

depthH∗(Sn) ≤ b1 + 2b2 + · · ·+mbm.

This finishes the proof.

Remark 4.27. Carlson and Henn also proved that if a is the minimum of the
dimensions of H∗(G)/p, p ∈ AssH∗(G), then the minimum of the dimensions
of H∗(G o Z/p)/q, q ∈ AssH∗(G o Z/p) is at most a + 1. More concisely,
ωa(G o Z/p) ≤ ωa(G) + 1. In particular, if G satisfies the conjecture, then
G o Z/p also satisfies the conjecture.

Remark 4.28. The center of a Sylow p-subgroup of Spn has p-rank 1, see
proposition 4.7. So the example depthH∗(Spn) = n shows that the depth may
exceed the p-rank of the center a Sylow p-subgroup, the lower bound from
Duflot’s theorem, by an arbitrary amount.
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Our next result is a kind of reverse to theorem 4.25 in the case of a symmetric
group.

Corollary 4.29. Let n = b0 + b1p + · · · + bmp
m be the p-adic expansion of n.

Then
depthH∗(Z/p o Sn) = b0 + 2b1 + · · ·+ (m+ 1)bm.

In addition, there exists an associated prime p of H∗(Z/p o Sn) such that the
dimension of H∗(Z/p o Sn)/p is equal to the depth.

Proof. By proposition 4.7, the center of a Sylow p-subgroup P of Snp contains
a permutation σ which is the product of n disjoint p-cycles. Proposition 4.10
gives that the centralizer CSnp(σ) is isomorphic to the wreath product Z/p oSn.
Note that np = b0p+ b1p

2 + · · ·+ bmp
m+1. Our improved version of Notbohm’s

theorem, see theorem 3.18, and corollary 4.26 gives that

depthH∗(Z/p o Sn) = depthH∗(CSnp(σ))

= depthH∗(Snp) = b0 + 2b1 + · · ·+ (m+ 1)bm.

Since P ⊂ CSnp(σ), mrkp(Z/poSn) = mrkp(Snp) = depthH∗(Snp) which finishes
the proof.

4.5 Depth and the alternating groups

After the computation of the depths of the cohomology rings of the symmetric
groups, the obvious question is: What is the depths of the cohomology rings
of the alternating groups and do the alternating groups satisfy the conjecture?
The fact that the alternating groups are simple groups makes an investigation
of their cohomology particularly difficult. In general, the mod p cohomology
rings of the alternating groups have not yet been computed. See [2] section VI.6
for computations of the mod 2 cohomology of An for some small n and [33] for
information on the mod p cohomology of An for p odd. As an example,

H∗(A6; F2) = F2[x, y, z]/(yz),

where |x| = 2, |y| = |z| = 3. Notice that H1(An) = Hom(An,Z/p) = 0 since
An is simple (n ≥ 5).

For an odd prime p, the depth of the mod p cohomology ring of an alter-
nating group is, not surprisingly, determined by a Sylow p-subgroup.

Proposition 4.30. Let p be an odd prime and P a Sylow p-subgroup of An.
Then

depthH∗(An) = depthH∗(P ) = depthH∗(Sn),

and there exists an associated prime p of H∗(An) such that the dimension of
H∗(An)/p is equal to the depth.
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Proof. Follows immediately from the fact that P is a Sylow p-subgroup of Sn
and mrkp(Sn) = mrkp(An).

From now on we only consider mod 2 cohomology. Recall that H∗(A2n) =
H∗(A2n+1), see corollary 4.22. So we may always assume n is even.

With the results on the properties of the Sylow 2-subgroups of the symmetric
and alternating groups, and the ranks of the maximal elementary abelian 2-
subgroups, it is easy to establish the conjecture for “half” of the alternating
groups. As with the symmetric groups, and the alternating groups for odd
primes, the depth of the cohomology ring is determined by a Sylow 2-subgroup:

Proposition 4.31. Suppose n ≡ 2, 3 (mod 4) and Q is a Sylow 2-subgroup of
An. Then

depthH∗(An) = depthH∗(Q) = depthH∗(Sn)− 1.

In addition, there exists an associated prime p of H∗(An) such that the dimen-
sion of H∗(An)/p is equal to the depth.

Proof. By corollary 4.9, a Sylow 2-subgroup Q of An is isomorphic to a Sylow
2-subgroup of Sn−2. Theorem 4.26 gives that

depthH∗(Q) = depthH∗(Sn−2) = depthH∗(Sn)− 1.

Noting that An contains a maximal elementary abelian 2-subgroup of rank
mrk2(Sn)− 1 = depthH∗(Sn)− 1, see theorem 4.13, finishes the proof.

The key point in the proof is corollary 4.9 which relied on the fact the center
of a Sylow 2-subgroup of Sn contained a transposition. However, if n is divisible
by 4, the center of a Sylow 2-subgroup of Sn coincides with the center of An,
see corollary 4.8. Thus, a similar approach does not apply in this case.

In fact, the result also follows from a certain short exact sequence involving
the mod 2 cohomology rings of the symmetric and alternating groups. The
discovery of these results was actually the first breakthrough in the author’s
attempt to compute the depths of the mod 2 cohomology rings of the alternating
groups. Since these results might be useful in determining the depth of H∗(An)
where 4 divides n, we give a brief introduction, see [2] section VI.6 for details.

Lemma 4.32. Let G be a group. Suppose v ∈ H1(G,Z/2) = Hom(G,Z/2) is
nonzero, and let H ⊂ G denote its kernel. Then there is a long exact sequence

· · · // Hn(G) ·v // Hn+1(G) res // H i+1(H) tr // Hn+1(G) // · · · .

In particular, there is a short exact sequence

0 // H∗(G)/(v) res // H∗(H) tr // AnnH∗(G)(v) // 0

of H∗(G)-modules via restriction.
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Corollary 4.33. Let v be the generator of H1(Sn) = Hom(Sn,Z/2) = Z/2.
Then

0 // H∗(Sn)/(v) res // H∗(An) tr // AnnH∗(Sn)(v) // 0

is a short exact sequence of H∗(Sn)-modules.

Proposition 4.34. If n ≡ 2, 3 (mod 4), then the restriction map H∗(Sn) →
H∗(An) is onto. In particular, H∗(An) ∼= H∗(Sn)/(v), where v is a generator
of H1(Sn).

Note that v is a regular element because AnnH∗(Sn)(v) = 0. It follows that

depthH∗(An) = depthH∗(Sn)/(v) = depthH∗(Sn)− 1,

see proposition A.36, which gives another proof of the statement concerning
the depth in proposition 4.31. Of course, to verify that the alternating groups
in these cases satisfy Carlson’s depth conjecture we still need the results of the
ranks of the elementary abelian 2-subgroups.

Perhaps the most powerful consequence of the previous proposition is that
it determines the mod 2 cohomology of the alternating groups from the coho-
mology of the symmetric groups, e.g., the example with S6 and A6 above. The
proof of the proposition relies heavily on topological methods. This led the
author to search for a more elementary proof of proposition 4.31. The search
ended with the above proof which only uses properties of the Sylow 2-subgroups
of the symmetric and alternating groups.

The remaining case of n divisible by 4 seems more difficult and the au-
thor has unfortunately not been able to determine the depth. Remember that
depthH∗(Sn) = mrk2(Sn) = mrk2(An) in this case. For small n the situation
is as follows.

A Sylow 2-subgroup of A4 is a maximal elementary abelian 2-subgroup of
rank 2, i.e., depthH∗(A4) = 2. A Sylow 2-subgroup of A8 has order 64 with
Hall-Senior number 259 or Magma small group library number 138 which, by
[14] or [26], has depth 3. Since mrk2(A8) = 3, the depth of H∗(A8) is 3. The
table below lists some information about Sn and An for small n.

We end with a question:

Question 4.35. Suppose n ≡ 0, 1 (mod 4). Let P and Q be Sylow 2-subgroups
of Sn and An, respectively. Is

depthH∗(An) = depthH∗(Q) = depthH∗(P ) = depthH∗(Sn)?

n depth(Sn) mrk2(Sn) rk2(Sn) depth(An) mrk2(An) rk2(An)
4 2 2 2 2 2 2
6 3 3 3 2 2 2
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n depth(Sn) mrk2(Sn) rk2(Sn) depth(An) mrk2(An) rk2(An)
8 3 3 4 3 3 4
10 4 4 5 3 3 4
12 5 5 6 - 5 6
14 6 6 7 5 5 6
16 4 4 8 - 4 8
18 5 5 9 4 4 8
20 6 6 10 - 6 10
22 7 7 11 6 6 10
24 8 8 12 - 8 12
26 9 9 13 8 8 12
28 10 10 14 - 10 14
30 11 11 15 10 10 14
32 5 5 16 - 5 16
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A Graded commutative ring theory

This fairly lengthy appendix provides background theory from commutative
ring theory in the context of graded commutative rings. As we shall see, the so
called graded commutative Noetherian rings with a field in degree zero, e.g., the
mod p cohomology ring of a finite group, behave like local rings in the strictly
commutative world.

The objective is not to develop graded commutative ring theory from scratch.
Instead, many results, e.g., matters concerning prime ideals, are reduced to their
well known commutative counterparts and in these cases we in general provide
a reference where the interested reader can locate a proof. Concerning depth it
is not obvious how to reduce results to the known results from the commutative
case so more details are provided. The exposition is primarily based on [5], [13],
[18] and [34].

Let k be a field. All rings are nontrivial unitary rings, and the identity
element is denoted by 1 and the zero element by 0.

We begin with a very brief introduction to graded rings and modules. The
main purpose is to establish terminology and the reader unfamiliar with these
concepts can find a thorough and excellent exposition in [32]. It should be noted
that we work with internal grading whereas [32] work with external grading.

Definition A.1. A graded ring is a ring R with a direct sum decomposition
R =

⊕
i∈N0

Ri of abelian subgroups such that RiRj ⊂ Ri+j for all i, j ∈ N0.
A graded (right) R-module is an R-module M with a direct sum decompo-

sition M =
⊕

i∈N0
M i of abelian subgroups such that RiM j ⊂ M i+j (M iRj ⊂

M i+j) for all i, j ∈ N0.
A graded algebra over a graded ring R is an R-algebra A which is both a

graded R-module and a graded ring.

An element x ∈M is called homogeneous if x ∈M i for some i which is called
the degree of x. We write |x| = i to denote that x is homogeneous of degree
i. The zero element is by definition homogeneous of arbitrary degree. A ring
homomorphism ϕ : R→ S of graded rings is called homogeneous if ϕ(Ri) ⊂ Si

for all i ∈ N0. Similarly for a homomorphism of R-modules. Note that R0 is a
subring of R and each M i is an R0-module.

A submodule N ⊂ M is called homogenous if N is generated be homoge-
neous elements, or equivalently, if x ∈ N each homogenous term of x is in N ,
i.e., N =

⊕
i∈N0

(N ∩M i). If N is a homogeneous submodule of M then

M/N =
⊕
i∈N0

M i/(N ∩M i)

is a graded R-module. The homogeneous submodules of R are called homo-
geneous ideals. The homogenous elements of positive degree generate an ideal
which is denoted R+.
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Any ring S may trivially be considered as a graded ring R with R0 = S and
Ri = 0 for i > 0. A graded algebra over the trivially graded ring k is simply
called a graded k-algebra.

Example A.2. The graded polynomial algebra over k generated by an inde-
terminate x of degree d > 0 is denoted k[x] and is defined by

k[x]i =

{
0, d - i
the free k module generated by xj , i = jd

with product given by xixj = xi+j and x0 as the identity. Disregarding the
grading k[x] is just the ordinary polynomial algebra in x with coefficients in k.
In k[x] the ideal (x) is homogeneous but the ideal (1 + x) is not homogeneous.
In fact, both ideals are maximal ideals in k[x] since they are the kernel of the
evaluation homomorphism εa : k[x] → k, f 7→ f(a), a ∈ k, which is surjective
and the kernel of εa is (x − a). The exterior algebra over k generated by x of
odd degree d > 0, denoted ∧k(x), is the quotient algebra k[x]/(x2).

Definition A.3. A graded ring R is called graded commutative if

xy = (−1)|x||y|yx

for all homogenous elements x, y in R.

Of course, a graded ring may be commutative in the usual sense and we say
it is commutative graded. For example, a graded polynomial algebra on one
generator is graded commutative if and only if the generator has even degree,
but it is always commutative graded.

Graded commutative rings are very close to being commutative. Since the
left and right ideals coincide, the notions of Noetherian ring and prime ideals
act as in the commutative case. More generally, left modules are the same as
right modules. Specifically, every left R-module M is also a right module via
the formula mr = (−1)|r||m|rm for homogeneous elements r ∈ R and m ∈ M .
Henceforth we only consider left modules.

Note that elements of even degree always commute, and if 2 is invertible,
then the square of an element of odd degree is zero. In particular, R0 is a
commutative subring of R, i.e., R is a graded R0-algebra.

If R and S are graded commutative k-algebras, the tensor product Ri⊗k Sj

for all i and j is a k-module. The graded tensor product R ⊗k S is the graded
k-module with (R ⊗k S)n =

⊕
i+j=nR

i ⊗k Sj . The tensor product becomes a
graded commutative k-algebra with product defined by

(r ⊗ s)(r′ ⊗ s′) = (−1)|s||r
′|(rr′ ⊗ ss′).

Example A.4. The graded polynomial algebra on generators x1, . . . , xn of even
degree is the commutative graded k-algebra k[x1, . . . , xn] = k[x1]⊗k · · ·⊗kk[xn].
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The homogeneous elements of degree i are the homogeneous polynomials of
degree i. Similarly, the exterior algebra ∧k(x1, . . . , xn) on generators x1, . . . , xn
of odd degree is ∧k(x1)⊗k · · · ⊗k ∧k(xn).

Proposition A.5. If a graded commutative ring R is Noetherian then R0 is
Noetherian and R is finitely generated as a ring over R0 by homogeneous ele-
ments.

Proof. Since R is Noetherian and R/R+ = R0, R0 is Noetherian. The ideal R+

is finitely generated. Each generator is a finite sum of homogeneous elements
hence R+ is generated by a finite number of homogeneous elements x1, . . . xn.
Thus, R is generated as a ring over R0 by x1, . . . , xn and 1.

In fact, the converse is also true when R0 = k is a field, see remark A.17 be-
low. In the situation of the previous proposition R is a finitely generated graded
commutative R0-algebra. Note that if R is a graded commutative Noetherian
ring with R0 a field, then from a purely graded perspective the ring is (graded
commutative) local with maximal ideal R+.

A.1 The prime ideal spectrum

Let R be a graded commutative Noetherian ring with R0 = k a field. As usual,
SpecR denotes the set of prime ideals in R, and is also called the prime ideal
spectrum of R.

Let ϕ : R → S be a ring homomorphism. If p is a prime ideal of S, then
f−1(p) is a prime ideal of R, i.e., f induces a map of sets

f−1 : SpecS → SpecR.

In other words, R 7→ SpecR is a contravariant functor from the category of
rings to the category of sets.

For an ideal I of R the set of prime ideals containing I is called the variety
of I and is denoted V (I), that is,

V (I) = { p ∈ SpecR | I ⊂ p }.

Furthermore, the set
√
I = {x ∈ R |xn ∈ I for some n }

is an ideal of R, which is called the radical of I. The nilpotent elements in R,
or the nilradical of R, is the radical of the zero ideal and is also denoted Nil(R).

If k has characteristic 2, R is strictly commutative. If k has characteristic
different from 2, every element of odd degree square to zero, i.e., the elements
of odd degree are contained in the nilradical which is contained in every prime
ideal of R. In other words, the prime ideal spectrum of R and R/Nil(R) coin-
cide. Furthermore, if I is an ideal of R, then V (I) = V (I + Nil(R)), i.e., V (I)
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and V ((I + Nil(R))/Nil(R)) also coincide. Note that R/Nil(R) is a commuta-
tive graded ring since the nilradical is homogeneous by the following proposi-
tion. Summarizing, we may assume that R is strictly commutative in matters
concerning prime ideals and thus apply well known results from commutative
algebra.

First some elementary properties of radicals and varieties.

Proposition A.6.

(1) If I is a homogeneous ideal in R, then the radical
√
I is also a homoge-

neous ideal.

(2) If I is an ideal of R, then
√
I =

⋂
p∈V (I) p. In particular, if p is a prime

ideal of R, then
√

p = p.

Proof. (1) It is difficult to find a reference for this fact, so we give a proof:
Suppose x = x1 + · · · + xm ∈

√
I, |x1| < · · · < |xm|, i.e., xn ∈ I for some n.

Since I is homogeneous, each homogeneous term of xn is in I. In particular,
the homogeneous term xn1 of xn of smallest degree is in I. So x1 ∈

√
I and y =

x− x1 ∈
√
I. Iterating gives that x1, . . . , xm ∈

√
I. Thus,

√
I is homogeneous.

(2) see [34] p. 3.

Proposition A.7.

(1) If I and J are ideals in R, then V (I) ∪ V (J) = V (I ∩ J) = V (IJ).

(2) If {Iλ}λ∈Λ is any family of ideals in R, then⋂
λ∈Λ

V (Iλ) = V (
⊕
λ∈Λ

Iλ).

(3) If I is an ideal, then V (I) = V (
√
I).

Proof. (1)-(2) see [34] p. 24. (3) by proposition A.6.

Recall that for any R-module M the annihilator of an element m in M is
the ideal

AnnR(m) = { r ∈ R | rm = 0 },

and the annihilator of M is the ideal

AnnRM =
⋂
m∈M

AnnR(m),

i.e., the elements in R which annihilate all elements in M . The union of all
annihilators of nonzero elements in M is the set of zero divisors of M .

An ideal in R is said to be associated to the R-module M if it is the an-
nihilator of some nonzero element in M . An associated prime ideal, or simply
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an associated prime, of M is a prime ideal associated to M . The set of prime
ideals associated to M is denoted AssRM , that is,

AssRM = { p ∈ SpecR | p = AnnR(m) for some m ∈M }.

The associated primes of R is simply denoted AssR.
It is not clear that we may reduce questions about associated primes to ques-

tions in R/Nil(R). Instead we shall just note that the proofs of the statements
of the following proposition in the commutative case goes verbatim through to
the graded commutative case. The diligent reader should have no problems
verifying this.

Proposition A.8. Suppose M is a graded R-module.

(1) Every maximal element in the set {AnnR(m) | 0 6= m ∈M }, ordered un-
der inclusion, is an associated prime of M . In particular, every nontrivial
module has an associated prime.

(2) The set of zero divisors of M is the union of all associated primes of M .

(3) If M is finitely generated, then AssRM is a finite set.

(4) If M is finitely generated, then the minimal elements, ordered under in-
clusion, of AssRM and V (AnnRM) coincide. In particular, the minimal
prime ideals of R are associated primes.

(5) Any associated prime ideal of M is homogeneous and the annihilator of a
homogeneous element in M .

Proof. (1)-(2): [34] theorem 6.1. (3)-(4): [5] proposition 2.2.5. (5): [13] lemma
1.5.6.

Proposition A.9. Suppose p is a prime ideal of R. Let p∗ be the ideal generated
by all homogeneous elements in p. Then p∗ is a prime ideal of R.

Proof. Notice that (p/Nil(R))∗ = p∗/Nil(R) since Nil(R) is homogeneous. By
the commutative case, see [13] lemma 1.5.6, p∗/Nil(R) is a prime ideal which
implies that p∗ is a prime ideal.

A.2 Krull dimension

Let R be a graded commutative Noetherian ring with R0 = k a field.

Definition A.10. The Krull dimension, or simply the dimension, of the ring
R is denoted dimR and is defined to be the supremum of lengths n of strictly
increasing chains of prime ideals

p0 ( p1 ( · · · ( pn

in R. For an R-module M the dimension of M is defined to be the dimension
of R/AnnRM and is denoted dimRM .



74 Graded commutative ring theory

As an example, the dimension of a graded polynomial algebra k[x1, . . . , xn]
is n, see e.g. [5] proposition 1.4.1. An immediate consequence of proposition
A.8(4):

Proposition A.11. Suppose M is a finitely generated R-module. Then

dimRM = max{ dimR/p | p ∈ AssRM }.

For reference we collect a few elementary properties.

Proposition A.12.

(1) For an ideal I in R, dimRR/I = dimR/I = dimR/
√
I. In particular, if

I ⊂ Nil(R) =
√

0, then dimR = dimR/I.

(2) If I ⊂ J are ideals in R, then dimR/I ≥ dimR/J . In particular,
dimRM ≤ dimR for all R-modules M .

(3) If I1, . . . , In are ideals in R, then

dimR/(I1 ∩ · · · ∩ In) = max{dimR/Ij | 1 ≤ j ≤ n }.

Proof. (1) since AnnRR/I = I and V (I) = V (
√
I), see proposition A.7. (2)

since V (J) ⊂ V (I). (3) follows from the fact that V (I1 ∩ · · · ∩ In) = V (I1) ∪
· · · ∪ V (In), see proposition A.7.

Let R ⊂ S be an extension of rings. Then we may consider S as an R-
module. An element x ∈ S is called integral over R if x is a root of a monic
polynomial with coefficients in R. If every element in S is integral over R we
say that S is integral over R or that R ⊂ S is an integral extension. More
generally, if ϕ : R→ S is a homomorphism of rings, then S is an R-module via
ϕ, that is, rs = ϕ(r)s for r ∈ R and s ∈ S and we say S is integral over R if S
is integral over the image of ϕ.

All nilpotent elements in S are trivially integral over R. The canonical
homomorphism ϕ : R/Nil(R) = R/(Nil(S) ∩ R) → S/Nil(S), ϕ([x]) = [x],
is injective, and we may consider R/Nil(R) as a subring of S/Nil(S). It is
straightforward to check that R/Nil(R) ⊂ S/Nil(S) is an integral extension if
and only if R ⊂ S is an integral extension. Thus, in matters involving integral
extensions and prime ideals we may assume the rings are strictly commutative.

Theorem A.13. Let R ⊂ S be an extension of rings.

(1) If S is finitely generated as an R-module, then S is integral over R.

(2) The subset of S of integral elements over R is a subring containing R.
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Proof. Both statements follow easily from the commutative case, see [34] theo-
rem 9.1.

(1) If S is finitely generated as a module over R, then S/Nil(S) is finitely
generated as a module over R/Nil(R). By the commutative case, S/Nil(S) is
integral over R/Nil(R), i.e., S integral over R.

(2) If x, y ∈ S are integral over R, then [x], [y] ∈ S/Nil(S) are integral over
R/Nil(R). Thus, [xy] and [x ± y] are integral over R/Nil(R), hence xy and
x± y are integral over R.

For an extension R ⊂ S of rings, a prime ideal q of S is said to lie over a
prime ideal p in R if q ∩R = p.

Theorem A.14. Let R ⊂ S be an integral extension.

(1) If p is a prime ideal of R, then there exists a prime ideal q of S lying over
p, and there are no strict inclusions between prime ideals lying over p.

(2) Suppose p ⊂ p′ are prime ideals of R and q is a prime ideal lying over p.
Then there exists a prime ideal q′ of S lying over p with q ⊂ q′.

Proof. [34] theorem 9.4.

An immediate consequence is that dimension is preserved by integral exten-
sions.

Corollary A.15. Let R ⊂ S be an integral extension. If I is an ideal of S,
then dimS/I = dimR/(I ∩R). In particular, if R ⊂ S is an integral extension,
then dimR = dimS.

Proof. Replace S/I by S and R/(I ∩ R) by R, that is, we may assume I = 0.
Now, use theorem A.14.

Proposition A.16. Let k be a field of characteristic p > 0. Suppose ϕ : R→ S

is an F-isomorphism of k-algebras, that is, the kernel of ϕ consists of nilpotent
elements and for each x ∈ S there exists n ≥ 0 such that xp

n ∈ R. Then
ϕ−1 : SpecS → SpecR is a bijection.

Proof. We may assume R is commutative. Since R/Kerϕ is isomorphic to
Imϕ, and SpecR and SpecR/Kerϕ coincide we may assume ϕ is an inclusion,
i.e., R ⊂ S.

ϕ−1 surjective: By theorem A.14 since S is clearly integral over R.
ϕ−1 injective: Let p be a prime ideal of R. Consider the set

q = {x ∈ S |xpn ∈ p for some n ≥ 0 }.

Suppose q is prime ideal of S contained in any prime ideal of S lying over p.
Since there are no strict inclusions between prime ideals lying over p, q is the
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only prime ideal lying over p. In other words, ϕ−1 is injective. Thus, it remains
to prove the two statements about q.

Suppose p′ lies over p. If x ∈ q, then xq ∈ p ⊂ p′ for some power q of p. It
follows that x ∈ p′ since p′ is prime ideal, i.e., q ⊂ p′.

q prime ideal: Let x, y ∈ q, i.e., xp
m
, yp

n ∈ p for some m,n ≥ 0. Using that
the Frobenius map is a homomorphism in characteristic p,

(x+ y)p
m+n

= xp
m+n

+ yp
m+n ∈ p.

Furthermore, if s ∈ S, i.e., sp
l ∈ R for some l ≥ 0, then

(sx)p
l+m

= sp
l+m

xp
l+m ∈ p.

Thus, q is an ideal of S.
Let s′ ∈ S and ss′ ∈ q, i.e., (ss′)q ∈ p for some power q of p. Then

sq(s′)q ∈ p. Since p is a prime ideal in R, sq or (s′)q is in p. In any event, s or
s′ is in q. It follows that q is a prime ideal.

Another way of dealing with the graded commutativity when the charac-
teristic of k is different from 2 is to use the subring Rev of R consisting of the
elements in even degree, i.e., Rev =

⊕
i≥0R

2i. In case of the characteristic of k
is 2 we set Rev = R.

Note that Rev is a finitely generated commutative graded k-algebra. It is
generated as a k-algebra by the k-algebra generators of R of even degree and the
products of pairs of generators of R of odd degree. Furthermore, R is finitely
generated as a module over Rev. This follows since the k-algebra generators
of R of odd degee square to zero hence there are only finite many nontrivial
products of these.

Remark A.17. A partial converse to proposition A.5: Suppose R is a finitely
generated graded commutative R0-algebra with R0 = k a field. Hilbert’s basis
theorem implies that Rev is Noetherian. Since R is finitely generated as a
module over Rev, R is Noetherian as a Rev-module, i.e., R is Noetherian as a
ring.

Using this approach we can prove a graded commutative version of Noether
normalization using the commutative graded version, see [5] theorem 2.2.7.

Let M be a graded R-module. Observe that no nontrivial element in k = R0

is in AnnRM and the image of k = R0 in R/AnnRM is isomorphic to k. We
implicitly use this identification in the following theorem. Similarly for Rev.

Theorem A.18. Let R be a graded commutative Noetherian ring with R0 = k

and M a finitely generated graded R-module. Then there exists homogeneous
elements x1, . . . , xn of positive degree in R which are algebraically independent
over k in R/AnnRM such that M is a finitely generated module over the poly-
nomial subring k[x1, . . . , xn] of R/AnnRM and n is the dimension of M .
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If R = M is an integral domain, then n is equal to the transcendence degree
(the maximal number of algebraically independent elements) of R over k.

Proof. Applying the commutative version of Noether normalization to the Rev-
module M gives homogeneous elements x1, . . . , xn in Rev with the proper-
ties of the theorem. We also write xi for the image of xi in R/AnnRM or
Rev/AnnRev M .

Suppose f(x1, . . . , xn) = 0 in R/AnnRM for some polynomial f with co-
efficients in k, that is, f(x1, . . . , xn) ∈ AnnRM . Noting that x1, . . . , xn are
elements in Rev gives that f(x1, . . . , xn) ∈ AnnRM ∩ Rev = AnnRev M which
contradicts the algebraic independence of x1, . . . , xn in Rev/AnnRev M . It fol-
lows that x1, . . . , xn are algebraically independent over k in R/AnnRM .

Remember thatR is finitely generated as a module overRev and AnnRev M =
AnnRM ∩Rev. Corollary A.15 gives that

dimRM = dimR/AnnRM = dimRev/AnnRev M = dimRev M = n.

Finally, the statement about finite generation is clear.

A homogeneous system of parameters of a finitely generated graded mod-
ule M over R is a sequence of homogeneous elements x1, . . . , xn satisfying the
conditions of the theorem.

A.3 Regular sequences and depth

As usual, let R be a graded commutative Noetherian ring with R0 = k a field.
Recall that R+ denotes the ideal generated by the elements of positive degree
and Rev denotes the ideal generated by the elements of even degree.

Definition A.19. Let M be a finitely generated graded R-module.
A homogeneous element x ∈ R+ is called an M -regular element in R if x is

not a zero divisor of M , or equivalently, if multiplication by x is injective.
A sequence x1, . . . , xn of homogeneous elements in R+ is called an M -regular

sequence in R if xi is M/(x1, . . . , xi−1)M -regular for 1 ≤ i ≤ n, where (∅) = 0.
An M -regular sequence x1, . . . , xn is said to be maximal if x1, . . . , xn, xn+1

is not an M -regular sequence for all xn+1 ∈ R+.

An R-regular element is simply called regular. Similarly, an R-regular se-
quence is simply called a regular sequence. Concentration on homogeneous
elements is not a restriction as we shall see later.

Recall that the set of zero divisors of M is the union of the finitely many
associated primes of M . In other words, choosing regular elements is about
avoiding the finite union of associated primes.

Note that, if x1, . . . , xn is an M -regular sequence, then

(x1) ( (x1, x2) ( · · · ( (x1, x2, . . . , xn)
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is a strictly ascending chain of ideals in R: Suppose xi+1 ∈ (x1, . . . , xi) = I.
Then xi+1M ⊂ IM , that is, M/IM is annihilated by xi+1 which contradicts
that xi+1 is M/IM -regular. In particular, since R is Noetherian there exist
maximal M -regular sequences.

Observe that nilpotent elements can not be regular elements, so every regu-
lar element is in Rev. Usually, for more general definitions of regular sequences
it is also required that M/(x1, . . . , xn)M 6= 0. This is not necessary in the
present situation by the following graded version of Nakayama’s lemma.

Lemma A.20. If M is a graded R-module with R+M = M , then M = 0.

Proof. Suppose M 6= 0. Choose i minimal such that M i 6= 0. Consider a
nontrivial element x ∈M i. SinceR+M = M , there exist homogeneous elements
rj ∈ R+ and xj ∈ M such that x =

∑
xjmj . But, |rj | > 0 whence |mj | < i,

that is, mj = 0. It follows that x = 0.

Remark A.21. Multiplication by a homogeneous element x in R is in gen-
eral not an R-module map M → M for an R-module M . However, one may
construct an R-module map µx : M → M with the same image and kernel as
multiplication by x as a map of sets. For a homogeneous element m ∈M define
µx(m) = (−1)|x||m|xm. Now, for a homogeneous element r in R,

µx(rm) = (−1)|x|(|r|+|m|)xrm = r(−1)|x||m|xm = rµx(m).

Extending linearly gives an R-module map, also for x not homogeneous. Of
course, if x has even degree then multiplication by x is indeed an R-module
map.

Next is a few properties of regular sequences.

Theorem A.22. Let M be a finitely generated graded R-module. A sequence
of homogeneous elements x1, . . . , xn in R+ is an M -regular sequence if and only
if x1, . . . , xn are algebraically independent over k in R and M is a free module
over k[x1, . . . , xn].

We give a detailed version of the proof given in [18], see proposition 12.2.1,
which is a slightly modified version of a proof in [24], see proposition 10.3.4.
It should be noted that neither of the authors address the issue of algebraic
independence over k of a regular sequence. The author do not find this to
be clear from the definitions. Kaplansky [31], see the concluding remarks,
gives a sketch of a direct proof in the case of a regular sequence for the ring.
The proof does not seem to generalize to the case of a regular sequence for
a module. However, we may appeal to the well known fact for commutative
graded Noetherian rings with a field in degree zero, any regular sequence may be
extended to a homogeneous system of parameters, see e.g. [5]. More specifically,
see the proof of theorem 2.2.7 for the construction of a homogeneous system of
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parameters. Since an M -regular sequence in R is contained in Rev, it follows
that it is an M -regular sequence in Rev, i.e., the sequence forms an algebraic
independent set over k.

Proof of theorem A.22. Suppose x1, . . . , xn is an M -regular sequence in R. We
use induction on n to prove that M is a free module over k[x1, . . . , xn].

Let n = 1. Choose homogeneous elements {ei}i∈I in M such that the set
{[ei]}i∈I of cosets is a k-basis for M/x1M . The claim is that {ei}i∈I is a k[x1]-
basis for M .

M = k[x1]{ei}i∈I : Let [m] ∈ M/x1M , m homogeneous. Since [m] =∑
i ci[ei] for some ci ∈ k, it follows that m =

∑
i ciei + x1m1 for some ho-

mogeneous m1. Note that |m1| < |m| since |x1| > 0. Now, [m1] =
∑

i c1,i[ei],
that is, m1 =

∑
i c1,iei + x1m2 for some m2. Iterating gives the result.

The set {ei}i∈I is k[x1]-linear independent: Suppose
∑

i∈J fiei = 0, J ⊂ I

finite subset, is a linear relation with coefficients in k[x1]. Each homogeneous
term is zero and has the form

y = c0ei0 + c1x1ei1 + clx
l
1eil ,

for some cl ∈ k. Since the image in M/x1M is c0[ei0 ] = 0, it follows that c0 = 0.
Thus,

y = c1x1ei1 + clx
l
1eil = x1(c1ei1 + clx

l−1
1 eil) = 0.

Note that y/x1 = 0 since x1 is a regular element. As before we conclude that
c1 = 0. Iterating gives that c0 = c1 = · · · = cl = 0. Applying this to each
homogeneous term gives that fi = 0 for all i ∈ J .

This proves that M is a free module over k[x1].
Let n > 1. Set In = (x1, . . . , xn−1) ⊂ k[x1, . . . , xn]. By induction, M is a

free module over k[x1, . . . , xn−1] and M/IM is a free module over k[xn].
Choose homogeneous elements {ei}i∈I in M such that {[ei]}i∈I is a k[xn]-

basis for M/InM . Let F be the free k[x1, . . . , xn]-module on symbols {fi}i∈I .
Consider the canonical homomorphism f : F → M , fi 7→ ei. Let K be the
kernel of f which is a graded k[x1, . . . , xn]-submodule of F . Thus, there is an
exact sequence

0 // K // F
f // M // 0

of k[x1, . . . , xn]-modules. Since M is free over k[x1, . . . , xn−1], this sequence
splits considered as a sequence of k[x1, . . . , xn−1]-modules.

For a graded module N over k[x1, . . . , xn−1] we have that N⊗k[x1,...,xn−1]k is
isomorphic to N/InN . To see this apply −⊗k[x1,...,xn−1]N to the exact sequence

0 // In // k[x1, . . . , xn−1] // k // 0,

and use the right exactness of the tensor product, and that the image of
In ⊗k[x1,...,xn−1] N in k[x1, . . . , xn−1]⊗k[x1,...,xn−1] N = N is InN .
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Since the tensor product sends split sequences to exact sequences,

0 // K/InK // F/InF
f // M/InM // 0

is an exact sequence of k[x1, . . . , xn−1]-modules.
By construction, the map f : F/InF →M/InM induced by f is an isomor-

phism of k[xn]-modules, i.e., K/InK = 0. It follows that K = 0. The latter
follows by using the grading, looking at elements of K of lowest degree and that
elements of In have degree greater than zero, the details are left to the reader.

Conversely, suppose x1, . . . , xn are algebraically independent over k in R and
M free over k[x1, . . . , xn]. Since x1, . . . , xn is a regular sequence in k[x1, . . . , xn]
it is clear that it is an M -regular sequence.

Corollary A.23. If x1, . . . , xn is an M -regular sequence, then so is xe11 , . . . , x
en
n

for all positive integers e1, . . . , en.

Proof. Since x1, . . . , xn are algebraically independent over k, xe11 , . . . , x
en
n are

also algebraically independent over k. Note that k[x1, . . . , xn] is a free module
over k[xe11 , . . . , x

en
n ]. Since M is a free module over k[x1, . . . , xn], M is a free

module over k[xe11 , . . . , x
en
n ].

The following theorem gives a homological characterization of regular se-
quences.

Theorem A.24. Let M be a finitely generated graded R-module and x1, . . . , xn
an M -regular sequence. Then there exists an M/(x1, . . . , xn)M -regular element
in R+ if and only if ExtnR(k,M) = 0.

In particular, all maximal M -regular sequences have the same length, namely

min{n | ExtnR(k,M) 6= 0 },

and any regular sequence may be extended to a maximal M -regular sequence.

Of course, this is well known from commutative algebra. The usual argu-
ments apply in the graded commutative case. Since it can not be found in the
literature, we briefly go through the details. In the following identify R/R+

and k, and HomR(k,M) denotes the group of R-homomorphisms k →M . The
theorem follows from a series of lemmas.

Lemma A.25. Suppose an ideal I is contained in a finite union of prime ideals
p1 ∪ · · · ∪ pn. Then I ⊂ pi for some i.

Proof. Suppose n > 1 and I is not contained in the union of any proper subset
of {p1, . . . , pn}. Choose x ∈ I such that x /∈ p1 ∪ · · · ∪ pn−1, i.e., x ∈ pn. Also
choose elements y ∈ I with y /∈ pn, and zi ∈ pi with zi /∈ pn for 1 ≤ i ≤ n. Now,
x+ yz1 · · · zn−1 ∈ I but is not in p1 ∪ · · · ∪ pn.



Graded commutative ring theory 81

Lemma A.26. Suppose M is a finitely generated graded R-module. Then R+

consists of zero divisors of M if and only if R+ is an associated prime of M .

Proof. Suppose R+ consists of zero divisors. If x ∈ R+, then x annihilates an
element m of M , i.e., x ∈ AnnR(m). Since maximal annihilators are associated
primes, x is in some associated prime of M . It follows that R+ is contained
in the union of all associated primes of M . However, there are only a finite
number of associated primes, and since k = R0 is a field they are all contained
in R+. In other words, R+ is a finite union of associated primes. By lemma
A.25, R+ is one of the associated primes.

Conversely, if R+ = AnnR(m) for some m ∈ M , then every element in R+

is a zero divisor of m.

Lemma A.27. Let {p1, . . . , pn} be a set of pairwise distinct prime ideals of
R. Suppose R+ 6= pi for all i. Then there exists a homogeneous element
x /∈ p1 ∪ · · · ∪ pn.

Proof. Clearly, we may assume the prime ideals are homogeneous. Using induc-
tion on n, assume pn is minimal in {p1, . . . , pn} and x′ /∈ p1∪· · ·∪pn−1. If x′ /∈ pn,
we are done. Suppose x′ ∈ pn. Since pn is minimal, there exists an element
r ∈

⋂
1≤i≤n−1 pi − pn. Choose y ∈ R+ − pn. Consequently, x = (x′)u + (ry)v is

homogeneous for some u, v. Note that ry ∈ pi for all 1 ≤ i ≤ n−1 and ry /∈ pn.
If x ∈ pn, then x− (x′)u = (ry)v ∈ pn, a contradiction. If x ∈ pi, 1 ≤ i ≤ n− 1,
then x− (ry)v = (x′)u ∈ pi, a contradiction. Thus, x /∈ p1 ∪ · · · ∪ pn.

Lemma A.28. Let M be a finitely generated R-module. Then every homoge-
neous element in R+ is a zero divisor of M if and only if R+ consists of zero
divisors of M .

Proof. Obviously, if R+ consists of zero divisors, then every homogeneous ele-
ment is a zero divisor.

Conversely, if R+ do not consist of zero divisors, then R+ is not equal to any
of the finitely many associated primes of M , see lemma A.26. By lemma A.27,
the exists a homogeneous element not contained in the union of the associated
primes, i.e., there exists a homogeneous M -regular element.

Lemma A.29. Let M be a finitely generated graded R-module. Then R+ con-
tains an M -regular element if and only if HomR(k,M) = 0.

Proof. Suppose R+ consists of zero divisors. Then, by lemma A.26, R+ is an
associated prime ofM , i.e., R+ = AnnR(m) for some nonzero m in M . It follows
that the homomorphism R→M , r 7→ rm, induces a nontrivial homomorphism
k →M .

Conversely, let x be an M -regular element and f ∈ HomR(k,M). Since
xy = 0 for all y in k, 0 = f(xy) = xf(y), i.e., f(y) = 0 since multiplication by
x is injective.
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Lemma A.30. Let M be a finitely generated graded R-module, and x1, . . . , xn
an M -regular sequence. Then HomR(k,M/(x1, . . . , xn)M) ∼= ExtnR(k,M).

Proof. The proof is induction on n. The case n = 0 follows from the fact that
HomR(k,M) ∼= Ext0

R(k,M).
Let n > 0. By induction,

Extn−1
R (k,M) ∼= HomR(k,M/(x1, . . . , xn−1)M).

Lemma A.29 gives that Extn−1
R (k,M) = 0 since xn is M/(x1, . . . , xn−1)M -

regular.
The exact sequence of R-modules

0 // M
x1 // M // M/x1M // 0

gives an exact sequence

0 // Extn−1
R (k,M/x1M) // ExtnR(k,M)

x1 // ExtnR(k,M).

Since x1 annihilates the R-module k = R/R+ and Ext is an additive functor,
the map Ext∗R(k,M) → Ext∗R(k,M) induced by multiplication by x1 is the
trivial map.

Hence,
Extn−1

R (k,M/x1M) ∼= ExtnR(k,M).

Note that x2, . . . , xn is an M/x1M -regular sequence. So, by induction,

Extn−1
R (k,M/x1M) ∼= HomR(k,M/(x1, . . . , xn)M).

This finishes the proof.

Combining lemma A.29 and lemma A.30 proves theorem A.24. Using the-
orem A.24 we have the usual definition and homological characterization of
depth in case of a graded commutative ring.

Definition A.31. The depth of a finitely generated R-module M is the length
of a maximal M -regular sequence and is denoted depthRM . The depth of R is
simply denoted depthR.

Theorem A.32. If M is a finitely generated graded R-module, then

depthRM = min{n | ExtnR(k,M) 6= 0 }.

Proposition A.33. If M is a finitely generated graded R-module, and p is an
associated prime of M , then depthRM ≤ dimR/p. In particular,

depthRM ≤ min{dimR/p | p ∈ AssRM }.
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Proof. Suppose p = AnnR(m), m ∈ M , is an associated prime of M . Since p

is homogeneous, R/p is a finitely generated graded integral domain. Let d =
depthRM . Thus, there exists an M -regular sequence x1, . . . , xd in R such that
x1, . . . , xd are algebraically independent over k and M is a free k[x1, . . . , xd]-
module. Hence, k[x1, . . . , xd] ∼= k[x1, . . . , xd] ·m ⊂ Rm. Furthermore, Rm ∼=
R/AnnR(m) = R/p, i.e., the images of x1, . . . , xd in R/p are algebraically
independent over k. Since the dimension of R/p is the maximal number of
algebraically independent elements over k, see theorem A.18, it follows that
d ≤ dimR/p.

Corollary A.34. If M is a finitely generated R-module, then depthRM ≤
dimRM .

Proof. Propositions A.11 and A.33.

For example, the sequence x1, . . . , xn is a regular sequence in the graded
polynomial algebra k[x1, . . . , xn]. Since the depth cannot exceed the dimension,
the sequence is maximal. In this example the depth is equal to the dimension. A
ring or module with this property is called Cohen-Macaulay. Cohen-Macaulay
rings are an interesting class of rings, see [13].

Proposition A.35. Let R and S be graded commutative Noetherian rings with
R0 = S0 = k. Then depthR⊗k S ≥ depthR+ depthS.

Proof. Let x1, . . . , xm be an R-regular sequence and y1, . . . , yn an S-regular
sequence. By theorem A.22, R is a free module over the polynomial subring
k[x1, . . . , xm] and S is a free module over the polynomial subring k[y1, . . . , yn].
It is straightforward to verify that R⊗k S is a free module over the polynomial
subring k[x1, . . . , xm]⊗k k[y1, . . . , yn] of R⊗k S.

Proposition A.36. Let M be a finitely generated graded R-module. If x1, . . . , xn
is an M -regular sequence, then depthRM/(x1, . . . , xn)M = depthRM − n.

Proof. By induction it suffices to consider the case n = 1, which follows from the
fact that Extn−1

R (k,M/xM) ∼= ExtnR(k,M), see the proof of lemma A.30.

Proposition A.37. Suppose M and N are finitely generated R-modules. Then

depthRM ⊕N = min{depthRM, depthRN}.

Proof. Follows immediately from the homological characterization of depth and
the fact that Ext is an additive functor.

Proposition A.38. Let R and S be graded commutative Noetherian rings with
R0 = S0 = k. Suppose R ⊂ S and S is finitely generated as a module over R.
If M is a finitely generated S-module, then

depthRM = depthSM.

In particular, depthR S = depthS.
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Proof. Clearly, any M -regular sequence in R is an M -regular sequence in S.
Thus, it suffices to prove that any maximal M -regular sequence in R is a max-
imal M -regular sequence in S. So let x1, . . . , xd be a maximal M -regular se-
quence in R.

Suppose y ∈ Sn is a regular element of M = M/(x1, . . . , xd)M . Since S is
finitely generated as a module over R, y is a root of a monic polynomial f with
coefficients in R, that is,

f(y) = ym + am−1y
m−1 + · · · a1y + a0 = 0

for some a0, a1, . . . , am−1 ∈ R. Since f(y) = 0, the homogeneous parts of f(y)
are also zero. In particular, the part of degree |ym| = mn, which is a monic
polynomial in y with homogeneous coefficients, is zero. In other words, we may
assume that ai is homogeneous of degree (m− i)n.

Note that any element of R+ is a zero divisor of M . By lemma A.26, R+

is an associated prime of M , i.e., R+ = AnnR(m) for some nonzero m in M .
Since ai is homogeneous of positive degree,

0 = f(y)m = ymm,

that is, ym, and consequently y, is not a regular element on M . This finishes
the proof.

We end this appendix with an investigation of what happens if we allow
nonhomogeneous elements in the definition of regular sequences. Let M be a
finitely generated graded R-module. Nowhere in the homological characteri-
zation of regular sequences, c.f. theorem A.24, did we use that M is graded
and M -regular sequences consisted of homogenous elements. We only used that
multiplication by a regular element is an R-module map, see e.g. the proof of
lemma A.30, which follows from the fact that a homogeneous regular element
has even degree. However, the proofs go through if we replace multiplication by
an element with the corresponding R-module map, see remark A.21. In other
words, theorem A.24 is also true if we allow nonhomogeneous elements. Hence,
it is not a restriction to only consider homogeneous regular sequences.
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B Cohomology rings of D8 and Q8

In this appendix we give a detailed computation using the Lyndon-Hochschild-
Serre spectral sequence of the mod 2 cohomology ring of the dihedral group
D8 of order 8. Beside the actual ring structure, the restriction maps to the
elementary abelian 2-subgroups are determined. For quick reference, there is
a review of the results at the end of the section on the dihedral group. The
computation of the cohomology of the quaternion group is similar and we do
not present the details. The reader should, however, have no problem providing
the details. We only consider mod 2 cohomology hence the coefficients will be
omitted from the notation.

B.1 The dihedral group of order 8

One presentation of the dihedral group of order 8 is

D8 = 〈σ, τ |σ4 = τ2 = 1, τστ = σ−1 〉.

The subgroups of D8 are

D8

〈σ2, τ〉

kkkkkkkkkkkkkkkkkk
〈σ〉 〈σ2, τσ〉

TTTTTTTTTTTTTTTTTT

〈τ〉 〈τσ2〉

HHHHHHHHH

〈σ2〉

SSSSSSSSSSSSSSSSSS

kkkkkkkkkkkkkkkkkk
〈τσ3〉

uuuuuuuuu
〈τσ〉

{1}

SSSSSSSSSSSSSSSSSSSS

FFFFFFFF

xxxxxxxx

kkkkkkkkkkkkkkkkkkkk

and there are only two conjugacy classes containing more than one subgroup,
namely {〈τ〉, 〈τσ2〉} and {〈τσ〉, 〈τσ3〉}.

Note that Z(D8) = [D8, D8] = 〈σ2〉 is cyclic of order 2, where [D8, D8]
denotes the commutator subgroup. Furthermore,

D8/Z(D8) = D8/[D8, D8] = 〈[σ], [τ ]〉 = {1, [σ], [τ ], [τσ]} = Z/2× Z/2,

with cosets 1 = {1, σ2}, [σ] = {σ, σ3}, [τ ] = {τ, τσ2} and [τσ] = {τσ, τσ3}.
We shall apply the Lyndon-Hochschild-Serre spectral sequence to the central

group extension

1 // Z(D8) // D8
// D8/Z(D8) // 1.

Recall that

H1(D8) = Hom(D8,Z/2) = Hom(D8/[D8, D8],Z/2) = Z/2× Z/2.
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In other words, H1(D8) is the dual space of the F2-vector space D8/[D8, D8].
Let x, y : D8/[D8, D8]→ Z/2 be the dual basis, that is,

x([σ]) = 1, x([τ ]) = 0 and y([σ]) = 0, y([τ ]) = 1.

In particular, H∗(D8/Z(D8)) = F2[x, y] with x and y in degree one.
Remember that the restrictions of elements in degree one are easily deter-

mined using the natural identification of the first cohomology group and group
homomorphisms, a technique we use implicitly.

The quotient D8/Z(D8) acts trivially on Hq(Z(D8)) = Z/2. This follows
from the fact that any p-group, p prime, acts trivially on Z/p: Suppose G is a
p-group acting on Z/p, that is, there is a homomorphism

ϕ : G→ Aut(Z/p) = Z/p×.

So |ϕ(g)| is a power of p and divides p − 1, that is, ϕ(g) is the identity. Of
course, this is also a well known property of the spectral sequence of a central
extension.

Recall that H∗(Z(D8)) = F2[w] with w in degree one. Since D8/Z(D8) acts
trivially on the cohomology of Z(D8), the universal coefficient theorem gives
that the E2-page of the Lyndon-Hochschild-Serre spectral sequence of the group
extension

1 // Z(D8) // D8
// 〈[σ], [τ ]〉 // 1

Z/2 Z/2× Z/2

is

E2 = H∗(D8/Z(D8);H∗(Z(D8)))
∼= H∗(Z(D8))⊗H∗(D8/Z(D8))

= F2[w, x, y],

where |w| = |x| = |y| = 1. The reader is advised to draw the pages of the
spectral sequence.

To determine the differential d2 it suffices, since the differential is a deriva-
tion, to determine d2 : E0,1

2 → E2,0
2 . Since E1,0

∞ = E1,0
2 = Z/2× Z/2 = H1(D8),

it follows that d2(w) 6= 0. The F2-vector space E2,0
2 is generated by the homo-

geneous polynomials in x and y of degree two. So

d2(w) = ax2 + bxy + cy2

for some a, b, c ∈ F2.
To compute d2(w) we exploit the subgroup structure of D8 and the natu-

rality of the spectral sequence.
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Consider the obvious map of group extensions

1 // Z(D8) // D8
// 〈[σ], [τ ]〉 // 1

1 // 〈σ2〉 // 〈σ〉 //

OO

〈[σ]〉 //

OO

1.

The restriction map

resσ = res〈[σ],[τ ]〉,〈[σ]〉 : H
1(〈[σ], [τ ]〉)→ H1(〈[σ]〉)

maps x to a generator of H1(〈[σ]〉) and y to zero. To get further we need to
investigate the spectral sequence of the group extension

1 // 〈σ2〉 // 〈σ〉 // 〈[σ]〉 // 1.

Z/2 Z/4 Z/2

As above, the action of 〈[σ]〉 on Hq(〈σ〉) is trivial. So the initial page is

σE2 = H∗(〈σ2〉)⊗H∗(〈[σ]〉) = H∗(Z/2× Z/2)

which is a polynomial algebra in two indeterminates of degree one. Note that

H1(〈σ〉) = Hom(Z/4,Z/2) = Z/2.

It follows that σd2 : σE0,1
2 → σE2,0

2 is nonzero, otherwise H1(Z/4) = Z/2× Z/2.
Naturality of the spectral sequence gives the commutative diagram

E0,1
2

d2 // E2,0
2

resσ
��

σE0,1
2

σd2 // σE2,0
2 .

Since σd2 is nonzero,

resσ(d2(w)) = resσ(ax2 + bxy + cy2) = a resσ(x)2 6= 0,

that is, a = 1.
Next, consider the map of group extensions

1 // Z(D8) // D8
// 〈[σ], [τ ]〉 // 1

1 // 〈σ2〉 // 〈σ2, τ〉 //

OO

〈[τ ]〉 //

OO

1.

The restriction map

resτ = res〈[σ],[τ ]〉,〈[τ ]〉 : H
1(〈[σ], [τ ]〉)→ H1(〈[τ ]〉)
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maps x to zero and y to a generator of H1(〈[τ ]〉). The spectral sequence of the
group extension

1 // 〈σ2〉 // 〈σ2, τ〉 // 〈[τ ]〉 // 1

Z/2 Z/2× Z/2 Z/2

has initial page

τE2 = H∗(〈σ2〉)⊗H∗(〈[τ ]〉) = H∗(Z/2× Z/2)

which is a polynomial algebra in two indeterminates of degree one. Since τE2 =
H∗(〈σ2, τ〉) the spectral sequence collapses at the τE2-page. In particular, the
differential τd2 is zero.

Naturality of the spectral sequence gives that

0 = τd2(w) = resτ (d2(w)) = resτ (ax2 + bxy + cy2) = c resτ (y)2.

Since resτ (y)2 is a generator of H2(〈τ〉), we get that c = 0.
Next, consider the map of group extensions

1 // Z(D8) // D8
// 〈[σ], [τ ]〉 // 1

1 // 〈σ2〉 // 〈σ2, τσ〉 //

OO

〈[τσ]〉 //

OO

1.

The restriction map

resτσ = res〈[σ],[τ ]〉,〈[τσ]〉 : H
1(〈[σ], [τ ]〉)→ H1(〈[τσ]〉)

maps x and y to a generator z of H1(〈[τσ]〉). As above, it follows that

0 = resτσ(d2(w)) = resτσ(ax2 + bxy + cy2) = (a+ b+ c)z2,

i.e., a+ b+ c = 0.
Summarizing we have that a = 1, c = 0 and a + b + c = 0, which implies

that b = 1. Thus,
d2(w) = x2 + xy.

As noted above this allows us to compute d2. In details, for positive integers
i, j, k,

d2(w2k) = 2kw2k−1d2(w) = 0,

d2(w2k+1) = d2(w)w2k + wd2(w2k) = d2(w)w2k,

d2(w2kxiyj) = d2(w2k)xiyj + w2kd2(xiyj) = 0 and

d2(w2k+1xiyj) = d2(w2k+1)xiyj + w2k+1d2(xiyj) = d2(w)w2kxiyj .

Consequently,
E3 = F2[w2, x, y]/(x2 + xy).
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Let β = Sq1 be the Bockstein homomorphism. Steenrod operations com-
mute with the transgression, see e.g. [7] theorem 4.8.1. Since w2 is transgressive,
it follows that

d3(w2) = βd2(w) = β(x2 + xy) = 2xβ(x) + x2y + xy2 = x2y + xy2 = d2(wy),

Consequently, d3(w2) = 0, and therefore d3 = 0. Note that dr(w2) = 0 for
r > 3, i.e.,

dr((w2)k) = kw2(k−1)dr(w2) = 0

for k > 0 and r > 3.
It follows that E∞ = E3 and we have computed the cohomology ring of D8

up to a filtration of H∗(D8). Since x2 + xy is zero in E2,0
∞ ⊂ H2(D8), there are

no filtration problems.
All in all,

H∗(D8) = F2[v, x, y]/(x2 + xy)

with |v| = 2 and |x| = |y| = 1.
Of course, v is only determined up to filtration. Below we shall see that

we may choose v such that it restricts to zero on the subgroups 〈τ〉 and 〈τσ〉.
Before we continue we list the restrictions of x and y to the elementary abelian
2-subgroups of D8.

The restrictions of x and y to the two maximal elementary abelian 2-
subgroups: As usual, H1(〈σ2, τ〉) = Hom(〈σ2, τ〉,Z/2). Let e1 be dual to σ2

and e2 dual to τ . Then the restriction map

resD8,〈σ2,τ〉 : H
∗(D8)→ H∗(〈σ2, τ〉) = F2[e1, e2]

maps x to zero and y to e2. Similarly, the restriction map

resD8,〈σ2,τσ〉 : H
∗(D8)→ H∗(〈σ2, τσ〉) = F2[f1, f2],

where f1 is dual to σ2 and f2 is dual to τσ, maps both x and y to f2. In
particular, x+ y restricts to zero.

The restrictions of x and y to the subgroups 〈τ〉, 〈τσ〉 and 〈σ2〉: The re-
striction map

resD8,〈τ〉 : H
∗(D8)→ H∗(〈τ〉) = F2[gτ ]

maps x to zero and y to the generator. The restriction map

resD8,〈τσ〉 : H
∗(D8)→ H∗(〈τσ〉) = F2[gτσ]

maps both x and y to the generator. The restriction map

resD8,〈σ2〉 : H
∗(D8)→ H∗(〈σ2〉) = F2[gσ2 ]

maps both x and y to zero. Since 〈τ〉 and 〈τσ2〉 are conjugate, the restriction
to 〈τσ2〉 follows from the restriction to 〈τ〉. Similarly for 〈τσ〉 and 〈τσ3〉.
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Now, we show that we may choose v such that it restricts to zero on the
subgroups 〈τ〉 and 〈τσ〉: Note that F2{w2} = E0,2

∞ = H2(D8)/E2,0
∞ and E2,0

∞ =
F2{xy, y2}, the latter since x2 = xy. So we can choose v among the elements

v = w2 + axy + by2,

a, b ∈ F2. Now,
resD8,〈τ〉(v) = resD8,〈τ〉(w

2) + bgτ

and
resD8,〈τσ〉(v) = resD8,〈τσ〉(w

2) + (a+ b)gτσ.

Clearly, it is possible to choose a and b, depending on whether the restrictions
of w2 is zero or not, such that the restrictions of v to the subgroups 〈τ〉 and
〈τσ〉 are zero. It follows that the restrictions of v to 〈τσ2〉 and 〈τσ3〉 are also
zero.

We finish with determining the restriction of v to the remaining elementary
abelian 2-subgroups. Up to the natural isomorphism from the universal coef-
ficient theorem, we may identify H2(Z(D8)) = H2(〈σ2〉) and E0,2

∞ . It should
be clear that the restriction of v to 〈σ2〉 is the square of a generator gσ2 of
H∗(〈σ2〉).

The restriction of v to 〈σ2, τ〉: The F2-vector space H2(〈σ2, τ〉) is equal to
F2{e2

1, e1e2, e
2
2}. So

resD8,〈σ2,τ〉(v) = ae2
1 + be1e2 + ce2

2

for some a, b, c ∈ F2. To determine a, b and c we compute the restriction to the
subgroups of 〈σ2, τ〉:

0 = resD8,〈τ〉(v) = res〈σ2,τ〉,〈τ〉(resD8,〈σ2,τ〉(v)) = cg2
τ ,

0 6= resD8,〈σ2〉(v) = res〈σ2,τ〉,〈σ2〉(resD8,〈σ2,τ〉(v)) = ag2
σ2 and

0 = resD8,〈τσ2〉(v) = res〈σ2,τ〉,〈τσ2〉(resD8,〈σ2,τ〉(v)) = (a+ b+ c)gτσ.

Summing up, a+b+c = 0, a = 1 and c = 0, which implies that resD8,〈σ2,τ〉(v) =
e2

1 + e1e2. A similar computation gives that resD8,〈σ2,τ〉(v) = f2
1 + f1f2.

Summarizing, the mod 2 cohomology of D8 is

H∗(D8; F2) = F2[x, y, v]/(x(x+ y))

with x and y in degree 1 and v in degree 2. The following tables contain
information about the restriction maps to the conjugacy classes of elementary
abelian 2-subgroups. Note that the kernels of the restriction are equal to their
radicals. This follows since they are prime ideals, see proposition A.6.

H∗(〈σ2, τ〉) = F2[e1, e2] H∗(〈σ2, τσ〉) = F2[f1, f2]
x 0 f2

y e2 f2

v e2
1 + e1e2 f2

1 + f1f2

Ker res (x) (x+ y)
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H∗(〈τ〉) = F2[gτ ] H∗(〈τσ〉) = F2[gτσ] H∗(〈σ2〉) = F2[gσ2 ]
x 0 gτσ 0
y gτ gτσ 0
v 0 0 g2

σ2

Ker res (x, v) (x+ y, v) (x, y)

B.2 The quaternion group

A presentation of the quaternion group is

Q8 = 〈σ, τ |σ4 = 1, σ2 = τ2, τστ−1 = σ−1 〉.

The subgroups of Q8 are

Q8

〈σ〉

zzzzzzzz
〈στ〉 〈τ〉

DDDDDDDD

〈σ2〉

DDDDDDDD

{{{{{{{{

{1}

and all subgroups are normal.
Note that Z(Q8) = [Q8, Q8] = 〈σ2〉. Applying the Lyndon-Hochschild-Serre

spectral sequence to the central extension

1 // Z(Q8) // Q8
// Q8/Z(Q8) // 1,

using the techniques from the computation of the mod 2 cohomology ring of
D8, gives that

H∗(Q8; F2) = F2[x, y, v]/(x2 + xy + y2, x2y + xy2)

with x and y in degree 1 and v in degree 4. Note that the spectral sequence
in this case collapses at the E4-page. It should not come as a surprise that v
restricts to the 4th power of a generator of H∗(〈σ2〉). This gives the information
about the restriction to 〈σ2〉 in the following table.

H∗(〈σ2〉) = F2[g]
x 0
y 0
v g4
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In particular, Ker resQ8,〈σ2〉 = (x, y). Since (x, y) is a prime ideal, proposition
A.6 gives that

√
Ker resQ8,〈σ2〉 = Ker resQ8,〈σ2〉. In fact, (x, y) is an associated

prime:
(x, y) = AnnH∗(Q8;F2)(x2y): It is clear that the annihilator of x2y is con-

tained in (x, y). Conversely, note that

0 = x(x2 + xy + y2) = x3 + x2y + xy2 = x3.

Similarly, y3 = 0. So x annihilate x2y and y annihilate xy2 = x2y, i.e., (x, y) is
contained in the annihilator of x2y.



Depth and small groups 93

C Depth and small groups

Carlson [14] and Green [26] computed the mod p cohomology of some small
p-groups using computer calculations. In particular, they computed the depth
of these rings and verified that the groups satisfy Carlson’s depth conjecture.
Using these computations and various theoretical results it is often possible to
determine the depth of the mod p cohomology and verify the conjecture of a
small finite group. This appendix gives a brief description of the key functions
of a program written in the Magma computer algebra system1 to automatize
this process. The program is included in appendix D and is also freely available
(at the time of writing) at

http://www.math.ku.dk/~morten/thesis/smallgroupdepth.magma.

Beside some auxiliary functions the program also contains a database of the
depth computations of Carlson and Green. For full details see the source code.

Let G be the group of order o and number n in the Magma small group
library. Moreover, let p be a prime and P a Sylow p-subgroup of G. As usual,
H∗(G) denotes the mod p cohomology of G.

The function SmallGroupDepth(o,n,p) tries to determine the depth of the
mod p cohomology ring of G by going through the following steps:

(1) If |G| is coprime to p, then H∗(G) = Fp in degree zero, i.e., the depth of
H∗(G) is zero.

(2) If rkp(Z(P )) = mrkp(G) = d, then depthH∗(G) = d.

(3) If G is a p-group, then we only know the depth of H∗(G) if it has been
computed by Carlson or Green.

(4) If depthH∗(P ) = mrkp(G) = d, then depthH∗(G) = d.

(5) If N is a normal subgroup of G and |N | is coprime to p, then the Lyndon-
Hochschild-Serre spectral sequence collapses at the E2-page and E2 =
H∗(G/N ; Fp) ∼= H∗(G; Fp). Thus, depthH∗(G) ∼= depthH∗(G/N). Try
to determine the depth of H∗(G/N).

(6) If the depth of H∗(CG(E)) is known and equal to d for some central ele-
mentary abelian p-subgroup E of P , then depthH∗(G) = d, see theorem
3.18.

(7) If none of these steps determined the depth of H∗(G), we give up and
return the value -1.

The function CheckDepthConjecture(o,n,p) tries to check if G satisfies
Carlson’s depth conjecture by going through the following steps:

1http://magma.maths.usyd.edu.au/magma/

http://www.math.ku.dk/~morten/thesis/smallgroupdepth.magma
http://magma.maths.usyd.edu.au/magma/
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(1) If |G| is coprime to p there is nothing to check.

(2) If G is a p-group in the database of the computations by Carlson and
Green, then G satisfies the conjecture.

(3) If rkp(G) ≤ 2, then G satisfies the conjecture, see theorem 3.50.

(4) If rkp(Z(P )) = mrkp(G), then G satisfies the conjecture.

(5) If depthH∗(G) = mrkp(G), then G satisfies the conjecture.

(6) If N is a normal subgroup of G and |N | is coprime to p, then as above,
H∗(G) ∼= H∗(G/N). Try to determine if G/N satisfies the conjecture.

(7) If none of these steps determined if G satisfies the conjecture, we give up
and return the boolean value false.

Note that a false result only means that the function could not determine
if the group satisfies the conjecture.

The following table contains information about the 69 out of the 3775 non-
abelian groups of order strictly less than 256 but not a power of 2 for which the
program is not able to determine whether or not they satisfy the conjecture at
the prime p = 2. The group G given by the pair (o, n) denotes the group of
order o and number n in Magma small group library, and P denotes a Sylow
2-subgroup of G.

Group rk2(G) mrk2(G) depthH∗(G) depthH∗(P ) rk2(Z(P ))
(48,30) 3 3 2 2 2
(96,65) 3 3 2 2 2
(96,71) 3 3 2 2 2
(96,185) 3 3 2 2 2
(96,189) 3 3 - 2 2
(96,193) 3 3 - 2 1
(96,194) 4 4 3 3 3
(144,33) 3 3 2 2 2
(144,123) 3 3 2 2 2
(144,126) 3 3 2 2 2
(192,4) 3 3 - 1 1
(192,180) 3 3 2 2 2
(192,182) 3 3 2 2 2
(192,184) 4 3 2 2 1
(192,185) 3 3 2 2 1
(192,186) 3 3 2 2 2
(192,191) 5 5 3 3 3
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Group rk2(G) mrk2(G) depthH∗(G) depthH∗(P ) rk2(Z(P ))
(192,195) 4 4 3 3 3
(192,197) 4 4 3 3 3
(192,198) 4 4 3 3 3
(192,202) 3 3 - 2 1
(192,951) 3 3 - 2 2
(192,952) 3 3 - 2 2
(192,953) 3 3 - 2 2
(192,954) 3 3 - 2 2
(192,957) 3 3 2 2 2
(192,959) 3 3 2 2 2
(192,960) 3 3 2 2 2
(192,965) 3 3 - 1 1
(192,966) 3 3 - 2 1
(192,967) 4 4 3 3 3
(192,968) 4 4 2 2 2
(192,969) 4 4 3 3 3
(192,970) 4 4 3 3 3
(192,971) 4 4 3 3 3
(192,973) 4 4 2 2 2
(192,975) 3 3 2 2 2
(192,978) 3 3 - 2 2
(192,979) 3 3 - 2 2
(192,982) 3 3 - 2 1
(192,984) 3 3 - 2 2
(192,987) 3 3 - 1 1
(192,991) 5 5 3 3 3
(192,994) 5 5 4 4 4
(192,998) 3 3 - 2 2
(192,1001) 4 4 3 3 3
(192,1009) 4 4 2 2 2
(192,1011) 4 4 3 3 3
(192,1013) 3 3 - 2 1
(192,1015) 4 4 3 3 3
(192,1021) 4 4 - 2 2
(192,1023) 4 4 2 2 2
(192,1024) 4 4 - 2 2
(192,1468) 4 4 3 3 3
(192,1475) 4 4 - 3 3
(192,1476) 3 3 - 2 2
(192,1479) 3 3 - 2 2
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Group rk2(G) mrk2(G) depthH∗(G) depthH∗(P ) rk2(Z(P ))
(192,1481) 4 4 - 3 2
(192,1482) 3 3 - 2 1
(192,1485) 3 3 - 2 1
(192,1487) 5 5 4 4 4
(192,1489) 3 3 2 2 2
(192,1491) 3 3 - 2 1
(192,1492) 3 3 - 1 1
(192,1495) 5 5 3 3 3
(240,91) 3 3 2 2 2
(240,104) 3 3 2 2 2
(240,107) 3 3 2 2 2
(240,192) 3 3 2 2 2
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D Program

// Depth and small groups by Morten Poulsen, 2007.

// Database of depths of the mod p cohomology of some small p-groups.

// Thanks to J. F. Carlson and D. J. Green.

// DD[q][o][n] is the depth of the mod p = Primes[q][1]

// cohomology ring of the group of order p^o and number n in the

// Magma small group library. If depth is unknown the value is -1

DD := [];

Primes := [ <2,7>, <3,5>, <5,4>, <7,3> ];

// Initialize database of depth computations

for p in [1..#Primes] do

DD[p] := [];

for o in [1..Max([ Primes[i][2] : i in [1..#Primes]])] do

DD[p][o] := [];

max := Max([ NumberOfSmallGroups(i) : i in [ Primes[k][1]^j :

j in [1..Primes[k][2]], k in [1..#Primes]]]);

for n in [1..max] do

DD[p][o][n] := -1;

end for;

end for;

end for;

// Depths of the mod 2 cohomology of groups of order 2^1

DD[1][1][1] := 2;

// Depths of the mod 2 cohomology of groups of order 2^2

DD[1][2][1] := 1; DD[1][2][2] := 2;

// Depths of the mod 2 cohomology of groups of order 2^3

DD[1][3][1] := 1; DD[1][3][2] := 2; DD[1][3][3] := 2;

DD[1][3][4] := 1; DD[1][3][5] := 3;

// Depths of the mod 2 cohomology of groups of order 2^4

DD[1][4][1] := 1; DD[1][4][2] := 2; DD[1][4][3] := 2;

DD[1][4][4] := 2; DD[1][4][5] := 2; DD[1][4][6] := 1;

DD[1][4][7] := 2; DD[1][4][8] := 1; DD[1][4][9] := 1;

DD[1][4][10] := 3; DD[1][4][11] := 3; DD[1][4][12] := 2;

DD[1][4][13] := 2; DD[1][4][14] := 4;

// Depths of the mod 2 cohomology of groups of order 2^5

DD[1][5][1] := 1; DD[1][5][2] := 3; DD[1][5][3] := 2;

DD[1][5][4] := 2; DD[1][5][5] := 2; DD[1][5][6] := 2;

DD[1][5][7] := 1; DD[1][5][8] := 1; DD[1][5][9] := 2;

DD[1][5][10] := 2; DD[1][5][11] := 2; DD[1][5][12] := 2;
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DD[1][5][13] := 2; DD[1][5][14] := 2; DD[1][5][15] := 1;

DD[1][5][16] := 2; DD[1][5][17] := 1; DD[1][5][18] := 2;

DD[1][5][19] := 1; DD[1][5][20] := 1; DD[1][5][21] := 3;

DD[1][5][22] := 3; DD[1][5][23] := 3; DD[1][5][24] := 2;

DD[1][5][25] := 3; DD[1][5][26] := 2; DD[1][5][27] := 3;

DD[1][5][28] := 3; DD[1][5][29] := 2; DD[1][5][30] := 2;

DD[1][5][31] := 2; DD[1][5][32] := 2; DD[1][5][33] := 2;

DD[1][5][34] := 3; DD[1][5][35] := 2; DD[1][5][36] := 3;

DD[1][5][37] := 2; DD[1][5][38] := 2; DD[1][5][39] := 3;

DD[1][5][40] := 2; DD[1][5][41] := 2; DD[1][5][42] := 2;

DD[1][5][43] := 2; DD[1][5][44] := 1; DD[1][5][45] := 4;

DD[1][5][46] := 4; DD[1][5][47] := 3; DD[1][5][48] := 3;

DD[1][5][49] := 3; DD[1][5][50] := 2; DD[1][5][51] := 5;

// Depths of the mod 2 cohomology of groups of order 2^6

DD[1][6][1] := 1; DD[1][6][2] := 2; DD[1][6][3] := 2;

DD[1][6][4] := 2; DD[1][6][5] := 2; DD[1][6][6] := 2;

DD[1][6][7] := 2; DD[1][6][8] := 3; DD[1][6][9] := 2;

DD[1][6][10] := 2; DD[1][6][11] := 2; DD[1][6][12] := 2;

DD[1][6][13] := 2; DD[1][6][14] := 2; DD[1][6][15] := 2;

DD[1][6][16] := 2; DD[1][6][17] := 3; DD[1][6][18] := 1;

DD[1][6][19] := 1; DD[1][6][20] := 2; DD[1][6][21] := 3;

DD[1][6][22] := 2; DD[1][6][23] := 3; DD[1][6][24] := 2;

DD[1][6][25] := 1; DD[1][6][26] := 2; DD[1][6][27] := 2;

DD[1][6][28] := 1; DD[1][6][29] := 2; DD[1][6][30] := 1;

DD[1][6][31] := 2; DD[1][6][32] := 2; DD[1][6][33] := 1;

DD[1][6][34] := 2; DD[1][6][35] := 1; DD[1][6][36] := 1;

DD[1][6][37] := 1; DD[1][6][38] := 2; DD[1][6][39] := 2;

DD[1][6][40] := 2; DD[1][6][41] := 2; DD[1][6][42] := 1;

DD[1][6][43] := 1; DD[1][6][44] := 2; DD[1][6][45] := 1;

DD[1][6][46] := 1; DD[1][6][47] := 2; DD[1][6][48] := 2;

DD[1][6][49] := 1; DD[1][6][50] := 2; DD[1][6][51] := 1;

DD[1][6][52] := 2; DD[1][6][53] := 1; DD[1][6][54] := 1;

DD[1][6][55] := 3; DD[1][6][56] := 4; DD[1][6][57] := 3;

DD[1][6][58] := 3; DD[1][6][59] := 3; DD[1][6][60] := 3;

DD[1][6][61] := 3; DD[1][6][62] := 3; DD[1][6][63] := 3;

DD[1][6][64] := 3; DD[1][6][65] := 3; DD[1][6][66] := 3;

DD[1][6][67] := 4; DD[1][6][68] := 3; DD[1][6][69] := 3;

DD[1][6][70] := 3; DD[1][6][71] := 3; DD[1][6][72] := 3;

DD[1][6][73] := 4; DD[1][6][74] := 3; DD[1][6][75] := 3;

DD[1][6][76] := 3; DD[1][6][77] := 3; DD[1][6][78] := 3;

DD[1][6][79] := 3; DD[1][6][80] := 3; DD[1][6][81] := 3;

DD[1][6][82] := 3; DD[1][6][83] := 3; DD[1][6][84] := 3;

DD[1][6][85] := 2; DD[1][6][86] := 2; DD[1][6][87] := 3;

DD[1][6][88] := 2; DD[1][6][89] := 3; DD[1][6][90] := 3;

DD[1][6][91] := 2; DD[1][6][92] := 2; DD[1][6][93] := 2;

DD[1][6][94] := 2; DD[1][6][95] := 3; DD[1][6][96] := 3;

DD[1][6][97] := 3; DD[1][6][98] := 3; DD[1][6][99] := 2;
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DD[1][6][100] := 2; DD[1][6][101] := 3; DD[1][6][102] := 2;

DD[1][6][103] := 3; DD[1][6][104] := 2; DD[1][6][105] := 2;

DD[1][6][106] := 3; DD[1][6][107] := 3; DD[1][6][108] := 2;

DD[1][6][109] := 2; DD[1][6][110] := 2; DD[1][6][111] := 1;

DD[1][6][112] := 2; DD[1][6][113] := 2; DD[1][6][114] := 2;

DD[1][6][115] := 3; DD[1][6][116] := 2; DD[1][6][117] := 2;

DD[1][6][118] := 3; DD[1][6][119] := 2; DD[1][6][120] := 2;

DD[1][6][121] := 2; DD[1][6][122] := 2; DD[1][6][123] := 3;

DD[1][6][124] := 2; DD[1][6][125] := 2; DD[1][6][126] := 2;

DD[1][6][127] := 2; DD[1][6][128] := 3; DD[1][6][129] := 3;

DD[1][6][130] := 3; DD[1][6][131] := 2; DD[1][6][132] := 2;

DD[1][6][133] := 2; DD[1][6][134] := 3; DD[1][6][135] := 2;

DD[1][6][136] := 1; DD[1][6][137] := 2; DD[1][6][138] := 3;

DD[1][6][139] := 2; DD[1][6][140] := 3; DD[1][6][141] := 2;

DD[1][6][142] := 2; DD[1][6][143] := 2; DD[1][6][144] := 2;

DD[1][6][145] := 2; DD[1][6][146] := 2; DD[1][6][147] := 3;

DD[1][6][148] := 2; DD[1][6][149] := 2; DD[1][6][150] := 2;

DD[1][6][151] := 2; DD[1][6][152] := 1; DD[1][6][153] := 2;

DD[1][6][154] := 1; DD[1][6][155] := 2; DD[1][6][156] := 2;

DD[1][6][157] := 2; DD[1][6][158] := 2; DD[1][6][159] := 2;

DD[1][6][160] := 2; DD[1][6][161] := 2; DD[1][6][162] := 2;

DD[1][6][163] := 2; DD[1][6][164] := 2; DD[1][6][165] := 2;

DD[1][6][166] := 2; DD[1][6][167] := 2; DD[1][6][168] := 2;

DD[1][6][169] := 2; DD[1][6][170] := 2; DD[1][6][171] := 2;

DD[1][6][172] := 2; DD[1][6][173] := 2; DD[1][6][174] := 3;

DD[1][6][175] := 2; DD[1][6][176] := 2; DD[1][6][177] := 2;

DD[1][6][178] := 2; DD[1][6][179] := 2; DD[1][6][180] := 2;

DD[1][6][181] := 2; DD[1][6][182] := 2; DD[1][6][183] := 3;

DD[1][6][184] := 2; DD[1][6][185] := 2; DD[1][6][186] := 3;

DD[1][6][187] := 2; DD[1][6][188] := 2; DD[1][6][189] := 2;

DD[1][6][190] := 2; DD[1][6][191] := 1; DD[1][6][192] := 4;

DD[1][6][193] := 4; DD[1][6][194] := 4; DD[1][6][195] := 3;

DD[1][6][196] := 4; DD[1][6][197] := 3; DD[1][6][198] := 3;

DD[1][6][199] := 3; DD[1][6][200] := 2; DD[1][6][201] := 3;

DD[1][6][202] := 4; DD[1][6][203] := 4; DD[1][6][204] := 3;

DD[1][6][205] := 3; DD[1][6][206] := 3; DD[1][6][207] := 3;

DD[1][6][208] := 3; DD[1][6][209] := 3; DD[1][6][210] := 2;

DD[1][6][211] := 4; DD[1][6][212] := 3; DD[1][6][213] := 3;

DD[1][6][214] := 2; DD[1][6][215] := 3; DD[1][6][216] := 3;

DD[1][6][217] := 2; DD[1][6][218] := 3; DD[1][6][219] := 2;

DD[1][6][220] := 2; DD[1][6][221] := 3; DD[1][6][222] := 2;

DD[1][6][223] := 2; DD[1][6][224] := 2; DD[1][6][225] := 2;

DD[1][6][226] := 4; DD[1][6][227] := 3; DD[1][6][228] := 3;

DD[1][6][229] := 3; DD[1][6][230] := 3; DD[1][6][231] := 3;

DD[1][6][232] := 2; DD[1][6][233] := 2; DD[1][6][234] := 3;

DD[1][6][235] := 2; DD[1][6][236] := 2; DD[1][6][237] := 2;

DD[1][6][238] := 2; DD[1][6][239] := 2; DD[1][6][240] := 2;

DD[1][6][241] := 3; DD[1][6][242] := 2; DD[1][6][243] := 2;
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DD[1][6][244] := 2; DD[1][6][245] := 2; DD[1][6][246] := 4;

DD[1][6][247] := 3; DD[1][6][248] := 3; DD[1][6][249] := 2;

DD[1][6][250] := 4; DD[1][6][251] := 3; DD[1][6][252] := 3;

DD[1][6][253] := 3; DD[1][6][254] := 3; DD[1][6][255] := 2;

DD[1][6][256] := 2; DD[1][6][257] := 3; DD[1][6][258] := 2;

DD[1][6][259] := 2; DD[1][6][260] := 5; DD[1][6][261] := 5;

DD[1][6][262] := 4; DD[1][6][263] := 4; DD[1][6][264] := 4;

DD[1][6][265] := 3; DD[1][6][266] := 3; DD[1][6][267] := 6;

// Depths of the mod 2 cohomology of groups of order 2^7

DD[1][7][928] := 3; DD[1][7][937] := 2; DD[1][7][2023] := 2;

// Depths of the mod 3 cohomology of groups of order 3^1

DD[2][1][1] := 1;

// Depths of the mod 3 cohomology of groups of order 3^2

DD[2][2][1] := 1; DD[2][2][2] := 2;

// Depths of the mod 3 cohomology of groups of order 3^3

DD[2][3][1] := 1; DD[2][3][2] := 2; DD[2][3][3] := 2;

DD[2][3][4] := 1; DD[2][3][5] := 3;

// Depths of the mod 3 cohomology of groups of order 3^4

DD[2][4][1] := 1; DD[2][4][2] := 2; DD[2][4][3] := 2;

DD[2][4][4] := 2; DD[2][4][5] := 2; DD[2][4][6] := 1;

DD[2][4][7] := 2; DD[2][4][8] := 1; DD[2][4][9] := 2;

DD[2][4][10] := 1; DD[2][4][11] := 3; DD[2][4][12] := 3;

DD[2][4][13] := 2; DD[2][4][14] := 1; DD[2][4][15] := 4;

// Depths of the mod 3 cohomology of groups of order 3^5

DD[2][5][1] := 1; DD[2][5][2] := 3; DD[2][5][10] := 2;

DD[2][5][16] := 1; DD[2][5][23] := 2; DD[2][5][26] := 2;

DD[2][5][31] := 3; DD[2][5][48] := 3; DD[2][5][61] := 4;

DD[2][5][67] := 5;

// Depths of the mod 5 cohomology of groups of order 5^1

DD[3][1][1] := 1;

// Depths of the mod 5 cohomology of groups of order 5^2

DD[3][2][1] := 1; DD[3][2][2] := 2;

// Depths of the mod 5 cohomology of groups of order 5^3

DD[3][3][1] := 1; DD[3][3][2] := 2; DD[3][3][3] := 1;

DD[3][3][4] := 1; DD[3][3][5] := 3;

// Depths of the mod 5 cohomology of groups of order 5^4

DD[3][4][1] := 1; DD[3][4][2] := 2; DD[3][4][3] := 2;

DD[3][4][4] := 2; DD[3][4][5] := 2; DD[3][4][6] := 1;
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DD[3][4][8] := 1; DD[3][4][9] := 1; DD[3][4][10] := 1;

DD[3][4][11] := 3; DD[3][4][12] := 2; DD[3][4][13] := 2;

DD[3][4][14] := 1; DD[3][4][15] := 4;

// Depths of the mod 7 cohomology of groups of order 7^1

DD[4][1][1] := 1;

// Depths of the mod 7 cohomology of groups of order 7^2

DD[4][2][1] := 1; DD[4][2][2] := 2;

// Depths of the mod 7 cohomology of groups of order 7^3

DD[4][3][1] := 1; DD[4][3][2] := 2; DD[4][3][3] := 1;

DD[4][3][4] := 1; DD[4][3][5] := 3;

// Lookup a group in DD

LookupDepth := function(o,n,p);

error if not CanIdentifyGroup(o) or n gt NumberOfSmallGroups(o),

"LookupDepth: Group out of range!";

error if not IsPrime(p),

"LookupDepth: Third argument not prime number!";

// Trivial case, p does not divide the order of G

if not IsDivisibleBy(o,p) then

return 0;

end if;

if not p in [ Primes[i][1] : i in [1..#Primes] ] or

not o in [ Primes[i][1]^j :

j in [1..Primes[i][2]], i in [1..#Primes] ] then

return -1;

end if;

// The index l of p in Primes

for i in [1..#Primes] do

if p eq Primes[i][1] then l := i; break; end if;

end for;

// Find k such that o = p^k

k := Max({i : i in [1..Primes[l][2]] | IsDivisibleBy(o,p^i)});

return DD[l][k][n];

end function;

// Returns L, EL, maxEL, oeas -

// L: The subgroups

// EL: The elementary abelian p-subgroups

// maxEL: The maximal elementary abelian p-subgroups

// oeas: The orders of the maximal elementary abelian p-subgroups
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ElementaryAbelianSubgroupsInfo := function(G,p);

L := SubgroupLattice(G : Properties:=true);

EL := [ i : i in [1..#L] | IsElementaryAbelian(L[i]) and

IsDivisibleBy(#L[i],p) ];

maxEL := [ i : i in EL | not(exists{j : j in EL | L!i lt L!j}) ];

oeas := [ #L[i] : i in maxEL ];

return L, EL, maxEL, oeas;

end function;

// Returns oeas, zrk, mrk, dim -

// oeas: The orders of the maximal elementary abelian p-subgroups

// zrk: The p-rank of the center of a Sylow p-subgroup

// mrk: The minimal p-rank amongst the maximal p-subgroups

// dim: The p-rank of the group

GroupInfo := function(G,p);

L, EL, maxEL, oeas := ElementaryAbelianSubgroupsInfo(G,p);

P := SylowSubgroup(G,p);

PZL, _, maxPZEL, _ := ElementaryAbelianSubgroupsInfo(Center(P),p);

// Maximal order of a maximal elementary abelian subgroup

dim := Max({e : e in [0..#G] | IsDivisibleBy(#maxEL eq 0

select 1 else Max([ #L[i] : i in maxEL ]),p^e)});

// Minimal order of a maximal elementary abelian subgroup

mrk := Max({e : e in [0..#G] | IsDivisibleBy(#maxEL eq 0

select 1 else Min([ #L[i] : i in maxEL ]),p^e)});

// Rank of the center of a Sylow p-subgroup

zrk := Max({e : e in [0..#P] | IsDivisibleBy(#maxPZEL eq 0

select 1 else Max([ #PZL[i] : i in maxPZEL ]),p^e)});

return oeas, zrk, mrk, dim;

end function;

// Returns -1 if the depth can not be determined

SmallGroupDepth := function(o,n,p);

error if not CanIdentifyGroup(o) or n gt NumberOfSmallGroups(o),

"SmallGroupDepth: Group out of range!";

error if not IsPrime(p),

"SmallGroupDepth: Third argument not prime number!";

// Trivial case if p does not divide the order of G

if not IsDivisibleBy(o,p) then

return 0;



Program 103

end if;

d := LookupDepth(o,n,p);

// If the order is a prime power, then the only hope is the database

if IsPrimePower(o) then

return d;

end if;

G := SmallGroup(o,n);

oel, zrk, mrk, dim := GroupInfo(G,p);

// A trivial case

if zrk eq mrk then

return mrk;

end if;

// Check if the depth can be determined by the depth of a

// Sylow p-subgroup

P := SylowSubgroup(G,p);

error if not CanIdentifyGroup(Order(P)),

"SmallGroupDepth: Can not identify Sylow subgroup!";

IP := IdentifyGroup(P);

op := IP[1]; np := IP[2];

dp := LookupDepth(op,np,p);

// If dp equals mrk, then this is the depth of G

if mrk eq dp then

return dp;

end if;

// Check if the depth can be determined by using the

// Lyndon-Hochschild-Serre spectral sequence, i.e.,

// if G has normal subgroup N of order prime to p,

// then the cohomology rings of G and G/N are iso

NS := NormalSubgroups(G);

for i in [1..#NS] do

N := NS[i]‘subgroup;

if Order(N) gt 1 and not IsDivisibleBy(Order(N),p) then

error if not CanIdentifyGroup(Order(G/N)),

"SmallGroupDepth: Can not identify quotient group!";

Q := IdentifyGroup(G/N);

oq := Q[1]; nq := Q[2];

dq := LookupDepth(oq,nq,p);

// If the depth of G/N is known, then this is the depth of G

if dq gt 0 then

return dq;
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end if;

// If the depth of G/N is not known,

// then try recursively to determine it

d := $$(oq,nq,p);

if d gt 0 then

return d;

end if;

end if;

end for;

// Check if the depth can be determined by the improved version

// of Notbohm’s result

ZL, ZEL, _, _ := ElementaryAbelianSubgroupsInfo(Center(P),p);

for i in ZEL do

C := ZL[i];

Cent := Centralizer(G,C);

error if not CanIdentifyGroup(Order(Cent)),

"SmallGroupDepth: Can not identify centralizer!";

CC := IdentifyGroup(Centralizer(G,C));

occ := CC[1]; ncc := CC[2];

// Only try to get the depths of proper centralizers

// or infinite loop

if occ lt o then

dcc := $$(occ,ncc,p);

if dcc gt 0 then

return dcc;

end if;

end if;

end for;

// We give up...

return -1;

end function;

// Returns false if it can not be determined whether or not

// the group satisfies Carlson’s depth conjecture

CheckDepthConjecture := function(o,n,p);

error if not CanIdentifyGroup(o) or n gt NumberOfSmallGroups(o),

"CheckDepthConjecture: Group out of range!";

error if not IsPrime(p),

"CheckDepthConjecture: Third argument not prime number!";

// Trivial case if p does not divide the order of G

if not IsDivisibleBy(o,p) then

return true;

end if;
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// All p-groups in the database satisfy the conjecture

if IsPrimePower(o) and LookupDepth(o,n,p) gt 0 then

return true;

end if;

G := SmallGroup(o,n);

oel, zrk, mrk, dim := GroupInfo(G,p);

// Groups of p-rank less than or equal to 2 satisfy the conjecture

if dim le 2 then

return true;

end if;

// A well known case

if zrk eq mrk then

return true;

end if;

d := SmallGroupDepth(o,n,p);

// Another well known case

if d eq mrk then

return true;

end if;

// As in SmallGroupDepth try the cohomology ring of G/N,

// N normal subgroup of G of order prime to p

NS := NormalSubgroups(G);

for i in [1..#NS] do

N := NS[i]‘subgroup;

if Order(N) gt 1 and not IsDivisibleBy(Order(N),p) then

error if not CanIdentifyGroup(Order(G/N)),

"CheckDepthConjecture: Can not identify quotient group!";

Q := IdentifyGroup(G/N);

oq := Q[1]; nq := Q[2];

if $$(oq,nq,p) then

return true;

end if;

end if;

end for;

// We give up...

return false;

end function;

// The dimension of the kernel of the restriction maps on H^1 and H^2

// of the centralizers of elementary abelian subgroups of rank r
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CheckRes12 := function(o,n,r,p);

error if not CanIdentifyGroup(o) or n gt NumberOfSmallGroups(o),

"CheckRes12: Group out of range!";

error if not IsPrime(p),

"CheckRes12: Fourth argument not prime number!";

G := SmallGroup(o,n);

L, EL, _, _ := ElementaryAbelianSubgroupsInfo(G,p);

// The elementary abelian p-subgroup of rank r

rEL := [ i : i in EL | Order(L[i]) eq p^r ];

error if #rEL eq 0,

"CheckRes12: No elementary abelian subgroups of rank", r, ".";

MG := TrivialModule(G,GF(p));

CMG := CohomologyModule(G,MG);

H1G := CohomologyGroup(CMG,1);

H2G := CohomologyGroup(CMG,2);

gen1G := [ OneCocycle(CMG,H1G.j) : j in [1..Ngens(H1G)] ];

gen2G := [ TwoCocycle(CMG,H2G.j) : j in [1..Ngens(H2G)] ];

Ker1 := H1G;

for E in [ L[i] : i in rEL ] do

H := Centralizer(G,E);

MH := Restriction(MG,H);

CMH := CohomologyModule(H,MH);

H1H := CohomologyGroup(CMH,1);

im := [ IdentifyOneCocycle(CMH,func< u | MH!gen1G[j](u) >) :

j in [1..Ngens(H1G)] ];

res1 := hom< H1G -> H1H | im>;

Ker1 := Ker1 meet Kernel(res1);

end for;

Ker2 := H2G;

for E in [ L[i] : i in rEL ] do

H := Centralizer(G,E);

MH := Restriction(MG,H);

CMH := CohomologyModule(H,MH);

H2H := CohomologyGroup(CMH,2);

im := [ IdentifyTwoCocycle(CMH,func< u | MH!gen2G[j](u) >) :

j in [1..Ngens(H2G)] ];

res2 := hom< H2G -> H2H | im>;

Ker2 := Ker2 meet Kernel(res2);

end for;

return Dimension(Ker1), Dimension(Ker2);

end function;
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List of notation

Sets
X,Y Sets.
X − Y Set difference.
X ⊂ Y X is a subset of Y .
X ( Y X is a proper subset of Y .
Rings & modules
R, I,M A graded ring, an ideal of R and an R-module.
R+ The ideal generated by homogeneous elem. of degree > 0.
R≥i The ideal generated by homogeneous elem. of degree ≥ i.
AnnR(x) The annihilator of an element x ∈M .
AnnRM The annihilator of M .
Kerϕ The kernel of a homomorphism ϕ of R-modules.
Imϕ The image of a homomorphism ϕ of R-modules.
SpecR The set of prime ideals of R.
AssRM The associated primes of M .
V (I) The prime ideals of R containing I.√
I The radical of I.

Nil(R) The nilradical of R, i.e., the nilpotent elements in R.
dimRM The (Krull) dimension of M .
depthRM The depth of M .
Groups & cohomology of groups
G,H, g A finite group, a subgroup of G and an element of G.
H < G H is a proper subgroup of G.
p A prime number.
Z/n The cyclic group of order n.
rkp(G) The p-rank of G.
mrkp(G) The minimal rank amongst the maximal elementary

abelian p-subgroups of G.
cg Conjugation by g, cg : H → gHg−1, cg(h) = ghg−1.
Z(G) The center of G.
CG(H) The centralizer of H in G.
NG(H) The normalizer of H in G.
A(G) The Quillen category.
As(G) The elementary abelian p-subgroups of G of rank s.
Hs(G) The set {CG(E) |E ∈ As(G) }.
Fp The Galois field with p elements.
H∗(G) The mod p cohomology ring H∗(G; Fp) of G.
·g The homomorphism H∗(H)→ H∗(gHg−1) induced by cg−1 .
β The Bockstein of the sequence 0→ Z/p→ Z/p2 → Z/p→ 0.
Sqi The Steenrod square of degree i, p = 2.
P i The Steenrod reduced power of degree n+ 2i(p− 1), p odd.
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