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Introduction

This document is a master thesis written at the University of Copenhagen.

The purpose of the thesis and the research conducted for it was to find a natural classi-
fying space for cohomology with coefficients in a finite chain complex. Cohomology with
coefficients in a chain complex is a generalized cohomology theory which contains ordi-
nary cohomology. It was, as far as I know first defined by Dold in [Dold], and it was
further developed in the article [Brown64], in which it was also proved that cohomology
with coefficients in a chain complex could be described in terms of ordinary cohomology
up to functoriality in the coefficient variable. This description yields a classifying space
for this cohomology theory. However, the fact that this description is not natural in the
chain complex means that information is lost and that the classifying space obtained this
way cannot contain the information given by functoriality of the cohomology theory in
the coefficient variable.

In this thesis we describe a classifying space that does contain this information. However,
we limit ourselves to the case of finite complexes, and complexes that are infinite in one
direction.

The first chapter contains the definition of cohomology with coefficients in a chain com-
plex, and the description in terms of ordinary cohomology. This leads up to a discussion
of classifying spaces and the definition of a natural classifying space, which yields the
formulation of the main task of the thesis. The material in this chapter is mainly taken
from the article [Brown64].

The second chapter contains two results, namely a series of long exact sequences and
equivalence of the singular cohomology functor and a cellular cohomology functor. This
chapter consists of material developed for this thesis.

The third chapter contains background material on homotopy fibers. This material is
described in many books on algebraic topology. However, since it is important that we
are able to work effectively with homotopy fibers, the material is included here.

The last chapter contains the description of the natural classifying space and the proof
that it is in fact a natural classifying space. The material of this chapter is the central
part of the research developed for the thesis. The last section of this chapter also contains
speculations of how to extend this result to the case of general complexes.

The reader is assumed to know basic algebraic topology such as ordinary cohomology and
the fact that Eilenberg-MacLane spaces are classifying spaces for ordinary cohomology.

I would like to thank my advisor Jesper Michael Møller for suggesting the classifying space
and outlining the strategy of the proof, and also for helping me along the way with many
inspiring discussions. I would also like to thank Ronald Brown for his interest in this work
and for drawing my attention to his article [Brown70].
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Chapter 1

Cohomology with coefficients in a
chain complex

In this section we aim to define cohomology with coefficients in a chain complex of abelian
groups, and prove some basic results, particularly that we have defined a cohomology the-
ory. Taking cohomology with coefficients in the complex having the group B in dimension
0 and 0’s elsewhere we get cohomology with coefficients in the group B. So the concept
of cohomology with coefficients in a chain complex generalizes that of cohomology with
coefficients in a group. The main result in this section is that the groups Hn(X,A) and∏
nH

n(X,H∗−n(A)) are isomorphic. But the fact that this isomorphism is not natural
in the complex A means that cohomology with coefficients in a complex contains more
information than what is expressible in ordinary cohomology.

The last subsection of this chapter formulates the main problem of this thesis, namely
that of constructing a natural classifying space for this cohomology theory. The definitions
follow the article [Brown64].

1.1 The Hom functor

First we shall define some basic terminology:

Definition 1.1.1. A chain complex of abelian groups is a sequence of abelian groups An
with differentials ∂n : An → An−1, such that ∂n−1∂n = 0. A cochain complex of abelian
groups is a sequence of groups An and differentials δ : An → An+1 such that δn+1δn = 0.

In what follows a chain complex of abelian groups will often just be denoted a chain
complex.

We define cycles, boundaries, cocyles and coboundaries as usual, and this leads to the
usual definition of homology of a chain complex and cohomology of a cochain complex.

Definition 1.1.2. Let (A, ∂A) and (B, ∂B) be chain complexes of abelian groups. We
define the cochain complex Hom(A,B) by setting Hom(A,B)p =

∏
n Hom(An, Bn−p), with

differential δ : Hom(A,B)p → Hom(A,B)p+1 given by δf = ∂Bf − (−1)pf∂A.

Let

B0
h0 // . . .

hr−1 // Br
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be a finite chain complex. That is, hihi−1 = 0. Let B be the chain complex with B0 to Br
in dimensions 0 to −r and zero in all other dimensions, and with the hi maps. We define:

Hom(A;B0 → . . .→ Br) = Hom(A;B)

Note that the definition of the differential is supposed to be understood the only way it
makes sense. That is, an element in Hom(A,B)p is a collection of maps f : An → Bn−p
(one for each n). This means that ∂Bf and f∂A are collections of maps An → Bn−(p+1),
and the minus sign means pointwise subtraction.

Note also that this definition could be immediately generalized to chain complexes of
modules over some ring. For our purposes we are only interested in chain complexes of
abelian groups.

A note on the finite complexes: When we write:

B0
h0→ B1 → . . .

hr−1→ Br

we mean the infinite chain complex with the groups B0 to Br in dimensions 0 to −r and
zeros elsewhere. This interpretation makes the class of finite complexes a subcategory of
the category of chain complexes. We have chosen this notation in stead of the somewhat
more logical notation

B0
h0→ B−1 → . . .

h−r+1→ B−r

to avoid the many minussigns.

We define the length of a finite complex to be the number of groups in it. That is, the
length of B0 → . . .→ Br is r + 1.

We need to prove that Definition 1.1.2 does in fact define a cochain complex. That is, we
need to prove that δδ is zero. This is easily verified:

δδf = δ(∂Bf − (−1)pf∂A) =

∂B∂Bf − (−1)p∂Bf∂A − (−1)p+1(∂Bf∂A − (−1)pf∂A∂A) = 0

Definition 1.1.3. Let (A, ∂A) and (B, ∂B) be chain complexes. A chain map of degree
p is a sequence of maps fn : An → Bn+p that commutes with the differential, that is
f∂A = ∂Bf . A chain map of degree zero is often just called a chain map. If (C, δC)
and (D, δD) are cochains, we define cochain maps of degree p to be sequences of maps
An → Bn−p that commute with differentials. By cochain maps we simply mean cochain
maps of degree 0.

The next proposition shows that Hom is a functor of two variables that is contravariant
in the first and covariant in the second.

Proposition 1.1.4. Let f : A → A′ and g : B → B′ be chain maps. The maps f∗ :
Hom(A′, B)→ Hom(A,B) and g∗ : Hom(A,B)→ Hom(A,B′) defined by f∗(h) = hf and
g∗(h) = gh are cochain maps.

Clearly the maps f 7→ f∗ and g 7→ g∗ respects compositions, are associative and map
identity to identity, so that Hom becomes a functor.
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Proof. We only need to prove that f∗ and g∗ commutes with differentials. This is done
by straight ahead computations:

δ(f∗h) = δ(hf) = ∂Bhf − (−1)phf∂A

and
f∗δ(h) = f∗(∂Bh− (−1)ph∂A′) = ∂Bhf − (−1)ph∂A′f

Since f commutes with derivatives we get the desired identity.

To prove that g∗ commutes with derivatives we compute:

δg∗(h) = δgh = ∂B′gh− (−1)pgh∂A

and
g∗δ(h) = g∗(∂Bh− (−1)ph∂A) = g∂Bh− (−1)pgh∂A

Again we use the fact that g commutes with differentials to get the desired equality.

Now we are ready for the main definition of this section:

Definition 1.1.5. Let (A, ∂A) and (B, ∂B) be chain complexes. We define the cohomology
of A with coefficients in B to be:

H∗(A;B) = H∗(Hom(A,B))

If

B0
h0 // B1

// . . .
hn−1 // Bn

is a finite chain complex (that is hi ◦ hi−1 = 0), we denote B the chain complex with the
groups B0 to B−n in dimensions 0 to −n, and zeros elsewhere, and define:

H∗(A;B0 → . . .→ B−n) = H∗(A;B)

Since Hom is a functor of two variables from the category of chain complexes with chain
maps to the same category, H∗(−,−) also becomes a functor of two variables. It is
contravariant in the first variable and covariant in the second.

Remark 1.1.6. If B0 is an abelian group, we can view B0 as a finite chain complex,
and definition 1.1.5 gives us a new definition of cohomology with coefficients in B0. Or-
dinary cohomology is obtained by applying the functor Hom(−, B0) to the chain com-
plex A and taking cohomology of the resulting chain complex Hom(A,B0). If B de-
notes the chain complex with B0 in dimension 0 and zeros elsewhere, we notice that
Hom(A,B)p = Hom(Ap, B0) = Hom(A,B0)p, and the derivative is just the derivative
of ordinary cohomology up to a sign. Thus definition 1.1.5 generalizes the definition of
cohomology with coefficients in a group.

Next we define the shift operator on a chain complex:

Definition 1.1.7. Suppose B is a chain complex. We define the chain complex SB by:

SBn = Bn−1

and setting ∂SB = ∂B.
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Proposition 1.1.8. There exists an isomorphism:

H∗(A;B) ' H∗−1(A;SB)

that is natural in both variables.

Proof. We define a cochain map of degree 1:

φ : Hom(A;B)→ Hom(A;SB)

Suppose
f = (fn)n∈Z ∈ Hom(A;B)p =

∏
n∈Z

Hom(An;Bn−p)

we define
φ(f) = ((−1)nfn)n∈Z ∈ Hom(A;SB)p−1 =∏
n

Hom(An;SBn−p+1) =
∏
n

Hom(An;Bn−p)

We need to prove that this map commutes with ∂. So we compute:

(∂φ(f))n = (∂((−1)kfk)k∈Z)n = (−1)n∂Bfn − (−1)p−1(−1)n+1fn+1∂A

and

(φ∂(f))n = (φ(∂Bfk − (−1)pfk+1∂A)k∈Z)n = (−1)n(∂Bfn − (−1)pfn+1∂A)

Thus, φ is in fact a cochain map of degree 1, and since it is clearly bijective, it induces an
isomorphism on the homology groups. Naturality is clear.

We will particularly be interested in cohomology with coefficients in a finite chain complex.

Corollary 1.1.9. There exists an isomorphism:

H∗(A;B0 → . . .→ Bk) ' H∗+1(A; 0→ B0 → . . .→ Bk)

That is natural in both variables.

We next prove a useful lemma, but first we need a definition:

Definition 1.1.10. Two chain maps f, f ′ : A → B are called homotopic if there exists
a sequence of maps S = {Sn}, with Sn : An → Bn+1 such that f − f ′ = S∂A + ∂BS.
Likewise we call two cochain maps g, g′ : C → D homotopic if there exist a sequence of
maps T = {Tn} with Tn : Cn → Dn−1, such that g − g′ = T∂C + ∂DT . The maps S and
T are often called homotopies.

The situation of the homotopic chain maps is illustrated in this diagram:

· · · // An+1
∂A //

f−g
��

An

S||yyyyyyyy
f−g
��

∂A // An−1
//

S||yyyyyyyy
f−g
��

· · ·

· · · // Bn+1
∂B // Bn

∂B // Bn−1
// · · ·

The reason that homotopic chain maps are interesting is that they induce the same map
on homology, as is easily seen directly or in [Rotman] (thm. 6.8). Likewise homotopic
cochain maps induce the same map on cohomology.
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Lemma 1.1.11. If f, f ′ : A → A′ are homotopic chain maps, then f∗, f ′∗ induce the
same map in cohomology. If g, g′ : B → B′ are homotopic chain maps then g∗, g

′
∗ :

Hom(A,B)→ Hom(A,B′) are homotopic as cochain maps, and therefore induce the same
maps in cohomology.

Proof. Let S be a homotopy from f to f ′. This means that (f − f ′)∗ = (∂A′S + S∂A)∗.
We want to prove that

(f − f ′)∗ = S∗δ − δS∗

up to a sign. This will imply that f∗ and f ′∗ induce the same map on cohomology. The
rest is just computations: If h ∈ Hom(A′, B)p then

(S∗δ − δS∗)h = S∗(∂Bh− (−1)ph∂A′)− ∂BhS + (−1)p−1hS∂A =

(−1)p+1(h∂A′S + hS∂A) = (−1)p+1(f − f ′)∗h

Now, let T be a homotopy from g to g′. We want to show that T∗ is a homotopy from g∗
to g′∗. Again, if h ∈ Hom(A′, B)p we get:

(T∗δ + δT∗)h = T∂Bh− (−1)pTh∂A + ∂′BTh− (−1)p+1Th∂A =

T∂Bh+ ∂B′Th = (g − g′)∗h

Which proves the lemma.

We are now ready to define cohomology of a space, and prove that this does in fact define
a cohomology theory.

Definition 1.1.12. If X is a topological space, let ∆∗(X) denote the singular chain com-
plex. If B is a chain complex we define (singular) cohomology of X with coefficients in B
to be

Hn(X;B) = Hn(∆∗(X);B)

If (X,A) is a pair of spaces, we define the relative cohomology with coefficients in B to be:

Hn(X,A;B) = Hn(∆∗(X,A);B)

where ∆∗(X,A) = ∆∗(X)/∆∗(A) is the singular chain complex of the pair.

Definition 1.1.13. Let ∆̂∗(X) denote the augmented singular complex of the space X,
that is the complex:

. . . ∂ // ∆1(X) ∂ // ∆0(X) ε //
Z

Where ε(Σiaiσi) = Σiai. We define reduced (singular) cohomology with coefficients in the
chain complex B to be:

H̃n(X;B) = Hn(∆̂∗(X);B)

Relative reduced singular cohomology is defined as:

H̃n(X,A;B) = Hn(X/A;B)

11



As usual, we get Hn(X, ∅;B) = Hn(X;B), so the absolute definition reduces to the
relative. Continuous maps between spaces (respectively pairs of spaces) induce chain
maps between the singular complexes. Since H∗(−,−) as defined on chain complexes is a
functor of two variables, the topological definition of cohomology with coefficients in chain
complexes becomes a functor that is contravariant in the first variable and covariant in
the second. The same holds for reduced cohomology.

Definition 1.1.14. A sequence of contravariant functors (hn(−))n∈Z from pairs of spaces
in some category of topological spaces C to abelian groups is called a cohomology theory on
C if it satisfies the following axioms:

Homotopy invariance. If f, g : (X,A) → (Y,B) are homotopic maps, then f∗ = g∗ :
h∗(Y,B)→ h∗(X,A).

Long exact sequence of a pair. For every pair (X,A) of spaces there exists natural
maps δ : h∗(A)→ h∗+1(X,A), such that:

. . . // h∗(X,A)
j∗ // h∗(X) i∗ //

h∗(A) δ // h∗+1(X,A) // . . .

is exact. Here i : A→ X and j : (X, ∅)→ (X,A) are the inclusions.

Excision. Let A,B be subsets of a space X, such that int(A) ∪ int(B) = X. If i :
(B,A∩B)→ (X,A) denotes the inclusion, then i∗ : h∗(X,A)→ h∗(B,A∩B) is an
isomorphism.

Addition. Let
∐
αXα denote the disjoint union of the spaces Xα, and iα : Xα →

∐
αXα

the inclusions. Then ∏
α

(iα)∗ : h∗(
∐
α

Xα)→
∏
α

h∗(Xα)

is an isomorphism.

Dimension. Let ∗ denote the one point space. hn(∗) = 0 for all n 6= 0.

hn(−) is called a generalized cohomology theory, if it satisfies all above axioms, except
perhaps the dimension axiom.

Theorem 1.1.15. Cohomology with coefficients in a chain complex is a generalized coho-
mology theory on the category of topological spaces.

One can easily prove the following consequence of the excision axiom:

Lemma 1.1.16. Let hn be a generalized cohomology theory, and let (X,A) be a pair of
pointed CW-complexes, A a subcomplex of X. Then the map:

hn(X/A, ∗) = hn(X/A,A/A)→ hn(X,A)

induced by the map (X,A)→ (X/A,A/A) that collapses A, is an isomorphism for all n.

This is proved as in ordinary cohomology, see for instance [Hatcher] Prop. 2.22.
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Definition 1.1.17. A sequence of contravariant functors (h̃n(−))n∈Z from pairs of spaces
in some category of pointed topological spaces C to abelian groups is called a reduced co-
homology theory on C if it satisfies the axioms of homotopy invariance, the axiom of the
long exact sequence of the pair, and the following axiom:

Wedge axiom. Suppose (Xα) is a family of pointed spaces. Define iα : Xα →
∨
Xα to

be the inclusions. Then the map:∏
α

: h̃n(
∨
α

Xα)→
∏
α

h̃n(Xα)

is an isomorphism for all n.

Theorem 1.1.18. Reduced cohomology with coefficients in a chain complex is a reduced
cohomology theory on the category of pointed CW-complexes.

In the category of pointed CW-complexes, a pair of spaces is a pair (X,A) where A is a
subcomplex of X. All maps are pointed.

Once we have proved that these functors are cohomology theories, a lot of tools become
available to us. One of the more important tools is the Mayer-Vietoris sequence, which
will be available in both reduced and unreduced cohomology.

Before we prove the theorems, we need to establish a little vocabulary and a few lemmas
from homological algebra. The first lemma is wellknown, and much used by algebraic
topologists.

Definition 1.1.19. A sequence of chain maps of chain complexes of abelian groups

A→ B → C

is called exact, if for each n the sequence of groups An → Bn → Cn is exact.

Lemma 1.1.20 (Short exact sequence to long exact sequence). If

0 // A∗
i // B∗

p // C∗ // 0

is a short exact sequence of chain complexes of abelian groups then there exist a sequence
of natural maps ∂n : Hn(C)→ Hn−1(A) such that the sequence

. . . // Hn+1(C)
∂n+1 // Hn(A)

i∗ // Hn(B)
p∗ // Hn(C) // . . .

is exact.

Proof. This is Theorems 6.3 and 6.4 in [Rotman].

Remark 1.1.21. The fact that the connecting homomorphism is natural implies that the
operation, that creates the long exact sequence from the short exact should be natural.
This should be understood the following way: If

0 // A′
i //

f

��

A
p //

g

��

A′′ //

h
��

0

0 // B′
j // B

q // B′′ // 0
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is a commuting diagram of chain complexes of groups with exact rows, then the lemma
produces long exact sequences, and assures that the following diagram is commutative:

. . . // Hn+1(A′′) δ //

f∗
��

Hn(A)′
i∗ //

f∗
��

Hn(A)
p∗ //

g∗
��

Hn(A′′) //

h∗
��

. . .

. . . // Hn+1(B′′) δ // Hn(B′)
j∗ // Hn(B)

q∗ // Hn(B′′) // . . .

By the duality of chain complexes and cochain complexes the same result holds in coho-
mology. In this case, if

0 // A∗
i // B∗

p // C∗ // 0

is a short exact sequence of cochain complexes of modules, then the connecting homomor-
phism δn raises dimension, that is δn : Hn(A)→ Hn+1(C), and the sequence:

. . . // Hn−1(A) δ // Hn(C)
p∗ // Hn(B) i∗ // Hn(A) // . . .

is exact. Of course, the same results on naturality holds in cohomology.

The next issue we need to discuss is exactness of functors.

Definition 1.1.22. Let F be a functor between categories, in which we have defined ex-
actness (that is the categories of abelian groups and chain complexes of abelian groups).
We say that F is an exact covariant functor, if exactness of

A
f // B

g // C

implies exactness of

FA
Ff // FB

Fg // FC

Exactness of contravariant functors is defined the same way. A covariant functor F is
called left exact, if exactness of

0 // A
f // B

g // C

implies exactness of

0 // FA
Ff // FB

Fg // FC

A contravariant functor F is called left exact, if exactness of

A
f // B

g // C // 0

implies exactness of

0 // FC
Fg // FB

Ff // FA

Definition 1.1.23. Suppose A is a subcomplex of (B, ∂). That is ∂(A) ⊂ A. We can
define the quotient

(A/B)n = An/Bn

with differential induced by ∂.
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Lemma 1.1.24. Let B be a chain complex of abelian groups. The contravariant functor
Hom(−, B) is left exact. If

0 // C
i // D

p // E // 0

is an exact sequence of chain complexes of abelian groups, such that

0 // Cn
i // Dn

p // En // 0

is split exact for every n, then

0 // Hom(E,B)
p∗ // Hom(D,B) i∗ // Hom(C,B) // 0

is exact.

Proof. For good reasons, the proof of the first part resembles the proof of the fact that
Hom(−,M) is a left exact functor, when M is a module. It is in fact the same proof (see
[Rotman] thm. 2.9). We include this fairly easy argument for completeness.

Suppose

C
i // D

p // E // 0

is an exact sequence of chain complexes of abelian groups. We need to prove that

0 // Hom(E,B)
p∗ // Hom(D,B) i∗ // Hom(C,B)

is exact. Assume f, g ∈ Hom(E,B) are such that fp = gp. The fact that p is assumed to
be surjective implies that f = g. Because pi = 0 we have that i∗p∗ = (pi)∗ = 0.

We now only need to prove that ker i∗ ⊆ im p∗. Suppose f ∈ ker i∗. This means exactly
that f vanishes on im i. Since i is a chain map im i is a subcomplex of D, and since for
each n we have En ' (D/ im i)n, we have E ' D/ im i. So we can define a map g : E → B
such that the composition:

D // D/ im i ' E g // B

is f . This implies that f ∈ im p∗.

To prove the last part of the lemma, we only need to verify that i∗ is surjective. Suppose

f = (fn)n∈Z ∈ Hom(C,B)p =
∏
n

Hom(Cn, Bn−p)

For every n we have that Dn is on the isomorphic to Cn ⊕D′n for some D′n. This means
that each fn can be extended to Dn by letting it be zero on D′n. This way we extend f to
an element f ′ ∈ Hom(D,B)p, and i∗(f ′) = f as desired.

Proof of theorem 1.1.15. Homotopy invariance. In the proof of Theorem 2.10 in [Hatcher],
it is proved that the prism operator P is a homotopy between the maps f∗ and g∗ con-
sidered as chain maps from ∆∗(X,A) and ∆∗(Y,B). Lemma 1.1.11 then tells us that
f∗ = g∗ : H∗(Y,B;C)→ H∗(X,A;C).

Long exact sequence of a pair. For each n the sequence:

0 // ∆n(A)
i∗ // ∆n(X)

j∗ // ∆n(X,A) // 0

15



is split exact, since if we let Dn(X,A) be the free abelian group generated by all simplices
whose image is not contained in A, then:

∆n(X) ' ∆n(A)⊕Dn(X,A)

By lemma 1.1.24 this implies that the sequence:

0 // Hom(∆∗(X,A), B)
j∗ // Hom(∆∗(X), B) i∗ // Hom(∆∗(A), B) // 0

is exact. Now lemma 1.1.20 gives the long exact sequence of the pair. Notice that the
naturality of 1.1.20 implies naturality of the long exact sequence in (X,A) as well as
naturality in the coefficient variable B.

Excision. In the proof of the excision property in ordinary homology as it is done in
[Hatcher], it is proved that the map i∗ : ∆∗(B,B ∩ A) → ∆∗(X,A) induced by inclusion
is an homotopy equivalence of chain complexes. That is, there is a map j : ∆∗(X,A) →
∆∗(B,B∩A) such that the maps i∗j∗ and j∗i∗ are chain homotopic to the identity. Lemma
1.1.11 then implies that i∗ on the level of cohomology is an isomorphism.

Additivity. Since the image of a simplex is connected, we know that the map:

⊕α(iα)∗ : ⊕α∆∗(Xα)→ ∆∗(
∐
α

Xα)

is a bijective chain map. Hence it induces isomorphism on cohomology. The cohomology
with coefficients in B of the right side of this equation is Hom(

∐
αXα;B), so we only need

to prove that the cohomology of the left side is
∏
α Hom(Xα, B).

By the same identity on modules ([Rotman] thm 2.4) we know that:

Hom(⊕α∆∗(Xα);B) '
∏
α

Hom(∆∗(Xα);B)

One might express this identity as ’a map from a direct sum to B is the same as a family
of maps to B’. Since the cohomology of a product of chain complexes is the product of
the cohomology of the chains, we have the identity:

H∗(⊕α∆∗(Xα);B) '
∏
α

H∗(∆∗(Xα);B) =
∏
α

H∗(Xα;B)

Remark 1.1.25. Notice that the long exact sequence of the pair is natural in the coeffi-
cient variable. This is the reason we chose this construction. The fact that this sequence
is natural in the coefficient variable implies that the Mayer-Vietoris sequence is natural in
the coefficient variable.

Before we prove Theorem 1.1.18, we need to establish the relationship between reduced
and unreduced cohomology with coefficients in a chain complex. There are no surprises
here. It is exactly the same as in ordinary cohomology.

Proposition 1.1.26. For X 6= ∅ there exist isomorphisms:

H̃n(X;B) ' Hn(X, ∗;B)
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and
Hn(X;B) ' Hn(X, ∗;B)⊕Hn(∗;B)

which are natural in pointed maps in X and the coefficient complex B. There also exists
a natural (in both variables) isomorphism:

H̃n(X,A;B) ' Hn(X,A;B)

This isomorphism is only defined when (X,A) is a pair of CW-complexes and A is not
empty.

To prove this proposition, we need another proposition:

Proposition 1.1.27. Suppose φ : A → A′ induces an isomorphism H(φ) : H(A) →
H(A′). Then φ also induces an isomorphism on cohomology with coefficients in a chain
complex.

We will prove this in the next section.

Proof of Proposition 1.1.26. Consider the chain map:

φ : ∆̂∗(X)→ ∆∗(X, ∗)

induced by the inclusion of X into (X, ∗). Since this map clearly is natural (in pointed
maps) in X and commutes with the boundary, it induces a natural map:

φ∗ : H̃n(X)→ Hn(X, ∗)

It factorizes as:
∆̂∗(X)

��

φ

%%KKKKKKKKKK

∆∗(X) // ∆∗(X, ∗)
Since the two other maps in the diagram induce isomorphisms in ordinary homology groups
in dimensions n ≥ 1, so does φ. Using the fact, that H̃0(X) consists of a copy of Z for
each component of X that does not contain the basepoint, and H0(X, ∗) consists of the
same, it is easy clear that φ also induces an isomorphism on H0.

Since φ induces an isomorphism on homology, it also induces an isomorphism

Hn(X, ∗;B)→ H̃n(X;B)

This isomorphism is natural in B and in pointed maps in X.

Consider the long exact sequence of the pair (X, ∗):

Hn−1(∗;B) // Hn(X, ∗;B) // Hn(X;B) i∗ // Hn(∗;B) // Hn+1(X, ∗)

Let c : X → ∗ denote the constant map. Then i∗c∗ = (ci)∗ = id∗ = id which implies that
the sequence above splits, so that:

Hn(X;B) ' Hn(X, ∗;B)⊕Hn(∗;B)

Since this isomorphism is natural, this implies the first part of the proposition.

The last isomorphism is:

Hn(X,A;B) ' Hn(X/A, ∗;B) ' H̃n(X/A;B) ' H̃n(X,A;B)
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Proof of Theorem 1.1.18. Homotopy Invariance. This follows from the naturality of
the second isomorphism in Proposition 1.1.26 and homotopy invariance in the unreduced
case.

Long exact sequence of a pair. Again we use the isomorphisms of Proposition 1.1.26.
Replacing as we can in the long exact sequence of the pair from unreduced cohomology,
we gain a long exact sequence:

. . . // H̃n(X,A;B)
j∗ // Hn(X, ∗;B)⊕Hn(∗;B)

i∗⊕(id)∗//

Hn(A, ∗;B)⊕Hn(∗;B) δ // H̃n+1(X,A;B) // . . .

Notice that the map:

i∗ ⊕ (id)∗ : Hn(X, ∗;B)⊕Hn(∗, B)→ Hn(A, ∗;B)⊕Hn(∗, B)

has the same kernel and image as i∗. We may thus remove Hn(∗;B) from the sequence
and use the identity H̃n(X;B) ' Hn(X, ∗;B) to obtain the desired sequence.

Wedge axiom. Consider the commutative diagram:

H̃n(
∨
αXα;B)

∏
α(iα)∗

//

'
��

∏
α H̃

n(Xα;B)

'
��

Hn(
∨
αXα, ∗;B) // Hn(

∐
αXα,

∐
α ∗α;B) ' //

∏
αH

n(Xα, ∗α;B)

The first map in the bottom line is induced by the map that collapses
∐
∗α to a point.

This map induces an isomorphism by Lemma 1.1.16, since we are working in the category
of pointed CW-complexes.

The fact that the map

Hn(
∐
α

Xα,
∐
α

∗α;B)→
∏
α

Hn(Xα, ∗α)

is an isomorphism follows from using the five lemma on the long exact sequence of the
pair and using the the fact that unreduced cohomology satisfies the additivity axiom.

The next proposition is an easy corollary to a theorem of the next section. It could also
be proved by direct computations.

Proposition 1.1.28. Let ∗ denote the one point space. For each chain complex we have:

Hn(∗;B) ' H−n(B)

and
H̃n(∗;B) ' 0

Thus cohomology with coefficients in a chain complex does not satisfy the dimension
axiom.
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1.2 Connection to ordinary cohomology

The aim of this section is first to prove that H∗(X;B) '
∏
nH

n(X,Hn−∗(B)) as groups,
and second to discuss the limitations of this isomorphism. At first sight this isomorphism
suggests that cohomology with coefficients in a chain complex is completely expressible in
terms of cohomology with coefficients in a group. But we will show that this isomorphism
loses extra information, that is available in cohomology with coefficients in a chain complex.

First we will quote two lemmas from [Brown64], but not prove them. The lemmas are
lemma 1.7 and proposition 2.2 in the article. Notice that a graded group can be thought
of as a chain complex with differential maps zero.

Lemma 1.2.1. Let G be any graded group. There is a free chain complex F and an
isomorphism H(F ) → G. For any chain complex A, free chain complex F , and map
φ : H(F )→ H(A) there is a chain map f : F → A, such that H(f) = φ.

Lemma 1.2.2. Let K be a free chain complex and f : A→ A′ a chain map that induces
an isomorphism on homology. Then f∗ : H∗(K,A)→ H∗(K,A′) is an isomorphism.

If B is a chain complex, let H(B) denote the chain complex of homology groups of B with
zero differential. From the definitions we see that Hom(A;H(B))p =

∏
n Hom(An,Hn−p(B)),

and the differential is just δf = (−1)p+1f ◦ ∂A, so this proves that:

H∗(A;H(B)) '
∏
n

Hn(A,Hn−∗(B))

Lemma 1.2.1 provides a free chain complex C and maps:

C

φ

��

ψ // H(B)

B

with H(φ) and H(ψ) isomorphisms. Lemma 1.2.2 now tells us that:

ψ∗φ
−1
∗ : H∗(A;B)→ H∗(A;H(B))

is an isomorphism. We have just proved:

Theorem 1.2.3. For all chain complexes A, B the groups H∗(A;B) and
∏
nH

n(A;Hn−∗(B))
are isomorphic. The isomorphism is natural in A.

This proves Proposition 1.1.28, and Proposition 1.1.27 follows from the naturality of the
isomorphism in Theorem 1.2.3 and the Universal Coefficient Theorem.

Remember that a chain map f : B → B′ induces a map f∗ : H∗(A,B)→ H∗(A,B′). It also
induces a map H(f) : H(B)→ H(B′), which in turn induces a map f∗ : H∗(A,H(B))→
H∗(A,H(B′)). So it would be natural to ask whether the isomorphism of Theorem 1.2.3
is natural in B. It is a key observation that this is not the case, and this fact allows us to
conclude that cohomology with coefficients in a chain complex contains information, that
is lost when reducing it to terms of ordinary cohomology. The next example is taken from
[Brown64] and shows that the isomorphism cannot be natural.
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Example 1.2.4. LetA be a free chain complex with two generators a and b in dimensions 0
and 1 respectively, with ∂b = 2a. Let B be the free chain complex with generators c, d, d′ in
dimensions 0, 1, 1 respectively and differential given by ∂d = ∂d′ = 2c. Define τ : B → B to
be the chain map that exchanges d and d′. We aim to show that τ∗ : H∗(A,B)→ H∗(A,B)
is an isomorphism, that is not the identity, whereas τ∗ : H∗(A,H(B))→ H∗(A,H(B)) is
the identity. Thus, there can be no isomorphism H∗(A;B)→ H∗(A;H(B)) that commutes
with τ .

Let us first compute H(B). H1(B) is Z generated by d−d′, and H0(B) is Z/2Z. All other
homologygroups are zero. The action on H(B) induced by τ changes sign in H1(B) and
is the identity on H0(B).

We have the following isomorphisms:

Hn(A,H(B)) ' Hn(A,H0(B))⊕Hn+1(A,H1(B))
' Hn(A,Z/2Z)⊕Hn+1(A,Z)

Since τ∗ is the identity on H0(B) we only need consider, what it does to the second
summand.

First let us compute Hn(A,Z) using the universal coefficient theorem ([Hatcher] thm 3.2).
We easily get that H0(A) ' Z/2Z and H∗(A) ' 0 for ? 6= 0. The universal coefficient
theorem then implies that H1(A,Z) ' Z/2Z and H∗(A,Z) ' 0 for ∗ 6= 1. Thus, the
isomorphism that τ induces on H∗(A,Z) can only be the identity. We conclude that
τ∗ : H∗(A,H(B))→ H∗(A,H(B)) is the identity.

To prove that τ∗ : H∗(A;B) → H∗(A;B) is not the identity, we must first compute
H∗(A;B).

We have the following identities:

Hom(A,B)1 ' Hom(Z,Z) ' Z
Hom(A,B)0 ' Hom(Z,Z⊕ Z)⊕Hom(Z,Z) ' (Z⊕ Z)⊕ Z

Hom(A,B)−1 ' Hom(Z,Z⊕ Z) ' Z⊕ Z

Here the identifications Hom(Z, G) ' G are by the map f 7→ f(1). τ∗ on Hom(A,B)1 is
the identity. On Hom(A,B)0, we have τ∗((x, y), z) = ((y, x), z). In dimension −1 we get
the map τ∗(x, y) = (y, x). To compute the cohomology of A with coefficients in B let us
write out the chain complex Hom(A,B) with all differential maps:

0 // Hom(A,B)−1
δ−1 //

'
��

Hom(A,B)0
δ0 //

'
��

Hom(A,B)1
//

'
��

0

0 //
Z⊕ Z // (Z⊕ Z)⊕ Z //

Z
// 0

Consider the diagram below, which illustrates an element of Hom(A,B)−1:

0 //
Z

��

·2 //
Z

f
��

// 0 //

��

0

0 // 0 //
Z⊕ Z·2⊕·2 // Z // 0

f is the only nonzero map, and the element in Hom(A,B)−1 is identified with the element
(x, y) = f(1) ∈ Z ⊕ Z. δ−1(x, y) is a pair of maps (f ′, g′) with f ′ : Z → Z ⊕ Z and
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g′ : Z→ Z. This corresponds to an element (g′(1), f ′(1)) ∈ (Z⊕Z)⊕Z, and we get g′(1) =
·2⊕ ·2(x, y) = 2x+ 2y and f ′(1) = f(2) = (2x, 2y). Thus δ−1(x, y) = ((2x, 2y), 2x+ 2y).

Likewise, by considering the diagram:

0 //
Z

��

·2 //
Z

��

// 0

0 //
Z⊕ Z·2⊕·2 // Z // 0

We see that the map δ0 is given by δ0((x, y), z) = 2(x+ y − z).
Thus, we get that H−1(A,B) ' Z generated by (1,−1), and τ∗ is the sign change map on
H−1(A,B). We conclude that τ∗ is not the identity on H∗(A,B). For completeness, we
get H0(A;B) ' Z/2Z⊕ Z/2Z generated by ξ = ((1, 0),−1) and η = ((0, 1),−1). Here τ∗
is the map that exchanges ξ and η. H1(A,B) ' Z/2Z, and τ∗ is the identity here.

Remark 1.2.5. The reader might ask why we didn’t simply use Theorem 1.2.3 to prove
that Hn(−, B) is a cohomology theory. The reason is, that we are interested in the
naturality in the coefficient variable. The proof we used includes a natural construction
of the long exact sequence of the pair. This construction shows that the connecting
homomorphism δ : Hn(A;B) → Hn+1(X,A;B) is natural in B. Naturality of this map
implies naturality of the Mayer-Vietoris sequence.

1.3 Classifying spaces

In this section we will define the main problem of this thesis. [X,Y ] denotes the homotopy
classes of basepoint-preserving maps X → Y . Two pointed maps f, g : X → Y represent
the same element in [X,Y ] if there is a basepoint-preserving homotopy from f to g.

Definition 1.3.1. Suppose F and G are functors from the category A to the category B.
A natural transformation T from F to G is a family of morphisms TX : FX → GX such
that the following diagram commutes for every morphism f :

FX
Ff //

TX
��

FY

TY
��

GX
Gf // GY

The natural transformation T is called an equivalence of functors if for every object X in
A TX is an isomorphisms.

Definition 1.3.2. Suppose hn(−) is a cohomology theory. The space Kn is called a
classifying space for hn if [X,Kn] has a group structure for each space X and hn(−) and
[−,Kn] are equivalent as functors.

Example 1.3.3. The Eilenberg-MacLane spaces K(B,n) are classifying spaces for ordi-
nary reduced cohomology with coefficients in the groupB. That is, the functors [−,K(B,n)]
and H̃n(−, B) are naturally equivalent for every group B and every n ≥ 0.
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Let us determine the classifying space for reduced cohomology with coefficients in the
chain complex B. We know from Theorem 1.2.3 that

H̃∗(X;B) '
∏
n

H̃n(X;Hn−∗(B))

'
∏
n

[X,K(Hn−∗(B), n)]

' [X,
∏
n

K(Hn−∗(B), n)]

Note that all these isomorphisms are natural in X, so this proves that
∏
nK(Hn−∗(B), n)

is a classifying space for cohomology with coefficients in B. The case we are particularly
interested in is cohomology with coefficients in a homomorphism. In this case we get that
K(kerh, ∗)×K(cokerh, ∗ − 1) is a classifying space for H∗(−, A h−→ B).

Unfortunately this is only half the story. Before we discuss what is missing, lets review
the construction of Eilenberg-MacLane spaces.

Suppose A is an abelian group and n ≥ 0 is an integer. We aim to construct a space
K(A,n), such that πn(K(A,n)) ' A and π∗(K(A,n)) ' 0 for ∗ 6= n. We would also like
a canonical identification of πn(K(A,n)) with A.

In the case n = 0 we set K(A, 0) = A with the discrete topology and the neutral element
as base point. Then K(A, 0) becomes a topological group, and therefore a group-like H-
space, such that π0(K(A,n)) has a group structure. Clearly this construction satisfies the
requirements above.

Now suppose n ≥ 1. Choose an exact sequence

R
r // F

p // A // 0

where F and R are free abelian groups. This gives A ' F/ im r, so the generators of F
are called the generators of A, and the elements in im r are called the relations.

We build K(A,n) by setting K(A,n)(n) '
∨
α S

n
α, where α runs over the generators of

F . We now have πn(K(A,n)(n)) ' F , with a natural identification. Create K(A,n)(n+1)

by for each generator β of R attaching an (n + 1)-cell along a map representing the
element r(β) ∈ K(A,n)(n). This space has πn(K(A,n)(n+1)) ' A. The only thing left to
do is to kill the higher homotopy groups. This is done by attaching (n + 2)-cells along
each nontrivial element of πn+1(K(A,n)(n+1)), thereby getting a space with πn+1 zero.
Repeating this procedure, we attach (n + 3)-cells to kill πn+2 of the resulting space, and
continue to attach cells, thereby killing all higher homotopy groups. The details left out
here can be found in section VII.11 of [Bredon].

Since Eilenberg-Maclane spaces are unique up to homotopy type we know that they are
group-like H-spaces, since K(A,n) ' ΩK(A,n + 1), thus [X,K(A,n)] is a group for all
spaces X.

Proposition 1.3.4. Suppose A and B are abelian groups and n ≥ 1 is a natural number.
The map

φ : [K(A,n),K(B,n)]→ Hom(πn(K(A,n)), πn(K(B,n))) = Hom(A,B)

given by φ(f) = f∗ is a group isomorphism.

22



Proof. We use the identifications πn(K(A,n)) ' A and πn(K(A,n)) ' A from the con-
struction above.

We first show that φ is a homomorphism. Let f, g ∈ [K(A,n),K(B,n)] and let σ : Sn →
K(A,n) represent an element in A. We need to show that (f + g)∗(σ) = f∗(σ) + g∗(σ),
thus proving that f∗+ g∗ = (f + g)∗. f∗(σ) + g∗(σ) = f ◦σ+ g ◦σ where the + is given by
the H-cogroup structure on Sn. On the other hand (f +g)∗σ is the sum of f ◦σ and g ◦σ,
where sum is defined by the H-space structure on K(B,n). Theorem VII.3.3 of [Bredon]
tells us that these sums are the same.

To see that φ is surjective, let h : A → B be a homomorphism. Suppose the spaces
K(A,n) and K(B,n) have been constructed using the sequences:

R
r // F

p // A // 0

R′ // F ′ // B // 0

and that the identifications πn(K(A,n)) ' A and πn(K(B,n)) ' B are made the standard
way.

For each generator α ∈ F , let fα : Sn → K(B,n) be a map representing the element
h(p(α)). Putting these maps together defines a map f : K(A,n)(n) =

∨
α S

n
α → K(B,n).

This map can be extended over the (n+1)-skeleton, since if en+1 is an (n+1)-cell, then its
attaching map is a map σ : Sn →

∨
α S

n
α corresponding to an element in F in the kernel

of p. Thus f ◦ σ is nullhomotopic, which means that we can extend f over en+1. We can
extend f over the rest of K(A,n) since all the higher homotopy groups of K(B,n) are
zero. Clearly f∗ = h, since it maps each generator in πn(K(A,n)) to a map representing
its image by h.

To prove that φ is injective, assume f∗ = g∗. This means that for each generator α ∈ F if
σ : Sn →

∨
α S

n
α denotes the identity onto the α factor, the compositions:

Sn
σ //
∨
α S

n
α

f // K(B,n)

and
Sn

σ //
∨
α S

n
α

g // K(B,n)

are homotopic. This implies that there exists a homotopy F from f |K(A,n)(n) to g|K(A,n)(n) .
We next prove that we can extend F over the (n+1)-skeleton of K(A,n). Suppose en+1 is
an (n+1)-cell of K(A,n). Since we already have defined F on the n-skeleton of K(A,n) we
are looking at a map defined on en+1×∂I ∪∂en+1× I that we want to extend to en+1× I.
The pair (Dn+1×I,Dn+1×∂I∪Sn×I) is homeomorphic to the pair (Dn+2, Sn+1), so this
extension problem is equivalent to the problem of extending a map Sn+1 → K(B,n) to
Dn+2 which can be done since πn+1(K(B,n)) ' 0. The same argument shows that F can
be extended over all the higher skeletons of K(A,n). We conclude that f is homotopic to
g, and therefore φ is injective.

Unfortunately we need more than this construction for this thesis. For each n ≥ 0, we
need a functor K(−, n) from the category of abelian groups to the category of pointed
CW-complexes. A functor like this is described in [May65]. For any group A, K(A,n) is
a CW-complex with (n− 1)-skeleton consisting only of the basepoint ∗. In the case A = 0
we have K(0, n) ' ∗. In the case n = 0 we take K(−, 0) to be the functor, that to A
associates A as a discrete group.
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K(−, n) is also assumed to be a right inverse of the functor πn. This should be understood
the following way: πnK(−, n) is a functor from the category of abelian groups to the
category of abelian groups. This functor is equivalent to the identity functor. This means
that we are given identifications πn(K(A,n)) ' A for all groups A such that the following
diagram commutes for all homomorphisms h:

πn(K(A,n))

'
��

πn(K(h,n)) // πn(K(B,n))

'
��

A
h // B

In the following we will identify A with πn(K(A,n)) using this natural transformation.

We also have another natural equivalence:

S : [Σ−,−]→ [−,Ω−]

where Σ denotes the reduced suspension, given the following way. Suppose

f : ΣX = X × I/(X × ∂I ∪ {∗} × I → Y )

is a map, then
S(f) : X → ΩY

is the map defined by S(f)(x)(t) = f(x, t). Notice that the set [ΣX,Y ] has a group struc-
ture induced by the H-cospace structure on ΣX and [X,ΩY ] has a group structure induced
by the H-space structure on ΩY . It is clear, that S induces a group homomorphism.

The natural equivalence S induces a natural equivalence:

Slπn → πn−lΩl

for all l ≥ 0. Using this equivalence, we get an identification:

πn−lΩlK(A,n) ' A

Lemma 1.3.5. Suppose n ≥ l. We can always choose a homotopy equivalence:

f : ΩlK(A,n)→ K(A,n− l)

such that the following diagram commutes:

πn−l(ΩlK(A,n))
'

&&NNNNNNNNNNNN

f∗ // πn−l(K(A,n− l))

'
wwppppppppppppp

A

Proof. Suppose first that n − l ≥ 1. The map f∗ is an isomorphism, so we can always
choose an isomorphism

ξ : πn−l(K(A,n− l))→ πn−l(K(A,n− l))

such that ξf∗ makes the diagram commute. Now, Proposition 1.3.4 tells us that ξ is
realizable as a homotopy equivalence from K(A,n− l) to itself. If we compose f with this
map, we get the desired result.
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In the case n = l we can construct a homotopy equivalence:

f : ΩnK(A,n)→ K(A, 0)

by mapping each loop to the element in A represented by this loop. This map is continuous
since it is constant on each component of ΩnK(A,n), and it clearly becomes a weak
homotopy equivalence. Since ΩnK(A,n) is homotopic to K(A, 0) which is a CW-complex,
the weak homotopy equivalence is in fact a homotopy equivalence by Whiteheads Theorem.

In the rest of this thesis, whenever a homotopy equivalence K(A,n − l) to ΩlK(A,n) is
mentioned, we mean a homotopy equivalence satisfying the requirements of Lemma 1.3.5

Let us briefly review how the natural transformation T : [−,K(B,n)] → H̃n(−, B) is
defined. If f represents an element of [X,K(B,n)], then T (f) = f∗(ι), where ι ∈
H̃n(K(B,n), B) is the image of the identity. We shall describe ι using cellular cohomology,
since this is the simplest.

Let (C∗(X), ∂) denote the cellular chain complex. ι is represented by the map

ι : Cn(K(B,n))→ B

defined as follows. If en is an n-cell of K(B,n), let σ : Dn → K(B,n) denote its char-
acteristic map. Since K(B,n)(n−1) = ∗, σ maps the boundary of Dn to a point, and
therefore represents an element ι(en) ∈ πn(K(B,n)) ' B. In books on algebraic topology
ι is described in the text and almost never in theorems, but the details are written out in
[Bredon] p. 491 in the text leading up to thm VII.12.1, and also in [Hatcher] in the text
immediately following the proof of thm 4.57.

The fact that T is given by a map of the type f 7→ f∗(ι) should come as no surprise, as
this next lemma tells us:

Lemma 1.3.6. Let F be a contravariant functor from the category of topological spaces
to abelian groups, and suppose for some space Y , R : [−, Y ] → F (−) is a natural trans-
formation. Then R is on the form R(f) = f∗(α) for some element α ∈ F (Y ).

Proof. Let α = R([idY ]). Then R([f ]) = R(f∗([id])) = f∗R([id]) = f∗(α).

Lemma 1.3.6 is stronger than it seems, as the proof of the next theorem suggests.

Theorem 1.3.7. Let A and B be abelian groups, and let f : A→ B be a homomorphism.
The diagram:

[X,K(A,n)]
K(f,n)∗ //

TA'
��

[X,K(B,n)]

TB'
��

H̃n(X,A)
f∗ // H̃n(X,B)

commutes for every space X.

Proof. Since the compositions f∗◦TA and TB◦K(f, n)∗ are natural transformations, lemma
1.3.6 tells us that it suffices to prove that f∗ ◦TA([id]) = TB ◦K(f, n)∗([id]). Both of these
are elements in Hn(K(A,n), B).
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TA([id]) is represented by the map Cn(K(A,n)) → A that maps an n-cell en in K(A,n)
to σ ∈ πn(K(A,n)) ' A, where σ is the characteristic map of en. This means that
f∗ ◦ SA([id]) is the map a : Cn(K(A,n)) → B that to the n-cell en relates K(f, n) ◦ σ ∈
πn(K(B,n)) ' B.

TB ◦K(f, n)∗([id]) = TB ◦K(f, n)∗([id]) = K(f, n)∗TB([id]). Now, K(f, n)∗ ◦ TB([id]) is
represented by the map b : Cn(K(A,n)) → B that maps en to the element K(f, n) ◦ σ ∈
πn(K(B,n)) ' B. This proves the theorem.

Corollary 1.3.8. The functors [−,K(−, n)] and H̃n(−,−) taking one contravariant vari-
able in the category of topological spaces and one covariant in the category of abelian
groups, and having image in the category of abelian groups are naturally equivalent in both
variables.

We are now ready for the main definition of this section:

Definition 1.3.9. Suppose hn(−,−) is a cohomology theory, with coefficients in some
category A. A natural classifying space for hn(−,−) is a functor Kn(−) such that there
exists a natural equivalence from the functor hn(−,−) to the functor [−,Kn(−)].

Example 1.3.10. As we have just shown, K(−, n) is a natural classifying space for
cohomology with coefficients in the category of groups.∏
nK(H∗−n(B), n) is not a natural classifying space for H̃∗(−, B), since the isomorphism

H̃∗(X,B)→ [X,
∏
nK(H∗−n(B), n)], was constructed as the composition:

H̃∗(X,B)
φ //∏

n H̃
n(X,Hn−∗(B)) // [X,

∏
nH

n(X,H∗−n(B))]

and the map φ is not natural in the chain complex B. So there is no way that chain maps
B → B′ could correspond to maps

∏
nK(H∗−n(B), n)→

∏
nK(H∗−n(B′), n) in a natural

way.

The main task of this thesis is to construct a natural classifying space

K(B0 → . . .→ Bk, n)

for reduced cohomology with coefficients in the finite chain complex B0 → . . .→ Bk. Keep
in mind that we have defined a morphism in the category of finite chain complexes to be
a set of maps φ = (φ0, . . . , φk) such that the following diagram commutes:

B0

φ0

��

h0 // B1

φ1

��

h1 // . . .
hk−1 // Bk

φk
��

B′0
h′0 // B′1

h′1 // . . .
hk−1 // Bk

The functor K(−, n) should expand the given functor defined on the category of abelian
groups, which can be thought of as a subcategory of the category of finite chains of abelian
groups.
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Chapter 2

Two important results

This short chapter contains two results. The first result is a series of long exact sequences,
that in a natural way relate cohomology with coefficients in a finite chain complex with
cohomology with coefficients in shorter chain complexes, thus inductively relating coho-
mology with coefficients in a finite chain complex to ordinary cohomology. This result is
more useful for our purpose than the result of Theorem 1.2.3 since it is natural in both
variables.

The second result is equivalence of cellular and singular cohomology with coefficients in a
chain complex. Cellular cohomology is obtained by replacing the singular chain complex
with the cellular chain complex in definition 1.1.12.

Both results will be used to find the natural classifying space for cohomology with coeffi-
cients in a chain complex, and both results have been developed for this thesis.

2.1 The long exact sequences

Example 2.1.1. Lets look a little into our main example, namely cohomology with
coefficients in a group. If A h−→ B is a homomorphism of abelian groups, and K is a chain
complex, we see that:

Hom(K;A h−→ B)p = Hom(Kp, A)×Hom(Kp−1, B)

A good way to illustrate an element (f0, f−1) ∈ Hom(K;A h−→ B)p is to draw the diagram:

. . . ∂ // Kp+1

0

��

∂ // Kp
∂ //

f0

��

Kp−1
∂ //

f−1

��

Kp−1
∂ //

0

��

. . .

. . . // 0 // A
h // B // 0 // . . .

This illustrates the derivation in Hom(K,A h−→ B). The first coordinate of δ(f0, f−1) is
the only map Kp+1 → A, that you can build from this diagram (with the right sign), and
the second coordinate is the difference of the two maps Kp → B that you can build with
the right sign. To be more precise we get:

δ(f0, f−1) = ((−1)p+1f0∂, hf0 − (−1)pf−1∂)
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Thus, a cycle in Hom(K,A h−→ B)p is a pair (f0, f−1) of maps such that f0∂ = 0, and this
diagram commutes up to the right sign:

Kp
∂ //

f0

��

Kp−1

f−1

��
A

h // B

This means that f0 represents an element in Hp(K,A) and if g represents an element in
Hp−1(K,B), then (0, g) represents an element in Hp(K,A h−→ B). Thus we have maps:

ψ : Hn(K,A h−→ B)→ Hn(K,A)

and
φ : Hn−1(K,B)→ Hn(K,A h−→ B)

induced by projection and inclusion respectively. If we combine these maps with the map
h∗ : Hn(K,A) → Hn(K,B) known from ordinary cohomology theory, we get an exact
sequence:

. . . // Hn(K,A h−→ B)
ψ // Hn(K,A)

h∗ //

Hn(K,B)
φ // Hn+1(K,A h−→ B)

ψ // . . .

We will prove a generalization of this construction:

Theorem 2.1.2. Suppose

B0
h0→ B1 → . . .

hk−1→ Bk

is a finite chain complex. For every r ∈ {0, . . . , k − 1} there is a long exact sequence on
the form:

. . . // Hn(A,B0 → . . .→ Bk)
ψ // Hn(A,B0 → . . .→ Br)

(hr)∗ //

Hn−r(A,Br+1 → . . .→ Bk)
φ // Hn+1(A,B0 → . . .→ Bk) // . . .

Here, the map ψ is given by projection and the map φ is given by inclusion. This sequence
is natural in both A and the coefficient complex.

Remark 2.1.3. We need to explain what the map (hr)∗ is. Suppose

(f0, . . . , fr) ∈ Hom(An, B0)× . . .×Hom(An−r, Br) = Hom(A,B0 → . . .→ Br)n

represents an element in Hn(A,B0 → . . . → Br). We define (hr)∗[(f0, . . . , fr)] to be the
element represented by

(hr ◦ fr, 0, . . . , 0) ∈ Hom(An−r, Br+1)× . . .×Hom(An−k+1, Bk) =

Hom(A;Br+1 → . . .→ Bk)n−r
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Proof. The chain map i:

0 //

��

. . . // 0 //

��

Br+1

id
��

// . . . // Bk

id
��

B0
// . . . // Br // Br+1

// . . . // Bk

induces the inclusion:

φ : Hn(A; 0→ . . .→ 0→ Br+1 → . . .→ Bk)→ Hn(A;B0 → . . .→ Bk)

and the chain map p:

B0
//

id
��

. . . // Br //

id
��

Br+1
//

��

. . . // Bk

��
B0

// . . . // Br // 0 // . . . // 0

induces the projection:

ψ : Hn(A;B0 → . . .→ Bk)→ Hn(A;B0 → . . .→ Br)

Since clearly the sequence:

0 // Hom(A; 0→ . . .→ 0→ Br+1 → . . .→ Bk)n
i∗ //

Hom(A;B0 → . . .→ Bk)n
p∗ // Hom(A;B0 → . . .→ Br)n // 0

is short exact for every n, the long exact sequence follows from Lemma 1.1.20 and the
identification:

Hn(A; 0→ . . .→ 0︸ ︷︷ ︸
r+1

→ Br+1 → . . .→ Bk, n) ' Hn−r−1(A;Br+1 → . . .→ Bk)

of corollary 1.1.9.

The only thing left to prove is that the connecting homomorphism:

D : Hn(A,B0 → . . .→ Br)→ Hn+1(A, 0→ . . .→ 0︸ ︷︷ ︸
r+1

→ Br+1 → . . .→ Bk)

is in fact the map (hr)∗.

We can describe D by following the construction of the boundary map as on page 116 in
[Hatcher]. Suppose (f0, . . . , fr) represents an element in Hn(A,B0 → . . . → Br). Then
δ(f0, . . . , fr) = 0. The construction tells us to pick an element x such that p∗(x) =
(f0, . . . , fr). Let us choose (f0, . . . , fr, 0, . . . , 0). Using the fact that δ(f0, . . . , fr) = 0 we
get

δ(f0, . . . , fr, 0, . . . , 0) = (0, . . . , 0︸ ︷︷ ︸
r

, hr ◦ fr, 0, . . . , 0)

Since i∗(hr ◦ fr, 0, . . . , 0) = (0, . . . , 0, hr ◦ fr, 0, . . . , 0) the construction tells us that

D[(f0, . . . , fr)] = [(hr ◦ fr, 0, . . . , 0)]

as desired.

The naturality of the long exact sequence mentioned follows from the naturality in Lemma
1.1.20. Naturality in the coefficients variable is clear.
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The version of the long exact sequence, that we will use the most is the case r = k − 1.

Corollary 2.1.4. The sequence:

. . . // Hn(A,B0 → . . .→ Bk)
ψ // Hn(A,B0 → . . .→ Bk−1)

(hk−1)∗//

Hn−k+1(A,Bk)
φ // Hn+1(A,B0 → . . .→ Bk) // . . .

is natural and exact.

Corollary 2.1.5. Suppose k > n+ 1 and X is a space. Then the map:

ψ : H̃n(X,B0 → . . .→ Bk)→ H̃n(X,B0 → . . .→ Bn+1)

is an isomorphism. Notice that this map is natural in both variables.

Proof. Notice that for n < 0 we have by Theorem 1.2.3

H̃n(X,B0 → . . .→ Bk) '
∏
l

H̃ l(X,Hl−n(B0 → . . .→ Bk)) ' 0

since Hl−n(B0 → . . .→ Bk) is only nontrivial for l ∈ {n, . . . , n− k}.
Suppose k > n+ 1. Then Theorem 2.1.2 gives us a long exact sequence:

H̃−2(X;Bn+1 → . . .→ Bk) // H̃n(X,B0 → . . .→ Bk) //

H̃n(X,B0 → . . .→ Bn) // H̃−1(X,Bn+1 → . . .→ Bk)

Since the first and the last groups in this sequence are zero by the above analysis, this
proves the corollary.

This means that the only interesting cases of cohomology with coefficients in a finite
complex, are the ones with k ≤ n+ 1, and we can restrict our attention to those.

Remark 2.1.6. Had we done the analysis for Theorem 2.1.2 in the case of infinite chains,
the arguments from the corollary above would have showed, that for a general chain
complex B, H̃n(X,B) is only affected by the groups in B in dimension greater than or
equal to −n− 1.

2.2 Cellular cohomology

Definition 2.2.1. Let X be a CW-complex, and let C∗(X) denote the cellular complex of
X. We define the cellular cohomology of X with coefficients in the chain complex B as:

Hn
CW (X;B) = Hn(C∗(X);B)

Let (X,A) be a CW-pair and let C∗(X,A) denote the relative cellular complex of (X,A).
We define relative cellular cohomology with coefficients in B to be:

Hn
CW (X,A;B) = Hn(C∗(X,A);B)
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Let Ĉ∗(X) denote the augmented cellular complex of X. We define reduced cellular coho-
mology of X with coefficients in the chain complex B to be:

H̃n
CW (X;B) = Hn(Ĉ∗(X);B)

Reduced relative cellular homology is defined as:

H̃n
CW (X,A;B) = H̃n

CW (X/A;B)

Thus Hn
CW (−,−) is a bifunctor taking one variable in the category of CW-complexes with

cellular maps and a chain complex of abelian groups, with values in abelian groups. It is
contravariant in the first variable and covariant in the second.

We would like to say that cellular cohomology is the same as singular cohomology. It is
well-known that if X is a CW-complex and B is an abelian group, then Hn

CW (X,B) '
Hn(X,B), if Hn

CW denotes ordinary cellular cohomology. This is sufficient for the purpose
of computing cohomology groups, but since we are interested in the naturality of the
cohomology functor, what we need is a natural equivalence of the functors Hn(−,−) and
Hn
CW (−,−). That such an equivalence actually exists in the case of ordinary cohomology

is proved in [May98] on pages 147-148.

The next theorem tells us that this natural equivalence generalizes to cohomology with
coefficients in a chain complex.

Theorem 2.2.2. Let Hn(−,−) and Hn
CW (−,−) denote singular and cellular cohomology

of pairs, with coefficients in a chain complex. The functors Hn(−,−) and Hn
CW (−,−) are

naturally equivalent.

Proof. Let T : HCW
n (−) → Hn(−) denote a natural equivalence of functors in ordinary

homology. That this exists is proved in [May98] p. 117. Lemma 1.2.1 implies that for each
pair (X,A) the isomorphism T(X,A) : HCW

n (X,A)→ Hn(X,A) is induced by a chain map
f(X,A) : C∗(X,A) → ∆∗(X,A). Before we define the transformation on cohomology with
coefficients in a chain complex, lets define the transformation on ordinary cohomology
S : Hn(−,−)→ Hn

CW (−,−) by letting S(X,A),B be the map induced by f(X,A).

First, we need to prove that this is in fact a well defined transformation, since there might
be several maps f(X,A) that induce the same map on homology. If f(X,A) and f ′(X,A) are two
such maps, then (f(X,A))∗ = (f ′(X,A))∗ on homology, and the universal coefficient theorem
tells us that they induce the same map on cohomology.

The transformation S is clearly natural in the coefficient variable. To prove that it is
natural in (X,A), let g : (X,A) → (Y,C) be a cellular map. We need to prove that this
diagram commutes:

Hn(∆∗(Y,C), B)
(f(Y,C))

∗
//

g∗

��

Hn(C∗(Y,C), B)

g∗

��
Hn(∆∗(X,A), B)

(f(X,A))
∗
// Hn(C∗(X,A), B)

In other words we need to prove that g∗(f(Y,C))∗ = (f(X,A))∗g∗ on cohomology. But
naturality of T tells us that g∗(f(X,A))∗ = (f(Y,C))∗g∗ on homology, and the result follows
from the universal coefficient theorem. Since f(X,A) induces an isomorphism on homology
it induces an isomorphism on cohomology, so we conclude that S is a natural equivalence.
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We can now define the transformation R : Hn(−,−) → Hn
CW (−,−) on cohomology with

coefficients in a chain complex, by letting R(X,A),B be the map induced by f(X,A) as in
ordinary cohomology.

Again we need to check that this map is in fact well defined, since there might be several
maps f(X,A) inducing the same map T(X,A). Consider the following commutative diagram:

Hn(∆∗(X,A);B)

(f(X,A))
∗

��

' //
∏
∗H
∗(∆∗(X,A),Hn−∗(B))∏

(f(X,A))
∗'

��
Hn(C∗(X,A);B) ' //

∏
∗H
∗(C∗(X,A),Hn−∗(B))

Here the vertical isomorphism is the isomorphism of Theorem 1.2.3, and the diagram is
commutative by the naturality of this isomorphism. Since the vertical map on the right
is independent of the choice of f(X,A), R is independent of the choice of f(X,A).

This diagram also tells us two other things. First, since all other maps in the diagram
are isomorphisms, R(X,A),B is an isomorphism for all (X,A) and B. Secondly, since all
other maps in the diagram are natural in (X,A), R is natural in (X,A). Since clearly R
is natural in B, we conclude that R is an natural equivalence of functors.

Since we are really interested in reduced cohomology, we need the following corollary.

Corollary 2.2.3. The functors H̃n
CW (−,−) and H̃n(−,−) defined on the category of

pointed CW-complexes with pointed cellular maps and chain complexes of abelian groups,
are naturally equivalent.

Proof. Proposition 1.1.26 proves that the functors H̃n(−,−) and Hn(−, ∗;−) are equiv-
alent on the category of pointed CW-complexes. The same argument as in the proof of
Proposition 1.1.26 proves that the functors H̃n

CW (−,−) and Hn
CW (−, ∗;−) are equivalent.

Since Theorem 2.2.2 tells us that Hn(−, ∗;−) and Hn
CW (−, ∗;−) are naturally equivalent,

this proves the corollary.

This result tells us that as long as we are looking at the category of pointed CW-complexes,
the functors H̃n

CW (−,−) and H̃n(−,−) are essentially the same, and in the following
chapters, we shall not distinguish between them.
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Chapter 3

The homotopy fiber

This chapter contains some background material, that will be needed to determine the
natural classifying space. Consider the long exact sequence of cohomology with coefficients
in a homomorphism A

h−→ B. Using classifying spaces this will correspond to a long exact
sequence of functors [, Yn], which in term correspond to the sequence of space Yn.

Our guess will be that this sequence of spaces is in fact the Puppe sequence for the map

K(A,n)
K(h,n)−→ K(B,n). In the next chapter we shall prove that this guess is right, but

before we do that we must introduce the Puppe sequence.

The material in this chapter can be found in most books on algebraic topology, and the
main references for this presentation are [Hatcher] and [Whitehead]. We include this
material here because it is central in the proof of the main theorem concerning the natural
classifying space.

3.1 Fibrations

Definition 3.1.1. A map E
p−→ B between topological spaces is called a fibration if the

diagram:

X × {0} F̃ //
� _

��

E

p

��
X × I F //

G

;;v
v

v
v

v
B

has a lift G for all X and all maps F, F̃ . Here I = [0, 1]. We sometimes refer to the ability
to lift all homotopies like this as the homotopy lifting property.

We define the fiber of the fibration E
p−→ B to be F = p−1(b) for b ∈ B, and write

F −→ E
p−→ B. The next proposition tells us that this is well defined.

Proposition 3.1.2. Let E
p−→ B be a fibration. If b, b′ ∈ B belong to the same pathcom-

ponent then p−1(b) is homotopy equivalent to p−1(b′).

Proof. Let γ : I → B be any path in B (no restriction on endpoints). We adopt the
notation Fb = p−1(b). If we define maps Fγ(0) × {0} → E and Fγ(0) × I → B, by letting
the first map be the identity on Fγ(0) and letting the second be given by the path γ, then
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this diagram commutes:
Fγ(0) × {0}� _

��

� � // E

p

��
Fγ(0) × I // B

The fibration property then gives maps Lγ,t : Fγ(0) → Fγ(t) for each t. This gives a
map Lγ = Lγ,1 : Fγ(0) → Fγ(1), and we consider the correspondence γ 7→ Lγ . This
correspondence has two key properties:

1. Lγ is well defined up to homotopy. That is, its homotopyclass is independent of the
choice of lift. If the two paths γ, γ′ are homotopic then the maps Lγ and Lγ′ are
homotopic.

2. γ 7→ Lγ respects composition of paths. That is Lγσ is homotopic to LγLσ. Note
that our convention on path composition is that γσ means the path:

γσ(t) =

{
σ(2t) t ≤ 1/2
γ(2t− 1) t ≥ 1/2

Letting γ−1 denote the inverse path of γ, the two properties above combine to prove that
Lγ : Fγ(0) → Fγ(1) and Lγ−1 : Fγ(1) → Fγ(0) are homotopy equivalences, thus proving the
proposition.

To prove the first property let σ : I × I → B be a homotopy between the paths γ and
γ′. To be more precise, σ is a map such that σ|I×{0} is the constant map to γ(0), and
σ|I×{1} is constant, and σ|{1}×I is γ, and σ|{0}×I is γ′. We will show that this gives rise
to a homotopy between Lγ and Lγ′ . The case γ = γ′, where σ is the identity homotopy
proves welldefinedness.

Define for all (s, t) ∈ ∂I × I Lσ,s,t : Fγ(0) → Fσ(s,t) using the lifts Lγ,t and Lγ′,t, and define
Lσ,s,t on I × {0} to be the identity. Then the following diagram commutes:

Fγ(0) × (I × {0} ∪ ∂I × I) //
� _

��

E

p

��
Fγ(0) × I × I // B

This diagram has a lift, since the pair (I × I, ∂I × I ∪ I × {0}) is homeomorphic to the
pair I × (I, {0}). Thus we have maps Lσ,s,t : Fγ(0) → Fσ(s,t) for all s, t ∈ I. Setting t = 1
gives a homotopy from Lγ to Lγ′ . Notice that this is a homotopy with image inside Fγ(1)

at all times since p ◦ Lσ,s,1 = σ(s, 1) = γ(1).

To prove the second property, suppose Lγ,s and Lσ,s are lifts for γ and σ respectively.
Then the lift defined by Lγ,2s for s ≤ 1/2 and Lσ,2s−1Lγ for s ≥ 1/2 is a lift for σγ. Thus
Lσγ is homotopic to LσLγ .

We have one main example of a fibration:

Example 3.1.3. Let B be a pointed space with basepoint ∗. Let PB denote the path
space of B, that is

PB = {γ : I → B|γ(0) = ∗}
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PB is given the compact open topology. The map p : PB → B given by p(γ) = γ(1) is a
fibration. To prove this suppose this diagram commutes:

X × {0} F̃ //
� _

��

PB

p

��
X × I F // B

Let for each x ∈ X, γx = F̃ (x, 0). Define G(x, s) to be the path defined by:

G(x, s)(t) =

{
γx( t

1−s) t ≤ 1− s
F (x, t− 1 + s) t ≥ 1− s

To see that this defines a continuous path, notice that t = 1 − s we get γ( t
1−s) = γx(1)

and F (x, 0). These are equal since the diagram commutes. The map G is continuous since
the evaluation map X × I × I → B given by (x, s, t) 7→ G(x, s)(t) is continuous.

Thus we get the diagram:

X × {0} F̃ //
� _

��

PB

p

��
X × I

G

::uuuuuuuuuu
F // B

The upper triangle in this diagram commutes since G(x, 0) = γx, and the lower triangle
commutes since G(x, s)(1) = F (x, s).

The fiber of the fibration PB
p−→ B is p−1(∗) = ΩB, the loop space over B.

The example above will provide a whole series of fibrations using this next construction.
Suppose p : E → B is a fibration, and f : A→ B is a map. We construct the pullback of
the fibration p as:

f∗(E) = {(a, e) ∈ A× E|f(a) = p(e)}

This means that we have natural projections ψ : f∗(E) → A and ξ : f∗(E) → E, such
that the following diagram commutes:

f∗(E)
ψ //

ξ

��

E

p

��
A

f // B

The next proposition justifies the construction of the pullback.

Proposition 3.1.4. The map f∗(E)→ A is a fibration.

Proof. First notice that a map φ : W → f∗(E) is the same as a pair of maps φ1, φ2 that
makes this diagram commute:

W
φ1 //

φ2

��

E

p

��
A

f // B
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Now, suppose we have a commutative diagram:

X × {0} F̃ //
� _

��

F ∗(E)
ψ //

ξ

��

E

p

��
X × I F // A

f // B

Since p is a fibration, there is a lift of the composition f ◦ F . This provides the map
X × I → E. If we let the map X × I → A simply be F , these two maps constitute a map
X × I → F ∗(E), which is a lift of F̃ .

It is easy to see what the fiber of a pullback is. If a ∈ A, then ξ−1(a) = {(a, e) ∈
F ∗(E)|p(e) = f(a)} = {a}× p−1(f(a)). In other words, the fiber of the pullback fibration
is a copy of the fiber of the original fibration. One usually writes

F

��

F

��
f∗(E) //

��

E

p

��
A

f // B

There is one other important proposition that needs to be mentioned here. First we need
a definition:

Definition 3.1.5. Suppose E
p−→ B and E′

p′−→ B are fibrations over the same space B.
A map f : E → E′ is fiber preserving if the following diagram commutes:

E
f //

p
��@@@@@@@ E′

p′~~}}}}}}}

B

Two fiber preserving maps f, f ′ : E → E′ are fiber homotopy equivalent if there is a
homotopy F from f to f ′ such that this diagram commutes:

E × I

��

F // E′

p′

��
E

p // B

In this situation F is called a fiber preserving homotopy. The fibrations E
p−→ B and

E′
p′−→ B are fiber homotopy equivalent if there exist fiber preserving maps f : E → E′

and f ′ : E′ → E such that f ◦ f ′ and f ′ ◦ f are fiber homotopy equivalent to the identity
through fiber preserving homotopies. One could view these maps f and f ′ as families of
homotopy equivalences between the fibers.

Fiber homotopy equivalence is of course an equivalence relation. Notice that fiber homo-
topy equivalent fibrations have homotopic fibers.
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Proposition 3.1.6. Let E
p−→ B be a fibration. If f, g : A→ B are homotopic maps then

f∗(E) and g∗(E) are fiber homotopy equivalent. In particular, the fibers of these fibrations
are homotopic.

Lemma 3.1.7. Let E
p−→ B be a fibration, and let A ⊆ B. Then the restriction p :

p−1(A)→ A is a fibration.

Proof. Obvious.

Proof of Proposition 3.1.6. Suppose F : A × I → B is a homotopy from f to g. The
fibration q : F ∗(E)→ A×I contains the fibrations f∗(E) and g∗(E), as q : q−1(A×{0})→
A×{0} ' A and q : q−1(A×{1})→ A×{1} ' A respectively. So it suffices to prove that
if p : E → B × I is a fibration, then all the fibrations Es = p−1(B × {s}) → B are fiber
homotopy equivalent.

Suppose γ : I → I is a path in I. We can define a homotopy gt : Eγ(0) → B × I by
gt(x) = (p(x), γ(t)), with initial lift Lγ,0 : Eγ(0) → E defined by the inclusion. Then the
homotopy lifting property enables us to lift gt to a homotopy Lγ,t : Eγ(0) → E such that
im(Lγ,t) ⊆ Eγ(t), and we define the homotopy Lγ = Lγ,1 : Eγ(0) → Eγ(1).

Like in the proof of Proposition 3.1.2 we prove that the association γ 7→ Lγ is well defined
up to homotopy, and that if to paths γ and γ′ are homotopic (which in this case just
means that they have the same endpoints since I is contractible), then Lγ is homotopic
to Lγ′ . We also prove that LγLσ is homotopic to Lγσ. This implies that Lγ and Lγ−1 are
fiber homotopy equivalences that are inverses of each other. Notice that if γ and γ′ are
homotopic then the homotopy constructed from Lγ to Lγ′ preserves fibers since it is a lift
of the map Eγ(0) × I → B × I defined by (x, t) 7→ (p(x), γ(1)).

3.2 Left exact sequences of spaces

The reason that fibrations are mentioned here is that they are left exact.

If A,X, Y are pointed spaces and f : X → Y is a pointed map, lets for a moment define
the kernel of f∗ : [A,X] → [A, Y ] as f−1

∗ ([∗]), where [∗] denotes the class represented by
the constant map to basepoint.

Definition 3.2.1. A sequence of pointed spaces and maps:

X
f // Y

g // Z

is called left exact if for all pointed CW-complexes A, the sequence:

[A,X]
f∗ // [A, Y ]

g∗ // [A,Z]

is exact. That is if the kernel of g∗ is exactly the image of f∗.

Lemma 3.2.2. All fibrations F −→ E
p−→ B of pointed spaces are left exact.

Before we prove this, we need another lemma, which is taken from [Bredon]:
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Lemma 3.2.3. Let F −→ E
p−→ B be a fibration of pointed spaces. Suppose (X,A) is a

pair of pointed CW-complexes, then the lifting problem:

X × {0} ∪A× I f //
� _

��

E

p

��
X × I

ft // B

always has a solution G : X × I → E.

Proof. We do this by induction over the skeletons of X \A. To expand G over a new cell
of X \A is equivalent to solving the lifting problem:

Dn × {0} ∪ Sn−1 × I
f //

� _

��

E

p

��
Dn × I

ft //

77nnnnnnn
B

Which can be solved since the pairs (Dn× I,Dn×{0}∪Sn−1× I) and (Dn× I,Dn×{0})
are homeomorphic, and p is a fibration.

Proof of Lemma 3.2.2. Let i denote the inclusion of F into E. Since F = p−1(∗) it is clear
that the image of i∗ is a subset of the kernel of p∗.

Now, suppose f : X → E is a map such that p ◦ f is homotopic to the constant map to ∗.
We need to show that f is homotopic to a map whose image is contained in F . Consider
the diagram:

X × {0} ∪ {∗} × I f∪∗ //
� _

��

E

p

��
X × I G // B

Here G is a homotopy from p ◦ f to the constant map to basepoint. Since p is a fibration
Lemma 3.2.3 tells us that G lifts to a homotopy G̃ : X × I → E from f to a map whose
image is contained in p−1(∗) = F . The fact that we restricted G̃ on {∗} × I to be the
constant map to ∗ ensures that this homotopy is basepoint-preserving.

At this point we need to discuss an important construction. Suppose f : X → Y is a
pointed map, that is not necessarily a fibration. We can write f as a homotopy equivalence
followed by a fibration in the following way.

We define FY to be the set of all continuous maps I → Y with no restriction on the
endpoints, and give this set the compact open topology. Let F f denote the space:

F f = {(x, γ) ∈ X × FY |f(x) = γ(1)}

There is a natural projection π : F f → X and a map q : F f → Y given by q(x, γ) = γ(0).
There is also an inclusion j : X → F f given by j(x) = (x, ef(x)) where ef(x) denotes
the constant path to f(x). We claim that j and π are homotopy equivalences and q is a
fibration.
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It is clear that πj : X → F f → X is the identity. The composition jπ maps (x, γ) to
(x, ef(x)). This map is homotopy equivalent to the identity on F f using the homotopy
given by contraction of paths.

q is a fibration by the same argument that proves that PB → B is a fibration. We have

qj(x) = q(x, ef(x)) = f(x)

So we have written f as a homotopy equivalence followed by a fibration.

The fiber of q is the space:

T f = {(x, γ) ∈ X × FY |f(x) = γ(1), γ(0) = ∗} =

{(x, γ) ∈ X × PY |f(x) = γ(1)}

called the homotopy fiber of f . The projection p : T f → X is a fibration since it is
the pullback of the fibration PX → X via the map f . The fiber of this fibration is ΩY
included into T f by the map i : γ 7→ (∗, γ).

Thus we have this diagram:
T f

p

!!CCCCCCCC
� � // F f

'
��

q

  AAAAAAAA

X
f // Y

The diagram at the left commutes. To see that the diagram at the right commutes up
to homotopy, notice that q is the map (x, γ) 7→ γ(0) and the map given by going down
and then right is (x, γ) 7→ f(x) = γ(1). Now, the map ht : (x, γ) 7→ γ(t) is a homotopy
between these two maps.

Since T f −→ F f
q−→ X is a fibration the sequence:

T f
p // X

f // Y

is left exact. Notice that all maps here are basepoint-preserving. Since we also have that
ΩY → T f → X is a fibration we get a left exact sequence:

ΩY
i // T f

p // X
f // Y

The next theorem tells us that we can expand this sequence infinitely to the left.

Theorem 3.2.4. The sequence

. . . Ω2f // Ω2Y
Ωi // ΩT f

Ωp // ΩX
Ωf // ΩY

i // T f
p // X

f // Y

is left exact.

To prove this theorem we need two lemmas.

Lemma 3.2.5. If f : X → Y is a fibration then the inclusion j : X → F f is a fiber
homotopy equivalence. In particular, the inclusion of the fiber of f into T f is a homotopy
equivalence.
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Proof. Define g : I × F f → Y by g(t, (x, γ)) = γ(t). On {1} × F f we can define the lift
g̃ : {1} × F f → X by g̃(1, (x, γ)) = x. Now, apply the homotopy lifting property to the
diagram:

{1} × F f
g̃|{0}×Ff //

� _

��

X

f

��
I × F f

g //

g̃

77nnnnnnn
Y

To get g̃. We can now define a homotopy ht : F f → F f by

ht(x, γ) = (g̃(t, (x, γ)), γ|[0,t])

Here γ|[0,t] denotes the restriction of the path to the first part of the path, that is γ|[0,t](s) =
γ(st). Notice that h1 = idF f , and that h0(F f ) ⊆ X. Thus we can view h0 as a map from
F f to X. Also notice that ht is a fiber preserving homotopy.

Now, h0◦j ' h1◦j = idX and j◦h0 = h0 ' h1 = idFf , so j is a fiber homotopy equivalence
with inverse h0.

Lemma 3.2.6. TΩf is homeomorphic to ΩT f . The homeomorphism makes this diagram
commute:

ΩT f

'
��

Ωp

""EEEEEEEEE

Ω2Y //

Ωi
;;xxxxxxxx
TΩf // ΩX

Ωf // ΩY
i // T f

Proof. From the definition we have:

TΩf = {(σ, γ) ∈ ΩX × PΩY |f ◦ σ = γ(1)}

Notice here that there is a canonical identification of PΩY with ΩPY . We have two
projections:

T f

p

~~}}}}}}}} q

!!DDDDDDDD

X PY

From definitions we also have:

ΩT f = {φ : I → T f |φ(0) = φ(1) = (∗, e∗)} =

{φ : I → X × PY |φ(0) = φ(1) = (∗, e∗), f ◦ p(φ(t)) = (q ◦ φ(t))(1)}

So we can define maps
Φ : ΩT f → TΩf

and
Ψ : TΩf → ΩT f

by Φ(φ) = (p ◦ φ, q ◦ φ) and Ψ(σ, γ)(t) = (σ(t), γ(t)). These maps are clearly each others
inverses. To see that Ψ is continuous it suffices to prove that the map TΩf × I → X ×PY
given by Ψ and evaluation is continuous. But this is clearly the case.
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By the definition of subset topology, Φ is continuous iff the composition

ΩT f
Φ // TΩf // ΩX × PΩY

is continuous. By the definition of the compact open topology, this composition is contin-
uous iff the composition:

ΩT f × I
Φ×id // TΩf × I // ΩX × PΩY × I // X × PY

is continuous. The last map here is given by evaluation. But this is clearly the case, since
this composition is the evaluation map on ΩT f . This proves that the maps Φ and Ψ are
homeomorphisms.

At this point the only thing left to prove is commutativity of the diagram. Consider the
diagram:

ΩT f

Φ'
��

Ωp

""EEEEEEEEE

TΩf // ΩX

Ωp(φ) = p ◦ φ, and the composition down and right in the diagram is the map:

φ 7→ (p ◦ φ, q ◦ φ) 7→ p ◦ φ

So this diagram commutes. Consider the other diagram in question:

ΩT f

Φ'
��

Ω2Y

Ωi
;;xxxxxxxx
// TΩf

The bottom map is γ 7→ (e∗, γ). On the other hand Ωi(γ) is the loop t 7→ (∗, γ(t)) ∈
X × ΩY , and Φ evaluated on this loop gives (e∗, γ) ∈ ΩX × Ω2Y . This proves that the
last diagram commutes.

Proof of Theorem 3.2.4. We need to prove that the sequence

ΩX
Ωf // ΩY // T f

is left exact. If we can prove that, we can apply the construction again to the map Ωf
and Lemma 3.2.6 will give us the rest.

The idea will be to construct the homotopy fiber of the map p : T f → X. We will call
this T p. Using the fact that the projection T p → T f is a fibration we will gain a left exact
sequence of spaces, that we will prove is essentially the same as the sequence we were
trying to prove was left exact.

So, consider
T p = {(x, γ) ∈ T f × PX|γ(1) = p(x)} =

{(x, σ, γ) ∈ X × PY × PX|f(x) = σ(1), γ(1) = x}

The inclusion of the fiber of p into the homotopy fiber of p is given by

γ ∈ ΩY 7→ (∗, γ, e∗) ∈ T p ⊂ X × PY × PX
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By Lemma 3.2.5 this is a homotopy equivalence. As usual the projection map T p → T f is
a fibration since it is the pullback of a fibration. Its fiber is ΩX and the inclusion of this
fiber into T p is given by the map

γ ∈ ΩX 7→ (∗, e∗, γ) ∈ T p

Thus we have a commutative diagram:

ΩY

'
��

i

!!DDDDDDDD

ΩX // T p // T f
p // X

Where the bottom line is left exact.

Now, define −Ωf : ΩX → ΩY by (−Ωf)(γ) = f ◦ γ−1, where γ−1 is the inverse path of γ.
We claim now is that the following diagram commutes up to homotopy.

ΩY

'
��

ΩX

−Ωf
<<xxxxxxxx
// T p

The bottom arrow here is the map γ 7→ (∗, e∗, γ) and the map given by going diagonal
and down is γ 7→ (∗, f ◦ γ−1, e∗). We can define a homotopy between these maps by

ht(γ) = (γ(t), σt, τt)

where

σt(s) =

{
∗ for s ≤ t
f ◦ γ(t+ 1− s) for s ≥ t

and

τt(s) =

{
∗ for s+ t ≤ 1
γ(t+ s− 1) for s+ t ≥ 1

We easily check that for all t we have σt(1) = f ◦ γ(t) and τt(1) = γ(t), such that ht maps
into T p for all t. Also h1(γ) = (∗, e∗, γ) and h0(γ) = (∗, f ◦ γ−1, e∗).

Thus the sequence

ΩX
−Ωf // ΩY

i // T f

is left exact. Clearly this implies that

ΩX
Ωf // ΩY

i // T f

is left exact, which proves the theorem.

There is an interesting corollary to the theorem:

Corollary 3.2.7. If F i−→ E
p−→ B is a fibration, we have an exact sequence of the form:

. . . // πn+1(B) // πn(F )
i∗ // πn(E)

p∗ //

πn(B) // . . . // π0(E)
p∗ // π0(B)

Where the maps involved are homomorphisms when this makes sense, and just maps, when
the sets involved have no group structure (there is no group structure on π0).
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Proof. Apply [S0,−] to the long exact sequence of Theorem 3.2.4 and use the isomorphism
[X,ΩY ] ' [ΣX,Y ], where Σ denotes the reduced suspension. The last thing to notice is
that for a fibration the homotopy fiber is homotopy equivalent to the actual fiber as we
proved in Lemma 3.2.5.

The last thing we need to mention in this chapter is a naturality in the construction of the
homotopy fiber, that will imply naturality of the classifying spaces once we have proved
that these are the homotopy fibers of certain maps.

Proposition 3.2.8. Suppose we have a commutative diagram of pointed maps

X

φX
��

f // Y

φY
��

X ′
f ′ // Y ′

Then the map φ mapping (x, γ) ∈ X × PY to (φX(x), φY ◦ γ) ∈ X ′ × PY ′ induces a map
between the homotopy fibers T f and T f

′
.

Proof. The only thing we need to prove is that if γ(1) = f(x), then φY ◦γ(1) = f ′ ◦φX(x),
which follows from the commutativity of the diagram.

For later, we need a lemma which is proved in [Brown70].

Lemma 3.2.9. Suppose we have a commutative diagram of pointed maps:

A
h //

'
��

B

'
��

A′
h′ // B′

Where the vertical maps are homotopy equivalences. Then the induced map between the
homotopy fibers is also a homotopy equivalence.
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Chapter 4

The natural classifying space

In this chapter we define the natural classifying space for cohomology with coefficients in
a finite chain complex, and prove that it is in fact a classifying space for this cohomology
theory. The classifying space will be constructed inductively, and the fact that it is a
classifying space will be proved by induction on the length of the chain complex. Thus
the restriction to finite chains.

The basis will be the functor K(−, n) from abelian groups to topological spaces and the
transformation [−,K(−, n)]→ Hn(−,−) on ordinary cohomology as described in section
1.3. Everything in this chapter is theory developed for this thesis.

Remember that Corollary 2.1.5 showed that we need only take care of Hn(−, B0 → . . .→
Bk) in the case of k ≤ n + 1. We need a little more than that, which is provided by the
next lemma:

Lemma 4.0.10. The functors H̃n(−,−) and H̃n+1(Σ−,−) are naturally equivalent.

Proof. If we write ΣX as the union of two cones:

ΣX = C+(X) ∪ C−(X)

with C+(X) ∩ C−(X) = X and use the Mayer-Vietoris sequence, we get for every chain
complex B:

H̃n(C+(X);B)⊕ H̃n(C−(X);B) // H̃n(X;B) //

H̃n+1(ΣX;B) // H̃n+1(C+(X);B)⊕ H̃n+1(C−(X);B)

Since
H̃∗(C+(X);B)⊕ H̃∗(C−(X);B) ' 0

for all ∗, we have proved that there is a natural equivalence of functors

H̃n(−;−)→ H̃n+1(Σ−;−)

Remember that we defined the length of the finite chain complex B0 → . . . → Bk to be
k + 1.
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The lemma shows that if we can prove that the functors H̃n(−,−) and [−,K(−, n)] taking
coefficient variable in the category of complexes with length at most n+ 1 are equivalent
for all n, then we have an equivalence of functors:

H̃n(−,−)→ H̃n+1(Σ−,−)→ [Σ−,K(−, n)]→ [−,ΩK(−, n)]

defined on the category of chain complexes of length at most n+2. So in this case we have
that ΩK(−, n) is a natural classifying space for cohomology with coefficients in a chain
with length at most n+ 2.

This argument shows, that it is sufficient to consider the case n ≥ k.

4.1 The functor K(-,n)

The aim of this section is to expand the functor K(−, n) : Ab → Top to the category of
finite chain complexes. We will begin with the case of a bicomplex A

h−→ B. Consider
the long exact sequence for cohomology with coefficients in h:

. . . // H̃n−1(X,A)
h∗ // H̃n−1(X,B) // H̃n(X,A h−→ B) //

H̃n(X,A)
h∗ // H̃n(X,B) // . . .

Suppose K(A h−→ B,n) is a classifying space for Hn(−, A h−→ B). Expressing this
sequence in terms of classifying spaces we get:

. . . // [X,ΩK(A,n)]
ΩK(B,n) // [X,ΩK(B,n)] // [X,K(A h−→ B,n)] // . . .

[X,K(A,n)]
K(h,n)∗ // [X,K(B,n)] // . . .

Here, all the maps involved are natural in X. We know the first and the last map here
from Proposition 1.3.7. This next lemma is very much in the spirit of lemma 1.3.6

Lemma 4.1.1. Let T : [−, X] → [−, Y ] be a natural transformation. Then T is of the
form f∗ for some map f : X → Y .

Proof. Let [f ] = T ([id]), and let g : A→ Y be any map. Then

T ([g]) = T (g∗[id]) = g∗T ([id]) = g∗[f ] = [fg] = f∗[g]

Thus the long exact sequence above corresponds to a right exact sequence of spaces:

. . . // ΩK(A,n)
ΩK(h,n) // ΩK(B,n) // K(A h−→ B,n) //

K(A,n)
K(h,n) // K(B,n) // . . .

The key observation here is that this resembles the Puppe sequence for the map K(h, n) :
K(A,n)→ K(B,n). Our guess will be that this is in fact the Puppe-sequence, such that

46



K(A h−→ B,n) is the homotopy fiber for K(h, n). We will for now define K(A h−→ B,n)
to be the homotopy fiber, and later on we will prove that this is in fact a classifying space
for Hn(−, A h−→ B).

The next thing to prove is that this defines a functor from the category of bicomplexes
to the category of topological spaces. The morphisms in the category of bicomplexes of
abelian groups are pairs of homomorphisms φ = (φ0, φ1) that make the diagram below
commute:

A
h //

φ0

��

B

φ1

��
A′

h′ // B′

We need this pair to define a map K(φ, n) : K(A h−→ B,n) → K(A′ h′−→ B′, n). Since
K(−, n) is a functor defined on the category of abelian groups, the commutative diagram
above induces the commutative diagram:

K(A,n)
K(h,n) //

K(φ0,n)
��

K(B,n)

K(φ1,n)
��

K(A′, n)
K(h′,n) // K(B′, n)

By proposition 3.2.8 (K(φ0, n),K(φ1, n)) induces a map

K(φ, n) : K(A h−→ B,n)→ K(A′ h′−→ B′, n)

as desired. Clearly, if φ is the identity, then K(φ, n) is the identity. It is also clear
that K(ψ ◦ φ, n) = K(ψ, n) ◦ K(φ, n). Thus K(−, n) is a functor from the category of
bicomplexes to the category of topological spaces.

We note two important obvious consequences of this definition: K(A −→ 0, n) = K(A,n)
and K(0 −→ B,n) = ΩK(B,n).

Let us define K(B0
h0→ B1

h0→ B2, n). Consider the commutative diagram:

B0
h0 //

��

B1

h1

��
0 // B2

Taking K(−, n) on this diagram we get:

K(B0, n)
K(h0,n)//

��

K(B1, n)

K(h1,n)
��

? // K(B2, n)

The pair (0,K(h1, n)) induces a map

K(h1, n) : K(B0 → B1, n)→ K(0→ B2, n) = ΩK(B2, n)

We define K(B0 → B1 → B2, n) to be the homotopy fiber of K(h1, n). There is an abuse
of notation here since K(h1, n) might be one of two maps, either K(B1, n)→ K(B2, n) or
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K(B0 → B1, n) → ΩK(B2, n). In general however, it will be clear from context, what is
meant.

To describe the functoriality of this definition, suppose we have a set of maps φ =
(φ0, φ1, φ2) such that the following diagram commutes:

B0
h0 //

φ0

��

B1
h1 //

φ1

��

B2

φ2

��
B′0

h′0 // B′1
h′1 // B′2

By functoriality in the case of complexes of length two we get a commutative diagram:

K(B0 → B1, n)
K(h1,n) //

K((φ0,φ1),n)
��

ΩK(B2, n)

ΩK(φ2,n)
��

K(B′0 → B′1, n)
K(h′1,n)

// ΩK(B′2, n)

Such that we get an induced map K(φ, n) : K(B0 → B1 → B2, n)→ K(B′0 → B′1 → B′2, n)
on the homotopy fibers. It is clear that this induces a functor on the category of chain
complexes of length at most three.

Notice what we get in the case B0 = 0. In this case K(0 → B1 → B2, n) becomes the
homotopy fiber of the map

K(h1, n) : K(0→ B1, n)→ ΩK(B2, n)

which is really just the map:

ΩK(h1, n) : ΩK(B1, n)→ K(B2, n)

and by Lemma 3.2.6 we get the homeomorphism:

K(0→ B1 → B2, n) = ΩK(B1 → B2, n)

In general, we define K(B0 → . . . → Bk+1, n) from K(B0 → . . . → Bk, n) the following
way. From functoriality in the case of k complexes, using the following diagram:

B0
h0 //

��

. . . // Bk−1
hk−1 //

��

Bk

hk
��

0 // . . . // 0 // Bk+1

we obtain a commutative diagram:

K(B0 → . . .→ Bk−1, n)
K(hk−1,n) //

��

K(0→ . . .→ 0︸ ︷︷ ︸
k−1

→ Bk, n)

K(hk,n)

��

? // K(0→ . . .→ 0︸ ︷︷ ︸
k−1

→ Bk+1, n)
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This induces a map

K(hk, n) : K(B0 → . . .→ Bk, n)→ ΩK(0→ . . .→ 0︸ ︷︷ ︸
k−1

→ Bk+1, n)

We define K(B0 → . . . → Bk+1, n) to be the homotopy fiber of this map. As in the case
above we get functoriality by induction on the length of the complex.

We need one important lemma:

Lemma 4.1.2. K(0 → B1 → . . . → Bk, n) is homeomorphic to ΩK(B1 → . . . → Bk, n).
The homeomorphism is natural in the finite complex.

Proof. The proof is by induction on k. The cases k = 1, 2 have been proved in the text
above. K(0→ B1 → . . .→ Bk, n) is by definition and using the induction hypothesis the
homotopy fiber of the map

K(hk−1, n) : K(0→ B1 → . . .→ Bk−1, n)→ ΩkK(Bk, n)

Using the induction hypothesis and the identity of Lemma 3.2.6 we see that this map is
in fact the map

ΩK(hk−1, n) : ΩK(B1 → . . .→ Bk−1, n)→ ΩkK(Bk, n)

Using Lemma 3.2.6 again we get the desired result. Naturality is clear.

In the case of k > n+ 1 Corollary 2.1.5 shows that

H̃n(X,B0 → . . .→ Bk) ' H̃n(X,B0 → . . .→ Bn+1)

An equation like that should be reflected in the classifying space, and the next lemma
shows that this is the case.

Lemma 4.1.3. Suppose k > n+ 1. Then there exists a natural homotopy equivalence:

K(B0 → . . .→ Bk, n)→ K(B0 → . . .→ Bn+1, n)

Naturality means that it commutes with chain maps.

Proof. It suffices to show that there exists a natural homotopy equivalence:

K(B0 → . . .→ Bk, n)→ K(B0 → . . .→ Bk−1, n)

If k > n + 1 then Ωk−1K(Bk, n) is null homotopic. So we can construct a commutative
diagram:

K(B0 → . . .→ Bk−1, n) // Ωk−1K(Bk, n)

'
��

K(B0 → . . .→ Bk−1, n) // ?

Since both vertical maps here are homotopy equivalences, this map induces a homotopy
equivalence between the fibers (Lemma 3.2.9) which is the homotopy equivalence we were
looking for. Naturality is clear.
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To motivate this construction consider the long exact sequence of cohomology groups:

. . . // H̃n−k(X,Bk) // H̃n(X,B0 → . . .→ Bk) //

H̃n(X,B0 → . . .→ Bk−1)
(hk−1)∗// H̃n(X,Bk) // . . .

As above, this defines a right exact sequence of chain complexes:

. . . // ΩkK(Bk, n) // K(B0 → . . .→ Bk, n) //

K(B0 → . . .→ Bk−1, n) // K(Bk, n) // . . .

Our guess is that this is in fact the Puppe sequence, and that the map from K(B0 →
. . .→ Bk−1, n) to K(Bk, n) is K(hk−1, n).

To prove that K(A h−→ B,n) is a classifying space the idea will be to construct a natural
transformation T : [−,K(−, n)] → H̃n(−,−) such that this diagram commutes for all
spaces and morphisms:

[X,ΩK(B,n)] //

TB

��

[X,K(A h−→ B,n)] //

T
��

[X,K(A,n)]

TA

��
Hn−1(X,B) // Hn(X,A h−→ B) // Hn(X,A)

(4.1)

The five lemma will then imply that T is an isomorphism. Of course, for this we need
[X,K(A h−→ B,n)] to be a group, and the maps involved to be morphisms. The question
of group structure will be postponed a while. For now, we shall concentrate on defining a
natural transformation, that makes the diagram commute.

In the general case of finite complexes, the proof will be on induction on the length of
the complex. The argument will be the argument sketched above, where the long exact
sequence of the homomorphism, will be replaced be the sequence:

. . . // H̃n−k(X,Bk) // H̃n(X,B0 → . . .→ Bk) //

H̃n(X,B0 → . . .→ Bk−1)
(hk−1)∗// H̃n(X,Bk) //

This argument of course generalizes the argument for homomorphisms and will therefore
be the only one presented.

4.2 A CW-structure on K(B0 → . . .→ Bk, n)

Lemma 1.3.6 tells us that a natural transformation

T : [−,K(B0 → . . .→ Bk, n)]→ H̃n(−, B0 → . . .→ Bk)

must be on the form [f ] 7→ f∗(ξ), with

ξ ∈ H̃n(K(B0 → . . .→ Bk, n), B0 → . . .→ Bk)

To construct the transformation, we must define the element ξ. In the construction of this
element we shall use cellular cohomology. This means that we shall need a CW-structure
on K(B0 → . . .→ Bk, n). Such a structure exists up to homotopy by the next lemma:
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Lemma 4.2.1. The space K(B0 → . . .→ Bk, n) is homotopy equivalent to a CW-complex
if n ≥ k.

Remark 4.2.2. Remember that Corollary 2.1.5 and Lemma 4.0.10 showed that we could
restrict our attention to the case n ≥ k.

Proof of Lemma 4.2.1. We prove this by induction on k. The lemma is clearly true in
the case k = 0. For the inductions step we need to prove that K(B0 → . . . → Bk, n)
is homotopy equivalent to a CW-complex, under the assumption that K(B0 → . . . →
Bk−1, n) is homotopy equivalent to a CW-complex. Consider the diagram:

K(B0 → . . .→ Bk−1, n)
K(hk−1,n) //

φ0'
��

ΩkK(Bk, n)

φ1'
��

X
φ1K(hk−1,n)φ−1

0 // K(Bk, n− k)

Here X is a CW-complex, that is homotopy equivalent to K(B0 → . . .→ Bk−1, n) and the
vertical maps are homotopy equivalences. φ−1

0 is a homotopy inverse to φ0 so the diagram
commutes up to homotopy.

The homotopy fiber of the map in the top row is K(B0 → . . .→ Bk, n) and the homotopy
fiber in the bottom row is homotopy equivalent to a CW-complex by a famous theorem
of Milnor [Milnor]. So the aim is to prove that these two homotopy fibers are homotopy
equivalent.

Consider the diagram:

K(B0 → . . .→ Bk−1, n)
K(hk−1,n) // ΩkK(Bk, n)

φ1

��
K(B0 → . . .→ Bk−1, n)

φ1◦K(hk−1,n)// K(Bk, n− k)

Since this diagram commutes, by lemma 3.2.9 it induces a homotopy equivalence between
the homotopy fibers of the two horizontal maps in the diagram.

Likewise consider the diagram:

K(B0 → . . .→ Bk−1, n)
φ1◦K(hk−1,n)φ−1

0 φ0 //

φ0'
��

K(Bk, n− k)

X
φ1◦K(hk−1,n)φ−1

0 // K(Bk, n− k)

Since this diagram commutes, by Lemma 3.2.9 it induces a homotopy equivalence between
the homotopy fibers.

Since the maps φ1K(hk−1, n)φ−1
0 φ0 and φ1K(hk−1, n) are homotopy equivalent, by Propo-

sition 3.1.6 the corresponding homotopy fibers are homotopy equivalent. This proves the
lemma.

For our purpose however, we need a special CW-structure on K(B0 → . . . → Bk, n). To
get this, we need a couple of theorems from homotopy theory.
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Theorem 4.2.3 (Cellular Approximation Theorem). Suppose f : (X,A) → (Y,B)
is a map between CW-complexes such that f |A is cellular. Then there exists a cellular map
f ′ homotopic to f through a homotopy that is stationary on A.

Proof. This is Theorem 4.8 in [Hatcher].

Theorem 4.2.4. Suppose (X,A) is a pair of spaces, such that A is a non-empty CW-
complex. Then there exists a CW-complex Y with A as a subcomplex, and a weak homotopy
equivalence f : X → Y that is the identity on A. If (X,A) is n-connected, that is if
πk(X,A) = 0 for all k ≤ n then we may assume that Y (n) ⊆ A. If X is homotopy
equivalent to a CW-complex, then f is a homotopy equivalence.

Proof. Everything except the last line is Prop. 4.13 in [Hatcher]. The last line follows
from Whiteheads theorem.

Theorem 4.2.5. Suppose (X,A) is a pair of spaces and γ : A→ A′ is a weak homotopy
equivalence with A′ a CW-complex, then there exists a CW-complex X ′ with A′ as a
subcomplex, and a weak homotopy equivalence σ : X → X ′ such that σ|A = γ. If γ is
a homotopy equivalence, and X is homotopy equivalent to a CW-complex, then σ is a
homotopy equivalence.

Proof. This is a theorem on page 76 in [May98]. The last part is Whiteheads theorem.

From the construction we have a natural inclusion:

i : ΩkK(Bk, n)→ K(B0 → . . .→ Bk, n)

given by i(γ) = (∗, γ).

We would like ΩkK(Bk, n) to be a subcomplex of K(B0 → . . .→ Bk, n), and we would like
K(B0 → . . .→ Bk, n) to be constructed from ΩkK(Bk, n) by attaching cells of dimension
greater than n− k. For this we need the theorems above and the next two lemmas.

Lemma 4.2.6. K(B0 → . . .→ Bk, n) is n− k − 1 connected.

Proof. This is done by induction on k. For k = 0 we need to prove that πl(K(B0, n)) = 0
for l ≤ n− 1, which is clearly true. For the induction step, consider the fibration

K(B0 → . . .→ Bk, n) −→ K(B0 → . . .→ Bk−1, n)
K(hk−1,n)
−→ Ωk−1K(Bk, n)

and the following part of the long exact sequence of homotopy groups associated to it:

πl+1(Ωk−1K(Bk, n)) // πl(K(B0 → . . .→ Bk, n)) // πl(K(B0 → . . .→ Bk−1, n))

Induction tells us that πl(K(B0 → . . .→ Bk−1, n)) is zero for l ≤ n−k, and πl+1(Ωk−1K(Bk, n))
is zero for l + 1 + k − 1 < n that is for l ≤ n − k − 1. Thus, for l ≤ n − k − 1 we have
πl(K(B0 → . . .→ Bk, n)) = 0 as desired.

Lemma 4.2.7. The pair (K(B0 → . . .→ Bk, n),ΩkK(Bk, n)) is (n− k)-connected.
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Proof. We need to prove that the map:

i∗ : πl(ΩkK(Bk, n))→ πl(K(B0 → . . .→ Bk, n))

is an isomorphism for l < n − k and an epimorphism for l = n − k. For l < n − k both
groups are zero, so the map is clearly an isomorphism.

For l = n− k consider the following part of the long exact sequence:

πn−k(ΩkK(Bk, n))
i∗ // πn−k(K(B0 → . . .→ Bk, n)) // πn−k(K(B0 → . . .→ Bk−1, n))

Lemma 4.2.6 tells us that (K(B0 → . . . → Bk−1, n)) is (n − k)-connected, so i∗ is an
epimorphism as desired.

Proposition 4.2.8. There exists a CW-complex X with K(Bk, n − k) as a subcomplex,
and a homotopy equivalence

f : (K(B0 → . . .→ Bk, n),ΩkK(Bk, n))→ (X,K(Bk, n− k))

of pairs, such that X(n−k) ⊆ K(Bk, n− k).

Proof. Since all spaces involved are homotopic to CW-complexes all weak homotopy equiv-
alences are automatically homotopy equivalences.

Since we know that ΩkK(Bk, n) and K(Bk, n−k) are homotopy equivalent, Theorem 4.2.5
tells us that there exists a CW-complex Y such that (Y,K(Bk, n−k)) and (K(B0 → . . .→
Bk, n),ΩkK(Bk, n)) are homotopy equivalent. Now, Theorem 4.2.4 and Lemma 4.2.7 tells
us that (Y,K(Bk, n − k)) is homotopy equivalent to another CW-pair (X,K(Bk, n − k))
with X(n−k) ⊆ K(Bk, n− k) as desired.

Since K(B0 → . . .→ Bk, n) is the homotopy fiber of the map:

K(hk−1, n) : K(B0 → . . .→ Bk−1, n)→ Ωk−1K(Bk, n)

we have a commutative diagram of maps:

ΩkK(Bk, n) i // K(B0 → . . .→ Bk, n)

qk
��

pk // K(B0 → . . .→ Bk−1)

K(hk−1,n)

��
PΩk−1K(Bk, n)

η // Ωk−1K(Bk, n)

where p and q are the projections, and η is the map γ 7→ γ(1). Notice that pki is the
constant map to ∗.
If we replace the spaces in the upper line of this diagram with CW approximations as
given in Proposition 4.2.8 we get a diagram that only commutes up to homotopy, but still
has pki = ∗. According to The Cellular Approximation Theorem (Thm 4.2.3), we may
also replace pk with a cellular map that is homotopic to pk through a homotopy that maps
ΩkK(Bk, n) to ∗ at all times. Having done this replacement, we know that K(hk−1, n)◦pk
is homotopic to η ◦ q through a homotopy, that maps ΩkK(Bk, n) to ∗ at all times.
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4.3 The natural transformation

Corollary 2.1.5 and Lemma 4.0.10 shows that it is sufficient to define T in the case n ≥ k,
so in the following we shall always assume that n ≥ k.

To define the natural transformation

T : [−,K(B0 → . . .→ Bk, n)]→ H̃n(−, B0 → . . .→ Bk)

we must choose an element

ξ ∈ Hn(K(B0 → . . .→ Bk, n), B0 → . . .→ Bk)

such that T ([f ]) = f∗(ξ). An element in H̃n(X,B0 → . . . → Bk) is represented by a set
of maps (ξ0, . . . , ξk) such that the following diagram commutes up to sign:

Cn+1
∂ //

��

Cn(X)

ξ0
��

∂ // Cn−1(X)

ξ1
��

∂ // . . . // Cn−k(X)

ξk
��

0 // B0
h0 // B1

// . . . // Bk

To be more precise we must have ξ0 ◦ ∂ = 0 and ξl ◦ ∂ = (−1)nhl−1ξl−1. The diagram
is meant as a way to think of elements in H̃n(X,B0 → . . . → Bk) and the equations
presented are exactly the equations, that tell us that (ξ0, . . . , ξk) is a cycle.

In the case k = 0 we already have a definition that works. As described in section 1.3, the
map ξ0 : Cn(K(B,n))→ B is the map that to an n-cell σ associates σ ∈ πn(K(B,n)) ' B,
using the identification πn(K(B,n)) ' B given by the natural transformation of πnK(−, n)
to the identity functor. This works, since the (n−1)-skeleton of K(B,n) is a point. Notice
that this works for all n ≥ 0. The reason that π0(K(B, 0)) is a group is that K(B,n) is a
group-like H-space.

In the case k = 1 we must define (ξ0, ξ1). Let us first define the map:

ξ0 : Cn(K(B0
h0−→ B1, n))→ B0

Let ξ′0 : Cn(K(B0, n))→ B0 be defined as above. Since the map

p1 : K(B0
h0−→ B1, n)→ K(B0, n)

is cellular, we can define ξ0 to be p∗0(ξ′0). Secondly, we must define the map:

ξ1 : Cn−1(K(B0
h0−→ B1), n)→ B1

Suppose σ : Dn−1 → K(B0
h0−→ B1, n) is the attaching map of an (n − 1)-cell. Since the

(n − 1)-skeleton of K(B0
h0−→ B1, n) is contained in ΩK(B1, n) whose (n − 2)-skeleton is

a point, σ defines a map σ : Sn−1 → ΩK(B1, n). This map defines an element ξ1(σ) ∈
πn−1(ΩK(B1, n)) ' B1. For the signs to work out right however, we will consider the pair
(ξ0, (−1)nξ1), with ξ0 and ξ1 defined as above.

Rename the two maps defined above to (ξ′0, ξ
′
1). In the case k = 2 we aim to define

(ξ0, ξ1, ξ2). Since the map:

p2 : K(B0 → B1 → B2, n)→ K(B0 → B1, n)
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is cellular, we set (ξ0, ξ1) := (p∗2(ξ′0), (−1)np∗2(ξ′1)). If σ : Dn−2 → K(B0 → B1 → B2, n) is
the attaching map of an (n− 2)-cell, then since

K(B0 → B1 → B2, n)(n−2) ⊆ Ω2K(B2, n)

σ defines an element in πn−2(Ω2K(B2, n)) ' B2, and we define ξ2(σ) to be this element.

In general, we define inductively (ξ0, . . . , ξk) from the set (ξ′0, . . . , ξ
′
k−1) defined in the case

k − 1, to be
(p∗k(ξ

′
0), . . . , (−1)(k−1)np∗k(ξ

′
k−1), (−1)knξk)

where ξk is defined to be the map that to an (n − k)-cell associates, the attaching map
considered as an element in πn−k(ΩkK(Bk, n)).

Another more direct way to express the map:

ξl : Cn−l(K(B0 → . . .→ Bk, n))→ Bl

is the following: Let σ be an (n − l)-cell of K(B0 → . . . → Bk, n) represented by its
attaching map. Then the map:

pl+1 . . . pk ◦ σ : Dn−l → K(B0 → . . .→ Bl, n)

is a cellular map, and therefore has image contained in ΩlK(Bl, n). Since the (n − l)-
skeleton of ΩlK(Bl, n) is a point (the CW-structure on it is given by K(Bl, n − l)), this
map represents an element in πn−l(ΩlK(Bl, n)), that we call ξl(σ).

Notice that in the case k = 0 the transformation T reduces to the transformation known
from ordinary cohomology. Even more, since the CW-approximation used for

K(0→ . . .→ 0︸ ︷︷ ︸
l

→ B,n) = ΩlK(B,n)

is in fact K(B,n− l) in this case:

T : [−,ΩlK(B,n)]→ Hn(−, 0→ . . .→ 0︸ ︷︷ ︸
l

→ B) = Hn−l(−, B)

also reduces to the case known from ordinary cohomology. Thus, we have:

Proposition 4.3.1. For all groups B and all CW-complexes X and for n ≥ l the map:

T : [X,ΩlK(B,n)]→ H̃n−l(X,B)

is an isomorphism.

In the following we will prove a couple of things about the definition of T . First of all we
need to prove that ξ = (ξ0, . . . , ξk) is a cycle, so that T will be welldefined. This is done
by proving that it satisfies the equations from the beginning of this section.

The second thing we need to prove is that we in this way have defined a transformation,
that is natural in the coefficient variable. This is the requirement that will prove that
K(B0 → . . .→ Bk, n) is a natural classifying space.

The last thing we need to prove is that the transformation T makes the diagram 4.1
commute.

So lets get started:
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Proposition 4.3.2. The set (ξ0, . . . , ξk) as defined above is a cycle.

Proof. The proof will be by induction on k. In the case k = 0 we need to prove that
ξ0∂ = 0, which is true, since if the map σ : Sn → K(B,n) can be extended to Dn+1 it
represents the zero element in πn(K(B,n)).

For the induction step, suppose

(ξ′0, (−1)nξ′1, . . . , (−1)(k−1)nξ′k−1)

is a cycle, where
ξ′l : Cn−l(K(B0 → . . .→ Bk−1, n))→ Bl

That is, it satisfies the equations:
ξ′0∂ = 0

and
ξ′l∂ = hl−1ξ

′
l−1

for all l. Notice here, that the signs (−1)n cancel. We need to prove that the element

(p∗k(ξ
′
0), (−1)np∗k(ξ

′
1), . . . , (−1)(k−1)np∗k(ξ

′
k−1), (−1)nkξk)

satisfies the same equations. Most of the equations follow trivially from the induction
hypothesis. The only thing left to prove is:

ξk∂ = hk−1p
∗
k(ξ
′
k−1)

Suppose σ is an (n−k+1)-cycle of K(B0 → . . .→ Bk, n) represented by its characteristic
map σ : Dn−k+1 → K(B0 → . . .→ Bk, n). p∗k(ξ

′
k−1)(σ) is by definition the element

pk ◦ σ ∈ πn−k+1(Ωk−1K(Bk−1, n)) ' Bk−1

Since the identification πn−k+1(Ωk−1K(Bk−1, n)) ' Bk−1 comes from the natural trans-
formation from πn−k+1(Ωk−1K(−, n)) to the identity functor, hk−1 ◦ p∗k(ξ′k−1)(σ) is the
element

Ωk−1K(hk−1, n) ◦ pk ◦ σ ∈ πn−k+1(Ωk−1K(Bk, n)) ' Bk

It is clear from definitions that the map:

K(hk−1, n) : K(B0 → . . .→ Bk−1, n)→ Ωk−1K(Bk, n)

restricted to Ωk−1K(Bk−1, n) is Ωk−1K(hk−1, n), thus hk−1 ◦ p∗k(ξ′k−1)(σ) is the element:

K(hk−1, n) ◦ pk ◦ σ ∈ πn−k+1(Ωk−1K(Bk, n)) ' Bk

At this point, we would like to remind the reader of this diagram:

ΩkK(Bk, n) i// K(B0 → . . .→ Bk, n)

qk
��

pk // K(B0 → . . .→ Bk−1)

K(hk−1,n)

��
PΩk−1K(Bk, n)

η // Ωk−1K(Bk, n)
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which commuted up to a homotopy, that was constant ∗ on

Ωk(K(Bk, n)) = K(B0 → . . .→ Bk, n)(n−k)

This means that hk−1 ◦ p∗k(ξ′k−1)(σ) is also represented by the map:

η ◦ qk ◦ σ ∈ πn−k+1(Ωk−1K(Bk, n)) ' Bk

On the other side of the equation we have ξk∂σ which is the element:

∂σ ∈ πn−k(ΩkK(Bk, n)) ' Bk

represented by the element ∂σ = σ|Sn−k : Sn−k → ΩkK(Bk, n). Using the natural trans-
formation:

S−1 : πn−kΩ→ πn−k+1

we get that the same element is represented by:

S−1(∂σ) ∈ πn−k+1(Ωk−1K(Bk, n))

Now, all we need to complete the proof is a homotopy from S−1(∂σ) to η ◦ qk ◦ σ inside
ΩkK(Bk, n). Let

F : Dn−k+1 × I/Dn−k+1 × {0} → Ωk−1K(Bk, n)

be defined as follows: F (x, t) : (qk ◦ σ(x))(t). Now,

F |Dn−k+1×{1} = η ◦ qk ◦ σ

and
F |Sn−k×I = S−1(∂σ)

So F provides the desired homotopy.

Thus if ξ = (ξ0, . . . , ξk) then we can define a natural transformation

T : [−,K(B0 → . . .→ Bk, n)]→ H̃n(−, B0 → . . .→ Bk)

by setting T ([f ]) = f∗(ξ). Since our goal was to define a natural classifying space, the
next step is to prove that this transformation is natural in the coefficient variable. Let us
first make it clear what is meant by that.

A morphism in φ : (B0 → . . .→ Bk) −→ (B′0 → . . .→ B′k) in the category of finite chains,
is a set of maps (φ0, . . . , φk) such that the following diagram commutes:

B0
h0 //

φ0

��

B1
h1 //

φ1

��

. . . // Bk

φk
��

B′0
h′0 // B′1

h′1 // . . . // B′k

Since K(−, n) is a functor, φ defines a map

K(φ, n) : K(B0 → . . .→ Bk, n)→ K(B′0 → . . .→ B′k, n)
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We need to prove that the following diagram commutes for all X:

[X,K(B0 → . . .→ Bk, n)]
K(φ,n)∗ //

T
��

[X,K(B′0 → . . .→ B′k, n)]

T ′

��
H̃n(X,B0 → . . .→ Bk)

φ∗ // H̃n(X,B′0 → . . .→ B′k)

Since all maps in this diagram are natural transformations, by Lemma 1.3.6 it suffices to
prove that:

φ∗T ([id]) = TK(φ, n)∗([id])

Proposition 4.3.3. The transformation T is natural in the coefficient variable.

Proof. The proof will be by induction on k. The case k = 0 is Theorem 1.3.7. In this case
we actually proved that the diagram commuted in a much more precise way. If

ξ : Cn(K(A,n))→ A

and
η : Cn(K(B,n))→ B

were the maps such that TA and TB were given as TA([f ]) = f∗([ξ]) and TB([f ]) = f∗([η]),
and h : A→ B was a morphism, then

h ◦ ξ = η ◦K(h, n)∗

This is stronger than what is needed, since we only needed that hξ − ηK(h, n)∗ was a
boundary.

We shall prove that this stronger identity holds in general by induction. The induction
step is as follows: Suppose

ξ′ = (ξ′0, . . . , (−1)n(k−1)ξ′k−1)

and
η′ = (η′0, . . . , (−1)n(k−1)η′k−1)

are defined as above, such that

T : [−,K(B0 → . . .→ Bk−1, n)]→ Hn(−, B0 → . . .→ Bk−1)

is given by T ([f ]) = f∗([ξ]) and

T ′ : [−,K(B′0 → . . .→ B′k−1, n)]→ Hn(−, B′0 → . . .→ B′k)

is given by T ′([f ]) = f∗([η]). We shall use the names φ = (φ0, . . . , φk−1) and φ̄ =
(φ0, . . . , φk). The induction hypothesis will be that

φ ◦ ξ′ = η′ ◦K(φ, n)∗

Now we define
ξ = (p∗k(ξ

′
0), . . . , (−1)n(k−1)p∗k(ξ

′
k−1), (−1)nkξk)

and
η = (p∗k(η

′
0), . . . , (−1)n(k−1)p∗k(η

′
k−1), (−1)nkηk)
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as usual. We need to prove that

φ̄ ◦ ξ = η ◦K(φ̄, n)∗

Let us first concentrate on the first k − 1 places above. Suppose l ∈ {1, . . . , k − 1}. We
need to prove that:

φl ◦ ξ′ ◦ (pk)∗ = η ◦ (pk)∗K(φ̄, n)∗

If we can prove that

pk ◦K(φ̄, n) = K(φ, n) ◦ pk

then the equation will follow from the induction hypothesis. But remember that the func-
toriality of K(−, n) was defined inductively, by defining K(φ̄, n) to be the map, induced on
the homotopy fibers by K(φ, n) and Ωk−1K(φk, n). This means that it made this diagram
commute:

K(B0 → . . .→ Bk, n)

K(φ̄,n)

��

pk // K(B0 → . . .→ Bk−1, n)
K(hk,n) //

K(φ,n)
��

Ωk−1K(Bk, n)

Ωk−1K(φk,n)
��

K(B′0 → . . .→ B′k, n)
pk // K(B′0 → . . .→ B′k−1, n)

K(h′k,n)
// Ωk−1K(B′k, n)

So clearly pk ◦K(φ̄, n) = K(φ, n) ◦ pk.
The last thing needed to prove is that

φk ◦ ξk = ηk ◦K(φ̄, n)∗

Notice that on K(B0 → . . . → Bk, n)(n−k) = ΩkK(Bk, n) we have that K(φ̄, n) is just
ΩkK(φk, n). Remember that ξk is the map, that to an (n− k)-cell associates the element
in πn−k(ΩkK(Bk, n)) represented by its characteristic map, and η ◦ ΩkK(φk, n) is the
map that to an (n − k)-cell σ associates the element in πn−k(ΩkK(B′k, n)) represented
by ΩkK(φk, n) ◦ σ. Now, since the natural equivalence from πn−kΩkK(−, n) gave the
commutative diagram:

πn−k(ΩK(Bk, n))

'
��

ΩkK(φk,n)∗ // πn−k(ΩkK(B′k, n))

'
��

Bk
φk // B′k

we have that ΩkK(φk, n) ◦ σ represents φk ◦ ξ(σ), which proves the proposition.

The last thing we need to prove is that diagram 4.1 commutes. Actually, diagram 4.1
is the diagram we need for the case k = 1, in general we need the following diagram to
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commute:

[X,ΩK(B0 → . . .→ Bk−1, n)] T //

ΩK(hk−1,n)

��

H̃n−1(X,B0 → . . .→ Bk−1)

(hk−1)∗
��

[X,ΩkK(Bk, n)] T //

i∗
��

H̃n−k(X,Bk)

φ
��

[X,K(B0 → . . .→ Bk, n)]

p∗

��

T // H̃n(X,B0 → . . .→ Bk)

ψ
��

[X,K(B0 → . . .→ Bk−1, n)]

K(hk−1,n)

��

T // H̃n(X,B0 → . . .→ Bk−1)

(hk−1)∗
��

[X,Ωk−1K(Bk, n)] T // H̃n−k+1(X,Bk)

(4.2)

The transformation
T : [X,ΩkK(Bk, n)]→ H̃n−k(X,Bk)

Should be interpreted as follows: There is an identification:

ΩkK(Bk, n) = K(0→ . . .→ 0︸ ︷︷ ︸
k

→ Bk, n)

and another identification:

Hn−k(X,Bk) = H̃n(X, 0→ . . .→ 0︸ ︷︷ ︸
k

→ Bk)

Thus the transformation T in question becomes the transformation:

[−,K(0→ . . .→ 0︸ ︷︷ ︸
k

→ Bk, n)]→ H̃n(−, 0→ . . .→ 0︸ ︷︷ ︸
k

→ Bk)

We make the same identifications in the top and bottom horizontal line in the diagram.

Proposition 4.3.4. Diagram 4.2 commutes.

Proof. The top square and the bottom square commute by naturality of T in the coefficient
variable.

The map
φ : H̃n−k(X,Bk)→ H̃n(X,B0 → . . .→ Bk)

is actually the map induced by the chain map:

0 //

��

0 //

��

. . . // 0

��

// Bk

id
��

B0
h0 // B1

h1 // . . . // Bk−1
kk−1 // Bk
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Likewise the map ψ is induced by the chain map:

B0
h0 //

id
��

B1
h1 //

id
��

. . . // Bk−1

��

hk−1 // Bk

��
B0

h0 // B1
h1 // . . . // Bk−1

// 0

This means that the two squares in the middle of diagram 4.2 commute by naturality of
T in the coefficient variable.

Our aim was to prove that T was an isomorphism for all spaces X and all finite complexes.
The idea of the proof was to prove that diagram 4.2 commuted, that all the maps involved
were homomorphisms, and then use induction on k and the Five Lemma to prove that T
was an isomorphism. So the next thing that is needed is a group structure on [X,K(B0 →
. . . → Bk, n)]. We can get that group structure if we replace X by ΣX and use the H-
cogroup structure on ΣX. This way [ΣX,K(B0 → . . . → Bk, n)] becomes a group the
same way πn(X) becomes a group.

Now, for any pointed map:
f : Y → Z

the map
f∗ : [ΣX,Y ]→ [ΣX,Z]

becomes a group homomorphism. Thus all the vertical maps in the diagram 4.2 become
group homomorphisms. The fact that the horizontal maps become homomorphisms is due
to the next lemma, which is taken from [Hatcher](Lemma 4.60).

Lemma 4.3.5. Suppose h is a contravariant functor from some category of pointed spaces
to abelian groups satisfying the homotopy invariance axiom and the wedge axiom. Then
(f + g)∗ = f∗ + g∗ for maps f, g : ΣX → Y .

Proof. Let
c : ΣX → ΣX ∨ ΣX

denote the map that collapses X × {1
2}. Then by definition f + g = (f ∨ g) ◦ c. Consider

the following commutative diagram:

h(K)
(f∨g)∗ // h(ΣX ∨ ΣX)

i∗1⊕i∗2
��

c∗ // h(ΣX)

h(ΣX)⊕ h(ΣX)

q∗1⊕q∗2

OO

Here q1 : ΣX ∨ ΣX → ΣX is the identity on the first factor, and collapses the second
factor. Likewise q2 is the identity on the second and a collapse on the first. i1 and i2
denote the inclusions onto the first and second factor respectively. This means that q1 ◦ i1
is the identity, as well as q2 ◦ i2 is the identity. So the two vertical maps are inverses of
each other, i∗1 ⊕ i∗2 being an isomorphism by assumption.

Since (f ∨ g) ◦ i1 = f , we have

i∗1(f ∨ g)∗(x) = f∗(x)
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Likewise:
i∗2(f ∨ g)∗(x) = g∗(x)

Since q1 ◦ c is homotopic to the identity, we have

c∗q∗1(x) = x

Likewise:
c∗q∗2(x) = x

If we sum these equations up, we see that:

c∗ ◦ (f ∨ g)∗(x) = f∗(x) + g∗(x)

But by definition we have

c∗ ◦ (f ∨ g)∗(x) = (f + g)∗(x)

which proves the lemma.

Thus we have proved that all the maps in diagram 4.2 are homomorphisms, so we can
apply the Five Lemma. We are now ready for the main theorem:

Theorem 4.3.6. The functors [−,ΩK(−, n+1)] and H̃n(−,−) taking the first variable in
the category of pointed CW-complexes, and the second in the category of finite complexes
of abelian groups are naturally equivalent.

Proof. We will first prove that the maps:

T : [ΣX,ΩlK(B0 → . . .→ Bk, n)]→ H̃n−l(ΣX,B0 → . . .→ Bk)

are isomorphisms as long as n − k − l ≥ 0 (l can be zero). This is done by induction on
k. The case k = 0 is known from ordinary cohomology (Proposition 4.3.1). The induction
step is just the five lemma used on diagram 4.2. Notice here that the diagram also takes
care of the case l 6= 0 since

ΩlK(B0 → . . .→ Bk, n) = K(0→ . . .→ 0︸ ︷︷ ︸
l

→ B0 → . . .→ Bk, n)

This proves that the functors [Σ−,K(−, n)] and H̃n(Σ−,−) are naturally equivalent func-
tors defined on chains of length at most n+ 1. Using equivalence of functors:

[−,ΩK(−, n)] ' [Σ−,K(−, n)]

and
H̃n(Σ−,−) ' H̃n−1(−,−)

we get a natural equivalence of functors

[−,ΩK(−, n+ 1)] ' H̃n(−,−)

defined on chains of length at most n+ 2. Now, suppose k > n+ 2 then we have natural
homotopy equivalences:

ΩK(B0 → . . .→ Bk, n+ 1) ' K(0→ B0 → . . .→ Bk, n+ 1) '
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K(0→ B0 → . . .→ Bn+1, n+ 1) ' ΩK(B0 → . . .→ Bn+1, n+ 1)

by lemma 4.1.3 and since Corollary 2.1.5 gives a natural equivalence:

H̃n(−, B0 → . . .→ Bk) ' H̃n(−, B0 → . . .→ Bn+1)

the equivalence of functors holds in the case of arbitrary finite chains. This concludes the
proof.

4.4 The case of infinite chains

If we allow the chains to be infinite in one direction, that is if we allow chains on the form:

B0 → B1 → . . .

The arguments from Remark 2.1.6 show that:

H̃n(X,B0 → B1 → . . .) ' H̃n(X,B0 → . . .→ Bn+1)

Thus ΩK(B0 → . . . → Bn+1, n + 1) is a natural classifying space for H̃n(−, B0 → B1 →
. . .). So we define (as a matter of notation):

ΩK(B0 → B1 → . . . , n+ 1)

to be
ΩK(B0 → . . .→ Bn+1, n+ 1)

The following is an idea of how to deal with the case of infinite chains.

Suppose we have a chain complex B∗, that is infinite in both directions:

. . . // B−1
// B0

// B1
// . . .

The idea in the following will be to approximate cohomology with coefficients in B∗ with
coefficients in the complex:

B0
// B−1

// B−2
// . . .

and then improve this approximation by approximating with

B1
// B0

// B−1
// . . .

and go to the limit in some way.

So consider the chain map:

. . . // 0 //

��

0 //

��

B0
//

��

B−1
//

��

. . .

. . . // 0 // B1
// B0

// B−1
// . . .

This map induces a map:

H̃n(−, . . .→ 0→ B0 → B−1 → . . .)→ H̃n(−, . . .→ 0→ B1 → B0 → B−1 → . . .)
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Since

H̃n(−, . . .→ 0→ B1 → B0 → . . .) ' H̃n+1(−, B1 → . . .) ' [−,ΩK(B1 → . . . , n+ 2)]

We have that this map corresponds to a map:

[−,ΩK(B0 → B−1 → . . . , n+ 1)]→ [−,ΩK(B1 → B0 → . . . , n+ 2)]

Which corresponds to a homotopy class of maps:

[φ] ∈ [ΩK(B0 → B−1 → . . . , n+ 1),ΩK(B1 → B0 → . . . , n+ 2)]

Using Theorem 1.2.3 we see that:

H̃n(Si;B) ' H̃ i(Si;Hi−n(B))

So that
πi(ΩK(B0 → . . . , n+ 1)) = 0

for i > n. Arguments as in the proof of Theorem 2.1.2 give us an exact sequence of the
form:

H̃n(X,B1) // H̃n(X, . . .→ 0→ B0 → B−1 → . . .) //

H̃n(X, . . .→ 0→ B1 → B0 → . . .) // H̃n+1(X,B1)

Which shows that the map φ induces isomorphisms on πi for i < n and an epimorphism
for i = n.

Continuing this way we obtain a sequence of maps defined up to homotopy:

ΩK(B0 → . . . , n+ 1)→ ΩK(B1 → . . . , n+ 2)→ ΩK(B2 → . . . , n+ 3)→ . . .

corresponding to the sequence:

H̃n(−, . . .→ 0→ B0 → B−1 → . . .)→ H̃n(−, . . .→ 0→ B1 → B0 → . . .)→

H̃n(−, . . .→ 0→ B2 → B1 → . . .)→ . . .

where
πi(ΩK(Br → . . . , n+ r + 1)) = 0

for i > n+ r and the map:

φr : ΩK(Br → . . . , n+ r + 1)→ ΩK(Br+1 → . . . , n+ r + 2)

induces an isomorphism on πi for i < n+ r and an epimorphism on πn+r.

The maps φr are only defined up to homotopy. If we choose specific maps we can construct
the mapping telescope:

T (B∗, n)

as ∐
r

ΩK(Br → . . . , n+ r + 1)× [r, r + 1]/ ∼

where ∼ is the relation that identifies

(x, r + 1) ∈ ΩK(Br → . . . , n+ r + 1)× [r, r + 1]
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with
(φr(x), r + 1) ∈ ΩK(Br+1 → . . . , n+ r + 2)× [r + 1, r + 2]

and that identifies all points on the form (∗, t). This last identification collapses {∗} × I
to a point, that we set to be the base point of the mapping telescope.

There is an inclusion:

κr : ΩK(Br → . . . , n+ r + 1)→ T (B∗, n)

given by identifying
ΩK(Br → . . . , n+ r + 1)

with
ΩK(Br → . . . , n+ r + 1)× {r}

Suppose B∗ is only infinite in one direction, that is suppose Br = 0 for r sufficiently large.
Then the sequence:

ΩK(B0 → . . . , n+ 1)→ ΩK(B1 → . . . , n+ 2)→ . . .

stabilizes. That is, all maps are homotopy equivalences from a certain point. In this case
the mapping telescope is homotopic to (or at least weakly homotopic to) the space that
the sequence stabilizes to. This means that, in a way the mapping telescope extends the
definition of the classifying space from the finite case.

Conjecture 4.4.1. The space:
T (B∗, n)

is welldefined up to homotopy. That is, changing the maps involved to homotopy equivalent
maps does not change the homotopy type of the space. Further more, the space is a natural
classifying space for cohomology with coefficients in a chain complex.

In the following we shall restrict ourselves to finite CW-complexes and prove part of the
conjecture in this case.

Proposition 4.4.2. Suppose
T (B∗, n)

is welldefined and has a group-like H-space structure such that κr is a H-space map for all
r. Then the functors [−, T (B∗, n)] and H̃n(−, B∗) are equivalent on the category of finite
dimensional CW-complexes.

The proof of this will be split up into a series of lemmas. First we remind the reader of
the definition of a direct limit of a sequence of groups.

Suppose we have a sequence of groups and homomorphisms:

B0
h0 // B1

h1 // B2
h2 // . . .

We define the direct limit of this sequence to be:

lim
−→

Bi = (
⊕
i

Bi)/S
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where S is the subgroup generated by elements of the form xi − hi(xi). It is an easy
consequence of this definition that if the sequence is stable from some point, that is if all
Bi are isomorphic to some B and all hi are isomorphisms for i greater than some n then:

lim
−→

Bi ' B

The most interesting feature of this construction is that if we have a commutative diagram
of morphisms:

. . . // Bi
hi //

φi
��

Bi+1
hi+1 //

φi+1||yyyyyyyy
. . .

C

Then there exists a unique induced map:

φ : lim
−→

Bi → C

Such that this diagram commutes for all i:

Bi //

φi

��????????
lim−→Bi

φ||zzzzzzzz

C

Lemma 4.4.3. Suppose X is a finite dimensional CW-complex. Then the sequence:

H̃n(X; . . .→ 0→ B0 → B−1 → . . .)→ H̃n(X; . . .→ 0→ B1 → B0 → B−1 → . . .)→

H̃n(X; . . .→ 0→ B2 → B1 → B0 → B−1 → . . .)→ . . .

is stable from some point and

lim
−→

H̃n(X; . . .→ 0→ Br → Br−1 → . . .) ' H̃n(X;B∗)

Proof. Suppose X has dimension i. For r = i − n + 1 Hom(C∗(X), . . . → 0 → Br →
Br−1 → . . .)n looks like this:

. . . // 0 //

��

Ci(X) //

��

Ci−1(X) //

��

. . .

. . . // Br // Br−1
// Br−2

// . . .

This means that the groups of B in dimensions greater than r have no influence on the
n’th cohomology group of X. Thus the map:

H̃n(X, . . .→ 0→ Br → Br−1 → . . .) −→ H̃n(X, . . .→ 0→ Br+1 → Br → . . .)

is an isomorphism for r ≥ i− n+ 1. And for r ≥ i− n+ 1 we have:

H̃n(X, . . .→ 0→ Br → Br−1 → . . .) ' H̃n(X,B∗)
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Lemma 4.4.4. The canonical map:

κr : ΩK(Br → . . . , n+ r + 1)→ T (B∗, n)

induces an isomorphism on πi for i < n+ r, and an epimorphism on πn+r.

Proof. Since this diagram commutes up to homotopy:

. . . // ΩK(Br → . . . , n+ r + 1)
φr //

κr
��

ΩK(Br+1 → . . . , n+ r + 2)
φr+1 //

κr+1
ssggggggggggggggggggggg

. . .

T (B∗, n)

we obtain a commutative diagram of homotopy groups:

. . . // πi(ΩK(Br → . . . , n+ r + 1))
(φr)∗//

(κr)∗
��

πi(ΩK(Br+1 → . . . , n+ r + 2))
(φr+1)∗//

(κr+1)∗ssgggggggggggggggggggggg
. . .

πi(T (B∗, n))

Since the map:

πi(ΩK(Br → . . . , n+ r + 1))→ lim
−→

πi(ΩK(Bl → . . . , n+ l + 1))

is an isomorphism for i < n+ r and an epimorphism for i = n+ r, it suffices to show that
the induced map:

φ : lim
−→

πi(ΩK(Br → . . . , n+ r + 1))→ πi(T (B∗, n))

is an isomorphism for all i.

Let us first prove that φ is surjective. Suppose

f : Si → T (B∗, n)

represents an element in
πi(T (B∗, n))

Since the set

{ΩK(B0 → . . . , n+ 1)× [0, 1] ∪ . . . ∪ ΩK(Br → . . . , n+ r + 1)× [r, r + 1[}r∈N

is an open covering of T (B∗, n), and Si is compact f must have image contained in some

ΩK(B0 → . . . , n+ 1)× [0, 1] ∪ . . . ∪ ΩK(Br → . . . , n+ r + 1)× [r, r + 1[

Since this set is contractible to

ΩK(Br → . . . , n+ r + 1)× {r}

This implies that [f ] is in the image of κr
To prove injectivity of φ suppose we have a null homotopy of some map f : Si → T (B∗, n).
This is the same as a map:

F : Si × I/{∗} × I ∪ Si × {1} → T (B∗, n)

By the same arguments as before, we can lift F to some ΩK(Br → . . . , n + r + 1) up to
homotopy, which proves that f represents 0 in some πi(ΩK(Br → . . . , n+ r + 1)).
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Lemma 4.4.5. Suppose X and Y are connected (0-connected) spaces and f : X → Y is
a pointed map that induces an isomorphism on all πi for i < n and an epimorphism for
i = n. If K is a CW-complex of dimension less than n then the map:

f∗ : [K,X]→ [K,Y ]

is a bijection.

Proof. This is Theorem IV.7.16 and Lemma IV.7.12 of [Whitehead].

Lemma 4.4.6. Suppose X is a finite dimensional CW-complex. Then the sequence:

[X,ΩK(B0 → . . . , n+ 1)]→ [X,ΩK(B1 → . . . , n+ 2)]→ . . .

stabilizes and
lim
−→

[X,ΩK(Br → . . . , n+ r + 1)] ' [X,T (B∗, n)]

Proof. The isomorphism is the map:

lim
−→

[X,ΩK(Br → . . . , n+ r + 1)] ' [X,T (B∗, n)]

induced by the diagram:

. . . // [X,ΩK(Br → . . . , n+ r + 1)]
(φr)∗//

(κr)∗
��

[X,ΩK(Br+1 → . . . , n+ r + 2)]
(φr+1)∗//

(κr+1)∗ssffffffffffffffffffffff
. . .

[X,T (B∗, n)]

obtained as in the proof of Lemma 4.4.4.

Lemma 4.4.5 tells us that the sequence:

[X,ΩK(B0 → . . . , n+ 1)]→ [X,ΩK(B1 → . . . , n+ 2)]→ . . .

is stable from a certain point. It also tells us that the map:

[X,ΩK(Br → . . . , n+ r + 1)]→ [X,T (B∗, n)]

is bijective from a certain point. This proves the lemma.

Proof of Proposition 4.4.2. For a finite dimensional CW-complex X we get isomorphisms:

H̃n(X,B∗) ' lim
−→

H̃n(X; . . .→ 0→ Br → Br−1 → . . .) '

lim
−→

[X,K(Br → . . . , n+ r + 1)] ' [X,T (B∗, n)]

All maps involved are clearly natural in X.
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