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Abstract Simplicial Complexes

Definition (Simplex)

A simplex is the set D[σ] of all subsets of a finite set σ.

Definition (ASC)
An Abstract Simplicial Complex is a union of simplices:

K =
⋃
σ

D[σ]

n(K ) = dim K + 1: number of vertices in maximal simplex of K
m(K ) = |V |: number of vertices in K
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Standard colorings

Example (Standard coloring of the Möbius band MB)

Standard coloring of 5-vertex complex MB and its barycentric
subdivision using 5 colors
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Standard Colorings

Example
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Standard coloring of K
= Standard coloring of
1-skeleton of K
=⇒ graph theory

Standard colorings live on the 1-skeleton

Standard coloring of K = Standard coloring of sk1(K )

A coloring of the vertices is a standard coloring of K if and only
if K contains no monochrome 1-simplices.
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Sudoku as a standard coloring problem
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SUDOKU is an
8-dimensional
simplicial complex
with 9 + 9 + 9
maximal simplices.
A sudoku problem
consists in
completing a given
partial standard
coloring to a full
standard coloring
of SUDOKU using
9 colors.

H∗(SUDOKU; Z) = H∗(S1 ∨ · · · ∨ S1︸ ︷︷ ︸
28

; Z)
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Standard and Relaxed Colorings

Example (Standard and Relaxed coloring of Möbius band MB)
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Relaxed colorings

Example (Relaxed Coloring of projective plane P2)
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A (3,2)-coloring of a
triangulation P2 of the
projective plane.

No monochrome
2-dimensional simplices

A standard coloring of P2

needs 6 colors.
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Relaxed coloring

Example (Relaxed coloring of the torus T 2)
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A (3,2)-coloring of Möbius’
minimal triangulation of the
torus.

A standard coloring needs 7
colors.
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Colorings of Abstract Simplicial Complexes

Let K be an ASC on vertex set V , and P a finite palette of r
colors.

Definition ((r , s)-coloring of an ASC)

A (P, s)-coloring (or (r , s)-coloring) of K is a map f : V → P that
is at most s-to-1 on all simplices of K .

f : V → P is an (r , s)-coloring if and only if K contains no
monochrome s-simplices.

Remark
An (r , s) coloring with

s = 1 is a standard coloring using r colors
s > 1 is a relaxed coloring using r colors

Theorem ((r , s)-colorings live on the s-skeleton)

(r , s)-colorings of K = (r , s)-colorings of sks(K )
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Coloring the triangulated Poincaré homology 3-sphere

A (4,2)-coloring of the 16-vertex Björner–Lutz triangulation of
the Poincaré homology 3-sphere:

{1, 2, 4, 9}, {1, 2, 4, 15}, {1, 2, 6, 14}, {1, 2, 6, 15}, {1, 2, 9, 14}, {1, 3, 4, 12}, {1, 3, 4, 15}, {1, 3, 7, 10},

{1, 3, 7, 12}, {1, 3, 10, 15}, {1, 4, 9, 12}, {1, 5, 6, 13}, {1, 5, 6, 14}, {1, 5, 8, 11}, {1, 5, 8, 13}, {1, 5, 11, 14},

{1, 6, 13, 15}, {1, 7, 8, 10}, {1, 7, 8, 11}, {1, 7, 11, 12}, {1, 8, 10, 13}, {1, 9, 11, 12}, {1, 9, 11, 14}, {1, 10, 13, 15},

{2, 3, 5, 10}, {2, 3, 5, 11}, {2, 3, 7, 10}, {2, 3, 7, 13}, {2, 3, 11, 13}, {2, 4, 9, 13}, {2, 4, 11, 13}, {2, 4, 11, 15},

{2, 5, 8, 11}, {2, 5, 8, 12}, {2, 5, 10, 12}, {2, 6, 10, 12}, {2, 6, 10, 14}, {2, 6, 12, 15}, {2, 7, 9, 13}, {2, 7, 9, 14},

{2, 7, 10, 14}, {2, 8, 11, 15}, {2, 8, 12, 15}, {3, 4, 5, 14}, {3, 4, 5, 15}, {3, 4, 12, 14}, {3, 5, 10, 15}, {3, 5, 11, 14},

{3, 7, 12, 13}, {3, 11, 13, 14}, {3, 12, 13, 14}, {4, 5, 6, 7}, {4, 5, 6, 14}, {4, 5, 7, 15}, {4, 6, 7, 11}, {4, 6, 10, 11},

{4, 6, 10, 14}, {4, 7, 11, 15}, {4, 8, 9, 12}, {4, 8, 9, 13}, {4, 8, 10, 13}, {4, 8, 10, 14}, {4, 8, 12, 14}, {4, 10, 11, 13},

{5, 6, 7, 13}, {5, 7, 9, 13}, {5, 7, 9, 15}, {5, 8, 9, 12}, {5, 8, 9, 13}, {5, 9, 10, 12}, {5, 9, 10, 15}, {6, 7, 11, 12},

{6, 7, 12, 13}, {6, 10, 11, 12}, {6, 12, 13, 15}, {7, 8, 10, 14}, {7, 8, 11, 15}, {7, 8, 14, 15}, {7, 9, 14, 15},

{8, 12, 14, 15}, {9, 10, 11, 12}, {9, 10, 11, 16}, {9, 10, 15, 16}, {9, 11, 14, 16}, {9, 14, 15, 16}, {10, 11, 13, 16},

{10, 13, 15, 16}, {11, 13, 14, 16}, {12, 13, 14, 15}, {13, 14, 15, 16}

Run the magma program demo.prg from /home/m/moller/BuenosAires/talk
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Chromatic Numbers of ASCs

Definition (Chromatic numbers of ASCs)

The s-chromatic number, chrs(K ), is the least r such that K
admits an (r , s) coloring.

|V | ≥ chr1(K ) ≥ chr2(K ) ≥ · · · ≥ chr1+dim K (K ) = 1

chrs(D[V ]) =
⌈
|V |
s

⌉
K ⊂ K ′ =⇒ chrs(K ) ≤ chrs(K ′)⌈

n(K )
s

⌉
≤ chrs(K ) ≤

⌈
m(K )

s

⌉
K admits an (r , s)-coloring =⇒

⌈
n(K )

s

⌉
≤ r =⇒ n(K ) ≤ rs

Example (Chromatic numbers of the ASC P2)

chr1(P2) = 6, chr2(P2) = 3, and chr3(P2) = 1 �2
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Chromatic numbers of cyclic polytopes

The cyclic 2n-polytope and (2n + 1)-polytope on m > n vertices

CP(m,2n), CP(m,2n + 1)

are n-neighborly. The first chromatic numbers are

chrs(CP(m,2n)) =
⌈m

s

⌉
, s < n

chrn(CP(m,2n)) =

{
2 m even
3 m odd

chrs(CP(m,2n + 1)) =
⌈m

s

⌉
, s < n

chrn(CP(m,2n + 1)) =

{
4 n = 1
3 n > 1
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Chromatic numbers of polyhedra

Definition (Chromatic numbers of polyhedra)
The s-chromatic number of the polyhedron M is the maximum

chrs(M) = sup{chrs(K ) | K triangulates M}

chrs(M) = r ⇐⇒ Any triangulation of M can be colored with at
most r colors such that there are no monochrome s-simplices.

Example (Chromatic numbers of 2-dimensional polyhedra)

chr1(M) ≥ 5 and chr2(M) ≥ 2, M = Möbius band.
chr1(RP2) ≥ 5 and chr2(RP2) ≥ 3

4-color theorem

chr1(S2) = 4, chr2(S2) = 2, chr3(S2) = 1.

What are the chromatic numbers of RP2?
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Chromatic numbers of spheres

Chromatic numbers of the 3-sphere

chr1(S3) =∞ and chr2(S3) ≥ 4.

Proof.

chr1(CP(m, 4))→∞ for m→∞
There is a triangulation ALT of S3 with chr2(ALT) = 4.

The first interesting chromatic number for a sphere is

chrd
n
2e(Sn)

as chrs(Sn) =∞ for s <
⌈n

2

⌉
.

Speculations

Is chr2(S3) finite?
chr1(S2), chr2(S3), chr2(S4), chr3(S5), chr3(S6), . . . = 4?
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Davis–Januszkiewicz spaces

The Davis–Januszkiewicz space of K in three stages

Let DJ(D[V ]) = map(V ,CP∞) =

m(K )︷ ︸︸ ︷
CP∞ × · · · × CP∞

For σ ⊂ V consider DJ(D[σ]) = map(V ,V − σ; CP∞, ∗) as
the subspace of the σ-axes of DJ(D[V ]) = map(V ,CP∞)

DJ(K ) =
⋃

σ∈K DJ(D[σ]) ⊂ DJ(D[V ])

Example

If K = ∂D[{1,2,3}] ⊂ D[{1,2,3}] then DJ(K ) is the fat wedge

CP∞ × CP∞ × {∗} ∪ CP∞ × {∗} × CP∞ ∪ {∗} × CP∞ × CP∞

K ⊂ K ′ =⇒ DJ(K ) ⊂ DJ(K ′)∨
V CP∞ = DJ(sk0(K )) ⊂ DJ(K ) ⊂ DJ(D[V ]) = (CP∞)V1111111111111

N Dobrinskaya, JM Møller, D Notbohm Vertex colorings



Vector bundles over Davis–Januszkiewicz spaces

Definition (The canonical vector bundle λK )

The canonical vector bundle λK over DJ(K ) is the restriction

λK

��

// λ× · · · × λ

��
DJ(K ) � � // CP∞ × · · · × CP∞

dimλK = m(K )

to DJ(K ) of the product of the tautological complex line bundles.

Theorem (The canonical vector bundle ξK )
There exists a short exact sequence of vector bundles

0→ ξK → λK → Cm(K )−n(K ) → 0

where dim ξK = n(K ).
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Colorings = Stable splittings of vector bundles

Assume that n(K ) ≤ rs. The following are equivalent:
K admits an (r , s)-coloring
There exists a lift in either of the diagrams

BU(s)r

⊕
��

DJ(K )
λK

//

?
99

BU

BU(s)r

⊕
��

DJ(K )
ξK

//

?
99

BU(rs)

There exist r vector bundles λ1, . . . , λr over DJ(K ) such
that dimλj ≤ s and

λK =
⊕

1≤j≤r

λj

in K (DJ(K )).
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A failed proof of the 4-color theorem

Theorem (The 4-color theorem)

chr1(K ) ≤ 4 for all triangulations K of S2.

Failed Proof.

BU(1)4

⊕
��

DJ(K )

?
::

λK

// BU

BU(1)4

⊕
��

DJ(K )

?
::

ξK

// BU(4)

Colorings of other compact surfaces?
—

7+
√

49−24χ
2

�
. The 5-color theorem.
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Stanley–Reisner algebras

Definition (The Stanley–Reisner algebra of K )

SR(K ; R) = R[V ]/ (
∏
τ | τ ∈ D[V ]− K ) is the quotient of the

polynomial algebra on V (in degree 2) by the monomial ideal
generated by the (minimal) non-simplices of K .

Theorem (Davis–Januszkiewicz)

SR(K ; R) = H∗(DJ(K ); R)

DJ(K )

H∗(−;R)

��

K

DJ(−)
88qqqqqqq

SR(−;R) &&MMMMMMM

SR(K ; R)

If V = {v1, v2, v3} then
SR(D[V ]; R) = R[v1, v2, v3]
SR(∂D[V ]; R) = R[v1, v2, v3]/〈v1v2v3〉

K ⊂ K ′ =⇒ SR(K ; R) � SR(K ′; R)

R[V ] � SR(K ) = lim(P(K )op; SR(D[σ])) ⊂
∏

σ∈K R[σ]
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Colorings and the Stanley–Reisner algebra

Theorem (Stanley–Reisner recognition of colorings)

The partition V = V1 ∪ · · · ∪ Vr is an (r , s)-coloring of K ⇐⇒∏
v∈V

(1 + v) =
∏

1≤j≤r

c≤s(Vj)

in SR(K ; Z).

Theorem (Colorings = Factorizations of symmetric polynomials)

K admits an (r , s)-coloring ⇐⇒ there exist r elements
c1, . . . , cr of SR(K ; Z) such that deg(cj) ≤ 2s and∏

v∈V

(1 + v) =
∏

1≤j≤r

cj

in SR(K ; Z).
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The Stanley–Reisner ring of P2 and C5

Example (A (3,2)-coloring of P2)

Since [1,2,3,4,5,6] is a (3,2)-coloring, the identity
Y

1≤i≤6

(1 + vi ) = (1 + v1 + v2 + v3 + v2v3 + v1v3 + v1v2)(1 + v4 + v5 + v4v5)(1 + v6)

holds in the Stanley–Reisner ring for P2
SR(P2; Z) = Z[v1, . . . , v6]/(v1v2v3, v1v2v5, v1v3v6, v1v4v5, v1v4v6, v2v3v4, v2v4v6, v2v5v6, v3v4v5, v3v5v6)
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Example (A (3,1)-coloring of C5)

SR(C5; Z) = Z[v1, . . . , v5]/(v1v3, v1v4, v2v4, v2v5, v3v5)∏
1≤i≤5

(1 + vi) = (1 + v1 + v3)(1 + v2 + v4)(1 + v5)

HHHHHHvvvvvv
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Another failed proof of the 4-color theorem

Theorem (The 4-color theorem)

chr1(K ) ≤ 4 for all triangulations K of S2.

Failed Proof.

Let K be a triangulation of S2 with vertex set V . There exist 4
elements c1, c2, c3, c4 ∈ SR(K ; Z) of degree ≤ 2 so that∏

v∈V

(1 + v) = c1c2c3c4

in SR(K ; Z).
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Summary

What we learned today

An (r , s)-coloring is a coloring of the vertices by r colors so
that at most s vertices of any simplex has the same color
(r , s)-colorings depend only on the s-skeleton
(r , s)-coloring is equivalent to splitting the canonical vector
bundle over the Davis–Januszkiewicz space
(r , s)-coloring is equivalent to factorizing the total Chern
class of the canonical vector bundle in the Stanley–Reisner
ring
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Questions to think about

Questions

Is chr2(S3) = 4?
Is chrn(S2n−1) = 4 for all n ≥ 2?
Is chrn(S2n) = 4 for all n ≥ 1?
Is it possible to find a topological proof of the 4-color
theorem?
Is it possible to compute the chromatic numbers of the
compact surfaces?
Is there a connection between the face numbers and the
chromatic numbers (as in the 6-color theorem)?
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