Relaxed vertex colorings of simplicial complexes

Natalia Dobrinskaya¹ Jesper M. Møller² Dietrich Notbohm¹

¹Department of Mathematics Vrije Universiteit, Amsterdam

²Department of Mathematics University of Copenhagen

Workshop on Algebraic Topology and Combinatorics Buenos Aires, November 07 – 11, 2011

Outline

Introduction

- Standard Vertex Colorings and Relaxed Vertex Colorings of simplicial complexes: Examples
- Formal definitions
- Colorings and vector bundles
 - Davis–Januszkiewicz spaces
 - Canonical vector bundles over Davis–Januszkiewicz spaces
 - Colorings = Splittings of canonical vector bundles
- Colorings and Stanley–Reisner rings
 - Stanley–Reisner rings
 - Colorings = Factorizations in Stanley–Reisner rings
- Conclusion
 - Summary
 - Questions to think about

Definition (Simplex)

A simplex is the set $D[\sigma]$ of all subsets of a finite set σ .

Definition (ASC)

An Abstract Simplicial Complex is a union of simplices:

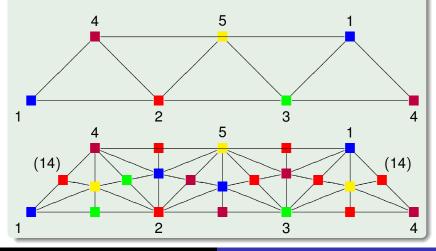
$$\mathsf{K} = \bigcup_{\sigma} \mathsf{D}[\sigma]$$

 $n(K) = \dim K + 1$: number of vertices in maximal simplex of Km(K) = |V|: number of vertices in K

Standard colorings

Example (Standard coloring of the Möbius band MB)

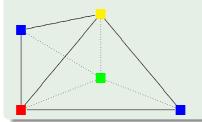
Standard coloring of 5-vertex complex MB and its barycentric subdivision using 5 colors



N Dobrinskaya, JM Møller, D Notbohm Ve

Standard Colorings

Example



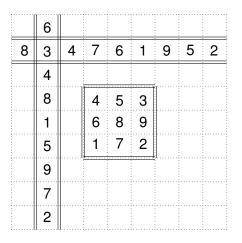
Standard coloring of K= Standard coloring of 1-skeleton of K \implies graph theory

Standard colorings live on the 1-skeleton

Standard coloring of K = Standard coloring of $sk_1(K)$

A coloring of the vertices is a standard coloring of K if and only if K contains no monochrome 1-simplices.

Sudoku as a standard coloring problem

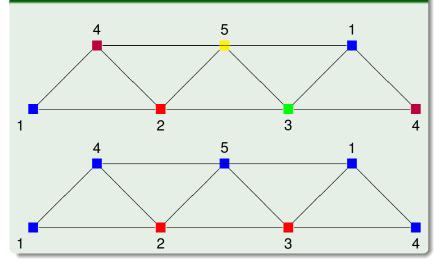


SUDOKU is an 8-dimensional simplicial complex with 9 + 9 + 9maximal simplices. A sudoku problem consists in completing a given partial standard coloring to a full standard coloring of SUDOKU using 9 colors.

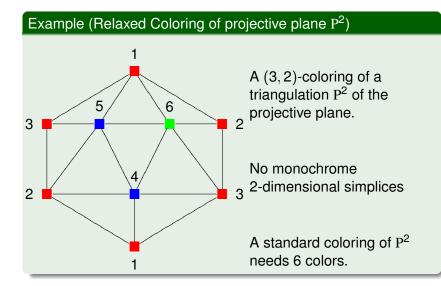
$$H_*(\text{SUDOKU}; \mathbf{Z}) = H_*(\underbrace{S^1 \lor \cdots \lor S^1}_{28}; \mathbf{Z})$$

Standard and Relaxed Colorings

Example (Standard and Relaxed coloring of Möbius band MB)

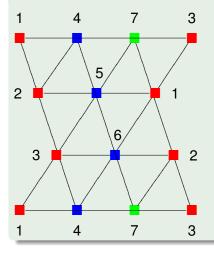


Relaxed colorings



Relaxed coloring

Example (Relaxed coloring of the torus T^2)



A (3,2)-coloring of Möbius' minimal triangulation of the torus.

A standard coloring needs 7 colors.

Colorings of Abstract Simplicial Complexes

Let K be an ASC on vertex set V, and P a finite palette of r colors.

Definition ((r, s)-coloring of an ASC)

A (*P*, *s*)-coloring (or (*r*, *s*)-coloring) of *K* is a map $f: V \rightarrow P$ that is at most *s*-to-1 on all simplices of *K*.

 $f: V \rightarrow P$ is an (r, s)-coloring if and only if K contains no monochrome *s*-simplices.

Remark

An (r, s) coloring with

s = 1 is a standard coloring using *r* colors

s > 1 is a relaxed coloring using r colors

Theorem ((r, s)-colorings live on the *s*-skeleton)

(r, s)-colorings of K = (r, s)-colorings of $sk_s(K)$

A (4,2)-coloring of the 16-vertex Björner–Lutz triangulation of the Poincaré homology 3-sphere:

 $\{1, 2, 4, 9\}, \{1, 2, 4, 15\}, \{1, 2, 6, 14\}, \{1, 2, 6, 15\}, \{1, 2, 9, 14\}, \{1, 3, 4, 12\}, \{1, 3, 4, 15\}, \{1, 3, 7, 10\}, \\ \{1, 3, 7, 12\}, \{1, 3, 10, 15\}, \{1, 4, 9, 12\}, \{1, 5, 6, 13\}, \{1, 5, 6, 14\}, \{1, 5, 8, 11\}, \{1, 5, 8, 13\}, \{1, 5, 11, 14\}, \\ \{1, 6, 13, 15\}, \{1, 7, 8, 10\}, \{1, 7, 8, 11\}, \{1, 7, 11, 12\}, \{1, 8, 10, 13\}, \{1, 9, 11, 12\}, \{1, 9, 11, 14\}, \{1, 10, 13, 15\}, \\ \{2, 3, 5, 10\}, \{2, 3, 5, 11\}, \{2, 3, 7, 10\}, \{2, 3, 7, 13\}, \{2, 3, 11, 13\}, \{2, 4, 9, 13\}, \{2, 4, 11, 13\}, \{2, 4, 11, 15\}, \\ \{2, 5, 8, 11\}, \{2, 5, 8, 12\}, \{2, 5, 10, 12\}, \{2, 6, 10, 12\}, \{2, 6, 10, 14\}, \{2, 6, 12, 15\}, \{2, 7, 9, 13\}, \{2, 7, 9, 14\}, \\ \{2, 7, 10, 14\}, \{2, 8, 11, 15\}, \{2, 8, 12, 15\}, \{3, 4, 5, 14\}, \{3, 4, 5, 15\}, \{3, 4, 12, 14\}, \{3, 5, 10, 15\}, \{3, 5, 11, 14\}, \\ \{3, 7, 12, 13\}, \{3, 11, 13, 14\}, \{3, 12, 13, 14\}, \{4, 5, 6, 7\}, \{4, 5, 6, 14\}, \{4, 5, 7, 15\}, \{4, 6, 7, 11\}, \{4, 6, 10, 11\}, \\ \{4, 6, 10, 14\}, \{4, 7, 11, 15\}, \{4, 8, 9, 12\}, \{4, 8, 9, 13\}, \{4, 8, 10, 13\}, \{4, 8, 10, 14\}, \{4, 8, 12, 14\}, \{4, 10, 11, 13\}, \\ \{5, 6, 7, 13\}, \{5, 7, 9, 13\}, \{5, 7, 9, 15\}, \{5, 8, 9, 12\}, \{5, 8, 9, 13\}, \{5, 9, 10, 12\}, \{5, 9, 10, 15\}, \{6, 7, 11, 12\}, \\ \{6, 7, 12, 13\}, \{6, 10, 11, 12\}, \{9, 10, 11, 16\}, \{9, 10, 15, 16\}, \{9, 11, 14, 16\}, \{10, 11, 13, 16\}, \\ \{10, 13, 15, 16\}, \{11, 13, 14, 16\}, \{12, 13, 14, 15\}, \{13, 14, 15, 16\}$

Run the magma program demo.prg from /home/m/moller/BuenosAires/talk

Chromatic Numbers of ASCs

Definition (Chromatic numbers of ASCs)

The *s*-chromatic number, $chr^{s}(K)$, is the least *r* such that *K* admits an (r, s) coloring.

•
$$|V| \ge \operatorname{chr}^{1}(K) \ge \operatorname{chr}^{2}(K) \ge \cdots \ge \operatorname{chr}^{1+\dim K}(K) = 1$$

• $\operatorname{chr}^{s}(D[V]) = \left\lceil \frac{|V|}{s} \right\rceil$
• $K \subset K' \Longrightarrow \operatorname{chr}^{s}(K) \le \operatorname{chr}^{s}(K')$
• $\left\lceil \frac{n(K)}{s} \right\rceil \le \operatorname{chr}^{s}(K) \le \left\lceil \frac{m(K)}{s} \right\rceil$
• K admits an (r, s) -coloring $\Longrightarrow \left\lceil \frac{n(K)}{s} \right\rceil \le r \Longrightarrow n(K) \le rs$
Example (Chromatic numbers of the ASC P²)
 $\operatorname{chr}^{1}(P^{2}) = 6, \operatorname{chr}^{2}(P^{2}) = 3, \operatorname{and chr}^{3}(P^{2}) = 1$

Chromatic numbers of cyclic polytopes

The cyclic 2*n*-polytope and (2n + 1)-polytope on m > n vertices

CP(m, 2n), CP(m, 2n+1)

are *n*-neighborly. The first chromatic numbers are

$$\operatorname{chr}^{s}(\operatorname{CP}(m,2n)) = \left\lceil rac{m}{s}
ight
ceil, \quad s < n$$

 $\operatorname{chr}^{n}(\operatorname{CP}(m,2n)) = \left\{ egin{matrix} 2 & m \text{ even} \\ 3 & m \text{ odd} \end{cases}
ight.$

$$\operatorname{chr}^{s}(\operatorname{CP}(m, 2n+1)) = \left\lceil \frac{m}{s} \right\rceil, \quad s < n$$
$$\operatorname{chr}^{n}(\operatorname{CP}(m, 2n+1)) = \begin{cases} 4 & n = 1\\ 3 & n > 1 \end{cases}$$

Definition (Chromatic numbers of polyhedra)

The s-chromatic number of the polyhedron M is the maximum

 $chr^{s}(M) = sup\{chr^{s}(K) \mid K \text{ triangulates } M\}$

 $chr^{s}(M) = r \iff$ Any triangulation of *M* can be colored with at most *r* colors such that there are no monochrome *s*-simplices.

Example (Chromatic numbers of 2-dimensional polyhedra)

- $\operatorname{chr}^1(M) \ge 5$ and $\operatorname{chr}^2(M) \ge 2$, M = Möbius band.
- $chr^1(\mathbb{R}P^2) \ge 5$ and $chr^2(\mathbb{R}P^2) \ge 3$

4-color theorem

$$chr^{1}(S^{2}) = 4$$
, $chr^{2}(S^{2}) = 2$, $chr^{3}(S^{2}) = 1$.

What are the chromatic numbers of $\mathbf{R}P^2$?

Chromatic numbers of spheres

Chromatic numbers of the 3-sphere

$${\operatorname{chr}}^1({\mathcal S}^3)=\infty$$
 and ${\operatorname{chr}}^2({\mathcal S}^3)\geq 4.$

Proof.

•
$$chr^1(CP(m,4)) \to \infty$$
 for $m \to \infty$

• There is a triangulation ALT of S^3 with $chr^2(ALT) = 4$.

The first interesting chromatic number for a sphere is

$$\operatorname{chr}^{\left\lceil \frac{n}{2} \right\rceil}(S^n)$$

as
$$\operatorname{chr}^{s}(S^{n}) = \infty$$
 for $s < \left\lceil \frac{n}{2} \right\rceil$.

Speculations

- Is chr²(S³) finite?
- $chr^{1}(S^{2}), chr^{2}(S^{3}), chr^{2}(S^{4}), chr^{3}(S^{5}), chr^{3}(S^{6}), \ldots = 4?$

The Davis–Januszkiewicz space of K in three stages

• Let
$$DJ(D[V]) = map(V, CP^{\infty}) = \overbrace{CP^{\infty} \times \cdots \times CP^{\infty}}^{\infty}$$

 For σ ⊂ V consider DJ(D[σ]) = map(V, V − σ; CP[∞], *) as the subspace of the σ-axes of DJ(D[V]) = map(V, CP[∞])

m(K)

•
$$\mathsf{DJ}(K) = \bigcup_{\sigma \in K} \mathsf{DJ}(D[\sigma]) \subset \mathsf{DJ}(D[V])$$

Example

If $K = \partial D[\{1,2,3\}] \subset D[\{1,2,3\}]$ then DJ(K) is the fat wedge

 $\mathbf{CP}^{\infty} \times \mathbf{CP}^{\infty} \times \{*\} \cup \mathbf{CP}^{\infty} \times \{*\} \times \mathbf{CP}^{\infty} \cup \{*\} \times \mathbf{CP}^{\infty} \times \mathbf{CP}^{\infty}$

•
$$K \subset K' \Longrightarrow \mathsf{DJ}(K) \subset \mathsf{DJ}(K')$$

$$\bigvee_V \mathbf{C} \mathcal{P}^\infty = \mathsf{DJ}(\mathsf{sk}_0(\mathcal{K})) \subset \mathsf{DJ}(\mathcal{K}) \subset \mathsf{DJ}(\mathcal{D}[V]) = (\mathbf{C} \mathcal{P}^\infty)$$

Vector bundles over Davis–Januszkiewicz spaces

Definition (The canonical vector bundle λ_K)

The canonical vector bundle $\lambda_{\mathcal{K}}$ over $DJ(\mathcal{K})$ is the restriction

to DJ(K) of the product of the tautological complex line bundles.

Theorem (The canonical vector bundle $\xi_{\mathcal{K}}$)

There exists a short exact sequence of vector bundles

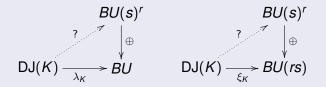
$$\mathbf{0} \rightarrow \xi_K \rightarrow \lambda_K \rightarrow \mathbf{C}^{m(K)-n(K)} \rightarrow \mathbf{0}$$

where dim $\xi_K = n(K)$.

Colorings = Stable splittings of vector bundles

Assume that $n(K) \leq rs$. The following are equivalent:

- *K* admits an (*r*, *s*)-coloring
- There exists a lift in either of the diagrams



There exist *r* vector bundles λ₁,..., λ_r over DJ(K) such that dim λ_j ≤ s and

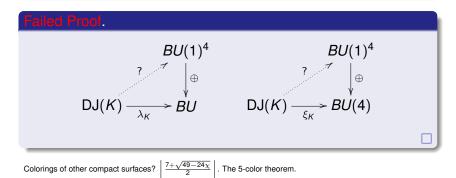
$$\lambda_{\mathcal{K}} = \bigoplus_{1 \le j \le r} \lambda_j$$

in K(DJ(K)).

A failed proof of the 4-color theorem

Theorem (The 4-color theorem)

 $chr^{1}(K) \leq 4$ for all triangulations K of S^{2} .



Definition (The Stanley–Reisner algebra of K)

SR(*K*; *R*) = $R[V]/(\prod \tau | \tau \in D[V] - K)$ is the quotient of the polynomial algebra on *V* (in degree 2) by the monomial ideal generated by the (minimal) non-simplices of *K*.

Theorem (Davis–Januszkiewicz)

 $SR(K; R) = H^*(DJ(K); R)$

• If
$$V = \{v_1, v_2, v_3\}$$
 then
• SR($D[V]; R$) = $R[v_1, v_2, v_3]$
• SR($\partial D[V]; R$) = $R[v_1, v_2, v_3]/\langle v_1 v_2 v_3 \rangle$
• $K \subset K' \Longrightarrow$ SR($K; R$) \leftarrow SR($K'; R$)
• $R[V] \twoheadrightarrow$ SR(K) = lim($P(K)^{\text{op}};$ SR($D[\sigma]$)) $\subset \prod_{\sigma \in K} R[\sigma]$

Colorings and the Stanley–Reisner algebra

Theorem (Stanley–Reisner recognition of colorings)

The partition $V = V_1 \cup \cdots \cup V_r$ is an (r, s)-coloring of $K \iff$

$$\prod_{\nu \in V} (1+\nu) = \prod_{1 \le j \le r} c_{\le s}(V_j)$$

in $SR(K; \mathbf{Z})$.

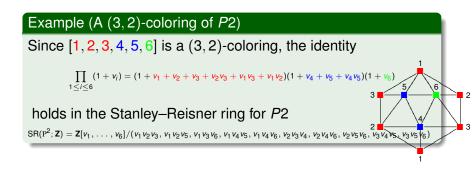
Theorem (Colorings = Factorizations of symmetric polynomials)

K admits an (r, s)-coloring \iff there exist *r* elements c_1, \ldots, c_r of SR(*K*; **Z**) such that deg $(c_j) \le 2s$ and

$$\prod_{v\in V} (1+v) = \prod_{1\leq j\leq r} c_j$$

in $SR(K; \mathbf{Z})$.

The Stanley–Reisner ring of P2 and C_5



Example (A (3, 1)-coloring of C_5)

$$SR(C_5; \mathbf{Z}) = \mathbf{Z}[v_1, \dots, v_5] / (v_1 v_3, v_1 v_4, v_2 v_4, v_2 v_5, v_3 v_5)$$
$$\prod_{1 \le i \le 5} (1 + v_i) = (1 + v_1 + v_3)(1 + v_2 + v_4)(1 + v_5)$$

Another failed proof of the 4-color theorem

Theorem (The 4-color theorem)

 $chr^{1}(K) \leq 4$ for all triangulations K of S^{2} .

Failed Proof.

Let *K* be a triangulation of S^2 with vertex set *V*. There exist 4 elements $c_1, c_2, c_3, c_4 \in SR(K; \mathbf{Z})$ of degree ≤ 2 so that

$$\prod_{\nu\in V}(1+\nu)=c_1c_2c_3c_4$$

in SR(*K*; **Z**).

What we learned today

- An (*r*, *s*)-coloring is a coloring of the vertices by *r* colors so that at most *s* vertices of any simplex has the same color
- (r, s)-colorings depend only on the s-skeleton
- (*r*, *s*)-coloring is equivalent to splitting the canonical vector bundle over the Davis–Januszkiewicz space
- (*r*, *s*)-coloring is equivalent to factorizing the total Chern class of the canonical vector bundle in the Stanley–Reisner ring

Questions to think about

Questions

- Is $chr^2(S^3) = 4$?
- Is $\operatorname{chr}^n(S^{2n-1}) = 4$ for all $n \ge 2$?
- Is $chr^n(S^{2n}) = 4$ for all $n \ge 1$?
- Is it possible to find a topological proof of the 4-color theorem?
- Is it possible to compute the chromatic numbers of the compact surfaces?
- Is there a connection between the face numbers and the chromatic numbers (as in the 6-color theorem)?