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Abstract

This graduate project concerns the concepts of injectivity and semidiscreteness for von Neu-
mann algebras. A von Neumann algebra .# is injective if it holds for any C*-algebra A with
a C”-subalgebra B that a completely positive map B — .# extends to a completely positive map
A — A, and A is semidiscrete if the identity map on .# can be approximated ultraweakly by
normal and completely positive maps of finite rank. The main theorem of the project states that
these notions are in fact equivalent. To prove this theorem it is necessary to determine if certain
von Neumann algebras inherit injectivity or semidiscreteness from others, and the proof also re-
quires knowledge about Hilbert-Schmidt operators and continuous crossed products, the first of
which will be dealt with thoroughly. Equally important is that the project provides the needed
theoretical background for defining injectivity and semidiscreteness. To this end we will develop
the relevant theory of tensor products of C*-algebras and completely positive maps from scratch,
as well as define and find properties of the ultraweak and ultrastrong operator topologies on the
space of bounded linear operators on Hilbert spaces. In the process, we are also able to establish
the notion of a predual of a von Neumann algebra, namely a Banach space whose dual can be iden-
tified with the von Neumann algebra, and the enveloping von Neumann algebra of a C*-algebra A
which can be identified with the double dual space A** of the C*-algebra in question.

Resumé

Dette fagprojekt omhandler egenskaberne injektivitet og semidiskrethed for von Neumann-alge-
braer. En von Neumann-algebra .# er injektiv hvis der gaelder for enhver C*-algebra A indehold-
ende en C*-delalgebra B at en fuldstendig positiv atbildning B — .# kan udvides til en fuldstendig
positiv afbildning A — .#, og .# er semidiskret hvis identitetsafbildningen .# — .# kan tilnzermes
ultrasvagt af normale, fuldstaendig positive afbildninger med endeligdimensionalt billede. Hoved-
sxetningen i dette projekt siger, at disse egenskaber faktisk er aekvivalente. For at bevise denne
saetning kraeves en raekke resultater om arvelighed af disse egenskaber, og beviset benytter ogsa
viden om Hilbert-Schmidt-operatorer og sakaldte kontinuerte krydsprodukter, hvoraf begrebet om
Hilbert-Schmidt-operatorer vil blive uddybet helt og aldeles. ITkke mindst vil projektet ogsa give
den ngdvendige teoretiske baggrund for at kunne definere injektivitet og semidiskrethed. Dette
indebeerer, at vi opbygger noget af teorien for tensorprodukter af C*-algebraer og fuldstendig
positive afbildninger fra bunden, samt definerer og finder egenskaber for den ultrasvage og ultra-
staerke operatortopologi pa rum af begraensede linezre operatorer over Hilbert-rum. I processen
vil vi etablere begrebet om praedualet af en von Neumann algebra, navnlig et Banach-rum hvis
duale rum kan identificeres med den oprindelige von Neumann algebra, samt den universelle von
Neumann algebra for en C*-algebra A, som kan identificeres med det dobbeltduale rum A** for
C™-algebraen.
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PROLOGUE

Let me start out by saying that this project is not what it was originally supposed to be. Before 1
started writing, I was firmly convinced that by the time I had handed the project in I would have
proved equivalence of not just the concepts injectivity and semidiscreteness, but also amenability and
hyperfiniteness on top of that. Alas, that was not to be. I found out pretty quickly that I wasn’t
emotionally capable of writing about something that I did not understand down to the smallest detail,
simply because every time I did, I would have a guilty conscience about doing it. I could compare it to
trying to step into the middle of a busy conversation and try to join in — often one can’t help but fail.

So instead this project became something else. Indeed I had to take some steps back and lower my
ambitions, but once I accepted my limitations everything work-related felt quite a bit better just
because I had a real chance of finding out what was going on. I probably do not need to tell you
that the theory of von Neumann algebra often takes you places you did not expect (I for one would
not expect the fact that (R,+) is an amenable group to have anything to do with the proof of the
aforementioned equivalence, but what do I know), and I have not wasted my opportunity to find out
what has really been going on beneath the surface.

That last statement might actually explain the length of this project: I have attempted to explain
anything that could be explained. Some readers may find the length to be extreme overkill, and I don’t
blame them: the standard length of a graduate project is probably somewhere in the neighbourhood
of 40 or 50 pages, at least in Copenhagen. However, I cannot state enough that the only intent of the
project has been for myself to learn something, and if at least some of the things I have put in here
are correct then I think I haven’t failed in the least. (The fact that this project is also to be judged
by my advisor and an external censor is, after all, more than anything an opportunity to learn, even
though I hope that I haven’t made some really big mistakes throughout.)

Nomnetheless, the fact that I have sought throughout to understand everything fully implies big ambi-
tions, and I have had a couple of big brain meltdowns and at least one emotional breakdown during
the writing period. I only hope for future graduate project authors that they are not as sensitive as I
have been, that they have friends as good as mine and that they listen to a lot of fantastic music.

This might be a good place to quickly run through what the project covers:

% When I write something, I prefer that all the required tools are laid on a table beforehand, and this
project is no exception to that preference. Hence the first 10 pages or so are devoted to introducing
all the needed concepts for C*-algebras, von Neumann algebras, Hilbert spaces and positive linear
functionals, including the GNS construction.

% As we hit upon the first chapter we shift gears and develop the theory of tensor products: we
first cover vector spaces, then Hilbert spaces and finally *-algebras. Matrix algebras are defined and
analyzed, allowing for an almost smooth transition into the world of tensor products of von Neumann
algebras. We finally give a description of tensor products of C*-algebra with a view toward algebraic
states, culminating with the equivalence of the so-called minimal norm and a somewhat peculiar
norm to be needed later.

% We next hit upon my perhaps favourite part of the project, Chapter 2. As a project-within-a-project
concerning the ultraweak and ultrastrong operator topology on the space of bounded linear operators
over Hilbert spaces, it is a real smorgasbord of concepts such as preduals, central supports, reduced
von Neumann algebras, normal maps, o-finiteness and the enveloping von Neumann algebra, along
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with more powerful versions of theorems essential for basic von Neumann algebra theory, namely
von Neumann’s density and bicommutant theorems. The chapter also contains a section about the
Jordan decomposition of any bounded linear functional on a C*-algebra.

% In the third chapter, we introduce the concepts of positive and completely positive maps between
C*-algebras or duals of C*-algebras and explain them by means of relevant examples and theorems.
The big result of this chapter is of course Stinespring’s representation theorem, a generalization
of the GNS construction. Using this theorem one can find out a lot about certain maps of von
Neumann algebras, only for the greater good of the project.

% The fourth chapter concerns injectivity. The highlight here is Tomiyama’s theorem, used to prove
a von Neumann algebra condition equivalent to injectivity. With this criterion in hand, one can
determine various hereditary properties of the concept. The chapter closes out with an introduction
to continuous crossed products and amenable locally compact groups.

% The fifth and final chapter naturally concerns semidiscreteness. By means of the predual, we establish
a couple of conditions equivalent to semidiscreteness and proceed along the lines of the previous
chapter to prove hereditary properties of that concept. The final section is devoted to the proof that
semidiscreteness is in fact equivalent to injectivity, using a lot of the theory we have been developing
in all of the previous chapters.

% The project also contains two appendices: the first contains a lot of important results for Ba-
nach spaces and C*-algebras, and the second develops the theory of trace class operators and
Hilbert-Schmidt operators (it is needed in Chapter 5).

One final piece of advice that is easy to remember but may be hard to follow at times: remember to
sleep. My circadian rhythm has never been more messed up than when writing this project, and boy,
have I suffered. Enjoy reading!

o]
{ N

February 2013, Copenhagen
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LA BOITE A JOUJOUX

We will begin our tour of von Neumann algebra territory by introducing the most relevant concepts
along with the notation that will be used for it; a box of tools (or toys) is perhaps the most fitting
description of this introductory chapter. References will be given throughout, as we will not spend
time proving all the statements we will give. Since we will be working with Hilbert spaces to no end
throughout this project, let us also say now so that nobody forgets:

‘H denotes an arbitrary Hilbert space unless otherwise stated.

The inner product on H is denoted by (-, )3 or just (-, ) if the Hilbert space is clear from the context,
and B(H) denotes the C*-algebra of bounded linear operators on . We also introduce the following
convention immediately: for any normed space X and r > 0, (X), denotes the set {z € X||z|| < r}.
The symbol n will usually denote a positive integer unless otherwise stated.

C*-algebras

Here we will summarize the most important things one should know about C*-algebras before reading
the main parts of the project. Some of the results are more important or useful than others; the main
idea is just to give the reader a short course on the varieties of elements one can find in C*-algebras,
as well as essential types of maps over them.

In the following, let A be a C*-algebra. If A is unital, the identity or unit of A will be denoted by 1 4;
in this case, then for any a € A the spectrum o(a) is the non-empty compact subset of C consisting of
all A € C such that A1 4 — a is not invertible. We will always try to be as specific as possible concerning
whether the C*-algebras put under the microscope in this project have an identity or not.

¢ If A is non-unital, then the unitization of A is denoted by A. As a set, A consists of all tuples (a, \)
with @ € A and A € C, with coordinatewise addition and scalar multiplication, and the product
given by
(a,A) - (b, ) = (ab+ pa + Xb, Ap), a,be A, A\,peC.

These compositions then yield an identity 1 = (0,1). The involution and norm in A are given by
(a, N)* = (a*, ), |[l(a,N)] =sup{llax + Az|||z € A, |lz|]| <1}, a€ A XeC.

Note here that ||(a,0)|| = |la|| for all @ € A, so that the inclusion A — A is an isometric
*-homomorphism. The spectrum of an element a in a non-unital C*-algebra is defined to be the
spectrum of (a,0) in the unitization.

% A, denotes the set of self-adjoint elements of a C*-algebra A, i.e., elements a € A such that a = a*.
Every element a € A satisfies a = a1 + ias where a; = 2(a + a*) € Ay, and ag = 2%.(@ —a*) € Asa.
Note in this case that we also have ||a1| < ||a|| and ||az]|| < ||a||. If A is unital, then for any a € Ag,,
o(a) C R [31, Proposition 8.2]. Any self-adjoint element a € A is normal, i.e., it satisfies the identity
a*a = aa*. A subset . of a C*-algebra A is self-adjoint if x € . implies x* € ., and we will write
< = " if this is the case.

% A, denotes the set of positive elements of a C*-algebra A, i.e., elements a € A for which there exists
b € A such that a = b*b. It is well-known for unital C*-algebras — see, e.g., [31, Theorem 11.5] —
that a € A is positive if and only if a € Ag, and

ola) CRy ={AeR|A>0}.

v
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If A= B(H), then an element T € A is positive if and only if (T'¢, &) > 0 for all £ € H [31, Theorem
12.5]. It is possible to define an order relation on A, by defining a < bif b—a € A, (see Proposition

o).

It is a non-trivial result that any C*-algebra has a (bounded) approzimate identity, i.e., there exists a
net (eq)aca in A such that |le,|| < 1and e, > 0forall & € A and ||eqxz —z|| — 0 and ||zeq —x| = 0
for all € A. Moreover, such an approximate identity can be assumed to be increasing, i.e., for all
a,f €A, a< B implies e, < eg [31, Corollary 15.4].

If Ais a C*-algebra, then p € A is a projection if it satisfies p> = p = p*. Projections in B(H)
have very nice properties: if P € B(H) is a projection, then P(H) is a closed subspace of H and
€ — P¢ € P(H)* for all € € H. If X is a closed subspace of H, then any & € H can be decomposed
uniquely as a sum of elements & € X and & € X+, X! denoting the orthogonal complement of X
[30, Theorem 4.24]. Defining P{ = £, one obtains a map P: H — H which is in fact a bounded
linear operator on H and a projection in B(#), called the orthogonal projection onto X. For any
two projections P, Q) € B(H), we have equivalent conditions

P<QReQP=P&QP=PQ=P<& P(H) CQH).
A unitary of a unital C*-algebra A is an element v € A that satisfies u*u = uu* = 14 or u~! = u*.

The set of unitaries of A, denoted U(A), is a multiplicative group. If A = B(H), we will write
UH) =U(B(H)).

For *-algebras A and B, a map ¢: A — B is a *-homomorphism if it is linear and satisfies

p(ab) = p(ab), ¢(a”) =¢(a)", a,be A

If A and B are unital, a *-homomorphism is unital if it maps 14 to 1z. If a *~homomorphism is
bijective, it is called a *-isomorphism. By [22, Proposition 5.2], any *-homomorphism of C*-algebras
is contractive, and by [27, Corollary 5.4], any injective *~homomorphism of C*-algebras is an isometry
and hence maps C*-subalgebras to C*-subalgebras. A unital *-homomorphism maps C*-algebras
to C*-algebras [31, Theorem 11.1]. It is in fact true that any *-homomorphism of C*-algebras has
closed image.

A representation of a *-algebra A is a *~homomorphism A — B(H) where H is some Hilbert space.
A representation is called faithful if it is injective.

The continuous functional calculus for normal elements of a unital C*-algebra A is in general an
immensely useful tool for constructing new operators with certain properties. For any normal element
a € A, there is a *-isomorphism C(o(a)) — B where B is the C*-subalgebra of A generated by a and
14, and the image in B of f € C(o(a)) under this map is denoted by f(a). The essential properties
of this *-isomorphism are briefly mentioned in [31, Theorem 10.3]. It is also possible to work with
the continuous functional calculus for non-unital C*-algebras: if A is non-unital, ¢ € A is normal
and f € C(o(a)) satisfies f(0) = 0, then f defines an element f(a) € A as f can be approximated
uniformly by polynomials without constant term [24, p. 19]. We will come back to this whenever it
will be needed in the main parts of the project.

If A is unital, then perhaps the most intriguing application of the continuous functional calculus is
the construction of unique square roots of positive elements a, i.e., a unique element b € A such that
b?> = a. In this case we denote b by a'/2, and we define |a| € A for any a € A by |a| = (a*a)'/?.

It is worth mentioning that the continuous functional calculus also yields some useful inequalities.
For instance,
—lla)lla <a<l|a||la, a€ Asa.

If —b<a<bforabe Ay, then one can show that ||a|| < ||b]| by using the preceding result. For
all a,b € Ag,, then a < b implies c¢*ac < ¢*be for all ¢ € A just by using the definition of the order
relation. This along with the first result yields b*a*ab < ||al|?b*b for all a,b € A.

In the C*-algebra B(H) we will often be working with partial isometries. An operator U € B(H)
is a partial isometry if its restriction to (ker V) is an isometry. One can prove that U € B(H) is a
partial isometry if and only if U*U is a projection [31, Proposition 12.6], in which case U*U projects
onto ker U. Also, U is a partial isometry if and only if U* is a partial isometry [g1, Corollary 12.7].
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Finally, partial isometries are insanely useful for decomposing arbitrary operators in B(H). The
so-called polar decomposition of any operator T' € B(H) yields a partial isometry U € B(H) such
that 7' = U|T'|. Moreover, U can be chosen to be the orthogonal projection onto the closure of the
image of |T| |31, Theorem 12.8|.

% For any subset .7 of a C*-algebra A, the commutant .7’ is defined as follows:
" ={a€ Alab=ba for all b € .S},

i.e., ' consists of all elements of A that commute with elements of .. It is easily seen that .’ is
a Banach subalgebra of A, and if .7 is self-adjoint, then .’ is a C*-subalgebra of A.

Positive linear functionals on C*-algebras

For a *-algebra A, a linear functional ¢: A — C is positive if p(z*z) > 0 for all © € A. It can be
proved that any positive linear functional on any C*-algebra (even a non-unital one) is bounded; see
[2a, Proposition g.12].

Given a *-algebra A, then for ¢1,ps € A*, we will write ¢1 < g if o — @1 is a positive linear
functional on A; we say the ps dominates ;.

For any Banach *-algebra A, S(A) denotes the space of states of A, i.e., the set of all positive linear
functionals ¢: A — C with ||¢|]| = 1. If A is a unital C*-algebra, a linear functional ¢: A — C
is positive if and only if it is bounded with |¢|| = ¢(14), the proof of which can be found in |31}
Theorem 13.5] (one implication is the consequence of Proposition [0.3); hence ¢ € S(A) if and only if
llell = ¢(14) = 1 or ¢ is positive and ¢(14) = 1. A state ¢ € S(A) is faithful if p(a*a) > 0 for all
nonzero a € A and tracial if it satisfies p(ab) = p(ba) for all a,b € A.

We shall often need the following results for estimation purposes.
Proposition 0.1. Let A be a *-algebra and let ¢ be a positive linear functional on A. Then

(i) @(b*a) = @(a*b) for all a,b € A.
(ii) (The Cauchy-Schwarz inequality) |o(b*a)|? < w(a*a)p(b*b) for all a,b € A.
Proof. For (i), we have
p(a”a) +p(b%a) + (a™b) + ¢(b"b) = ¢((a + b)*(a + b)) = 0,
so p(b*a) + ¢(a*db) € R, and hence Imy(b*a) = —Imp(a*b). As Rez = Imiz for all z € C, we have
Rewp(b*a) = Img (5" (ia)) = —Imip((ia)"b) = —Im(—igp(a’b)) = Im(ip(a"h)) = Reg(ab)

and hence p(b*a) = p(a*d).
To prove (ii), note that for A € C, we have

0 < p((a = Ab)*(a — Ab)) = p(a”a) = Ap(b"a) — Ap(a’d) + [APp(b*b).
Assuming first that (b*b) > 0, then by setting A = ¢(b*a)p(b*b) ™1, we obtain

* 2
ol
o(b*b)
by using (i). By rearranging terms, we obtain the wanted inequality. If ©(b*b) = 0, let n > 1 be a

positive integer and put A = np(b*a). This implies p(a*a) — 2n|p(b*a)|* > 0, so 2n|p(b*a)|? < p(a*a)
for all n > 1. This implies that |¢(b*a)|* = 0, and hence the inequality also holds in this case. O

pla”a) -

We will also need the next couple of results.

Lemma o0.2. Let A be a C*-algebra and let ¢: A — C be a positive linear functional on A. Then:

(i) p(a*) = ¢(a) for any a € A.
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(i) ()l < llelip(a*a) for all a € A.
(iii) If (a;)ier is a net in A such that ||a;|| <1 and p(a;) — ||¢|l, then v(afa;) — ||¢]-

Proof. Let (e4)aca be a bounded approximate identity for A. For any a € A, we have

p(a”) =limp(a”eq) = lim p(eja) = lim p((a*ea)*) = @((a*)* = ¢(a)
by Proposition [o.1}] Cauchy-Schwarz’s inequality also tells us that
[o(eaa)® < plenea)pla”a) < |lollp(a*a),
so (ii) also follows. Finally, if (a;);cs is a net in A such that ¢(a;) — ||¢||, then
lo(ai)® < llelle(aa) < llel?,
implying (iii) and completing the proof. O

Proposition 0.3. Let A be a C*-algebra and let p: A — C be a positive linear functional on A.
Moreover, let (eq)aca be a bounded approzimate identity for A. Then p(eq) — |l¢|| and p(etes) —

el

Proof. The result is obvious if A is unital since we will then have e, — 14. Therefore assume that A
is non-unital and define ¢: A — C by ¢(a, A) = ¢(a) + A||¢||. We will establish the results through a
number of claims, and we will write @ = (a,0) for a € A..

Claim. ¢ is positive.
Lemma [0.2] tells us that for any a € A we have
[Redp(a)| < [Nlp(a)l < Mol ?o(a”a)'/?
and hence
¢((a,\)*(a, N) = @(a*a+ Aa* + Aa, [A]?)

= p(a*a) + Mp(a) + Ap(a) + AP

= p(a*a) + 2Redp(a) + A% |l#|

> p(a*a) = 2\[[|@ll"*p(a*a)'? + [A¢]
= (p(a*a)" = |N[le]?)* > 0,

so that ¢ is positive. Moreover, || = ¢(0,1) = ||2|-

Let /" ={z ¢ A| @(z*z) = 0}. Then 4 is a left ideal of A by [31; Proposition 14.1], and the quotient
space A/ A" can be equipped with an inner product by defining

([, W) = (y"2), =z,y€A
(This is part of how the so-called GNS construction is obtained; it will soon be elaborated upon.)

Claim. If (a;)es is a net in A such that [|a;|| <1 and ¢(a;) — [|¢]], then [@;] — [1 4].
We have

i) = [Lalll* = ([(as, =1)], [(as, =1)]) = ¢((as, —1)*(as, -1)) = p(aja;) — p(a7) = @(ai) + llo]l-

By assumption, ¢(a;) — |l¢|| and ¢(a;)* = p(a;) = ||¢l], so along with Lemma | we finally see that
lfa] = [Lalll = O

Claim. {[a]|a € A} is dense in A/

If ||¢|| = 0, then the claim obviously holds. If ||| > 0, let (a,)n,>1 be a sequence in A such that
|o(an)| > 0 and |@(an)| — [lo|| and define
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Then o(b,) = |@(an)| = ||¢|l, so by the previous claim, we have b; — 1 ;. For any ¢ € A, define

Cn =cby, n>1.
Then ¢, € {[i]|a € A} and
lfea) — I = [ (6 — 100
=& (b =10 e elbn — 1)
< el (5~ L) (b~ 1.0)
= fle*ell5] - LAl — 0.

We are now ready. If a € A, then
lim((ea), (@) = lim $(a*6a) = lim p(a*ea) = p(a”) = (" L) = (14 a)).

Since elements of the form [@] are dense in A/, we get [€4] — [1 | through an § argument. Hence

3
limp(eq) = lim((éa], [1 4]) = ([1 2}, [1a]) = 2(1.0) = lleell-
The other statement now follows from Lemma [0.2] O

The following theorem lays down an intimate connection between C*-algebras and their states. The
properties of the Gelfand transform are essential to the proof; see [31, Chapter 5].

Theorem o.4. Let A be a C*-algebra and let a € A be normal. Then there exists a state ¢ € S(A
such that |p(a)| = ||al|. In particular, if a € A is any element and p(a) = 0 for all ¢ € S(A), then
a=0.

Proof. We can assume that a # 0. Assume that A is non-unital first. Let B be the C*-subalgebra
of the unitization A of A generated by the unit 1 4 and (a,0). Then B is commutative and hence
the Gelfand transform I': B — C(A(B)) is a *-isomorphism [31, Theorem 10.3], A(B) C B* denoting
the weak* compact Hausdorff space of multiplicative linear functionals on B. Since A(B) is weak*
compact, there exists a multiplicative linear functional ps € A(B) such that

I0((a,0))(#2)] = [IT((a,0))]loc = sup{[I'((a,0))(¥)| [¢ € A(B)},

hence yielding
lall = {I(a, 0} = [IT'((a, 0))llec = [T'((a, 0))(¢2)| = l2((a,0))].

By the Hahn-Banach theorem 3, Theorem 5.7] there exists a bounded linear functional ¢; on A such
that ¢1|s = @2 and [|¢1]| = [|¢2|| = 1. Since ¢1(1 ;) = w2(1 ;) = 1, it follows that ¢ is positive and
|o1((a,0))| = |la||. Let ¢ denote the restriction to A (i.e., p(a) = ¢1((a,0)) for all a € A). Since
lloll < llell = 1 and |p(||al|~ta)| = [Ja]| " e(a)| = 1, it follows that ||¢|| = 1. Since ¢ is also positive,
the first statement follows in the non-unital case. If A is unital, the proof above applies without the
need to pass to unitizations.

From the first statement, it now follows that if ¢(a) = 0 for a normal element a € A and all states
v € S(A), then a = 0. For any a € A, write a = a1 + tas, where aj,as € Ag,. Assume that p(a) =0
for all ¢ € S(A). Then for i« = 1,2 we have ¢(a;) = p(a;)* = ¢(a;) from Lemma and hence
©(a;) € R. Since p(a1) + ip(az) = 0 by assumption, we have ¢(a1) = p(az) = 0 for all p € S(A).
Therefore a; = a3 = 0, and hence a = 0. ]

The direct sum of Hilbert spaces

Let (H;)icsr be a family of Hilbert spaces. The direct sum of the Hilbert spaces (H;);cs is the subset
of the cartesian product Hie] H; consisting of all families of elements (§;);c; with & € H; that are
square-summable, i.e., we have >, [|&|*> < oo, and it is denoted by @, ; Hi.

To the knowledge and reading experience of the author, many textbooks skip a proof that @, ; H; is
actually a Hilbert space, so we will put one here. Now at least some might have a reason to read this
project...
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Proposition o.5. With coordinatewise addition and scalar multiplication @, ; H; becomes a vector
space, and it becomes a Hilbert space by endowing it with the inner product

((&)iers (m)ier) =D _(&m)s  (&)iers (ni)ier € D Ha

i€l i€l

Proof. Let H = P,.; Hi- For (&;)ier, (mi)ics € H and X € C, then since

iel
g +nall® < (Il + llmal))* < 201&l1* + 2]mal®

for all i € I, we have that (& +n;)icr € H and (A\;);er € H. Hence H is a vector space with the given
operations.

Once we prove that the form (-,-): H x H — C is well-defined, it is easy to check all the wanted
properties of an inner product, namely that it is sesquilinear and positive semi-definite. Finally, if we
assume that ((&)ier, (&)ier) = 0 then Y, [|&]]* = 0, so for all iy € I we have

0< &> <Y l&l® =o.

icl
Thus & =0for all i € I, so (&;)icr = 0.

To prove well-definedness, let (&;);cr, (1:)icr € H and define

g’:{ & Af |Gl > [|ml] 77’:{ mi A (&I < il

i 0 otherwise, i 0 otherwise.

It is clear for any i € I that ||| < (15| and [Inf]| < [[n:, so we have 37, [I€/]* < 35,¢; 1l|* and
Sicr IMill? < Xieq Ilmil®. Hence (&)ier, (n))icr € H. Furthermore, we see that [|[| < [I€f + 7] and
[l:]] < 11&; + n}]| for all ¢ € I by mere construction, so we obtain

[(&isma)| < ll&llllmill < ll€F +mill*, i€ 1.

Therefore ) ., [(&,7:)| converges, since (£;+n;)icr belongs to H because it is a vector space. Therefore
the inner product is well-defined.

It remains to prove completeness of the metric induced by the inner product. Let (£7),>1 be a Cauchy
sequence in H with £" = (§}");er for n > 1. Then

lep —&mii* < D llgr — &P
iel
for all n,m > 1, so (§)n>1 is a Cauchy sequence in H; for all ¢+ € I. Because all H; are Hilbert
spaces, we obtain the existence of an element & € H; such that £ — & for all ¢ € I. Define
£ = (&)ier € [1;c; Mi- This will be our candidate for a limit, so it remains to prove that £ € H and
that € — €.

Start by fixing an ¢ > 0 and let N > 1 such that ||€" — ™2 < % for n,m > N, possible since (§™)n>1
is a Cauchy sequence. Then for all finite subsets G C I and n > N, we have

2
i 3 n __ ¢emi|2 _ s n __ ¢#my|2
5 > Jim €7 — €M = Tim D el — €|
iel
> lim Yl -7 =) ] lim (g — &P =Dl — &l
i€G i€G i€G

Hence >, & — &l* < % for n > N, s0 &N — ¢ € H. Hence &€ = €N — (€N — ¢) € H. Finally, it
follows that ||£™ — €| < e for n > N, so £" — £. Hence H is a Hilbert space. O

Along with the construction of the direct sum of Hilbert spaces come some natural maps with obvious

but still neat properties. Let H = ,.; H; and j € I. Let 1;: H; — H denote the natural injection of
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H,; into H for j € I, i.e., (1;€); = € and (¢;€); = 0 for all 4 € I with ¢ # j. Note that ¢; is isometric,
so ¢j(H;) is a closed subspace of H for all j € I. Furthermore, for £ € H; and (7;);er € H then

<LJ£’ (771)2€I> = <€, nj>a

so tj: H — H; is the projection of H onto the j’th coordinate, and we denote m; = ¢j. It follows
immediately that 7j.; € B(H;) is the identity on #; and that E; = ¢;m; € B(#) is the orthogonal
projection onto ¢;(H;). As all the E; are orthogonal, note that any § = (&;),cr € H satisfies

= ul&)=>_ Ei,

il il

s0 1% = Y ;c; Ei where the series converges strongly (see the later section on von Neumann algebra
for an explanation).

We introduce some advantageous notation in the cases of some very particular direct sums. For a
Hilbert space H and a non-empty set I, we denote the Hilbert space @, ., H by H!. For n > 1 the
Hilbert space @, H is denoted by H".

The Gelfand-Neimark-Segal construction

For any Banach *-algebra A and ¢ € S(A), there exists a GNS representation of A corresponding to
¢, consisting of a Hilbert space H,, a *-homomorphism 7,: A — B(#,) and a unit vector &, € H,
such that the subspace

T (A)&p = {Tp(a)é, |a € A}
is dense in H, and
p(a) = (my(a)éy, &), a€ A
If A is unital, then 7, can be made unital. For a proof of this whole shenanigan, see [27, Theorem

Lo.14]. (H,, 7, &) is called the GNS triple associated with ¢. It can be proved if ¢ is faithful that
7, is faithful as well.

Consider now the Hilbert space H = D, cg(4) He and the map m = P cg(4) 7o A = B(H) given
by
m(a)(Ns)pesay = (To(a)np)pesa),  (Mp)pesa) € H.

7 is a representation, and it is in fact faithful: if 7(a)(n,),es(4) = 0 for all (n,),ecs(4) € H and some
a € A, then m,(a)€, =0 for all ¢ € S(A). Therefore p(a) =0 for all ¢ € S(A), so a = 0 by Theorem
We will be using this map throughout the following.

Proposition 0.6. Let (eq)aca be an approzimate identity for A. Then for all n € H, with H as
defined above, we have

[m(ea)n —nll — 0.
Proof. Let n = (n,)pes(a) € H and ' C S(A) be a finite subset such that

17— (ne)perll> = ol <

PEF
For each ¢ € F, take z, € A such that ||m,(z,)& — 1, < £|F|™', and take ap € A such that
leazy — x| < £|F|7H[(€p)per| ™! for all ¢ € F and a > ap. Then for all o > o,
Im(ea)n —nll < lIw(ea)n — m(ea)(Mp)per |l + Im(ea) (M) per — m(ea)(Tp(20)E0 ) per |
+lIm(ea) (Mo (20)€p)per — (Tp(20)€p)per || + [[(Tp(2)Ep)per — (Np)per |l
+ () per — 1

< % + Z me — T (zp)e |l + 1 (§p)perl Z T (eazy — x0)||

peF pel

13
+ Z ||7T<p(xq:)£<p - nsaH + 3
peF

<e,

since m and m, are contractive for all ¢ € F' and (e, ) is an approximate identity. O
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A consequence of the faithfulness of the representation 7 is this:

Proposition o.7. Let A be a C*-algebra, and for a,b € Ag,, write a < b ifb—a € A;. Then (As, <)
is a partially ordered set. In particular, finite sums of positive elements are positive.

Proof. It is obvious that < is reflexive. Letting m = €, cg(4)7p: A — B(H) denote the above
representation, then if a < b and b < a, we have

<7Tsa(b - a)ﬂw(c)fcpa 7T<p(c)§¢> = SO(C* (b - a)c) >0

for all ¢ € A so (my(b— a)ne,n,) > 0 for all p € S(A) and 7, € H,. Hence (7(b— a)n,n) > 0 for all
1 € H. Likewise one can find that —(w(b—a)n,n) = (wr(a—b)n,n) > 0for alln € H, so (wr(b—a)n,n) =0
for all n € H, implying (b — a) = 0 and therefore a = b by faithfulness of 7. Finally, if a < b and
b < ¢, one likewise obtains that (w(c — a)n,n) > 0 for all n € H, so w(c — a) is positive. Since 7 is
faithful, m(.A) is a C*-algebra. Hence it follows that w(c — a) = 7(z)*n(z) = w(z*z) for some z € A,
and therefore ¢ — a = z*x € A,. O

Von Neumann algebras

The main concern in this project will be the wonderous world of von Neumann algebras, and we will
start out by defining these pretty much from scratch. The main tools are the so-called weak and strong
operator topology, although we will be expanding on these concepts in Chapter 2. If one needs a crash
course on locally convex topological vector spaces, the author recommends [13].

Let (To)aeca be anet in B(H) and let T € H.

% The weak operator topology on B(H) is the locally convex Hausdorff topology defined by the semi-
norms
T = [{T¢,n)|

for £,n € H. Hence T,, — T in the weak operator topology (or weakly) if and only if

(To&,m) — (T m)
for all £,m € H.

% The strong operator topology on B(H) is the locally convex Hausdorff topology defined by the
seminorms

T —||T¢|
where £ € H. Hence T,, — T in the strong operator topology (or strongly) if and only if

1Tog —T¢[| =0
for all £ € H.

These topologies are special cases of the so-called point-norm and point-weak topology on B(X) for a
Banach space X; they are defined in Appendix A. The reason that these more general topologies are
relegated to an appendix is that we will only need them for a short while. Nonetheless, the results
proved in Appendix A apply for the next couple of results (which we will need right away).

Note that norm convergence in B(H) implies strong operator convergence which in turn implies weak
operator convergence. The project revolves first and foremost around the following definition:

Definition o.1. A von Neumann algebra is a *-subalgebra of B(#H) that contains the identity operator
14 and is closed in the strong operator topology.

Because norm convergence implies strong operator convergence, it follows that any von Neumann
algebra is a unital C*-subalgebra of B(#). We will often treat a von Neumann algebra as an algebraic
structure rather than a set of operators on a Hilbert space, and for this reason we might denote the
unit of a von Neumann algebra .# by 1 _,. If we are considering a specific Hilbert space H on which
M operates, we will oftentimes denote the unit of .#Z by 14.

The following proposition is extremely useful for alternate characterisations of von Neumann algebras:
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Proposition 0.8. Let w: B(H) — C be a linear functional. Then the following are equivalent:

(i) w is weakly continuous.
(i) w is strongly continuous.
(iil) There exist elements &1, ..., &n, M, 0y of H such that w(T) = Y"1 (T&,n;).

Proof. See [31, Theorem 16.1] for a direct proof, or just Proposition O

This result implies that the strong operator and weak operator closures of a convex subset of B(H)
are the same (cf. [31, Theorem 16.2] or Corollary [A-8), so the notion of strong operator closure in the
definition of a von Neumann algebra can be freely replaced by the one of weak operator closure. If .4
is a self-adjoint subset of B(?), then its commutant is a von Neumann algebra [31, Proposition 18.1].

The next result is similar to the fact that any bounded increasing sequence in R has a limit which is
also its supremum, allowing for a notion of a supremum in B(#), and it is no overstatement to say
that we will use it a lot. For the record, if (T)aeca in B(H) is a net of self-adjoint operators, then we
say that it is bounded above if sup, ¢ 4 || Ta|| < oo or, equivalently, if there exists a self-adjoint operator
T € B(H) such that T,, < T, and that it is increasing, i.e., if o < 8 implies T, < T} for all o, 8 € A.

Theorem o0.9. Let 4 be a strongly closed *-subalgebra of B(H). If (Tw)aca is an increasing net
of self-adjoint operators in .# which is bounded above, then there exists T € .# such that T is the
strong operator limit of (Ty)aca. Moreover, T is the least upper bound of the net, i.e., if S € B(H) is
self-adjoint and satisfies T, < S for all « € A, then T < S.

Proof. See [31, Theorem 17.1]. O
In the above case, T is called the suprernum of (Ta)aca and is denoted by

sup 1,.
acA

Infimums can be similarly defined. In particular, any family (P;);c; of mutually orthogonal projections
in ./ is strong operator-summable: the net (3. P;)rcr (where each F' is finite) converges strongly
to a projection P € ./ satisfying ||P¢||? = 3,; [[P:€]|? [31, Corollary 17.4].

The next theorem will be “improved upon” in Chapter 2, but we will need its most basic form imme-

diately: it characterizes von Neumann algebras by means of commutants.

Theorem 0.10 (The von Neumann bicommutant theorem, 1929). Let .# be a *-subalgebra of B(H)
with 14 € #. Then # is a von Neumann algebra if and only if 4 = .#".

Proof. See [27, pp. 12-13]. O
Note that if .# is a self-adjoint subset of B(H) and .4 is a von Neumann algebra containing .#, then
M C . Hence 4" is the smallest von Neumann algebra containing ./ .

The direct sum of von Neumann algebras

Direct sums of Hilbert spaces of course yields a possibility of creating new von Neumann algebras in
a very obvious but also very beautiful manner.

Let (H;)ier be a family of Hilbert spaces and let (T;);c; be a family of operators with T; € B(H;)
that satisfies sup;c; | T5|| < oo. If H = ,; s, then the map T': H — H given by (§)icr — (T5&s)ier
defines a bounded linear operator, since

2
(&)l = S 1T < (suplml) Yl <.
el el el
In this case T is also denoted by (T;);er. Note that || T|| < sup;c; ||Z3]]; in fact equality holds. If ¢ € I
and & € (H;)1, then let & be the zero vector in H; for all j € I, j # i. Then

ITs&ll? = Y NT3&1° = IT(Eerl® < I,

jel
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so ||T;]| < ||T|| for all ¢ € I. Therefore
I(T)ier|l = sup || T5]].
el
If (A;)ier is a family of *-algebras with .#; C B(H,;) for all ¢ € I, then the subset of B(#) given by
P i = {T = (T3)ie1 | Ti € M for i € T and sup | T3] < oo}
iel el
is a *-subalgebra, where the linear operations, product and adjoint operation are coordinatewise.

Proposition o.11. If (#;);cr is a family of von Neumann algebras with #; C B(H;) for all i € I,
then M = @, ; M; is a von Neumann algebra on H = @, ; H;.

Proof. We will use the maps ¢;, m; and E; defined after the proof of Proposition Defining
B = {B = (By)icr | B; € A} for i € I and sup||B;| < oo} )
el

it is readily seen that .# and £ are unital *-algebras in B(H) and that every operator in .# commutes
with any operator in 4, i.e., # C %'. Furthermore, E; € & for all i € I. Supposing that T € B(H)
commutes with any operator in 4, i.e., T € 4’ , then TE; = E;T for all i € I. If we define T;: H; — H;
by T; = m;T't;, we see that ||T;|| < ||T|| for all ¢ € I; furthermore, for j € I, then if £ € H;, we have

(T3)iert;(8)); = miTe; (&) = (T1;(8));
and for k # j,
(Tv;(6))k = (E;Te;(6)k = (45T5(E))k = 0= ((Th)iert; ()

implying T¢;(§) = (Ti)iecrt;(§). Since every element in # is a sum of elements ¢;(§), it follows that
T = (T;)icr by continuity. Hence if B € # with B = (B;);er, then T;B; = B;T; for all ¢ € I. This
implies that T; commutes with all operators in ./, so T; € .#]'. Therefore

33/ C @'//[iﬁ‘
i€l

Since each .#; is a von Neumann algebra, we have ' C .# by the von Neumann bicommutant theorem
and hence . is a von Neumann algebra. O

In the above case . is called the direct sum of the von Neumann algebras (#;);cr. Let j € I. Note
that for T' = (T3)icr in A, then m;(T;)icri; =T; € M;. If T € A, then by defining

T = (T;)ier

where T; =T and T; = 0 for all ¢ # j we see that Te# andT = ijLj € mj# i, hence allowing us
to identify .#; with m;.# ;. The proof above also yields the following important corollary:

Corollary o.12. If (#;);cr is a family of von Neumann algebras and M = @, ; #;, then

M =P A

i€l

icl



CHAPTER 1

TENSOR PRODUCTS OF INVOLUTIVE ALGEBRAS

It may seem curious that the project contains a chapter on tensor products. Fact is that I have not
encountered a definition of the algebraic tensor product I really liked in any of the material I have been
assimilating for the project, so I thought I might give it my own spin. As one might have noticed from
the table of contents, the chapter not only concerns algebraic tensor products, but related notions for
C*-algebras and von Neumann algebras. Of course these notions rely heavily on the vector space case,
so there is really no good reason not to begin at the beginning.

1.1 The algebraic tensor product

We note first that the definition of tensor products will not differ in any way from the one encountered
in basic homological algebra; the vector spaces can be replaced with modules over any associative ring
with a multiplicative unit to define tensor products in a more general case, but as we will only be
working with vector spaces, there is no need to generalize.

Definition 1.1. Let X and Y be vector spaces. An algebraic tensor product of X and Y is a vector
space T together with a bilinear map 7: X x Y — T satisfying the following property: For any pair
(V,0) where V is a vector space and o is a bilinear map o: X x Y — V, there exists a unique linear
map 6: T — V such that ¢ = g o7, i.e., the following diagram commutes:

XxY —1 7T

\ = F

Vv

Keep in mind that there is another way to define it: we could have taken a specific vector space and
proved that it indeed satisfied the needed properties of a tensor product. This is of course equivalent
to proving that the tensor product exists — which we will later show that it actually does. The idea
behind not beginning in this manner is that we do not really need to know what specific vector space
it is in order to work with the tensor product. The following theorem possibly makes this even clearer.

Theorem 1.1 (Uniqueness of tensor products). Let X and Y be vector spaces, and let (T,7) and
(T',7") be algebraic tensor products of X and Y. Then there is a unique isomorphism «: T — T’ such
that 7' = aoT.

Proof. The property of the tensor product (7', 7) used on the pair (77,7’) yields a unique linear map
a: T — T’ such that 7 = a o 7. Hence uniqueness is proven, and it only remains to show that it is
an isomorphism. First of all, note that the property of (T”,7’) used on (T, 7) likewise yields a unique
linear map S: T — T such that 7 = § o 7. Moreover, the property of (T, 7) used on itself yields a
unique linear map v: T'— T such that 7 = vy o 7. Because

(Boa)or=Bor' =1,

then both 5o« and the identity on T also satisfy this equation, so they must be equal. Analoguously,
one sees that a o 3 is the identity on T, proving that « is an isomorphism with inverse 3. O

The above theorem tells us that once we have constructed an algebraic tensor product of two vector
spaces, we have determined the vector space structure of any algebraic tensor product completely. The
property in Definition [t.1]hence fully characterizes them: it is their universal property. The uniqueness
of tensor products also allows us to speak of the algebraic tensor product of two vector spaces X and
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Y, and we will denote it by X ® Y. Elements of X ® Y are called tensors, and for any x € X and
y €Y, we define
r@y:=7(x,y) € XOY;

such an element is called an elementary tensor. Some nice properties hold for these in particular:

Proposition 1.2 (Tensor calculus). Let X and Y be vector spaces. Then

(i) (1 4+22)Qy=21Qy+22Qy forz,20 € X andy €Y,
(i) 2@ (y1 +y2) =2 R@y1 + xR ys for x € X and y1,y2 € Y and
(i) M)@y=2 (W) =Nz®y) forc e X,yeY and X € C.

Proof. This just follows from bilinearity of 7. O
It turns out that any element of the algebraic tensor product is a finite sum of elementary tensors:

Proposition 1.3 (A picture of the tensor product). Let X and Y be vector spaces and letv € X QY.
Then there is a positive integer n > 1 as well as ©1,...,x, € X and y1,...,yn € Y such that

n
v = le ® Yi.
i=1

Proof. Let V consist of all finite sums of elementary tensors, and define o: X x Y — V by
o(z,y) =2 y.

V is clearly a vector space in itself. Since o is bilinear, the universal property of X ® Y yields a
linear map 6: X @Y — V C X @Y such that o(z,y) = 6(v(x,y)) for all x € X and y € Y. Since
o(x,y) = id(7(z,y)) as well, where id denotes the identity on X ® Y, it follows by uniqueness that
& = id. Hence it follows that the identity maps into V, implying X 0 Y = V. O

It is quite amazing how much we have already derived from the very simple defining property of tensor
products. The above proposition also tells us that we might only need check properties of linear maps
for elementary tensors.

We now prove a few theorems concerning maps from tensor products.

Proposition 1.4 (Tensor product maps). Let X, Y, V and W be vector spaces. If ¢p: X — V and
v:Y — W are linear maps, then there is a unique linear map

poOY: XY VoW
such that ¢ ©Y(z R y) = p(x) @ Y(y) for allz € X andy €Y.

Proof. The map X xY — V © W given by (z,y) — ¢(z) ® 1(y) is bilinear, so we just apply the
universal property of X ©® Y. O

Proposition 1.5 (Product maps). Let X andY be vector spaces and let C be an algebra. If o: X — C
and v:Y — C are linear maps, then there is a unique linear map

exP: XY =C
such that o X Y(x @ y) = p(z)Y(y) forallz € X andy €Y.

Proof. The map X xY — C given by (x,y) — ¢(x)¥(y) is bilinear, and we again apply the universal
property of X © Y. O

Corollary 1.6 (Tensor product functionals). Let X and Y be vector spaces. If p: X — C and
¥:Y — C are linear functionals, then there is a unique linear functional

poOY: XY =-C

such that ¢ © Y(z @ y) = p(x)Y(y) forallz € X andy €Y.
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Proof. This follows from Proposition [1.5|or from Proposition 1.4 using the fact that the map CoOC — C
satisfying a ® b+ ab is an isomorphism (hence the notation). 0

Corollary 1.7 (Conjugate linear tensor product functionals). Let X and Y be vector spaces. If
p: X > Cand: Y — C are conjugate linear functionals, i.e., additive maps that satisfy

e(\x) = Ap(x), P(pz) =mp(z), ApeC, zeX, yey,
then there exists a conjugate linear tensor product functional
poOUY: XY =-C
such that o © Y(x @ y) = p(z)Y(y) forallz € X andy € Y.

Proof. This follows from Corollary applied to the linear functionals : X — C and ¢: Y — C given
by ©(z) = ¢(x) and ¥(y) = ¥ (y) respectively, and then conjugating the resulting linear functional. [

All of this, however, does not diminish the fact that our deductions would have no purpose if tensor
products did not exist. Luckily they do.

Theorem 1.8. If X and Y are vector spaces, there exists an algebraic tensor product of X and Y .

Proof. Considering X xY as a discrete topological space, let T = C.(X xY) denote the vector space of
compactly supported functions over X x Y. For z € X and y € Y, let x(,,) denote the characteristic
function of the one-point set {(z,y)} € X x Y. Since a compact subset of a discrete topological space
is necessarily finite, it follows that the set

{X(w,y) |$ € X7 ye Y}

constitutes a basis of T as any element therein is a unique finite linear combination of these elements.
Let To denote the linear subspace of T spanned by all elements of the four following types:

(1) X(w1+zg,y) X(ml,y) - X(zz,y) for T1,T2 € X and (TS Y:
(11) (zy1+y2) — X(zy1) — X(zy2) for x € X and Y1,Y2 € Y;
(iii) X(rz,y) = AX(ay) for v € X, y €Y and X € C;

)

(V) X(@ay) = AX(ay) forz € X,y €Y and A € C.
Now, define T := f/fo and let m: T — T be the canonical quotient mapping, i.e.,

w(f)=f+Ty, feT.

Furthermore, define amap 7: X xY — T by 7(2,y) = X(z,y)- From how we defined TO, it follows that
7 :=moT is bilinear. We claim that 7" together with 7 is a tensor product of X and Y.

Now let V be a vector space and let 0: X xY — V be a bilinear map. Define a map & TV through
the identity 6(x(z,y)) = o(x,y) by extending linearly. Elements in Ty of the four aforementioned types
are sent to the zero vector because of bilinearity of o, so we obtain an induced linear map 6: T — V
defined by

G(f+To)=6(f), feT.
Hence N
o(1(z,y)) = o(n(7(2,9))) = 6 (X(z,y) +T0) = 6 (X(zp)) = 0(2,9)

forallz € X and y € Y,s0 0 =G o7. If n: T'— V is another linear map satisfying ¢ = 1 o 7, note
that n(7(z,y)) = 6(7(x,y)) and hence

n(X(:c,y) + TO) = 5—(X(Jc,y) + TO)

for all z € X and y € Y. Since ) and & agree on a spanning set of T', it follows that they are equal. [
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We now turn our attention to C*-algebras. As two C*-algebras are vector spaces themselves, their
algebraic tensor product exists, but the question is whether one can endow it with a C*-algebra
structure. To do this, one must of course give it a multiplication and an involution first, and that
is what we will attempt to do, keeping in mind that we want these operations to look as natural (or
obvious) as possible. The proofs required for this need some knowledge of when tensors are linearly
independent, and Zorn’s lemma will help us along the way: it is used in the proof of the next theorem.

Theorem 1.9. Every linearly independent subset V' of a vector space X can be extended to an algebraic
basis for X.

Proof. Let . be the collection of all linearly independent subsets of X containing V. .¥ is non-empty
since V € ., and if J is a totally ordered subset of .7, let J = UW63 W. If Miz1+...+ M\,z,, =0 for
Z1,...,T, € J, then x; € W; for some W; € J. Pick the largest of the W; in J; since all z; are in it and
it is linearly independent, it follows that J is a linearly independent subset and an upper bound for all
W e J inclusion-wise. Hence Zorn’s lemma |13, Lemma o0.2] yields a maximal element S of .. Let W
be the linear span of S, and assume for contradiction that W # X. Then there exists x € X \ W. If

AL+ Nz + ...+ Az, =0
for x1,...,2, € S, then —Az = A\jz1 + ... + Apxy, so that —Az € W. Since x ¢ W, we have A = 0.

Therefore Ay = ... =\, =0, s0 SU{z} is a linearly independent subset of X containing V', but this
contradicts the maximality of S. Hence S is an algebraic basis for X. O
Proposition 1.10 (Linear independence). Let X and Y be vector spaces. If x1,...,x, € X are
arbitrary, y1,...,yn € Y are linearly independent and 2?21 r;Ry; =0, thenx, =...=x, =0.

Proof. First of all, {y1,...,yn} can be extended to an algebraic basis S = (Sq)aca of Y by Theorem
Let a; be the a € A such that s, = y; for all j = 1,...,n. For each j, we may then define a

linear functional ¢; on Y by

where A, € C, the sum > AyS, is finite and the family (#)aca is given by #, = 1 for @ = a; and
t), = 0 for all o # «;. It is clear that linear functionals on a vector space separate points in the above
way, so it now suffices to prove that t)(z;) = 0 for all linear functionals ¢» on X and all j =1,...,n.
This follows from the construction of Corollary [1.6] as

0=7v0yp; (Z ;@ yi) = Zd)(d?i)%(yi) = (x;)

i=1
for any linear functional ¢ on X. O
The above linear independence result has a lot of nice consequences: it tells us something about possible
bases for algebraic tensor products and what happens to tensor product maps of injective maps. The

next three results tell us what needs to be known in order to go further and are especially essential
when uncovering tensor product notions for C*-algebras.

Corollary 1.11 (Bases for tensor products). Let X and Y be vector spaces. If (z;)ic; € X and
(yj)jes €Y are bases, then (z; @ Y;) i jyerxs € X ©Y is a basis of X ©Y. In particular,

dim(X ©Y) = dim(X) dim(Y).

Proof. Because X @Y is spanned by elementary tensors, and any elementary tensor is a finite linear
combination of elementary tensors of the form z; ® y;, X © Y is spanned by the above set. Assume

that
> Aijlai®y;) =0
(i,j)€A

for some finite subset A C I x J. Let B C J denote the subset of all j € J such that (i,5) € A for
some i € I, and for j € B, let I; consist of all ¢ € I such that (i,j) € A. Then

0= Aij(zi ®y;) = Z Z AijTi | @ y;.
)

(i,7)€A i€B \jEJ;
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It then follows from Proposition that > .c; Aijz; = 0 for all i € B. Hence for any i € B we
obtain \; ; = 0 for all j € J; using linear independence of the z;. Hence A; ; =0 for all (i,j) € A. O

The next corollary comes in handy later.

Corollary 1.12 (Unique representations). Let X and Y be vector spaces. If {y;}icr C Y is a basis
and z € X ©Y, then there exists a unique set (v;)ic; € X such that z = ), ; x; ® y;, where only
finitely many of the x; are non-zero.

Proof. Let 2, € X and y; €Y, j =1,...,n, such that z = 2?21 v’ @y} For each j =1,...,n there
exists a family (\;j;)ier such that y? = >, ; Ajiyi, where only finitely many of the \;; are non-zero.
Let Iy denote the finite set of i € I such that \;; # 0 for some j = 1,...,n, so that y; = >,/ Ajiyi-
Hence we can write z as a finite sum

n n n

Jj=1li€lp 1€lp \Jj=1 i€l \j=1

so by putting x; = Z?Zl Ajiv’; we have found a family of the wanted form. This family is unique: if
D icr Ti @ Yi = Y _;c; T; @y, then by letting I consist of the 7 such that either z; # 0 or x; # 0, I
is finite and Proposition yields x; = «f for all i € I. Fori € I'\ I, x; = z; = 0, so the families

(x:)icr and (2}),cs are equal. O

Proposition 1.13. Let X, Y, V and W be vector spaces. If p: X =V and : Y — W are injective
linear maps, then the tensor product map p ©v: X ©Y — V O W is injective.

Proof. Let v € X ®Y such that ¢ ® ¢(v) = 0 and write v = Y. | 2; ® y; for z; € V and y; € W,
where i = 1,...,n. Choose a basis ()i, for the linear span of the z;, so that

v = Zx; ® <Z /\ijyi>
j=1 i=1
for numbers \;; € C. As
> el @y <Z /\ijyi> =0
j=1 i=1

by assumption and ¢ is injective, it follows from Proposition that (3", Xijyi) = 0 and hence
Yo Aijy; forall j=1,...,m, s0v=0. O

We are now finally ready to jump right onto the C*-algebra train. As one might guess, there are
natural ways to define the multiplication and involution of a tensor product of *-algebras — not just
C*-algebras — and the proofs concern whether these natural operations are well-defined.

Proposition 1.14. Let A and B be *-algebras. The tensor product A© B has a multiplication defined
by

<Z a; @ b1> Z ¢ ® dj = Z(aicj) ® (bzd])

J i,J
Proof. Once we prove that the above multiplication is well-defined, one can straightforwardly check

that it indeed satisfies the axioms required for it to be a true multiplication. We will construct the
above multiplication using the universal property of the tensor product.

Consider first the vector space L(A @ B) of all linear maps A® B — A® B. Let M,: A — A be left
multiplication by a € A, i.e., the map = — ax, and let M;,: B — B denote left multiplication by b € B.
Now Proposition yields a unique linear map M, ® M, € L(A ® B) such that

M, ® My(a' ®b") = (aa") @ (bb')
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forall ' € A, b’ € B. Define p: AxB — L(A®B) by p(a,b) = M, ® M,. We claim that ¢ is actually
bilinear. For instance, for a1,a2 € A and b € B, note that the sum M,, ® My + M,, ® M, is also a
linear map A® B — A® B. For all «’ € A and &/ € B we then have

(Mo, © My + Mgy, © My)(a' @) = ((a1 + az)a’) @ (bb') = Mg, ya, © My(a’ @),
but since Mg, 14, © Mp was unique with this property, we must have
@(a1 + az,b) = Mg, 4a,) © My = My, © My + My, © My = ¢(a1,b) + ¢(az,b).
The rest of the desired properties follow similarly.

Universality now yields a linear map M: A® B — L(A ® B) such that M(a ® b) = M, ® M. The
map (A® B)2 = A® B given by (x,y) — M (z)y then defines the above multiplication; indeed,

M (Z a; ® bi) Yoadi | = My, © My, (c; @dy) = (aic;) ® (bidy)-

,j (2]
This proves that A © B can be endowed with an algebra structure. O
The case of the involution is a little trickier.

Proposition 1.15. Let A and B be *-algebras. There exists a unique involution *: A®B — A® B
such that
(a®@b)*=a"®b", acA beB.

Proof. Uniqueness follows from the requirement that it satisfies the above equation, and indeed the
equation ensures that there is only one possible way to define it, namely

(zn:al ®bz> = Zn:ar ®b:
1=1 =1

The only concern we might have is whether this map is well-defined, and it boils down to proving
that > a; ® b; = 0 implies > af ® bf = 0. Choose a basis (e;)!™; of the linear span of the set

{b1,...,b,} and write b; = >"}" | A;je; with \;; € C for 1 <i <n. Then

n m

n m
OZZ(L@ Z)\ijej :Z /\ijai ®€j.
i=1 j=1 1

i=1 \j=
Hence, Proposition yields 37" ) Aija; = 0 and thus Y2, Ajjaj = 0 for all 1 < < n. Therefore

n n

ai @ | DoNes | = >0 | Do Ngar | @es =0,
1 =1

i=1 \j=1

n

* *
E a; ®b; =
=1 7

so the map is well-defined. The axioms are easily checked, proving that it is indeed an involution. [

Before something nearly completely different, we introduce two propositions about tensor product
maps over *-algebras.

*

Proposition 1.16 (Tensor product *-homomorphisms). Let A, B, C and D be *-algebras and let
p: A= C and ¥: B — D be *-homomorphisms. Then the tensor product map ¢ ©: A©OB—-COD
is also a *-homomorphism.

Proof. This follows from straightforward calculations. O

Proposition 1.17 (Product *-homomorphisms). Let A, B and C be *-algebras and let p: A — C and
¥: B — C be *-homomorphisms with commuting ranges. Then the product map ¢ X Y: A© B — C is
a *-homomorphism.
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Proof. This is also straightforward. The requirement of commuting ranges is used for proving that
X 1) preserves adjoints. O

We now need to make an important digression in order to use our tensor products of *-algebras and
hence C*-algebras to the fullest. Recall that any C*-algebra has a faithful representation on a Hilbert
space (see . Since we can construct the algebraic tensor product of two Hilbert spaces, one could
then ask if there for any two C*-algebras A and B with representations on Hilbert spaces H and I
exists a representation of A ® B on a Hilbert space related to H ® K. However, this is a rather big
question to ask at the moment: we do not even know whether A ® B has a well-defined norm, let alone
a C*-algebra structure, and how would we construct an inner product space structure on H © K? We
cannot have our cake and eat it too, so we will digress for a moment and look into the Hilbert space
situation.

Recall what we mean by a Hilbert space completion: if V is an inner product space, then V has
a unique Hilbert space completion (#,p), where H is a Hilbert space and p is a linear and inner
product-preserving map V — H with dense range |5, Theorem 23]. It is commonplace to denote
p(z) € H by x for all z € V, implying that V lies inside H (although strictly speaking, it is not always
S0).

If z € HOK for two Hilbert spaces H and K, then we can write x = Y " | & ® n;. Choosing an
orthonormal basis in H for the Hilbert space spanned by the vectors £, ..., &,, moving around terms
yields that z is of the form z = 377" | e; @ 7} for an orthonormal set of vectors (e;)7.; and some set
of vectors (1)7)72; in K. We use this in some of the upcoming proofs.

Proposition 1.18 (Tensor product of Hilbert spaces). Let H and K be Hilbert spaces. Then H ® K
is an inner product space with respect to the inner product

<Z§i®%2§§®ﬁ§> = (& &) (mio ) (1.1)

iel JjeJ 4,3
The Hilbert space completion of H © K is denoted H ® K.
Proof. The question is whether it is even possible to define an inner product as in . We will show
that there exists a sesquilinear form (-,-): H®K x H® K — C that satisfies (1.1). Let C = (Ko K)**

be the vector space of conjugate linear functionals on H ® K. For (§,7n) € H x K, the maps « — (£, )
and y — (n,y) are conjugate linear functionals, so by Corollary there exists f(¢ ) € C such that

f(gn)($®y):<§7$><777y>7 .'L'EH, yEIC
We now claim that the map o: H x K — C given by ©(§,7) = f(¢,y) is bilinear. For instance, for
£1,&,2 € H and 1,y € K, note that

Jlerream @ @y) = (§1 + &, 2)(n,y) =, 2) (0, y) + (2, 2) (0, 9) = ey ) (@ Y) + fieam (@ @),

so the conjugate linear functionals f(¢, 1¢, ) and fie, ») + f(¢,,n) agree on all elementary tensors. Hence
they must agree on all of H ® K, yielding equality. The rest of the properties of a bilinear map follows
similarly.

Using the universal property of H @ K there exists a unique linear map 6: H © K — C such that
G(E®@n) = fie forall § € H and n € K. Define (-,-): HOK xHOK — C by

(v,wy =c)(w), v,weHOK.

Then it is easy to see that (-,-) is a sesquilinear form satisfying and that (v,w) = (w,v) for all
v,w € H®K. Furthermore, if (e;);cs is a finite set of orthonormal vectors in H and (1;);cs is a family
of vectors in mK, we see that

<Z e,y e ®m> = > ene)) ) =Y Iml*

i€l iel i,j€1 iel

This proves that (v,v) > 0 for all v € H ® K by the remark made before the statement of the
proposition. Moreover, if the above sum equals 0, then 7; = 0 for all 7 € I and hence ), ; e; ®n; = 0,
yielding that (-,-) is an inner product. O
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Thus we obtain our Hilbert space! Note that for £ € H and n € I, the equality

1€ @ nll = llglinl

holds: we express this by saying that the norm is a cross-norm.

It is worth noting that for an arbitrary Hilbert space H, the inner product space H ® C" is already
complete with respect to the norm. Since any element v € H @ C™ has a unique representation of the
form

U=Z§i®6i, & eH
=1

with (e;)!; denoting the canonical basis of C", then the map H ® C™ — H" by

Z€z®ez fla“'afn)

is an inner product-preserving isomorphism, so H ® C™ is a complete metric space. Hence we obtain
HRQC'=HoC".

We now want to look into whether we can create operators over tensor products from given operators.
If Se B(H) and T € B(K), then we can consider the tensor product map SOT: HOK — H O K by
Proposition[t.4] It turns out that it can be extended to H® K and has some nice additional properties.

Proposition 1.19 (Tensor product operators). If S € B(H) and T € B(K), then there is a unique
linear operator S @ T € B(H ® K) such that

SeT(zrey)=SreTy, zcM, yek.
Moreover, ||S®T| = |S||||T]|-

Proof. We first consider S = 14. If v € H © K, write v = Y | e; ® n; for an orthonormal set (e;)!,
in H and a set of vectors (1;)"_; in K and note that [[v||* = >/, ||n:||*. Then

n

= > (eie;)(Tni, Tg) Z||T771||2< I E:II?%II2 1)1l

ij=1

113 © T(v)||*> = ®Tm

Then by Proposition there exists a unique bounded operator 14y ® T € B(H ® K) such that
1y @ Tyoek = 1y © T with |14 @ T|| < ||T||. In the same manner one obtains an unique extension
S®1x € BH®K) of S® 1 with ||S® 1x|| < [|S||. We now define

ST :=S@1l) Iy ®T).

It then follows that ||S ® T|| < |IS||IIT]| and that S ® T|xex = S © T. Hence it is also unique
with the elementary tensor property. To prove ||S ® T|| > ||S]|||T||, take sequences (&,),>1 and
(Mn)n>1 in (H)1 and (K); respectively such that ||S]| = lim,— oo [|S€, ]| and ||T]| = limp—co || 770 As
[€n @l = & llllnn]l < 1 for all n > 1 and

1S @T(&n @ mn)ll = 1SElllITmnll — ST,
we obtain ||S @ T > |IS|II|T||, completing the proof. O
It is easily seen that these tensor product operators actually behave well:
Proposition 1.20 (Tensor product operator calculus). It holds that

(1 (Sl +SQ) ®RT = Sl ®T+SQ ®Tf07" 51,52 c B(H) and T € B(]C),

)
i) S(T1+T2)=5ST1+S®Ts for S € B(H) and T1,T> € B(K),
(111) AT =S(\T)=ANS®T) for Se€ B(H), T € B(K) and A € C,
iv) (ST)*=5*®T* for S € B(H) and T € B(K), and

) (Sl ® SQ)(Tl ® TQ) = (SlTl) & (SQTQ) fOT 51752 S B(H) and T, T € B(]C)
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(vi) 1y ® 1x = lugk-

Proof. Most of the above follow from the uniqueness criterion in Proposition for (iv), note that
for &1,& € ‘H and n1,1m2 € K we have

(SeT)* (&1 @), & @n2) = (&1 @01, S @ Tn2)

= (&1, 8&) (m, Tn2)

= (S"E1, &) (T 1, m2)

=(S"G @ T ", & @1n2)
=((S"@T") (&1 ®@m),& @ n2).

By linearity and continuity, it follows that (S®@T)*({®n) = (S*@T*)({®n) for all { € H and n € K,
so that (iv) follows from uniqueness. O

We remark that we have *-isomorphisms

BH)2BH)®Clg :={S®1|S€ BH)} CBH®K)
B(K)=Cly ® B(K) :={14®T|T € B(K)} C B(H® K)

by considering the maps S — S ® 1 and T — 1y @ T. Also, B(H) ® Clx and Cly ® B(K) are
commuting *-subalgebras in B(H ® K), giving us the following result.

Corollary 1.21. Let H and K be Hilbert spaces. There is a natural injective *-homomorphism
m: B(H)® B(K) > B(H® K)
satisfying 1(S@T)=S®T for all S € B(H) and T € B(K).

Proof. Use Proposition on the aforementioned *-isomorphisms to obtain the *-homomorphism. To
show that it is injective, we must show that if Y | S; ®T; € B(H®K) is zero, then the corresponding
sum of tensors >, S;®T; € B(H)®B(K) is zero as well. By using the same method as in Proposition
we may assume that the operators S1, ..., .S, are linearly independent. By letting &;,&s € H and

m,n2 € K and noting that
< <ZSz ®Ti) §10M1,6® 772>
i=1

((Si @ T3)é1 @M1, &2 @ n2)

0

[
NE

1

-
Il

(Si€1, &) (Tim, m2)

|

i=1
- <Z<Tm1,n2>sifbfz>»
=1

then since the above holds for all & € H, we must have >, (Tin1,n2)S:& = 0 for all & € H. Hence

n

> (T, m2)Si = 0,

i=1

so by linear independence of the S;, we have (T;n;,m2) = 0 for all 1,72 € K, so T; = 0 for all
i =1,...,n. Hence 7 is injective. U

This then yields the following important corollary.

Corollary 1.22. Given two representations m4: A — B(H) and wp: B — B(K) of *-algebras A and
B, there is an induced representation

4@ AOB — B(H®K)

such that 74 © mp(a ® b) = ma(a) @ mg(b) for alla € A and b € B. If ma and 7 are faithful, then
w A © g is faithful as well.
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Proof. Combine Proposition Corollary and Proposition O

In the above case, we have that the image 74 ® 73(A ® B) is a *-subalgebra of B(H ® K), consisting
of finite sums of elementary tensors > ., ma(a;) @ mp(b;). If A and B are *-subalgebras of B(H) and
B(K) respectively, we are then able to consider A ® B as a subset of B(H ® K) by means of the above
corollary used on the inclusion maps.

And hence ends our pursuit of elementary results for *-algebra tensor products. Nothing particularly
surprising of course, but that is precisely what we need: nothing too fancy so far. But fancy it will be.

1.2 Matrix algebras

Any algebraist will likely hit upon a place where he or she will need to construct new algebraic structures
from already given ones. It is a song no mathematician ever stops singing, and the preceding section was
just another verse in that song: new *-algebra structures were created from given pairs of *-algebras.
This section will manage to create a ton of new C*-algebras — not just *-algebras — from a given one.
The small setback is that it turns out later that we have already seen them before — they are in fact
algebraic tensor products — but since the original new class of *-algebras have norms, these algebraic
tensor product acquire norms as well, so time is not exactly wasted. Let us get started right away.

Let A be a C*-algebra and let n > 1 be an integer. We construct the matriz algebra M, (A), a new
C*-algebra derived from A, as follows. First, let M, (A) be the set of all matrices (z;;);';,_; where
each entry z;; belongs to A. Addition and scalar multiplication in M,,(.A) are then given by the usual
pointwise operations, and the product is given by the standard way of multiplying matrices, i.e.,

11 212 -0 Tin Y11 Y12 - Yin 211 212 " ZlIn
T21 X22 - Ton Y21 Y22 - Yon 221 222 . Z2n
Tnl Tnp2 o Tpn Ynl Yn2 t Ynn Znl Zn2 Tt Znn

where
n
Zij = E TikYkj, 4,J=1,2,...,n.
k=1

It is straightforward to check that M, (A) becomes an algebra with these operations. An involution is
then defined by

*

* * *
11 12 0 Tip T11 Loy 0 Ty
X1 Xz 0 Tog Tls Tiy t Tpo
= ) s
* * *
Tnl Tn2 " Tnn Tin Ton " Tpp

and one can check that the involution axioms indeed hold, so that M, (A) becomes a *-algebra. We
now only need a C*-algebra norm on M, (A) to yield a proper new C*-algebra, and the question is:
from where do we get such a norm (a good one would be preferable)?

The answer is that we can use the fact that any C*-algebra has a faithful representation on a Hilbert
space (see page ). Let 7: A — B(H) be one such on a Hilbert space . We now define a map
i: My (A) — B(H™) by

T w12 o T (& m(x11)61 + m(T12)€2 + - - - + T(T10)En
| m2r w2 e mon | | &2 m(z21)&1 + m(222)&2 + - + T(220)En
71' | = .

Tnl Tn2 R Y ) gn 7T(-/I:nl)fl + 7r(£n2)§2 + -+ 7T-(-rnn)gn
This actually gives us a norm, provided we prove the following proposition first.

Proposition 1.23. 7 is a faithful representation of M, (A) on H".
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Proof. It is clear that 7 is linear. Furthermore, it is well-defined since for x = (z;5)},_; € M,(A) and

&= (&1,...,&n) € H™, we have
2 2
n n n n n
7)) = m(zi)&| <D Iw(@i)&ll | <m?® Y 1IE N7 = nm?|I€]1%,
i=1 ||j=1 i=1 \j=1 ij=1

where m = max; j [|z;;||. Multiplicativity follows from letting = = (z;;)},—1, y =
defining the matrix 2 = zy = (2;;)},_; and noting that

(Wi )inj=1 € Mn(A),

& i1 T(Y17)€ Dkt T(@1 )[E%— 7(yxi)&5]

o & ) D1 T(Y27)€; D ey T(@ar) D272y (k)€
w@)wy) | . | =7) : = :

&n Z;‘L:1 T(Ynj)&; D hm1 T(@nk) [0 j= i1 T (Ykg)E5]

D1 L1 T(T1kYk; )€ 21 (ot T1kYks )€

_ Z?:l 22:1 m(T2kYnj )E; _ ?:1 ™ Zk 1 T2kYki)Ej

Die1 et T(TnkYis )€

=17 Zk 1 TnkYki)Ej

> m(215)8; &
> m(225)€; X &
- : =7(2) :
Z;L:1 7(2n;); &n
Note also that for £ = (&1,...,&,) and (n1,...,7,) in H™, we have
(F(")m) = <Z () fkﬂh> ZZ LEMNINEDY <§k,z (k50 > (& #(@)m),
j=1 \k=1 j=1k=1 k=1 j=1

so 7 preserves adjoints (note here that we explicitly use how the adjoints of M, (A) are defined).
Finally, 7 is injective. Assume that 7(x) = 0 for some = = (z;;) € M, (A), and let § € H. Because
(2)(&o,0,...,0) = 0 we then obtain 7(x11)&y = -+ = m(xn1)&o, and since &y was arbitrary, we must
have 7(z11) = -+ = 7(xn1) = 0 whence z17 = -+ = z,1 = 0 since 7 is faithful. That the other
columns of z consist only of zero vectors is proved in the exact same way. O

It follows that we can define an algebra norm on M, (A) by |z| := ||7(z)|| for all z € M, (A). That
lz]| = 0 implies 2 = 0 follows from # being injective, and additionally

lz* 2|l = [|#(z) 7 (2)]| = |7 (2)]* =

so that the C*-axiom is also satisfied. However, we are not entirely done; it still remains to show that
M, (A) is complete under this norm.

l]1%,

Lemma 1.24. Let H be a Hilbert space and T € B(H). Then

1T = sup{ K&, m)[|§,n € (H)1} = sup{(TE&m[|&,n € H, [E]l = lInll =1}

Proof. Let m; and ms denote the supremums in the order above; note that mo < my. If T = 0, the
equations clearly hold, so assume that T # 0. Note first that [(T¢,n)| < [|T)¢]ln] = ||T|| for all
&n € (H)1, somy < ||T||. For 0 < e < ||T|| choose & € H with ||£]] = 1 such that ||T¢|| +¢ > ||
Then T¢ # 0, so by letting n = ||T¢||71T¢, we obtain [(T¢,n)|+¢& > ||T||. Hence || T'|| < mz, completing
the proof. O

Lemma 1.25. For all x = (v;)7';_1 € My, (A), it holds that

n

ol < lefl < > Nzl
= 3,7=1
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Proof. Let a be the above maximum. Then a = ||z = ||7(z4;)| for some i, j, so Lemma [1.24] yields
vectors &, 1 € (H)q such that o — e < [(m(xi5)&,n)|. If we let v = (0,...,0,£,0,...,0) € H" with £ at
the j’th place and w € H" likewise with 7 at the i’th place, we first and foremost obtain

m(215)¢
R m(22;)§
(x)v = ) ,
7 (@n;)€
and hence oo — ¢ < |(m(zi;)E,n)| = |[(7(x)v,w)| < ||7(x)|. Since ¢ > 0 was arbitrary, we obtain

|7 (2)|| > «, proving the first inequality.
For the second inequality, we remark that for & = (&1,...,&,),m = (M1,-..,7n) € (H™); we have
1€ < |I€]| as well as ||n;|| < ||n|| for all ¢, and hence

n

(@) m) = | D (wlxig)€,m) Z [(m (i &5 mi)| < Z I (i)l < Z (B2

,j=1 4,j=1 ,j=1 4,j=1
since 7 is a *-homomorphism, so Lemma [1.24] completes the proof. O
Proposition 1.26. M, (A) is complete under || - || and hence becomes a C*-algebra under this norm.

Proof. Let (z*)x>1 be a Cauchy sequence of matrices in M, (A). For any i,j = 1,...,n, Lemma m

yields
A

oy — ol < | max [l — o] < Jo* =%

for all A\, > 1, so (z J) is a Cauchy sequence and hence converges to some z;; € A for A — oo since
A is a Banach space. Let x be the matrix (z;)7;_; € M, (A); then Lemma 5| tells us that

n
ar =zl < > flay — 2l =0

ij=1
for A — oo, so (2*) converges and therefore (M, (A),|| - ||) is a Banach space, hence a C*-algebra. [
Before commenting on what we have found, we prove one small lemma first.

Lemma 1.27. Let (B, - ||1) be a C*-algebra and let || - |2 be another C*-algebra norm on B. Then

-t = 1 [l

Proof. Define B’ = (B,|| - ||1). Then the map n: B — B’ given by 7(z) = z is an injective *-homomor-
phism and hence an isometry, yielding the result. O

Hence the C*-algebra norm is independent of which representation on some Hilbert space we choose
— since the norms derived from any two representations make M, (A) into a C*-algebra, they must be
equal. This is great news, but there is more: By identifying the elements of M, (C) with the bounded
linear operators on C”, we obtain a C*-algebra structure on M, (C). The canonical basis for M, (C) is
the set of matriz units (e;;)};—; where e;; is the matrix with 1 at position (4, j) and 0 everywhere else.
Corollary H now gives us for any C*-algebra A that any element v € A® M, (C) can be written
uniquely in the form

v = E aij Q €45, CLZ‘jE.A, ,j=1,...,n.
i,j=1

Defining a map ¢: A® M, (C) — M, (A) by

n
D aij@eij | = (ai)} =1,

ij=1

it becomes evident that ¢ is a *-isomorphism of *-algebras. Indeed, it follows from the unique represen-
tation of tensors that the map is a bijection, it is clearly linear, and by using the matrix unit equality
eijert = dkeq (055 denoting the Kronecker delta, i.e., 6;, = 1if j =k and d;, = 0 if j # k) and how
we defined the products and involutions in the separate *-algebras, one can easily show that it is also
multiplicative and *-preserving.
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Corollary 1.28. For any C*-algebra A, there exists a unique C*-algebra norm on the algebraic tensor
product A©® M, (C). A® M,(C) equipped with the norm is denoted by A® M, (C).

Proof. The *-isomorphism A® M, (C) = M, (A) induces a C*-algebra norm on A® M,,(C), and Lemma
yields uniqueness of this norm. O

Having completed the construction of the matrix algebra, it must be remembered that when one works
with matrices containing complex numbers, one does not usually work with only quadratic ones. In
the same manner, it is possible for us to define some useful “shrinkings” of general matrix C*-algebras.

Definition 1.2. Let n > 1. Then we define three closed subspaces of M,,(A) by

aij)ij=1 lai; = 0 for all (i,7) with i > 1, j > 2};
aij)ij=1 lai; = 0 for all (i,7) with i > 2, j > 1};

aq 0 0 b1 b2 bn

az 0 0 0 0 0
xTr = R 5 y:

an, 0O --- 0 0 0 0

for a1,b1,...,an,b, € A. We will specify elements of M; ,,(A) and M, 1(A) by simply writing the n
elements of A that make up the column or row in the obvious ordering, i.e., z € M, 1(.A) is written

x=(a,...,an).
It is easy to see that
My (A)Mn(A) C© My (A),  Mp(A)Mna(A) C€ M (A),  Mip(A)Mpa(A) € Mia(A),

as well as M, 1(A)* = My, (A) and M, (A)* = M, 1(A). Finally, note that M; 1(A) is a C*-subal-
gebra of M,,(A) that is *-isomorphic to A; this allows us to write M; ;(A) = A.

So far, we have found a way of inducing a norm on the *-algebra tensor product A @ M, (C). We are
not entirely ready for the general case, as we would perhaps like to know a bit more about special
cases of matrix algebras. As the construction made use of a connection to Hilbert spaces, one might
ask what would happen if the C*-algebra was a subset of B(#) for some H — or better yet, a von
Neumann algebra? The next section clears that up, along with a whole lot of other things...

1.3 Tensor products of von Neumann algebras

As von Neumann algebras require some topological concerns, then if one would take tensor products
of two von Neumann algebras, one would not come a very long way. Of course Corollary will
embed their algebraic tensor product in the bounded linear operators in a Hilbert space, and taking
the double commutant of the resulting *-algebra will get us a long way. To prove things about this
double commutant, which we will give a name in a short while, one will not come very far if the only
thing known about it is that it is a von Neumann algebra. The first couple of pages of this section
may therefore seem irrelevant, but they give us the information we need to actually prove some, and I
cannot stress this enough, very nice properties of this new von Neumann algebra.

We start out slow but don’t worry, everything will soon be really complicated.

Proposition 1.29. Let H and KC be Hilbert spaces and let U: H — K be an isometric isomorphism.
If % is any subset of B(H), then
(U Y =Uus'U

In particular, if # C B(H) is a von Neumann algebra, then & = U.#U~ C B(K) is a von Neumann
algebra, and the map A4 — N given by T — UTU ' is a *-isomorphism between these von Neumann
algebras.
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Proof. For all T € B(K) we have

Tec(UsUY «TUSU =USU'T for all S € .7
S UTTUS = SUTITU for all S € .
SU'TU € 7
eTecUSUL

The second part easily follows. O

Definition 1.3. If U: H — K is an isometric isomorphism, then a *-isomorphism of von Neumann
algebras induced by U as in Proposition is called a spatial isomorphism.

In the following, let H and K be Hilbert spaces. Let (e;)icr and (f;);es be orthonormal bases for H
and K respectively, and define a map U;: H - H® K by U; (&) = £® f; for j € J. Uj is then a linear
isometry and if j # k, U; and U have orthogonal ranges. Defining a map U': H! = H @K by

U((&)ier) = Y Ui(&) =D & ® [,
jeJ jeJ

we see that U is a well-defined linear isometry. This particular map is very important for our under-
standing of the concepts coming up, so keep the following in mind:

We will keep U and all U; defined in the same way above for Hilbert spaces H and K (the latter with
an orthonormal basis indexed by a set J) for the remainder of this section.

Proposition 1.30. Let (e;)icr and (f;);cs be orthonormal bases for H and KC respectively. Then the
set {e; @ f;|i €I, j€ J} is an orthonormal basis for H & K.

Proof. Tt is clear that the set is orthonormal. Let v € H ® K. Then w = Y. | &, ® 1, for vectors
§1,--,6m € H and mi,...,nm € K. We then have §, = >, ;Afe; and n, = >, ; pj f; for all

iel 7'
n=1,...,m where (A}');cr and (u});cs are square-summable sequences. For finite subsets ' C I and
GCJ
1/2
€n ® 1y — (Z A?m) | S upfi || < Ueall|fnn =D w3 fill + 16 = DAt | Do Ip ]
icF jea jea ieF jed

which can be made arbitrarily small by choosing F' and G appropriately. Hence &, ®17,, and therefore w
is contained in the closure of the linear span of the {e; ® f; |i € I, j € J}. Thus H ® K is contained in

this span, so H ® K is contained in the span as well, so {e; ® f; |7 € I, j € J} must be an orthonormal
basis of H ® K. O

Note that the image of U contains this basis; we will now show that U is in fact surjective. Take
w € H ® K and take a family (A\i;)(; j)erxs of complex numbers such that

Y Pyl <oo, w= > (e @fy).
(i.4)elx ] (i.)elx ]
For all finite subsets ' C I and G C J, let wrc = Y (; jyerxc Nij(€; ® f;) and define
Era =YY tj(Nijeg),
jEGiEF

where ¢; is the inclusion of the j’th replica of H into H/. Then U(épg) = wpe. Letting Fr and
Fj denote the set of finite subsets of I and J respectively, we make F; x F; into a directed set by
coordinatewise inclusion. Let ¢ > 0 and take a finite subset A C I x J such that

2
3
E )\i.2<7.
‘ ]‘ 4

(i,7)¢A
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We can now take a finite subset Fy C I and Gog C J such that A C Fy x Gg. For all (F,G) > (Fy, Go),
we now have

2

2
lére —maol® =1 D w| D Ay || = > Ml < > |)\ij|2<€z-

JEG\Go i€EF\Fo (1,7)E(F X G)\(FoxGo) (i,j)€A

Hence for all (Fy,G1) and (F5, G) larger than (Fy, Gy), we have ||€r, ¢, — €m.a.ll < €, 50 (§pc) is a
Cauchy net and therefore converges to some ¢ € H’ by 11, Proposition 1.7]; since ||wpg — U(€)]| is
equal to ||{p,¢ — £||, it follows that U(€) = w. Therefore U is onto.

In short, we have now proved the following statement:

Proposition 1.31. If (f;)jcs is an orthonormal basis for K, then any w € H @ K can be uniquely
represented in the form

JjeJ

where (&) e is a family of elements in H satisfying 3, ; [€;]* < oo.

If U; is defined as above, we then have

U;r Zhj@)fj = hy

jeJ

for i € J, so

U=> U, U= 4,05,

jeJ jeJ

where ¢ is as before, 7; is the projection from H7 to the j’th copy and the series are strongly convergent.
Note that U;U; = 1 for all i € J and that U;U; = 0 for all 4, j € J with i # j. For T' € B(H ® K),
then by defining bounded operators T;; = U;TU;: H — H for i,j € J we have

U_ITU = ZZLJ'T‘U’]TZ'.
jedied

Formulated differently, T defines a matrix of operators in B(H).

Suppose now that an operator T' € B(H ® K) is of the form 77 ® 1x and let i, € J. Considering
UrTU;: H — H for i,j € J, we find that U;TU; = Ty for i = j and U;TU; = 0 if i # j. If we now
consider U;US: H@® K — H® K, U;U; is a bounded linear operator and for = ZjeJ & ® fj, we have

UU;TS =UTT§ =T @ fi, TUUE=TUS =T @ fi.

Hence all operators in B(H ® K) of the form 77 ® 1x commute with all operators of the form U;U7.
Conversely, suppose that 7' € B(H ® K) commutes with all U;U for all i,j € J. Then for all 4, j € J
with ¢ # j, we have U;U;TU; = TU;U;U; = TU;, so UTU; = U;U;U;TU; = U;TU;. Moreover,
U;TU; = U;TU;(UfU;) = (U;U;)USTU; = 0 since U;U; = 0. Define Ty = U;TU; for some j € J.
Then for any & = (&;)jes € H’, we have

UT'TUE =Y uTimié = (T1)jes = U | Y T @ f; | =U 1T ® 16)UE.
jeJ jeJ
Hence T'=T; ® 1, so we conclude
{UlUj* |’L,j S J}/ = B(H) ® Clg.

It is now time to define the tensor product in the case of von Neumann algebras.
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Definition 1.4. If .# C B(H) and 4 C B(K) are *-algebras, then the von Neumann algebra tensor
product M Q@ N of # and A is the von Neumann algebra generated by all operators of the form
S®T e BH®K) for S € .# and T € 4. In other words,

MEN ={SOT|SeM, TeN}.

We denote the set of finite linear combinations of operators S®T € B(H®K) for S € # and T € N
by # © /. Assuming additionally that .# and .4 are unital, then .#Z ® .4 is in fact the strong
operator closure of .# ® 4 by von Neumann’s bicommutant theorem (Theorem .

Proposition 1.32. Define 7: B(H) - B(HQK) by n(T) =T ® 1. If ¥ C B(H) is any subset,
then (L") = w(<L)", so m maps von Neumann algebras to von Neumann algebras.

Proof. For all 4,j € J then U;U; (S ® 1x) = (S ® 1x)U;U; for all S € .7, so U;UF € n()". Hence
()" C w(B(H)) by what we found above. Since 7 is an isomorphism of B(H) onto w(B(#H)), then
for S € w(.)" there exists S1 € B(H) such that 7(S;) = S. For T € ./ and n(R) € n(.¥), we have
m(T)n(R) = n(R)7(T), so n(T) € n(#)’. Therefore

w(51T) = Sn(T) =n(T)S = n(TS1),

so 51T =TS, and hence S; € .#”. On the other hand, if T € ", then for all S € 7(.)’, we have
m(T)S = Sn(T), so (") C n(F)". O

The above proposition then says that for any von Neumann algebra .# C B(H),
%@Cl}c :ﬂ(%)// = W(%) :%®(Cllc.

Hence .# ®Cly is a von Neumann algebra acting on H®K; 7 is in the above case called an amplification
of .#. For a *-subalgebra .# C B(H) and a nonempty set .J, define the following subsets of B(H”) as
follows:

o M =B, M
@ Nj(M)={T = (T;)jes € M’ |there exists an S € .# such that T; = S for all j € J}.
@ My(#)={T € B(H!)|mTw; € 4 for all i,j € J}.

We clearly have the inclusion

Aj(M)C M C My(M).

In the case where J is finite, we might want to exchange J in the symbolisms above for the cardinality
of J. However, this creates a glaring problem: if .# is a C*-algebra, is M,,(.#) in the above sense
different from M, (.#) in the matrix algebra sense in the previous section? We will get this problem
out of the way immediately, in a manner that allows for great flexibility later on. Let n > 1, let A
be the matrix algebra M, (.#) and let B C B(H") be M, (.#) as defined as above. The inclusion
M — B(H) allows for a representation m: A — B(H™) given by

T T2 - Ty & Tn& + T2k + - -+ Tinén
To1 T -+ oy &2 To1&1 + T80 + -+ - + Topéy

s

Tnl Tn2 o Tnn gn T711€1 + Tn2§2 + -+ T’rmén

proven to be a faithful representation in Proposition If T = (T35); ;=1 € A then we have

mm(T)(§) =m | . | =Ti;¢

for allé,j =1,...,n, so that m;w(T)¢; = T;; € #, hence proving that 7(A) C B. On the other hand,
if T' € B then by putting T;; = m;T¢; for i, j =1,...,n, we have for all { = (&1,...,§,) € K" that
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Ty T2 - Ty m(Tri& + -+ Tunky) m1(T€)

N T Tap e Ty (Tt + -+ Tenén) m2(T€)

ol . .1 €= . = ) =T¢,
Tnl Tn2 o Tnn Tr’l’L(Tngl +--+ Tbngn) Wn(Tg)

yielding 7((T3;)7;=1) = T whence 7 is surjective. Since 7 induces the norm on A, 7 is isometric as
well, so A and B are isometrically *-isomorphic as normed *-algebras. This enables us to identify the
matrix algebra M, (.#) of .# C B(H) with a *-subalgebra of B(H™), and moreover, as m;T't; € B(H)
for all T € B(H"), it follows that

M, (B(H)) = B(H").
Hence our problem is out of the way by means of a natural *-isomorphism. We will return to this

matter at the end of this section.

We now continue from where we left off. For the sake of notation, then for any 7" € .# we define the
operator A(T) € Ay(A) by A(T) = (Tj)jes where T; =T for all j € J.

Proposition 1.33. Let .# be a *-subalgebra of B(H) and K a Hilbert space with orthonormal basis
indexed by a set J. With U defined as above, the following statements hold:

(i) Ay(A#)=U" M @ Clg)U.
(i) If A is a von Neumann algebra, then M (M) = Aj(A") and Mj(MA') = Aj(A), implying
that Mj(A) and Aj(A) are von Neumann algebras.
(iii) For any subset . C B(H”), we have (UU~Y) = US'U~L. If # is a von Neumann algebra,
then UM ;(.#)U~1 is a von Neumann algebra acting on H @ K.

Proof. (i) For T € .#, we have
U™HT @ 1)U (&) je5 = (T&))je5 = AT)())je-
(ii) For all T' € .#" and S € M ;(.#), note that for any & = (§;);jes we have
Wi(SA(T)f) = Z’]TiSLj(ng) = ZT’/TI'Sngj = T’I'QS&.
JjeJ jeJ
for all i € J, so

SA(T)E = Z Li(mi(SA(T)E)) = Z Li(Tm;S€) = (Tm;SE)ies = A(T)SE.

i€J ieJ

Hence Ay(A") C My( ). Assuming instead that T € .# and S € M;(.#"), we see that the above
equations are still true, so we also have A ;(.#) C M;(.#"). Note that these inclusions do not require
A to be a von Neumann algebra, but at most just a *-subalgebra. This also implies that for all
*-subalgebras .# of B(H), we have

Ay ") S Myt CA (). (1.2)
Assume that S € My(.#). Then S € (#7) = (#')" by Corollary so S = (5;)jes where
S; € A" for all j € J. Define E;; = v;mj for 4,5 € J. Then m;E;j0; = 0if i,j € J and ¢ # j and

Bty = 1y for i € I, so E;; € My (#). Hence S commutes with all E;;. For 4,j € J with i # j, we
only need to prove that S; = S; in order to prove the first statement, but as

Szf = ﬂ‘iSLif = WiSLi(ﬂ'ij)f = FiSEiijg = WiEijSLjf = 7TZ‘(Li7Tj)SLj§ = WjSLjf = ij

for £ € H we hence obtain S; = S; and thus S € A;(.#"). Finally, for S € A;(.#)’, then for all
TeH,ije Jand € H we have m;A(T) = T'm; and hence

WiSLjTg = 7T¢SA(T)L]‘£ = WiA(T)SLjf = TﬂiSng,
so m;St; € A" for all 4,5 € J, and hence S € M;(.#"). As we now obtain

My M) =Dy (M) =M M), Aj(M)" =M;A") =A;(AM),
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we see that M;(.#) and A ;(.#) are von Neumann algebras.

iii) The first part follows from Proposition [1.29] and therefore
9
(UM (YU =UM; () U!

by (ii), since .# is a von Neumann algebra. Therefore UM ;(.#)U~! is a von Neumann algebra acting
on H® K. O

Lemma 1.34. Let .# be a von Neumann algebra of B(H) and K a Hilbert space with orthonormal
basis indezed by a set J. With U defined as above, then U~ (M @ B(K))U = M;(.#). If J is finite,
then # @ B(K) = 4 © B(K).

Proof. For all S € .4, we have U1 (S®1x)U € Aj(#) by Proposition By defining u;;: K — K
by wi;& = (£, f;) fi, then for all T € B(K) we have

T =Y (Tfi, fi)ui

ieJ jeJ

where the series in the above expression are strong operator convergent. As U~!(1y ® u;;)U = u;m;

and v;m; € ((#')) = .47 for all i,j € J by Corollary then because .#” is strongly closed
and the map S — U~1SU for S € B(H ® K) is strongly-to-strongly continuous, it follows that
U1y ®@T)U € 47 for all T € B(K). Hence U1 (S@T)U € .47 for all S € .4 and T € B(K), so

U N Aa@BK) C.#7 C My(M)

by the preceding paragraph, as .# ® B(K) is the smallest von Neumann algebra containing all operators
S®T and U.#’U~" is a von Neumann algebra by Proposition

T = (Tj)jes € Mj(A) and let T;; = m;Tr; € A for all i,j € I. For a finite subset F' C J, let
EF = ZieF LT, As

U D (T @uy) | UlGres = Y, U™ (Z T35k ®Uij(fk)>
ijEF i.jeF ke
= Z U~ (T35 @ fi)
ijeFr
= > ulTy8)
ijeF
= ErTEF(§k)re-

Hence UEFTErU ! € .# ® B(K). Because Er converges strongly to the identity operator of H”,
then ErTEr — T strongly, and since S — USU ! is strongly-to-strongly continuous, we find that
UErTErU~! — UTU ! strongly, and hence T' € U~ (.# ® B(K))U, as .# @ B(K) is strongly closed.
Hence U= (.#/ ©@ B(K))U = M (A4 ).

In the case where J is finite, then E; is the identity operator, so

T=U"|> (T;®uy) | UecU (4 oBK)U
i,jEF

with T, T;; and u;; as above. Hence .# @ B(K) = UM ;(.#)U~* C .# ® B(K), yielding the second
statement. 0

Proposition 1.35. For any Hilbert spaces H and K and any von Neumann algebra .# C B(H), we
have

(i) (A4 ®Clk) =.#4'® B(K).

(ii) (A# @B(K)) =4 ®Clg.
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(iii) B(H)® B(K) = B(H® K).
Proof. Assuming that IC has an orthonormal basis indexed by J, then if U is defined as above, we have
M @ Cle =UAj (AU =UM;(4)U = (UM;(#) U = (@ B(K))

from Proposition and Lemma Hence we have (ii), from which (i) follows immediately. For
(iii), note that Lemma [1.34] yields

UH(B(H)® B(K))U = M;(B(H)) = B(H’),
so B(H)®@ B(K) = B(H®K). O

Our last result will concern what happens with strong operator closures of *-subalgebras .# of B(H)
when passing to matrix algebras. The statement is quite elementary, so we will skip right ahead to the
proof.

Proposition 1.36. Let # be a *-subalgebra of B(H) with strong (or weak) operator closure A such
that A is a von Neumann algebra. Then M, (A") C B(H™) is the strong (or weak) operator closure
of M, (M).

Proof. Since the strong operator closures and weak operator closures of convex sets are equal, it suffices
to show the result for the strong operator case. Let T € Ma(.4"). Then

Ty - T,

T = . .. .
Tnl T Tnn
where Tj; € A foralli,j=1,...,n. Foralli,j =1,...,n, there exist nets (T}})aca,, of # such that
T — T strongly. Make

n

A= 1] 4

ij=1
into a directed set by defining (a;)7 ;=1 < (aj;)7'j=1 if iy < of; forall 4,5 =1,...,n. We thus obtain
a net of matrices
Tﬁll . Tloénln
T e T

(aij)ﬁj:1eA
in M, (A). Let (&,...,§,) € H" and € > 0, and pick (a;);';—; € A such that

i 19
1757 &5 — Tigéll < 2

for (aij)i;—1 > (aj;)ij=1- Then

o Ih &1 &1 (T =T + ...+ (T0" = Tw)én
: : =T = :
T"r(;éln1 e Tﬁ'f'zL7L fn gn Tanl - Tnl)fl +...+ (Tﬁ[ﬁm - Tnn)gn
END S [Cr AT
4,j=1
< 3T - Tl <
1,j=1

Hence the net converges to T strongly, proving that Ms(.4") is contained in the strong operator closure
of My( ). Conversely, if T of the above form is contained in the strong operator closure of M, (.#),
then there exists a net of matrices

T o TR
T, = o

a o
Tnl T Tnn acA
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with all entries in .#, such that T, converges to T strongly. For £ € H and any i,j = 1,...,n, note
that

(TG = Tiy)ell* < Z (T = Ti)éll® = I(Ta = Du(E)II* = 0,

where ¢; denotes the inclusion of H into the i’th copy in H". Hence T} — T;; strongly for all 4,7, so
T € My(AN). O

1.4 Tensor products of C*-algebras and algebraic states

Having quite thoroughly dealt with matrix algebras and tensor products of von Neumann algebras in
the previous two sections, we now proceed to the general case of C*-algebras. In this case, one could
just define norms on algebraic tensor products making the completions into C*-algebras, but we will
go slower and take a more subtle and cumulative approach, revealing how these norms actually arise
in the process.

We will first look into norms of Banach space tensor products and define one that works wonders.

Definition 1.5. Let X and ) be Banach spaces. A norm p on X ©®9) is a cross-norm if

piz@y) = lzllyll, zeX, ye.
The completion of X ® Q) with respect to the norm p is denoted by X ®, 2).
If X and Q) are Banach spaces, then for any w = >, z; ® y; € X ©2), note that the map X* x9* — C

given by
(0, 9) = Y ol
i=1

is bilinear and hence induces a linear functional a: X* ©®2)* — C by universality. If v € X ©® %) has the
form v =}, 2} ®y; and v = w, then v similarly induces a linear functional 3: X* ©9* — C. For any
p € X* and ¢ € 9*, Corollary then tells us that

alp®y) = Zw = (p@Y)(@:i®y) =Y (p@¢¥)(x;®y)) Zw = Blp @),

i J

so that any w € X ® Q) gives rise to a unique linear functional a,,: X* ®2)* — C. Moreover,

law(p @) < lellllol Y llalllyill-
i=1

Definition 1.6. Let X and ) be Banach spaces. The projective tensor norm on X ® ) is given by

= inf {Z [EAAl
i=1

The completion of X ® %) with respect to v is denoted by X ©, 2).

w:inQ@yi}, weX0.
i=1

Hence for all w € X ©® ), we have |ay(p ® )| < |l@ll[[¢[v(w) for all p € X and ¢ € Y. If pis a
cross-snormon X© P and w =), 2; ®y; € X ©9Q), we have

~p (Zx m—) <3l

so by taking infimums over all possible representations of w in X ®92), we see that p(w) < v(w). Once
we prove that the projective tensor norm is a cross-norm, we will then know that it is the largest
cross-norm on X © 9).

Proposition 1.37. The projective tensor norm is actually a cross-norm. If X and Q) are Banach
*-algebras, then v is a *-algebra norm, i.e., v also satisfies

Y(vw) < y()y(w), @) =7(@), v,weXOY.
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Proof. For w € X © %), then by writing w =, x; ® y; we have
pOw) <Y aillllyall = A llill]sll

for A € C; since the decomposition of w was arbitrary, we have p(Aw) < |A||p(w). Equality is clear if
A= 0. If A # 0, it follows from the above result that p(w) = p(A~1(Aw)) < |\ ~"p(Aw), so we finally
have p(Aw) = |A|p(w).

Forv,w € X0, writev =" z;@y; andw=Y1"  z;®@y; forz; € Xandy; €9,i=1,...,m.
Thus

m

n m
y(o+w) <Y eyl < D lzalllyall + Y- iyl
i=1

i=1 i=n+1

and therefore v(v + w) < v(v) + y(w), again by noting that the decomposition was arbitrary. If
w=),r;®y; € XY satisfies y(w) = 0, then for all p € X* and ¥ € P* we have

Z (i) (yi) = awl(p @) = 0.

For any ¢« = 1,...,n, the Hahn-Banach theorem [13, Theorem 5.8] yields v; € 2* such that v;(y;) # 0
and ¢;(y;) = 0 for all j # i, so that we must have p(x;) = 0 for all ¢ € X*. Therefore x; = 0 for all
i=1,...,n, s0o w = 0, proving that v is a norm. It is in fact a cross-norm: for x € X and y € ), we
clearly have y(w) < ||z||||ly|| if w =  ® y. The Hahn-Banach theorem yields ¢ € ¥* and ¢ € 9* such
that [[of| = [[¢]] = 1, ¢(x) = ||z[| and ¢ (y) = [ly[, telling us that

Iz lllyll = e(@)(y) = low(e @ )| < llell[[¢lllv(w)] = ly(w)].
Thus ~ is a cross-norm.

If X and Q) are involutive Banach algebras, then it is clear that y(w*) < v(w) for all w € X ©® 9,
proving that vy(w) = vy(w*). Furthermore, note that

yow) <3 Nzl vy < D llwall 2 yillyjll < (Z IIwiIIIIyiH) Al
iJ iJ i i

ifv=>,z;®y; and w =32} ®y; so that y(vw) < v(v)y(w). This completes the proof. O

Some of the properties of the projective tensor product norm in the Banach *-algebra case have a name
of their own, so let us get them straight.

Definition 1.7. Let A and B be Banach *-algebras. A (semi-)norm p on A ® B is called submulti-
plicative if it satisfies

p(zy) < p(@)p(y), z,y€ AOB.
A C*-norm (resp. C*-seminorm) p on A ® B is a submultiplicative norm (resp. semi-norm) if
p(z*) =p(x), plx*z) =p)?, zcAOB.

The following result will take us a long way since approximate identities have some nice properties
with respect to certain linear functionals.

Proposition 1.38. Let A and B be C*-algebras. If p is a cross-norm on A ® B and (e4)aca and
(fs)pep are bounded approzimate identities for A and B respectively, then (eq @ fg)a,p is a bounded
approzimate identity for A ®, B.
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Proof. For x =", a; @ b; € A® B, we have

0

p(r(ea ® fg) —x) =p ( (aieq ®bifz —a; ® bi))

'

(
1
(

1

NE

((aieq — a;) @ bifs +a; @ (b; — bifﬁ)))

Il
-

laiea = ailll[bifsll + llasllllb: = bifsll)

7

<
<> (laiea = aill bl + llaill[b: = bifs]) — 0-
1

Hence p(z(eq ® f3) —x) — 0 for all z € A® B. Since p(eq ® fg) = |leallllfs]] < 1, it is not hard to
show by an £ argument that the same holds for arbitrary z € A ®, B. O
What happens with the completions of A® B with respect to p if p is a certain type of norm can hence

be described as follows:

# If p is a submultiplicative norm on A © B that satisfies p(z*) = p(z), then A ®, B is a Banach
*-algebra.

% If p is a cross-norm on A ® B, then A ®, B has a bounded approximate identity. (This is just
Proposition [1.38])

% If pis a C*-norm on A ® B, then A ®, B is a C*-algebra.

We recall that if p is a norm on A® B such that A®,, B becomes a Banach *-algebra, then a continuous
positive linear functional ¢ € A ®, B is said to be a state if ||¢|| = 1 and the set of states is denoted
by S(A ®, B) (as it should be). As promised, we will now start uncovering from where C*-norms on
algebraic tensor products arise. Perhaps surprisingly, we will see that the place of birth is in fact the
space of states. Of course, algebraic tensor products are not brought into the world with norms, so we
will define a new type of state that nonetheless resembles our original definition quite a bit.

Definition 1.8. Let A and B be C*-algebras. A linear functional p: A ® B — C is algebraically
positive if p(z*x) > 0 for all x € A©® B. If ¢ is algebraically positive and

[¢llalg == sup {|p(a @b)[|a € (A)1, be (B} =1,
¢ is called an algebraic state. The set of algebraic states on A ® B is denoted by S(A ® B).
The next result resembles one we already know for unital C*-algebras.

Proposition 1.39. Let A and B be unital C*-algebras. Then an algebraically positive linear functional
©: A® B — C is an algebraic state if and only if p(14 ® 15) = 1.

Proof. For a € (A); and b € (B)1, then |p(a ® b)|? < ¢p(a*a ® b*b)p(14 ® 15) by the Cauchy-Schwarz
inequality. As a*a < 14 and b*b < 1, then 14 — a*a = 2*x and 15 — b*b = y*y for some = € A and
y € B, implying

0<p((a®y)(a®y)) +o((z®1s)" (z®15))
a*a® (1g —b0"b) + (14 — aa) ® 1p)
a®lp—a*a®@bb+14®1g—a"a® 1p)

14®15) — ¢(a*a ® b*D),

P

¥
¥
=
¥

so |p(a®b)] < ¢(14 ®1p) for all a € (A); and b € (B);. This implies ||¢|laz = ¢(14 ® 15), so the
result follows. O

And so it begins... or does it? As one may recall, all states on C*-algebras are contractive by definition
(which is in itself a very helpful defining property). The definition of algebraic states depends only on
the C*-algebras of which tensor products are taken, but as we can most likely define a lot of different
norms on C*-norms, there is no way of ensuring that all algebraic states are contractive with respect
to these. We need to get this hurdle out of the way, and the natural way to do this is the following.
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Definition 1.9. Let A and B be C*-algebras and let p be a cross-norm on A ® B. We say that a linear
functional ¢: A©® B — C is bounded with respect to p if there exists K > 0 such that |p(z)| < Kp(x)
forallz € A® B.

Definition 1.10. Let A and B be C*-algebras. The set of algebraic states on the tensor product A® B
that are contractive with respect to a cross-norm p is denoted by S,(A © B), i.e., ¢ € S,(A® B) if

lo(z)] <p(z), z€AOB.
Now it begins.

Proposition 1.40. If A®, B becomes a Banach *-algebra for some cross-norm p on A® B, then
Sp(A® B) = {¢lacs|¢ € S(A®, B)}.

Proof. Assume first that ¢ € S(A®, B) and let x be its restriction to A © B. Then x is algebraically
positive, contractive with respect to p and

Ix(a®b)| < pla®b) = al[dll, acA beB.

If (eq)aca and (fs)per are bounded approximate identities for A and B respectively, then (e, ® f3)a,3
is a bounded approximate identity for A ®, B by Proposition Proposition now yields
x(ea ® fp) = plea ® f3) = [loll = 1.

Hence [|x|laig = 1, so x € Sp(A© B).

Conversely, if x € S,(A ® B), then x extends to a contractive linear functional ¥ on A ®, B by
Proposition Moreover, if 2 € A ®, B and p(x, — x) — 0 for some sequence (7,),>1 in A® B,
then p(zfx, — x*z) — 0, implying that y is positive since we then have

Ea*x) = lim E(xa,) > 0.

As ||x|laig = 1 we see that ||x|| > 1, but since x(eq ® f3) — ||X|| as before, we also have ||x|| < 1 and
hence x € S(A®, B). Moreover, if  is the restriction of ¢ € S(A®, B) to A® B then ¥ = ¢ by the
uniqueness part of Proposition yielding a bijective correspondence between the two spaces. O

The bijective correspondence of the last proof yields a way of identifying S,(A ® B) and S(A ®), B).
The weak* topology on S(A ®, B) as a subspace of (A®, B)* hence induces a topology on S,(A® B)
by restriction to A ® B which we shall call the weak* topology on S,(A® B).

Now note that for ¢ € S(A®B) and . ="' | a; ®b; € A© B, we have

(@) <D lelai @ b)) < Y llaallllbs]
=1 =1

and hence ¢ € S, (A ® B) where v is the projective tensor norm on A @ B. Noting that v indeed
satisfies the conditions of Proposition we have

S(A©B) = {glacs |y € S(A®, B)}.

Let ¢ € S(A® B). As A®, B is a Banach *-algebra, we obtain a GNS triple (H,,m,,&,) associated
with ¢ (or rather, the extension of ¢ to a state on A ®., B) such that for all z € A® B, we have

(P(x) = <7750(x)§sovftp>~
Therefore
lp(@)] < Imp(z)]| <(z), z€ AOB. (1-3)

To summarize, all this means that any ¢ € S(A ©® B) admits a GNS triple (H,, 7,,£,). As AO B is
dense in A ®,, B, it follows that 7,(A © B)&, is dense in H,,.

Once we start working with C*-norms, we obtain the following very surprising result, for which the
proof is nonetheless very easy.
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Proposition 1.41. Let p be a C*-norm on A® B. Then
p(z) = sup{p(z*2)? |p € S,(A®B)}, zec AGB.

Proof. For any ¢ € S,(A ® B), Proposition and the GNS construction on A ®, B together yield
a GNS triple (Hy, 7y, &,) where &, is a unit vector satisfying ¢(z) = (m,(x)&,, &) for all z € A© B.
In particular, p(z*x) < ||m,(2)||*> < p(z)? for all z € A® B. For the converse, note that there exists a
faithful representation 7: A ®, B — B(#) for some Hilbert space #. For any unit vector { € #, the
functional z +— (m(2)&, &) is a state on A ®, B. Therefore Proposition yields

sup{p(e72)'/? [ ¢ € Sp(A© B)} > sup{||m(2)é]| [ € (M)} = |[w(2)] = p(x)
for all x € A ® B and hence the proof is complete. O

The aim is now to find a general method for constructing a C*-norm on the tensor product. If
¢ € S(A® B), then by defining p,(x) = ||m,(x)|| for x € A® B, where 7, is the GNS representation
associated to ¢, we clearly obtain a C*-seminorm. If ' C S(A ® B), we define

pr(z) = sup [my(z)|, =€ AOB.
pel’

As |7y (z)]| < v(z) for all p € T and = € A® B, pr is a well-defined C*-seminorm.

If pr is in fact a norm, we say that I' is separating and denote the completion of A ® B by A ®r B.
The set of algebraic states on A ® B that are contractive with respect to pr is denoted by Sr(A ® B).
If o €I, then

lp(@)] < mp(2)]| < prz), z€A@B,

so I' C Sr(A© B). In fact, any C*-norm p on A ® B can be obtained in this way; since A®, B is a
C*-algebra, then we know that
<

pES(A®,B)
is a faithful representation of A ®, B (see page [x). Faithfulness of 7 then yields

p(x) = 7@ = sup |7 (z), z€AOB,
©ES(AR,LB)

so by letting I' = S, (A ® B), we obtain p = pr.

If A and B are unital and I' is separating we have the following result, the proof of which needs a result
from Appendix A.

Lemma 1.42. Let A and B be unital C*-algebras and let ' C S(A® B) be convex and separating. Let
I"={p e S(AearB)|¢lacs €T}
Assume furthermore that it holds for all p € T" and y € A® B that there exists 1 € ' such that
ey zy) = ey y)Y(z), z€AOB.
Then I is weak*-dense in S(A ®r B) implying that ' is weak*-dense in Sp(A© B), and
pr(z) = sup{p(z*2)"/?|p € T'}.

Proof. It ¢ € TV and y € A ® B, then there exists ¢ € T such that p(y*zy) = o(y*y)(z) for all
z € A® B. 1 is a restriction of a state ¢’ € ' on A ®p B by Proposition in turn yielding
o(y*zy) = p(y*y)yY' (x) for x € A ®r B by continuity.

Let © € (A ®r B)sa and assume that ¢(z) > 0 for all ¢ € T'. Then on the grounds of what we just
found, then for any ¢ € IV and y € A ® B, there is a state ¢» € I such that

(T ()75 (Y) €, To (¥)€p) = ©(y mY) = P(y y)P(2).
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As p(y*y)w(x) > 0, we see that
(o (2)me ()€, mo (Y) ) 2 0

for all p € I" and y € A® B. As A® B is dense in A ®r B, it follows that 7, (z) is positive for all
p € I'". Hence if 7 = @@65(.4@1“8) Ty, we clearly have 7(x) > 0, so since 7 is faithful, we see that
z > 0. But now Lemmal[A 4] tells us that I is weak*-dense in S(A®r B) from which the second density
statement follows. Finally, Proposition yields

pr(z) = sup{p(a*2)'/? | ¢ € Sr(A© B)} = sup{p(z*2)'/? | € T},
because of weak™ density. O

So far we have worked quite a lot with C*-norms but have not defined any. The Rolling Stones and
Beatles of C*-norms on algebraic tensor products of C*-algebras are the following.

Definition 1.11 (Maximal norm). Let A and B be C*-algebras. The mazimal norm on A ® B is
defined by

[|2]|lmax = sup{||7w(x)|| | 7 is a representation of A ® B}.

We let A ®pax B denote the completion of A ® B with respect to || - ||max-

Definition 1.12 (Minimal norm). Let A and B be C*-algebras. Then the minimal norm on A® B is
given by
‘ Z a; ®b;

where 7: A — B(H) and p: B — B(K) are faithful representations. We let A Quin B denote the
completion of A ® B with respect t0 || - || min-

= 11> m(ai) @ p(bs)

%

min B(H®K)

It takes a bit of work to prove that the maximal and minimal norm are actually C*-norms and that the
minimal norm is independent of the choice of representations, and we will not embark on this journey
here; for comments on this, see [g]. However, we will state the most important facts about the two
norms (and others) in the following theorem, to be used fervently later on.

Theorem 1.43. Let A and B be C*-algebras. Then the following statements hold:

(1) || - llmin s independent of the choice of representations of A and B.
(i) |- llmax and || - ||min are C*-norms on A® B.
(iii) If p is a C*-norm on A® B, then

[l lmin <p < || || max-

(The first inequality is known as Takesaki’s theorem.)
(iv) If p is a C*-norm on A © B, then it is automatically a cross-norm.
(v) IfC is a C*-algebra and A C C, then there is a natural isometric inclusion A @mpin B — C Qmin B-

Proof. See [a], Sections 3.3 and 3.4] and [g, Proposition 3.6.1]. O
For any two C*-algebras A4 and B and ¢ € S(A ©® B), then equation immediately yields

lp(@)] < [|#]lmax, =€ AGDB,
so we can conclude S(A® B) = Smax(A© B).

The aim of the last part of this section is to prove that the minimal norm can be expressed differently,
by defining a new C*-norm which turns out to be equal to the minimal norm.

Lemma 1.44. Let A and B be C*-algebras. If p € S(A) and ¢ € S(B), then p © ¢ € S(A® B).
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Proof. Let (H,,mp,&,) and (Hy, 7y, &) be GNS representations of A and B corresponding to ¢ and 1
respectively. For all a € A and b € BB, we obtain a bounded linear operator m,(a)®@my(b) € B(H,QH.y)
by Corollary satisfying

Tp(a) ® my (0)(§p @ §y) = Tp(a)€p @ my(D)Ey-

Forz =" a;®b; € A® B with a; € Aand b; € Bfori=1,...,n, we have

Il

N
I
-

(p O Y)(x) p(ai)(bi)

Il

&
I
-

(Tp(@i)s €, (T (0i) €, Eup )y

I

s
Il
_

(T (ai)€p @ my (03)Eys € @ &) m, @ty

(mo(a;) @ my(bi) (€ @ Eyp)s Ep @ Ep)m,amy,

|

@,
Il
—

I
M=

(T © my(ai @b;)(€p @ Ey), € @ Ep)H,0my,

I
—

—~ .

To O Ty (), € ® Ey )1, 01, -
Hence if z = y*y for some y € A ® B, we have
(e @ ¥)(@) = (mp © ) (W)lI3, @2, = 0,
yielding positivity. Moreover, it is clear that |¢ © ¥|lag < 1. Taking sequences (a,),>1 in A and

(bn)n>1 in B such that |p(an)| — [l¢|| = 1 and |[¢(b,)| — ||#|| = 1, we then have |¢ ©® ¥ (a, ®by)| — 1,
50 || © ¥||lalg > 1, proving that ¢ © ¢ € S(A©® B). O

The above result allows for the following definition:
Definition 1.13. For C*-algebras A and B, we define a norm
[z]ls = sup{l|moou (@)l | ¢ € S(A), ¥ € S(B)}, =€ AOB.
The completion of A ® B with respect to || - || is denoted by A ®,, B.
We may of course inquire whether the above definition really yields a norm, and the most essential

things to know about || - ||, are the following, which will be stated without proof. Note first that we
already know that | - ||, is a C*-seminorm since it is equal to pr for

I'=5A)@5B)={r0¢|pecS(A), vecSB)}

The proof itself requires knowledge about the enveloping von Neumann algebra which we will learn
about in Chapter 2.

Proposition 1.45. |- ||x is a crossnorm and all linear functionals in A* © B*, i.e., the linear span of
all linear functionals on A® B obtained by Corollary[1.6, are bounded with respect to | - ||,

Proof. See [28, Proposition 1.23]. O

Therefore || - ||, is a C*-norm. We denote the set of states on A ® B that are contractive with respect
to || - [l by Sk(A© B).

Definition 1.14. For C*-algebras A and B, we define M(A,B) = A* ® B* N S(A® B). When the
C*-algebras are clear from the context, we will just write Ml = M(A, B).
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It immediately follows from Lemma and Proposition that
S(A)® S(B) CM C S,.(A® B).
Hence

[z]lx < pra(x) = sup [mp(x)[| < sup |lmp(z)] = [[#]lx, =€ AOB,
peM peS(AR.B)

50 || - [|lx = pua-
Assume now that A4 and B are unital. Then S(A ® B) is convex by Lemma For any ¢ € M and

y € A® B such that p(y*y) # 0, write o = > 1" | w; ® x; for wi,...,w, € A* and x1,...,xn € B* and
y=> 7 ®y. Fori=1,...,n,j,k=1,...,m, define

wWigp(a) = o(y"y)Pwi@fams),  Xi®) = ey y) "V xa(yibyk), a €A beB
Clearly these functionals are linear and continuous. Then

>

i=1 j,

/ / &= D wilziaze)xi(Wibye) oyt (a @ b)y)
1wijk(a)Xijk(b) = ; np(y*y) = <p(y*y) .

e
Defining ¢ = 77| 37 ) Wi @ Xijp» then ¢ € A* © B* and

Y(@)e(y y) = ey ry), € AOB.

As 1) is then algebraically positive and (14 ® 15) = 1, it follows that ¢ € S(A ® B), so M satisfies
the conditions of Lemma [1.42] yielding the following proposition:

Proposition 1.46. If A and B are unital C*-algebras, then
|z, = sup{p(z*z)'/? |p e M}, z€ AGB.
We dive headlong into our next result.
Proposition 1.47. || - ||x end || - ||min are equal C*-norms.
Proof. Let m: A — B(H) and p: A — B(K) be faithful representations. Let
X = {weorl€e M, ¢l =1}, X2 ={wgoplnek, |nl =1},
where we: B(H) — C and w,,: B(K) — C are given by
we(S) = (SE,€), wy(T) = (Tn,m), € B(H), T € BK).

[0, Proposition 3.4.2] then yields that the convex hull of X; (resp. X2) is weak*-dense in S(A) (resp.
S(B)). For any £ € H and n € K of norm 1 we have for all z € A® B of the form z = Y a; @ b;
that

n

[(we om) @ (wy 0 p)(@)] = | ((m(ai) @ p(b:))E @1, € @)

< l((x® p)@)EDmED )]
< It @ D)@ = ]

This implies that ¢ © ¥ € Spin (A © B) for all ¢ € S(A) and @ € S(B). Thus
[2]ls = sup{[|moou (@)l | ¢ € S(A), ¥ € S(B)} < sup{[|me, ()]l [w € Smin(A© B)} < [[]|min-

But since || - ||min is the least possible C*-norm by Takesaki’s theorem (see Theorem [1.43), we must
have [| - [lx = | - [lmin- 0

The preceding two propositions now tell us the following:
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Corollary 1.48. For unital C*-algebras A and B, we have
||| min = sup{e(z*z)/?|o e M}, ze AOB.

With our new way of expressing the minimal norm, the proof of this next proposition becomes quite
easy. We will not need the result until Chapter 5.

Proposition 1.49. Let A, B, C and D be C*-algebras and let p: A — C and v: B — D be
*-homomorphisms. Then the tensor product *-homomorphism ¢ ® ¢: A ® B — C ® D is contractive
when A® B and C © D are equipped with the minimal norm.

Proof. Let m: C — B(H) and m2: D — B(K) be faithful representations. By defining ¢’ = m 0 ¢ and
1" = w9 01), we now consider the representation ¢’ ©¢’": A®B — B(H®K) yielded by Corollary
For £ € H ® K, define a positive functional ¢ on A ® B by

de(z) = ((¢' ©9)(2)§,8), z€AOB.

By writing out £ as a sum of elementary tensors, it is clear that §; € A* ©B*. By Propositions[1.45/and
¢ is bounded with respect to || - ||min. Moreover, if (e4)aca, (f3)sen are bounded approximate
identities for A and B respectively, then by Proposition (ea @ f8)a,s is a bounded approximate

identity for A ®min, B- Letting 6} denote the extension of J¢ to A ®min B obtained from Proposition
then ;¢ is positive and by Proposition we have

¢l = lim d¢ ((ea ® f5)"(ea © fp)) = lm [(¢" © ¥)(ea @ Fo)El* < ligll*.

Therefore B 5
(" © ¢ )at|)? = be(a*x) < 0l ll2* @lmin < IEIZ N2 2 min = 1EN2 (2] min

and hence ||(¢" © ¥")z€]] < ||%||min]|€]| for all x € A ® B. Since this holds for all £ € H © K, then
continuity of all (¢’ ® ¢')z yields that it holds for all £ € H ® K as well. Therefore

10 © ¥)z]min = (¢ @ ")z < [|2]|min
for all z € A ® B, completing the proof. O
We now introduce a new notion.

Definition 1.15. A C*-algebra A is said to be ®-nuclear if there is a unique C*-norm on A ® B for
any C*-algebra B.

The last result is (unfortunately) stated without proof.
Theorem 1.50. Let A and B be C*-algebras.

(i) If A is non-unital and B is unital, then there is a uniqgue C*-norm on A® B if and only if there
is a unique C*-norm on A ® B.
(ii) If A and B are both non-unital, then there is a unique C*-norm on A ® B if and only if there is
a unique C*-norm on A® B.
(iii) If A is unital and B is non-unital, then there is a unique C*-norm on A ® B if and only if there
is a unique C*-norm on A® B.

Proof. See [28, Theorem 1.36]. O

That this section leaves out a lot of important proofs irritates me a great deal, but the fact is that we
will not be using any of the results until Chapter 5 and even then the use of them will be downright
minimal. Hopefully the reader will have understood the point of being introduced to algebraic states,
for they really do explain a great deal about norms on algebraic tensor products, and the proof of
Corollary is not exactly trivial. However that does not matter now; we have far more important
things to attend to.



CHAPTER 2

THE ULTRAWEAK OPERATOR TOPOLOGY

In a beginner’s course on von Neumann algebras, one starts out by being introduced to the weak and
strong operator topologies on B(H) and a neophyte in the subject is perhaps fooled into thinking that
these topologies suffice for proving all worthwhile results about von Neumann algebras. Experience
heals imbecility in this case; it might indeed be interesting to investigate whether topologies finer than
the weak or strong operator topology and coarser than the norm topology exist, not only as a test for
the curious, but perhaps for an altogether new approach to understanding the properties of certain
subsets of bounded linear operators on Hilbert space.

In this chapter we will construct two other locally convex Hausdorff topologies on B(H) for a Hilbert
space H, proving not only immensely useful, but also necessary for understanding just how flexible a
von Neumann algebra actually is. The last statement will be reflected in a wide array of concepts for
Hilbert spaces, von Neumann algebras and linear functionals on von Neumann algebras, not all of which
are directly related, but which nevertheless combine into the idea expressed in Section 2.11, namely
the enveloping von Neumann algebra of a C*-algebra. The chapter also includes three intermezzos
presenting concepts that are not directly related at all to the ultraweak operator topology, but are put
here for three reasons: (1) for the greater good of the project structure-wise, (2) because they would
not fit in anywhere else and (i) because the ideas are too relevant to be relegated to an appendix. In
any case, the three intermezzos are in themselves very much related to one another and are absolutely
essential for the concepts introduced and proofs given in Chapter 4 and 5.

2.1  Towards finer topologies
The details in the definition below are easily checked.

Definition 2.1. The ultraweak topology on B(H) is the locally convex Hausdorff topology determined
by the separating family of seminorms

o0

n=1

T~ , T €B(H)

for sequences (&,)n>1 and (1,)n>1 of H with > 00| [|€,]|2 < 0o and >°07, [I7a]]? < oc.

The ultrastrong topology on B(H) is the locally convex topology determined by the separating family

of seminorms
o0
> oIT”?
n=1

for T € B(H), where (&,)n>1 is a sequence of H with "7 [|&,]|? < .

1/2
T+

It is clear from the outset that T, — T ultrastrongly implies T, — T strongly and that T, — T
ultraweakly implies T, — T weakly. Furthermore, if T,, — T ultrastrongly in B(#), then T,, — T
ultraweakly as well. Indeed, for square-summable sequences (§,)n>1 and (7,)n>1 in H and T' € B(H),

then )
Z<T5na77n> < Z ”Tfn”Z lz ||77n||2 < ||T||2 Z ||§n||2] [Z |n7z||2] :
n=1 n=1 n=1 n=1 n=1

Finally, ultraweakly and ultrastrongly closed subsets of B(#) are also norm-closed.

29
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One could wonder if the ultraweak (resp. ultrastrong) topology could coincide with the weak (resp.
strong) in some case, and the following proposition provides a circumstance under which this is true;
the proof is quite elementary.

Proposition 2.1. Let T € B(H) and let (Ty)aca be a bounded net in B(H). Then T, — T ultraweakly
(resp. ultrastrongly) to T € B(H) if and only if T, — T weakly (resp. strongly). Hence the ultraweak
(resp. ultrastrong) and weak (resp. strong) topology coincide on bounded subsets of B(H).

Proof. The “only if” implications are trivial. Supposing that ||T,| < M for all « € A, then if £ =
(&€n)n>1 and n = (9, )n>1 are square-summable sequences in H, then for all N > 1 and « € A we find

o0 o0

N
Y A(Ta = D)énna)| < D W(To = Tyl + (M + T Y allllnal
n=1 n=1 n=N+1
N 00 1/2 50 1/2
<D W Ta = D)) + M+ T | > ||§nll2] [Z nnzl
n=1 n=N+1 n=N+1

by using the Cauchy-Schwarz inequality. For any ¢ > 0 then by first choosing an appropriate N to
make the second term arbitrarily small, then one can pick an a € A such that the first term becomes
arbitrarily small as well, hence implying that T, — T ultraweakly if T,, — T weakly. Similarly since
we have

o'} N oo
YT =D&l < D ITa =Dl + (M +[T1) D (1€l
n=1 n=1 n=N+1
for all N > 1 and « € A, we see that T, — T ultrastrongly if T, — T strongly. O

Throughout the project, we will mainly be considering and using the ultraweak topology. For the
following proposition, though, an understanding of the ultrastrong topology is absolutely essential.

Proposition 2.2. Let w: B(H) — C be a linear functional. Then the following are equivalent:

(i) w is ultraweakly continuous.
(il) w is ultrastrongly continuous.

(iii) There exist sequences (£,)n>1 and (nn)n>1 of H with > oo [|€a]* < 0o and 07 ||In.]|? < oo
such that

o0

W(T) =Y (Tén, ).

n=1

Proof. (iii) = (i) = (ii) is clear, so we only need prove (ii) = (iii). Suppose that w is an ultrastrongly con-
tinuous linear functional on B(#). Then there exist square-summable sequences (£/})p,>1, ..., (£™)n>1
in H and C' > 0 such that

m 00 1/2
WM< CY D ITE?
i=1 Ln=1

for all T € B(#) 13, Proposition 5.15]. Defining a sequence (&,)n>1 by

E(i*l)fﬂri’j =¢7 (S Na 1< ,7 <m,

i
then 3007 [[€a[|? = 3252, 372, (167117 < 00, 50 (§n)n>1 € HY and

1/2

> olTe|?

n=1

WM <C

Defining Ko = {(T¢,)n>1 € HN|T € B(H)} and let K denote the norm closure of Ko in H". The
linear functional ¢: Ky — C given by

P((T€n)n>1) = w(T)
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is then well-defined, and since ¢ is also bounded above by C', ¢ extends to a bounded linear functional
on the Hilbert space K by Proposition By the Riesz representation theorem [17, Theorem 2.3.1],
there exists (9,)n>1 € K such that

W(T) <(T£’n)n>17 77?1 n>1 = Z Tfmﬂn

n=1
proving (iii). O

With this in mind, great things will happen. Read on.

2.2 The predual of an ultraweakly closed subspace
For &, € H define a linear functional we , on B(#H) by

wen(T) = (T m).-

Obviously, we ,, € B(H)* with [Jwe .|| = [|€]||n]l. For £ € H, we also define we = we . If € is a unit
vector, then we is a state on B(H); it is called a vector state.

Definition 2.2. The subspace of B(#)* spanned by the bounded linear functionals we , is denoted
by B(H)~, and the norm closure of B(H)., in B(H)* is denoted by B(H)..

It is clear from the outset that B(?). is the set of weakly continuous linear functionals on B(H).
Proposition would make one expect that B(H). would then be the set of ultraweakly continuous
linear functionals on B(H), and indeed this is true, but the proof is not as obvious as one would think.

Recall that the set of finite rank operators is the linear span of the rank one operators E¢ ,: H — H,
&,m € H, given by
Efm(x) = <$,f>77a reH.

Indeed, if T € B(H) has finite rank n, then T(#) is a Hilbert space with a finite orthonormal basis
(n:i)—,. Hence

n
T¢ = (T min
i=1
for all £ € H. Putting & = T*n; for i = 1,...,n yields that T = """ | E, ,,. On the other hand, if

T is a finite linear combinations of Eg, ,.’s, then T'(H) is contained in the span of (1;)},, so T has
finite-dimensional image. Operators of the form FE , are called elementary operators.

We now turn to the first big proof of this chapter — it is like a Christmas present you do not think you
want when in fact you really need it.

Theorem 2.3. For any weakly continuous linear functional w on B(H), there exist orthonormal sets
(e))_q, ()i, in H and non-negative numbers A\;, i =1,...,n, such that

n n
w = Z Aiwe, e [lwl = Z Ai
i=1 1=1

Proof. We already know that w has the form w = Y?_, we, ,, from Proposition Assume that
§1,---,&, and 7, ..., m, are elements of H such that the two finite rank operators H — H given by
x> (x,m)& and x — Z?=1<x, n;)¢} for © € H are in fact the same operator. Then

D (Benbim) = Z(fué“)(??,m) = <Z(77,77i>§i,§> = <Z<n,nz>§;,£> = (&, o)

=1 i=1 i=1 i=1

MQW

(Een&ism)
i=1

for all £&,n € H, so the functionals Y-7_, we, ,, and Y7 | wer v agree on all finite rank operators
by linearity. If P, and P, denotes the finite rank orthogonal projections onto the linear spans of
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Nseeosps My -5 Mg and 1,000, &y, &1, .0, &, Tespectively, then Py TP, is finite rank for all T' € B(H),
yielding

P

D (T i) =

i=1

P q q

(TP, Prp) =Y (PITPy&i,mi) = > (PITPy&), ) = > (TP, Pinfy)

i=1 i=1 i=1

M@

s
Il
_

(T&,n;).

|
.MQ

N
Il
—

P _
Hence 327 we, m; = 21y We! !

Consider now the finite rank operator z — >_©_ (x,1;)&; let us call it A. Note now that A*A is positive
and has finite rank and hence finite spectrum o(A*A) = {u1,...,ux} by Lemma consisting of
non-negative numbers only. Hence A*A = Zf:l w;iPj, where P; = x;(A*A) for j = 1,...,k, x;
denoting the characteristic function of the one-point set {y;}. By uniqueness of the square root, we

see that
k

Al = (A A2 =" 1? Py
j=1

as it is positive with second power equal to A*A. Because (Pj);?z1 is a set of orthogonal finite rank
projections in B(H), then by taking orthonormal bases for P;(#) for j = 1,...,k and putting them
into one set ey,...,e,, we then obtain an orthonormal set (e;)? ;. For i = 1,...,n, let y} be the
number p; such that e; € P;(#). Then

|Al¢ = ZWP& ZWQ (€ edei, EE€H.

Let A = U|A| be the polar decomposition of A with U being the partial isometry with initial space
|A|(H). Note that (Ue;, Ue;) = (e;, U*Ue;) = (e;,e;) foralli,j =1,...,n, ase; € |A|(H). By defining
ej =Ue; foralli =1,...,n, then (e})7, is an orthonormal set and

A =UAg = Zu” Pig = Zu”/zf,ez ¢, £en.

j=1

2 for § = 1,...,n, then by what we first proved it follows that

p n
w= E :wﬁiﬂli = E /\iweixef;'
i=1 i=1

It is clear that [jw|| < 7L, A, If we put T'= 371 | E., o, then note that

Defining A\; = p;

2

=> & e < |ig)?
=1

n

Z<§7 €i>e;

i=1

HT£||2 = ei,egg

from Bessel’s inequality [13, Theorem 5.26], so |7 < 1; as w(T) = 321 Ni(Ee, erei,€f) = 2202 iy
equality follows.

Corollary 2.4. B(H). is the set of ultraweakly continuous linear functionals on B(H).

Proof. 1t is clear from Proposition that all ultraweakly continuous linear functionals are contained
in B(H). For the converse inclusion, let w € B(#H). and let (wy,)r>1 be a sequence of weakly continuous
functionals such that |lw, —w| <2772 for all n > 1. Then ||w, — wp_1| <2772 4+27""1 < 27" for
all n > 2 and |Jw;|| < ||w|| +273. Defining ¢1 = w; and ¢,, = w, — wy,_1 for all n > 2, we obtain that
on € B(H)~ for all n > 1 with

o0

w=¢n
n=1
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The preceding theorem yields non-negative numbers A{', i = 1,..., k, and orthonormal sets ef, ..., ep
and ef?,...,e? such that

kn
Pn = § )\ Wen eim
=1

for all n > 1. Note that Z "L AR < 27" for all n > 2 and Zkl Al < |lw|| +273. Hence

oo kn
= Z w (A7) 1/2en ()\n)l/2 i
n=11i=1
with
oo kp 0 kn
ZZ AY2er? = SN A < Jwf + 27 3+Z2 "
n=1i=1 n=11i=1

and 200 S ||(A7)1/2¢/7||2 < oo seen analoguously. Propositionathen yields that w is ultraweakly
continuous and this proves the statement. O

What we have obtained now is remarkable; the set of ultraweakly continuous linear functionals is in
fact a Banach space. To what use, one may ask, and one would be silenced very quickly in view of the
next result.

Proposition 2.5. The Banach space B(H) is isometrically isomorphic to the dual of the Banach space
B(H). by the natural mapping A given by evaluation, i.e.,

A: B(H) = (B(H).)", AT)(w)=w(T), T € B(H), we B(H)..
Proof. Tt is clear that A is well-defined and linear. For T' € B(H) and w € B(H)., we have
IAMT) ()] = w(T)] < [wllIT1],

proving ||A(T)|| < ||T||. To prove that A is actually an isometry, note that we, € B(H). for all
&,m € H, whereupon we obtain from Lemma [1.24] that

1T = sup{KT€, m)[ | £, € H, €]l = 1, [Inll = 1}
= sup{lwe,, ()| 1€ n € M, [[€] = 1, [In]l =1}

< sup{|AMT)(we.n)l[1€m € H, llweyll = 1}
< A

For ¢ € (B(H)«)*, note that by defining

P& = plwen), &neH,

we obtain a bounded sesquilinear form on H. By the Riesz representation theorem [17, Theorem 2.4.1],
we obtain a unique operator T' € B(H) such that

‘p(wi,n) = <T§,77>, ga 77 S H

As (T€,n) = we n(T) = A(T)(we,y), it follows that A(T") and ¢ coincide on B(H)~. By continuity, it
follows that A(T) = ¢. O

Note that in the above proof we only used the definition of B(H)., that is, we did not use Corollary [2.4}
We shall see now that the reason for this identification comes from the fact that we are working with an
ultraweakly closed subspace of B(#), which the following results will make clear. For an ultraweakly
closed subspace .# of B(H), let .#* denote the closed subspace of ultraweakly continuous linear
functionals w on B(#) such that w(.#) = {0}.

Lemma 2.6. If .# is an ultraweakly closed subspace of B(H), then

M= M+ ={T € BH)|w(T)=0for all w e .#4*}.
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Proof. That .# C .#++ is clear. If T € B(H) \ .#, then it is a consequence of the Hahn-Banach
separation theorem |14, Corollary 1.2.13] that there exists an ultraweakly continuous linear functional
won B(H) with w(T) # 0 and w(.#) = {0}. O

Theorem 2.7. Let 4 be an ultraweakly closed subspace of B(H) and define
M ={plulo e BH) Y, M ={pla|p € BH).}.
Then M., H,  H* and
(i) A consists of all weakly continuous linear functionals on A .

(ii) A, consists of all ultraweakly continuous linear functionals on A .

)

)
(i) A is a norm-closed subspace of A#* and is the norm closure of ...
(iv) for any w € A, and any € > 0 there exists ¢ € B(H). such that w = ¢| 4 and ||¢|| < |Jw| + €.
)

(v) A is isometrically isomorphic to (M,)* through the canonical identification

Ayt — (M), Ag(T)w)=w(T), TeM, we . k.

Proof. (i) and (ii) follow from the Hahn-Banach extension theorem for locally convex topological vector
spaces [14, Theorem 1.2.14].

(iii) Define a surjection Q: B(H). — .. by Q(¢) = ¢|.4. Q is linear of norm < 1 with kernel .2~
Hence it induces a linear map Q: B(H)./.#*+ — #, defined by

Qo+ A") = ¢la.

Note that B(H)./.#~ is a Banach space; hence we can prove that .#, is closed in .#* by proving
that € is in fact isometric. Letting ¢ € B(H)., then for all ¢ € ¢ + .#~+ we have

190 + 2| = 120 + 25| = [V]all < |2,

so by taking the infimum over all 1, we obtain ||Q(¢+.#")| < |l¢+.#"|. Therefore Q2 is contractive.
Take p € B(H). \ .#*, ie., such that

§:= inf [o+w|=¢+.2"|>0.
Jof o+l =l |

The Hahn-Banach theorem [13, Theorem 5.8] then provides a bounded linear functional ® on B(H).
satisfying ®(p) = 4§, [|®|| = 1 and ®(.#+) = {0}; using Proposition we then obtain T' € B(#) such
that (T) = ®(¢) =0, |T|| =1 and w(T) =0 for all w € .#*+. Hence T € A4 ++ = .4, so

120p + 25| = llolall 2 (D) =6 = llp + .2~

Hence {2 is an isometric isomorphism, proving that .#, is closed.

Since B(H).~. is norm-dense in B(H). and the bounded linear map ¢ — ¢| 4 maps B(H)~ to .#. and
B(H)s to ., it follows that .Z. is norm-dense in .#,. As .#, is closed, we finally obtain (iii).

(iv) For any w € #,, then, on the grounds of what we just found, there exists pg € B(#). such
that ¢o|.s = w and |lw|| = |l¢o + .#*|. Hence for any ¢ > 0 there exists ¢; € .#~ such that
o + 1]l < [lwll + &. By defining ¢ = @o + 1 € B(H)+, then ¢l.s = ¢ol.x = w and o] < [Jw]| +e.

(v) A_y is clearly well-defined, linear and contractive. To see that A_y is actually an isometry, let
T € # and € > 0. For any € > 0, take ¢ € B(H). with [|¢| < 1 such that |A(T)(¢)| > [|A(T)|| — &,
where A denotes the canonical identification B(H) — (B(#H).)*. Then

A2 (D)l = [Aa(T) (i)l = [o(T)] = [MT) ()| = AT —e = T — ¢,
so [Az(T)|| > ||IT|. Hence A_y is an isometry. Finally, let ¢ € (.#,)*. Define a linear functional on

B(H)« by
®(a) = plala), o€ B(H).
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Then & is bounded and ®(.#~1) = {0}. Hence there exists T € B(H) such that
o(T) = plalg), o€ B(H)..
In fact T € # since o(T) = 0 for all a € .#*, implying T € .#*+. Therefore
plala) =ala(T) = Aa(T)(ala), acBMH).,
so Ay (T) = ¢ for some T € .#. Hence A_y is surjective. O

All the magic tricks we have been developing so far requires a celebration of a kind, and why not start
out with a definition?

Definition 2.3. For an ultraweakly closed subspace .# of B(H), the Banach space .#, from Theorem
is called the predual of .#, and it consists of all ultraweakly continuous linear functionals on .#.

The reason for the term is exactly because of statement (v) of Theorem M, is the predual of
M in the sense that .# can be identified with the dual space of .#,. The canonical identification
Ay M — (A)* will be denoted by A if no illogical confusion can occur (one never knows, though).

A consequence of identifying an ultraweakly closed subspace .# of B(H) with a dual space is that
we can compare the ultraweak topology on .# with a well-known topology and obtain some very nice
results.

Corollary 2.8. Let .4 be an ultraweakly closed subspace of B(H). Then the canonical identification
Ao A — (M) is an ultraweak-to-weak™ homeomorphism.

Proof. This follows the fact that .#. = {¢|.» | ¢ € B(H).}, Proposition [2.2] and Corollary O

In particular, for a net (Ty)aca in # and T € A, then T,, — T ultraweakly if and only if we have
w(Ty) = w(T) for all w € .. We will use this fact a lot throughout the project, so the reader is
advised to keep it in mind.

Corollary 2.9. Let .# be an ultraweakly closed subspace of B(H). Then (), is ultraweakly compact.
In particular, (B(H))1 is ultraweakly compact.

Proof. Follows from Corollary and Alaoglu’s theorem [13, Theorem 5.18]. 0

For our work to really have an influence, we reach into our analyst’s hat and find a rabbit in form of
the Krein-Smulian theorem [6, Theorem V.12.1], namely that if X is a Banach space and . C X* is a
convex subset of its dual space, then . is weak*-closed if and only if .7 N (X*), is weak*-closed for all
r > 0. This immediately leads to the following corollary.

Corollary 2.10. Let .7 be a convex subset of B(H). Then . is ultraweakly closed if and only if
S N (B(H)), is ultraweakly closed for all r > 0.

Proof. Since the canonical identification A: B(H) — (B(H).)* was an ultraweak-to-weak* homeomor-
phism and A(%) is weak*-closed if and only if A(7) N ((B(H)+)*)r = AN (B(H)),) is weak*-closed
for all » > 0 by the Krein-Smulian theorem, the result follows. O

We can then finally summarize where our knowledge of preduals has taken us so far, by considering
convex subsets of B(H); since *-subalgebras are convex, one can imagine what good this final theorem
of this section will do.

Theorem 2.11. Let .¥ be a convex subset of B(H). Then the following are equivalent:

(i) 7 is ultraweakly closed.
(il) .7 is ultrastrongly closed.
(iii) (), is weakly closed for all > 0.
iv) (&) is strongly closed for all r > 0.
) (L) is ultraweakly closed for all r > 0.
) ()

~~
—

v

—~

v

(vi) (&), is ultrastrongly closed for all r > 0.
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Proof. Since the set of ultraweakly continuous linear functionals coincides with the set of ultrastrongly
continuous linear functionals by Proposition [2.2] (ii) < (i) follows from Theorem Since (.7),
is convex, the same theorem and Proposition |0.8] yields (iv) = (iii) and (vi) = (v). The implications
(iii) = (iv) and (v) = (vi) are trivial. Proposition [2.1|yields (i) = (iii), (ii) = (iv), (v) = (iii) and (vi) =
(iv), and (v) < (i) is just the statement of Corollary O

Corollary 2.12. Let # be an ultraweakly closed subspace of B(H), w: .# — C be a linear functional
and ro > 0. Then the following are equivalent:

(i) w is ultraweakly continuous.
(il) w is ultrastrongly continuous.
(iii) (resp. (iil.a)) w is weakly continuous on (M), for all r >0 (resp. r =19).
(v

(vi

(resp. (v.a)) w is ultraweakly continuous on (M), for all v >0 (resp. r =1g).
(resp. (vi.a)) w is ultrastrongly continuous on (A ), for all v >0 (resp. r =ro).

(vii) There exist sequences (&,)n>1 and (n)n>1 of H with Y 0o [|€a]]? < o0 and Y07 [|na]]? < oo
such that

)
)
)
(iv) (resp. (iv.a)) w is strongly continuous on (M), for all v >0 (resp. r =19).
)
)
)

W(T) = Z<T€n777n>v Ted.

n=1

Proof. The following implications are clear: (i) = (v), (ii) = (vi), (iii) = (v) = (vi), (iii) = (iv) = (v),
()= (z.a) for = € {iii,iv,v,vi}, (iii.a) = (iv.a) = (vi.a) and (iii.a) = (v.a) = (vi.a). Furthermore,
Proposition yields (i) = (iii) and (ii) = (iv) and Proposition gives us (vii) < (i) < (ii), so it
suffices only to prove (vi.a) = (i). If w satisfies (vi.a), let . =kerw C .4 and let s > 0. If T € B(H)
and T, — T ultrastrongly for some net (Ta)aca in (-#)s, then 2T, € (M), for all a € A. As
(M), is ultrastrongly closed by Theorem we see that 2T € (M), so T € (M ). Moreover,
wTy) »w(T),s0T € S N(M)s = (F)s. Hence (.¥)s is ultraweakly closed for all s > 0. Because
. is convex, . is ultraweakly closed by Theorem |2.11} so w is ultraweakly continuous [14, Corollary
1.2.5]. O

We do not know it yet, but the two results above are more than enough to show how lovely von
Neumann algebras really are.

2.3 Intermezzo 1: The central support

We will now deviate intermittently from what has been going on so far, in order to introduce some
extremely relevant concepts relating to von Neumann algebras, as well as introduce some notation that
proves very helpful in the next sections. H is once again a fixed Hilbert space.

Let T € B(H) and let P be the projection onto 7*(#), so that 13, — P is the projection onto kerT'.
Then T(ly4 — P) = 0, so T = TP. Conversely, if P, € B(H) is a projection satisfying TP, = T,
then for T(1yy — P1)€ = 0 for all £ € H. Hence 14y — Py < 1y — P or P < P;, so P is the smallest
projection in B(H) satisfying T = TP; it is called the right support of T and is denoted by S,.(T). If
@ is the projection onto T'(#H), then 13, — @ is the projection onto ker T*. Hence T*(1y — Q) =0, so
(14 — Q)T =0 or T = QT. Similarly, one shows that @ is the smallest projection satisfying 7' = QT
it is called the left support of T and is denoted by S;(T). It is clear that S,.(T) = S;(T*), and if T is
contained in a von Neumann algebra .#, .# contains S,(T") and S;(T") as well [31, Corollary 17.6].

Definition 2.4. For any von Neumann algebra .#, we define the center Z(.#) of .4 by
Z(M) =M,

i.e., Z(A) consists of all operators of .# that commute with everything in .#. Any projection in
Z(A) is called a central projection of A .

Let .# be a von Neumann algebra and let T € .Z. If R is any central projection of .Z that majorizes
the right support of T, RT = TR = TS.(T)R = T, so R majorizes the left support of T as well.
Taking the infimum over all such projections, we obtain a unique central projection Cp of .# [31,
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Proposition 24.1] that is the smallest central projection that majorizes the left and right supports of
T. We have Cr = Cp« as well as CrT = TCyp = T. If Q is a central projection of .# such that
QT = 0, then because QCr is a projection and T'— QCrT = T, it follows that 13 — QCr > S;(T)
and 1yy — QCr > S.(T). Hence 13y — QCr > Cr and QCr < 19y — Cp, so QCr = 0. Cr is called the
central support of T. Let us summarize:

Definition 2.5. For any operator T in a von Neumann algebra .# C B(H), the central support of T
is the smallest central projection P of .# such that

T(H) C P(H).

The central support of T is denoted by Cr, and it satisfies CrT = TCy = T. Furthermore, if QT = 0
for some central projection @, then @ and C'; are orthogonal.

We will now, before finding reasons that the notion of a central support is useful, introduce the
aforementioned relevant notation.

Definition 2.6. Let .# be a subset of B(H) and let X be a subset of . We denote the closure of
the linear span of
ME={TE|TeS E€cX}CH

by [AX]; [.#X] is called the essential subspace of A with respect to X. If X = {£}, we write [#¢]
instead of [.ZX].

First follow some facts about essential subspaces.

Lemma 2.13. Let # and A be subsets of B(H) that are closed under multiplication and furthermore
satisfy M C A . If it holds for subsets X and ) of H that X C [A'Y)], then [#X] C [AD]. As a
consequence, [ [ M X)) C [#X] for any subset X C H.

Proof. For non-zero T' € .# and £ € X, we have £ € [49]. For any given ¢ > 0, we can take
Ti,...,T, € A and &,...,&, € Y such that || — D1 | T:&]| < ﬁ, whence

IT6 =) TT:&| <e.

i=1
AsTT; € A foralli=1,...,n, it follows that T € [.#9)]. Hence we can conclude [#X] C [#'Y]. O

Lemma 2.14. Let A be a self-adjoint subset of B(H) that is closed under multiplication and contains
the identity operator 1y, and let X be a subset of H. Then [.#X] is the smallest among all closed
subspaces ) of H such that X C ) and the projection onto ) belongs to the von Neumann algebra ' .

Proof. Since . is unital, X C [.#X]. If P is the projection onto [.# X], then for all T € .# and £ € H,
we have TP = PTP¢ by Lemma |[2.131 Hence PTP = TP for all T € .#. Since .4 is self-adjoint
it also holds for T' € .# that PT*P = T*P and hence PT = PTP, so we see that PT = TP and
Pe. /' 1t 9 is a closed subspace such that X C 9) and the projection @) onto 2) belongs to .#’, for
all T € A4 and £ € X, we have T, = TQE = QTE € ), so [#X] C Q). O

The next proposition is quite surprising — just take a look at it and wonder for a moment.

Proposition 2.15. Let # C B(H) be a von Neumann algebra and let X be a subset of H. Let
B =[#%]. Then
[4'B) = [Z(#)'X].

Proof. Since A4 C Z(#)', we have that the linear span of .ZX is contained in the linear span of
Z(M)%E, so B C [Z(A)%]. The inclusion 4" C Z(A) then yields [#'B] C [Z(.#)'X] by Lemma
Let P be the projection onto [.#'B]. We will show that P € Z(.#). By Lemma we have
(A" = A, so we only need to show that P € .#'. For T € .4, T' € A" and £ € B, we have

T(T'¢) = T'(T€) € T'(B) € [.A4'B],

e
m

as T¢ € [# X] = B by Lemmal2.13} Hence T maps the linear span of .#’B into [.#'B], so by continuity
of T, T maps [.#'B] into [.#'B]. Therefore PT'P = TP for all T € .#. In the same manner as in the
previous proof, we see that PT = TP, so P € Z(.#). Hence for T € Z(.#) and n € X C [.#'B], we
have Ty = TPn = PTy € [.#'B] and hence [Z(.# ) X] C [.#'B] by taking norm closures. O
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Why would one prove the above statement, one could again ask. The reason is the following, providing
a gateway to introducing a new von Neumann algebra specimen as well as proving some greatly needed
facts about it.

Corollary 2.16. Let X be a closed linear subspace of H such that the projection P onto X is contained
in a von Neumann algebra .4 . Then the projection onto [.#X] is the central support of P.

Proof. Let @ be the projection onto [.#ZX]. Since X C [.#X], we have P = QP = P(Q. Since P
commutes with all operators in .#’, then for any T € .#' and £ € X, we have T, = TP = PT¢ € X.
Hence [.#'X] = X, so by Proposition we have [#X] = [(#')'X] = [Z(#")X] = [Z(H)'X].
By Lemma [#X] is the smallest among all closed subspaces %) of H containing X such that
the projection onto ) is in Z(.#). Hence Q is a central projection that majorizes the left and right
supports of P. If R is another central projection in .# that majorizes the left and right supports of
P, then for all £ € X, we have

€ = PE = PS,(P)¢ = PRS,(P)¢ = RS, (P)¢ € R(H),
so X C R(H). Therefore [#X] C R(H) and Q < R, so Q is the central support of P. O

Without further ado, let us construct a new von Neumann algebra.

2.4 Intermezzo 2: The reduced von Neumann algebra
For a non-zero projection P € B(H) and a subset . of B(H), then PT =T for all T € P.#. Defining
Ip={T|pw)|T € P7},

it is then clear that the restrictions in .#» map into P(#), yielding that .#p is a subset of bounded
linear operators on the Hilbert space P(H). If .4 is a *-subalgebra of B(H), then P.# and .#p are
*-subalgebras as well.

Proposition 2.1%7 (The reduced von Neumann algebra). If .# C B(H) is a von Neumann algebra
and P € A is a non-zero projection with X = P(H), then the following hold:

(i
(i) the restriction map P.#P — Mp given by T — T|x is a *-isomorphism.

)
)
i)
)

Mp and (M')p are von Neumann algebras on X.
iii) (Ap) = (A")p, allowing for the name .+ for these equal von Neumann algebras.
P

if A C B(H) is a closed set under multiplication and the adjoint operation that generates A,
i.e., M = A", then Ap generates Mp.

(v) if BC B(H) is a self-adjoint subset generating .#', then Bp generates (Mp)'.
(vi) B(H)p = B(P(H)).

(iv

~—

AMp is called the reduced von Neumann algebra or corner algebra of .# associated to P.

Proof. (ii) is straightforward; the proof of Lemma can easily be adjusted to work in this case. In
fact, (ii) holds for any P € B(H) and any C*-subalgebra .# C B(H), as .#p is also a C*-algebra in
this case. (vi) is also immediate, just by extending any operator on X to H by defining it to be 0 on
the orthogonal complement X=.

It is clear that everything in .#p commutes with everything in (#")p, as P € .#. If T € B(X)
commutes with all PSP|x where S € B, then by defining 73 = TP € B(H) we see that

Tl c B/ — B//l — %/l — %)

as B is a von Neumann algebra whence T'= PT}|x € #p. Thus (Bp)' C #p. If we for a moment set
B = .#', then we see that .#p = ((.#')p)’, so #p is a von Neumann algebra. Returning to arbitrary
self-adjoint subsets B C B(H), we have

(Bp)" 2 (Mp) = ((M")p)" 2 (M')p 2 Bp,

so (Bp)" = (#p)’, and hence we obtain (v).
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Assume now that 14 € A. We will show that (Ap)’ C (.#")p. Once we show this, we will have
(Ap)" 2 ((#")p) = Mp 2 Ap,
so that (Ap)” = .#p and hence (iv) holds; we will have
(A")p C ((A")p)" = (Mp) =(Ap) C (A')p,
so that (/) is a von Neumann algebra and (.#")p = (.#p)’, giving us (i) and (iii), almost completing

the proof. We therefore have to show that for each T € (Ap)’ that T € (#")p. It suffices to show the
result for unitary operators by [31, Theorem 10.6], since (Ap)’ is a von Neumann algebra.

First of all, note that by Corollary Cp is the projection onto [.ZX]. Additionally, we have
X C [AX] since 1y € A. If Q is the projection onto [AX], then Q € A’ = .#’ by Lemma [2.14] Hence
by the same lemma, we must have [.# %] = [AX], so Q = Cp.

Let U € (Ap)’ be unitary and let &, ...,§, € X and Th,..., T, € A. Defining T}j; = PT;T; P|x for all

i,7=1,...,n, we have Tj; € Ap, so U commutes with all T};;. Hence
n n
ZTUfz = Z (T,PUE;, T, PUE;) = > (PTyT,PUE, UG) = Y (T3U&,UE))
ij=1 ij 1 i,j=1
=Y (Ty&.8) = ZT&
ij=1

By Proposition there exists a unique isometric linear operator S: [AX] — [AX] satisfying

S (Zm) =Y TU&, Ti,....Ta€A &,....6 € X,
=1 =1

which we can extend to an operator S € B(H) by defining it to be zero on the orthogonal complement
of [AX]. In addition, SQ = QS =S. Forany T € A, T,...,T, € A, and &1,...,§, € X, we have

ST (Z m) =5 (Z T%) Y Tnug -7 (Z Tﬂf@) =TS (Z TZ-U@) :
i=1 i=1 i=1 i=1

i=1
so ST and T'S agree on [AX] by continuity. Hence for any £ € H, we have
TS¢ = TSQE = STQE = SQTE = STE,

since @ projects onto [AX] and @ is central. Therefore S € A" = .#'. Moreover, S¢ = U¢ for all
r € X, s0 UZPSP|X S (%/)p.

If 14 ¢ A then by putting A; = AU {13}, we have ((A1)p) C (.#')p on the grounds of what we
have just proved. As (A;)p = ApU{1x}, then by assuming that T € (Ap)’, then T clearly commutes
with everything in (A;)p, so we see that (Ap)’ C (.#’)p. Hence it follows from the case of 1y € A
that (i), (iii) and (iv) hold for the case 13 ¢ A. O

Let .# be a von Neumann algebra and P € .# a projection. The map .#' — P.#’'P given by T' —
PT'P = PT is then a surjective *~homomorphism. Combining this with the isomorphism of (ii) in the
above proposition, we obtain a surjective *-homomorphism .#’ — (/// )p given by TV — PT'|x = T"|%.
Suppose that Cp = 1 4. If X = P(H), then by Corollary 2.16] # = [.#X]. If T' € .4’ is such that
T'|x =0, then T'T'(X) = TT'(%X) = {0} for all T € .#. Since H = [///%], T’ is 0 on a dense subset, of
H, and therefore 7" = 0. We can therefore conclude the following:

Proposition 2.18. If .# is a von Neumann algebra and P € 4 is a projection with Cp = 1, then
A and (M) are *-isomorphic.
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Now let .# C B(H) be a von Neumann algebra and let P € .#. Define P’ = P|c,(y) € Mc, C
B(Cp(H)), and note that

(M) pr = {P'CpT'CpP|piay | T € My ={T'|peay | T" € M'} = (M )p.

By the remarks made before Proposition we now have a surjective *~-homomorphism ¢: ///ép —
Mp given by o(T") = T"| p(3)- This construction in fact allows to generalize the above corollary.

Corollary 2.19. Let .# C B(H) be a von Neumann algebra and let P € .4 be a projection with central
support Cp € M . Then the map ¢: M, — Mp given by p(T") = T'|p(y) is a *-isomorphism.

Proof. 1If we can show that Cp: € .#c,, is equal to 1¢,(3) where P’ = P|c, (), then we can just apply
Proposition Take Q € . such that Cpr = Q|c,(3), and define Qy = QCp € 4. Since

(Qo&, Qon) = (QCPE, QCPN) = (Cp/ (CpE), Cp (Cpn)) = (Cp(Cp Cp€),n) = (Cp Cp&,n) = (Qoé,n)
for all £, € H, we have that (o is a projection since Q§Qo = Qo. Moreover,

QoP¢ = QCpPE = QPE = Cp PE = Cpr Plop ) (PE) = Plopm (PE) = P,
for all £ € H, so Qo > P. Finally, if T € .#, then

QT =QCPTE = Cp CpT¢
= Cp/(CPTCRE) = Cpr (CPTCP)|0p(a) (CPE) = (CPTCP)|cp(3) (Cp CpE)
cdc,
= CpTCpCp Cp§
=TCpCp =TQRCPE = TQuE.

Therefore Qg is a central projection in .# that majorizes P, so Qy > Cp. Hence QCp = QoCp = Cp,
so Cpr = 1C’p(7-l)' O

To finish off this section with a bang, we will investigate what can be derived from the simple notion
of reduced von Neumann algebras, with no extra strings attached. The first important fact is this very
handy isomorphism theorem.

Proposition 2.20. Let # C B(H) be a von Neumann algebra and let (P,)aca any family of non-zero
pairwise orthogonal projections in .#'. If Y 4 Po converges strongly to the identity, then .4 is
*-isomorphic to the direct sum @ 4 . #p, by the *-isomorphism Q: M — @ c 1 AP, given by

AT) = (PaT|p, (1)) aca-

Proof. Note first that # is isomorphic to the Hilbert space @, ., Ha Where H, = Po(H) by the
unitary operator
U:H> 5 = (Pag)a€A~

The only nontrivial hurdle to overcome in a proof of this is to prove that U is surjective. If (£4)acA,
then (3, cp&a)rca is a Cauchy net where the F' are finite subsets of A. To see this, let S C A be a
finite subset such that

D el <&

acA\S
Indeed, for finite subsets F' and G of A with S C F' and S C G, then we have

D b= S o Y

2

a€F acG a€F\G a€G\F
= D l&l®+ Y léal?
aeF\G a€G\F
= > lal®~ > lgal?
acFUG ac NG
< gl =D ligal?
a€cA acsS

< e?
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as the &,’s are orthogonal. Hence there exists { € H such that £ = limp ) cpa = D nca o For
a € A, note that P, ¢ = ZﬁeA Po.&s = P& = &, hence proving surjectivity of U and that

U~ é.a aeA Z fa

acA

Going abruptly back to €2, it is not hard to see that it is unital, linear and multiplicative. For T' € .Z,
then for (§0)aca; (Na)aca € Boca Ha we have

<(P@T*‘HQ)OCEA(§OC)O¢EA7 (na)oceA> = Z <T*£a7 77a>

acA
=D {6, Tna)
acA
= (({a)aca, (PaTl#,)aca(Na)acA),

so Q preserves involutions. If P, S|y, = PaT |y, for S,T € .# and all o € A, then
SE=Y PaSP.& =) PaTPa{=T¢

acA a€A

forall ¢ € H,s0 S =T. Let T' = (To)aca € Poca Ap., and define T: H - H by T=U'T'U. T
is bounded and linear, and for any S € .#’, we see that P, S|y, C .#p_for all a € A, sofor all { € H
we have

TSE = Z T.,P,S¢ = Z T,P,SP,¢ = Z P,ST, P, (=S (Z TaPa§> = STE.

a€cA a€cA a€A acA
Hence T' € #" = # and as

Q( )5 (P U~ 1T Ufa acA = Z T goz = (Tafa)aeA = Tlf
BEA acA

for £ = (£u)aca, we find that Q is surjective. O

Before introducing the next result, concerning tensor products of reduced von Neumann algebras, some
discussion is required. For Hilbert spaces H and K and closed subspaces Ho € H and Ky C K, then it
is immediate that Hg ® Ky is isomorphic to the norm closure of Hg ® Kg, the latter being considered
as a subspace of H ® K. Hence we can consider Hy ® Ko as a closed subspace of H ® K. Hence if
Py € B(H) and P, € B(K) are projections, then for any w =" ;& ®@n; € H © K, we have

(P, ® Py)w= ZH& ® Pon; € Pi(H) @ P2(K),
i=1
Hence (P, @ Po)(H® K) C Pi(H) ® Pg(lC) since such w are dense in H ® K. The reverse inclusion is
clear, so we have (P} @ P2)(H® K) = Pi(H) ® P»(K) as subsets of H ® K.

Proposition 2.21. Let .#4 C B(H) and A4 C B(K) be von Neumann algebras. If Py and Py are
projections of M and N, respectively, then

(‘%®'/V)P1®P2 = '//P1 QJVPz
as subsets of B(P1(H) ® P»(K)).

Proof. M ® ./ is generated by operators of the form >_"" | S; ® T; where S; € .# and T; € 4 for all
i =1,...,n. Hence by Proposition (M @ N)p,op, is generated by operators of the form

n

(P ® P») (Z S; ® T) P ® P)|(p,op)(Hek) = Z(PISiP1)|P1(H) ® (RT3 P2)|p,xy € Mp, @ Np,,
i—1

o (MSN)pgr, C Mp, @ Np,. The reverse inclusion is obtained by going backwards. O

The big deal about reduced von Neumann algebras is of course that we do not often know a lot about
a given von Neumann algebra, but reducing it by sometimes more than one appropriate projection
might yield a great deal of knowledge one would not be able to acquire at the outset. The third and
final intermezzo is a great example of this.
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2.5 Closure properties of von Neumann algebras

Von Neumann algebras are usually defined by means of the strong or weak operator topology. In this
section we shall not only see what von Neumann algebras have to do with the topologies defined in
this chapter, but prove a more flexible version of a well-known theorem for von Neumann algebras,
namely von Neumann’s bicommutant theorem (originally stated in Theorem [0.10). The only fact that
we will take for granted here is that commutants of self-adjoint sets are always weakly closed, the proof
of which is easy and can be found in [31, Proposition 18.1].

Before progressing, let us take a deep breath and introduce three relevant concepts. The third will
be the center of focus in this section, while the first two will be the focal point in the next couple of
sections, including the third intermezzo.

Definition 2.7. Let .# be a *-subalgebra of B(H) and let X C H. X is cyclic for A if [#X] = H.
X is separating for A if for any T € .4, T, =0 for all € € X implies T = 0. If X = {¢}, we say that
¢ is a cyclic or separating vector for .#. Note that if .# is a von Neumann algebra, then a cyclic or
separating vector for .# must necessarily be non-zero.

The connection between the two above concepts is the following.

Proposition 2.22. Let .# C B(H) be a *-subalgebra and X C H a subset. Then the following
conditions are equivalent:

(i) X is cyclic for A .
(ii) X is separating for A’ .

Proof. Assume that X is cyclic for .# and that T € .#’ satisfies T¢ = 0 for all £ € X. For any
S € # and £ € X, we then have T(S§) = ST = 0, so T[.#%] = {0}, implying T' = 0. If X is
separating for .Z’, let P denote the orthogonal projection onto [.#ZX]. Then P € .#' by Lemmam
and (13 — P)X = {0}, so 13y — P = 0 and hence [.#ZX] = H. O

The weakest (as in largest) possible cyclic subset is of course H itself, and a special name is in order
if H is cyclic for some *-subalgebra of B(H).

Definition 2.8. If .# is a *-subalgebra of B(H), .# is said to be nondegenerate on H if H is cyclic
for A, ie., if [AH]=H.

Note that a *-subalgebra of B(#) is nondegenerate at once if it contains the identity operator.
Lemma 2.23. Let .4 be a *-subalgebra of B(H). Then for £ € H, the following are equivalent:

() € € [AH]* .
(ii)) T¢ =0 for allT € A .

Proof. ¥ TE =0 for all T € ., then for all n € H and T € .# we have
(& Tn) =(T7¢m =0
since . is self-adjoint, so £ € [#H)* . If £ € [[#4H]*, we see that
IT€|]* = (€. T*T€) =0
and hence T¢ =0 for all T € . O

Corollary 2.24. Let .# be a *-subalgebra of B(H). Then the following are equivalent:

(i) A is nondegenerate.
(ii) For any non-zero § € H, there exists T € M such that T # 0.

Proof. . is nondegenerate if and only [.ZH]* = {0}. O

Lemma 2.25. Let .4 be a *-subalgebra of B(H) and let B={x € H|Tx =0 for al T € #}. Then
[#H] and B are orthogonal complements in H and if P denotes the orthogonal projection onto [.#4H],
then T =TP = PT for all T € ..
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Proof. By Lemma [#H)t = B. If Q denotes the orthogonal projection onto B, then for all
T € # we have TQ =0,s0 T =T (13 — Q) = TP. This implies T* = T*P for T € .#, so by taking
adjoints, we see that T'= PT. O

The next two lemmas concern properties of nondegenerate *-subalgebras.
Lemma 2.26. Let .# be a nondegenerate *-subalgebra of B(H). Then & € [#E] for all £ € H.

Proof. Let P be the orthogonal projection onto [.#¢]. Then for all T € .#, we have PTP = TP and
by taking adjoints, we see that PT™ = PT*P. Because . is a self-adjoint set, we see that

PT'=TP=PTP
foral T € A ,ie., Pc ' It & = P¢ and £’ = (13 — P)€ then £ = &' + £”, but since
T¢ = TPE = PTE = T¢
for all T € .4, then T¢"” = 0 for all T € .. Hence £’ = 0 by Corollary [2.24] so £ = ¢ € [.#¢]. O

Lemma 2.27. Let .4 be a nondegenerate *-subalgebra of B(H). Then for any € € H, S € A" and
e > 0, there exists T € .# such that
(S = T)¢ll <e.

In particular, the strong operator closure of # contains the identity operator.
Proof. Let P be the orthogonal projection onto [.#¢]. We saw above that P € .#’, so P commutes

with everything in .#". Therefore PSP = SP, so S¢ € S[.#¢&] C [.#¢€] by the above lemma, yielding
the result. 0

In proofs of the “simpler” version of the bicommutant theorem, one has a stronger version of the above
lemma in the case where the *-subalgebra is unital, so one might wonder if the following holds:

Lemma 2.28. Let .# be a nondegenerate *-subalgebra of B(H). Then for any &1,...,&, € H, S € A"
and € > 0, there exists T € A such that

(S —T)]| <e, i=1,...,n.
In fact it does hold, and the following somewhat messy lemma will help us out a lot.

Lemma 2.29. Let .# be a nondegenerate *-subalgebra of B(H) and let I be a non-empty set. Moreover,
let A: B(H) — B(H!) be given by

A(T)(&)ier = (T&)ier,  (&i)ier € HL.

Then A is a unital *-homomorphism, A(#) is a nondegenerate *-subalgebra of B(H!) and we have
an inclusion A(A") C A(A)".

Proof. First of all A is well-defined: we indeed have A(T) € B(H!) with |A(T)| < ||T|| for all
T € B(H). Tt is straightforward to check that A is unital, linear and multiplicative; furthermore for
all (gi)ieh ('r]i)iej S HI, we note that

(AT)(&ier, mi)ier) = Y _(T&,mi) =Y (& T mi) = ((&)ier, AT*) (ni)ier),
il iel
so A(T)* = A(T*) for all T € B(H). Hence A is a *-homomorphism. Additionally, if £ = (&;);er € H!
is non-zero, then there exists ¢ € I such that &; # 0. Because .# is nondegenerate, Corollary
yields T' € 4 such that T # 0, hence implying A(T)¢ # 0, so A(.#) is nondegenerate by the
same corollary. Finally, the equation in the proof of Proposition ii), p. provides the last
inclusion. O

Proof of Lemma(2-28 Define A: B(H) — B(H™) by A(T)(n1,...,mn) = (T'm,...,Tn,). Then by
Lemma[2.29) A(.#) is a nondegenerate *-subalgebra of B(H") with A(.#") C A(.#)". Apply Lemma
to the *-algebra A(.Z) to obtain T' € .# such that

immediately yielding what we want. O
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All of this leads to this really important density theorem.

*

Theorem 2.30 (The von Neumann density theorem). Let .# be a nondegenerate *-subalgebra of

B(H). Then

M ="
where .4 denotes the closure of .4 in any one of the weak, strong, ultraweak or ultrastrong operator

topologies.

Proof. Since the ultrastrong closure of .# is contained in any of the closures of .# in the above
topologies and .#" is weakly closed, it suffices to show that .#" is contained in the ultrastrong closure
of .# . Define A: B(H) — B(HY) by

A(T)(gn)nzl = (Tfn)nzL
Then A(.#) is a nondegenerate *-subalgebra by Lemma [2.2g] Let T € .#” and
€= (Enz1, - €7 = (6 )n

be sequences in H satisfying > oo | [|€1]|> < ocoforalli=1,...,n,ie., & € HNforalli=1,...,n. For
any € > 0, then by applying Lemma to the *-subalgebra A(.#) of B(HY), there exists S € .#
such that 1o

e > [[(A(S) = A(D))(&)nz1ll = [Z I(S = T)&, >

for all i = 1,...,n. From this we infer that every ultrastrong neighbourhood of T" contains elements of
A , so it follows that T' is contained in the ultrastrong closure of .#Z. Hence the result follows. O

If the preceding result could in any way be likened to the Sage’s blessing of the earth in the first part
of Igor Stravinsky’s Le Sacre du Printemps, then the following corollary is the ecstatic dancing of the
tribes therein.

Theorem 2.31 (The von Neumann bicommutant theorem). Let .# be a nondegenerate *-subalgebra
of B(H). Then the following are equivalent:

)
) (resp. (ii.a)) A (resp. (M )1) is weakly closed.
(iii) (resp. (iii.a)) 4 (resp. (M)1) is strongly closed.
) (resp. (iv.a)) A (resp. (M)1) is ultraweakly closed.
) . (v.a)) A (resp. (M )1) is ultrastrongly closed.

If any of the above conditions hold, .# is a von Neumann algebra.

Proof. The implications (iv) < (v), (iv) = (iv.a), (v) = (v.a) and (ii.a) < (iii.a) < (iv.a) < (v.a) follow
immediately from Theorem If (A), is ultraweakly closed, then (.#); C (B(#)); is also ultra-
weakly compact by Corollar Hence (#), is ultraweakly compact for all » > 0 (since the map
T + rT is ultraweakly-to-ultraweakly continuous), so Theorem yields that .# is ultraweakly
closed. Hence the conditions (ii.a), (iii.a), (iv), (iv.a), (v) and (v.a) are equivalent. Finally, the impli-
cations (i) = (ii) = (iii) = (v) are trivial, so it suffices to show (v) = (i), but this follows immediately
from von Neumann’s density theorem. O

Hence von Neumann algebras are closed in any of the operator topologies defined, and in order to
check whether a nondegenerate *-subalgebra of B(H) is a von Neumann algebra, one only needs to
consider its closed unit ball.

The above theorem is perhaps the greatest testament to how powerful the von Neumann density
theorem really is. The next result is another great offshoot of that theorem, comparable to the effect
of buying a new deodorant.

Lemma 2.32. Let 4 be an ultraweakly closed *-subalgebra of B(H). Then the orthogonal projection
P onto [#H)] belongs to A and majorizes any other projection in A .
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Proof. Let X = [.#H]. Lemma [2.25] told us that PT = TP =T for all T € .#, so P#P = 4.
As P|x is the identity operator on X, then .#Zp is a unital and hence nondegenerate *-subalgebra
on X. As the map # — #p given by T +— T|x is obviously ultraweakly-to-ultraweakly continuous
and a surjective isometry by the proof of Proposition ii), and (.#); is ultraweakly compact by
Corollary it follows that (.#p); is ultraweakly compact and hence .#p is ultraweakly closed by
von Neumann’s bicommutant theorem. Therefore 15 € .#p by the von Neumann density theorem, so
there is Q € .# such that Q|x = 1x. For £ € H, write £ = & + & with £ € X and & € X; then

QE= Q& + Q&% =& + QP& =& = P¢,
so P =@ € ./ and therefore P is the greatest projection of .Z . O

Proposition 2.33. Let .# C B(H) be a von Neumann algebra and let J be an ultraweakly closed
left ideal of #. Then 4 is weakly closed, and there exists a unique projection P € .# such that
J={T € #|T =TP}. If J is two-sided, then P is a central projection.

Proof. Let £ =3JNJ*; then K is an ultraweakly closed *-subalgebra of .Z. By virtue of Lemma [2.32]
let P be the greatest projection of K, and let

Jo={T€.#|T=TP}.

We know that P € J, so if T' € Jo, then obviously T € J since J is a left ideal. On the other hand, if
T € J with polar decomposition T = U|T|, then |T| = U*T € J. Hence |T| € &, so |T| = |T|P and
therefore

TP=UITIP=U|T| =T,

implying J = Jo. If Q is a projection of .# such that J = {T' € .# |T = TQ}, then P = PQ and
Q =QP,s0o P =P = (PQ)" =QP = Q. If Jis two-sided, then for any T' € .#, PT € J, so
PT = PTP. Using this for T" and T*, we see that

PT = PTP = (PT*P)" = (PT*)*=TP,
so P is central. O

The last result of this chapter is Kaplansky’s density theorem, generalizing [31, Theorem 19.5].

Theorem 2.34 (Kaplansky’s density theorem). Let .# be a *-subalgebra of B(H), and let A be the
strong (or weak) operator closure of # and let r > 0. Then:

(i) (M), is strongly dense in (AN ).
(ii) If T is a self-adjoint operator in (AN),, T is contained in the strong operator closure of the set
of self-adjoint operators in (M ),.
(iil) If A is a von Neumann algebra and T is a positive operator in (N),, T is contained in the
strong operator closure of the set of positive operators in (M ),.

Proof. The proof contained in [31, Theorem 19.5] (or |14, Theorem 5.3.5] for that matter) does not
require .# to be a C*-algebra, and the replacement of (.#); by (.#), requires the proof therein to
change the strongly continuous real function vanishing at infinity by

R t |t <r
% [t| > 7.

For (iii), if we assume that T € (#"), and T > 0, then since .4 is a unital C*-algebra, there exists
S € N, with ||S|| < r'/? such that S? = T. Hence by (ii) there exists a net of self-adjoint operators
(Sa)aca in (A),1/2 converging strongly to S. Therefore S2 — T strongly, as the net (Sq)aca is
bounded, so by setting T, = S2, then because T, is positive and ||T,|| < r for all @ € A, we have
found a net of positive operators in .# converging strongly to T', bounded by 7. O

Of all the sections in this chapter, this one might just be the most beautiful one. Everything is short
and sweet, not too complicated, and yet it cannot be overstated how much power so many of the
results have. Much of this project indeed relies extensively on von Neumann’s and Kaplansky’s density
theorems and we shall start exploiting them shortly, but first we will head into completely different
terrain.
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2.6 The Jordan decomposition

This section covers the Jordan decomposition, a way of decomposing any linear functional on a
C*-algebra into a finite linear combination of positive linear functionals. Recall that a linear func-
tional ¢: A — C on a C*-algebra A is Hermitian if it satisfies ¢(z*) = p(z) for all z € A.

Theorem 2.35 (The Jordan decomposition). For any C*-algebra A, then any bounded Hermitian
linear functional w: A — C is the difference of two positive linear functionals wy and w_ on A such
that

w=wr —woy el = el +

In particular, every element in A* is a linear combination of at most four states on A.

Proof. Assume first that A is unital and let S(.A) denote the state space of A. S(A) is convex and
compact in the weak* topology on A* |31, Proposition 13.8| since A is unital. If S = S(A) U (—S(A)),
then note that because S(A) is convex, then the convex hull of S is given by

convS = {dwy — pws |wi, w2 € S(A), A+ pu=1, A\,u >0}
Hence convS is the image of the map S(A) x S(A) x [0,1] — A* given by
(wl,wg, )\) — )\wl — (1 — )\)wg.

Since this map is continuous if A* and S(A) are given the weak* topology and the product is given
the product topology, it follows since S(A) x S(A) x [0,1] is compact that convS is weak*-compact.

Assume now that w is a bounded Hermitian linear functional on A; we can furtherly assume that w
is non-zero. Let w’ = ||w||~!w, so that ||w’[| =1 and w’ is Hermitian. We claim that w’ € convS and
prove it by assuming for contradiction that w’ ¢ convS. Since {w’} and convS are convex subsets of
A*, then by the Hahn-Banach separation theorem and Lemma[A 3 we can find z € A and p € R such
that

Rev(z) < p < Rew'(x)

for all v € convS. If x = a1 + iz is the decomposition of x into self-adjoint elements, then for y = 2
we have

Y(y) = Rey(z) < p < Rew'(z) = w'(y)

for all v € convS, since they are Hermitian along with w’. Moreover, since y is self-adjoint, we have
lyll = | (y)| for some ¢ € S(A) or |ly|| = ¢(y) for some ¢ € S. Hence w'(y) < |ly|| < p, contradicting
the above inequality. Hence w’ € convS, so w’ = Aw; + pws for A\, > 0, A+ p =1 and wy,ws € S(A).
Then

o'l =1 =X+ p = Nwil| + pllws|l = [Awr]] + | w2 -

Hence by putting w; = A|w|jw; and w_ = p||lw|jws, we obtain the desired decomposition.

Supposing now that A is not unital, let A denote the unitalisation of A. If w is a bounded Hermitian
linear functional on A, then the linear functional &: A — C given by &(a + Al ;) = w(a) for a € A
and A € C is bounded and Hermitian, so by virtue of what we just proved there exist positive linear
functionals Wy ,&_ on A such that & = @4 —w_. By restricting @4 and @_ to A, we obtain the desired
decomposition of w.

Finally, let w € A*. By defining the linear functionals wy,ws on A by

w(a) +w(a*)
2 )

wo(a) = M7 ac A

wia) = 2%

it is readily seen that w; and wy are Hermitian and that w = w; + iw,. Since both w; and wy can be
written as linear combinations of at most two states, the last statement follows. O

We will need an equivalent condition to the equality of norms above later:

Proposition 2.36. Let A be a unital C*-algebra and let v, and p_ be positive linear functionals on
A. Then the following are equivalent:
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() [l ==l = llosll + lle-1I-
(i) For any € > 0 there is a positive element a € (A)1 such that p4 (14 —a) <e and p_(a) < e.

Proof. Suppose first that |01 —¢_|| = [[¢4+] + |l¢—|| and let € > 0. Since ¢4 — _ is Hermitian, then
by [31, Proposition 13.3] and [31, Theorem 13.5] there exists b € (Ag,)1 such that

o4(0) —p-(b) +e > llor — o[l = o+l + o=l = p+(1a) + - (1a).

Hence (14 —b) +p_(1g4+b) <e. Since0 <14—-5b<2and 0<14+b <2 by the continuous
functional calculus, define a = %(IA +b)sothat 14 —a = %(IA —b). Then a is positive with 0 < a < 1.
Then

pr(lu—a) o (a) = (04 (1a—b) + o (La b)) <=

Since p4(14 —a) > 0 and ¢_(a) > 0, we must have (14 —a) <e and p_(a) < ¢, so (ii) follows.

Suppose that (ii) holds and note that ||o+ — ¢—|| < ||+l + |[¢—]||- For any e > 0, take a positive
element a € (A); such that ¢4 (14 —a) < ¢ and ¢_(a) < ¢, and note that o(2a — 14) C [-1,1], so

ol + llo—1l = o+ (1a) + - (14)
<r(la) +o-(1a) + (4 — 201 (14 — a) — 2¢_(a))
= (20 —14) + (14 —2a) +4e
= (p+ —p-)(2a — 14) +4e
<o+ — o +4e.

Since € > 0 was arbitrary, we have ||o4| + [lo—| < lo+ — o—|- O

2.7 Normal linear functionals

We now turn towards a pseudo-new type of linear functional, the notion of which can be expanded to
positive maps of von Neumann algebras. The reason that the word pseudo-new is emphasized is that
the whole chapter will now start resembling the movie Sleuth directed by Joseph L. Mankiewicz. If you
have not seen that movie, stop reading right now and spend the next two and a half hours having a
blast with the sheer euphoria of being filmically manipulated so effectively; then return to the project.

Movie-related obsessions and pretensions aside, here comes a definition.

Definition 2.9. Let .# be a von Neumann algebra and w € .Z*. We say that w is normal if it holds
for any bounded increasing net (T}, )aca of self-adjoint operators in .# that (w(T,))aca converges to
w(sup,e 4 To) (see Theorem [p.g). We denote the space of normal linear functionals on .2 by .4,

As we shall see, the notation of .#,, will be completely expendable in a few pages or so.

Before we go any further, we introduce some useful notation. The dual space .Z™* can be canonically
equipped with a Banach .Z-bimodule structure by defining

(T-w)(S) = w(ST), (w-T)(S)=w(TS), we.t, ST e,

by means of the inequalities |1 w|| < ||T||||w]] and ||w - T|| < ||T||||w||- Furthermore, for any w € .Z*,
we define w* € .Z* by

w*(T) = w(T™).
Note that the equation w = w* just states that w is Hermitian.
The next lemma proves useful things concerning normal functionals.
Lemma 2.37. Let # C B(H) be a von Neumann algebra. Then:

(i) A, is a norm-closed subspace of .H*.
(ii) For any w € My, w* € My
(iii) For any w € M, and T € A, we have that T -w and w - T belong to M,,.
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(iv) For any w € M, with w = w*, then the Jordan decomposition of w yields normal positive linear
functionals wy and w_ such that

w=wp —wo, wll = e + flo-]].

Proof. (i) It is easily verified that .#, is a subspace of .Z*. Let (w,),>1 be a sequence of .,
converging in norm to w and let (T,)nca be a bounded increasing net of self-adjoint operators in .#
with supremum and strong operator limit 7. Then ||T, — T|| < X for some A > 0 and all @ € A. Let
€ > 0 and pick n > 1 such that [|w — wy|| < 55 and ap € A such that |w, (T —T,)| < § for all a > ay.
Then

(T = Tl < o — wnllIT = Tull + on(T = To)] < &

for all o > o so that w € #,,.
(ii) Since the definition of normality only mentions self-adjoint operators, we trivially obtain w* € ..
(iii) f T € # and (Sa)aca is a bounded increasing net of self-adjoint operators converging strongly

to S, then (T*S,T)aca is a bounded increasing net of self-adjoint operators converging strongly to
T*ST. Hence T - w - T* € .#,,. Because

ST =

1=

3
D AT + M) " S(T + i 1y)
n=0

for any operators S and 7', we have

3
1 o n gk
T-w=1§ (T +i"ly) w- (T+i"1y)" € A,

n=0

for all T € #. Because A, is *-invariant, w - T = (T* - w)* € M.

(iv) The Jordan decomposition itself (Proposition yields that w decomposes in the way described
above. Thus it will suffice to prove that wy and w_ are normal. Since ||wy — w_|| = w4 || + [|Jw—]|, it
follows from Proposition [2.36] that for any ¢ > 0 there exists a positive operator T' such that 0 < T <1,
wy(ly = T) <eand w_(T) <e. For all S € .# we then have

w01 (S) = w(TS)| < |- (S) — wa (TS) +w_(TS)|

< |wi (L3 = T)8)| + |w—(TS)|
< (1 — T)Y2(1g = T)Y2S)| + o (TH2T1/28))

< (ws (g — T)w (S*(1gg = T)8)"? + (w_ (D)w_(S*T8)"/?
< wy (g = DYl [|V2)S] + w_ (1) /|w_ | /2|8

< V2 (g V2 + lw M2 1S]].

Hence ||wy —w-T| < e2(|lwy||'/? + [Jw_|]*/?). Since w-T and .#, is norm-closed, it follows that w,
and hence w_ belong to .#,. O

The proof of the next lemma is somewhat confusing, but do not think that the statement itself is
unimportant. It is not only elegant, but it also becomes extremely useful later on.

Lemma 2.38. Let .# C B(H) be a von Neumann algebra and w a normal state on .# . Then there is
a family (P;)icr of non-zero mutually orthogonal projections in A with Y, ; P; = 13y such that P; - w
is weakly continuous for alli € I.

iel

Proof. By Zorn’s lemma we can find a maximal family (P;);c; of non-zero mutually orthogonal projec-
tions in ./ such that Pjw is weakly continuous for all i € I. We claim that P =), _; P; = 13; suppose
not. Choose a unit vector ¢ € P(H)* and define a linear functional : .# — C by (T) = 2(T¢, ¢).
Using Zorn’s lemma once more, we can find a maximal family (Q,),es of mutually orthogonal projec-
tions in . such that w(Q;) > ¥(Q,) and Q; <1 — P for all j € J, and put Q = ZjeJ Q;. Since w
and v are normal, w(Q) > ¥(Q). We must have 1 — P — Q) # 0, since otherwise

2= (1 - P) = (Q) < w(@) < 1.
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Put P, =1— P — Q. If E is a projection majorized by Py, then (1—- P)E=(1—-P)P,E =P E=EF,
so E <1—P. Moreover, EQ; = E(1-P—-Q)Q; = E(Q; —Q;) =0for all j € J. Hence w(E) < ¢(E)
since the family (Q;);e; was maximal. Since any positive element of .# can be approximated in
norm by positive finite linear combinations of projections (cf. [31, Exercise 20.2]), it follows that
w(P\TP) <¢(PTP) for any positive T € .#. Hence

lw(TP)]? <w(ly)w(PIT*TP) < (PT*TP,) =2|TPE||?, Te . #,

so P, - w is strongly continuous and hence weakly continuous by Proposition Since P, < 1— P,
we have P1P, = QFP;, = Q(1 — P)P; = 0, contradicting maximality of the family (F;);c;. Hence
> icr Pi = 134, so we are done. O

We are almost ready for the big result, but we must first take a detour. The more relevant result of
the next two is for now the last one, but it requires the first result, the proof of which is somewhat
unelegant (in the opinion of the author), but extremely essential in the last section of the next chapter.

Proposition 2.39. Let A be a C*-algebra and let m: A — B(H) be a representation with .# = w(A).
If £ € H and w¢ denotes the vector functional associated with &, then the following holds:

(i) If T € A" is self-adjoint and 0 < T < 14, then the functional Or: A — C given by
Or(a) = wre(m(a)) = (m(a)TE, TE) = (n(a)§, T?€), a€ A,

is a positive linear functional that is dominated by we o 7.

(i) Any positive linear functional on A that is dominated by we o w is of the form Or for some
self-adjoint T € A’ such that 0 < T < 14.

Proof. Tt is obvious that 67 is positive for any T € .#' and for a € A, we have
Or(a*a) = (n(a)T€, m(a)T€) = |m(a)TE|* = | Tn(a)é]|* < [|n(a)¢]|* = we(n(a*a)),
so Or is dominated by we o 7, hence proving (i).
Let ¢ € A* such that 0 < ¢ < wg om. It then follows for a,b € A that
o(b*a)|* < p(a*a)p(b™b) < ||m(a)é]f?(|m(b)E]
by Proposition Note that if ¢, d € A satisfy 7(a)¢ = 7(c)€ and 7(b)¢ = 7 (d)E, then
lp(b*a —d*c)| < |p(b"(a = )| + (b = d)" )| < [|Im(a = )&|[[|x (B)EN + [[w(c)€]l]|m (b — d)&]| = 0,

so that the map ®g: A& x M E — C given by

Do(m(a)§, w(b)S) = p(b"a), a,be A

is then a well-defined sesquilinear form of norm less than or equal to 1 on the subspace .Z¢ of H.
Moreover, it is Hermitian, i.e.,

(I)()(Sg,TE):(I)()(Tf,Sf), S,TG%,

and positive, i.e., ®o(TE,TE) > 0 for T' € A, because ¢ is positive and hence Hermitian. By Corollary
g thus extends to a bounded, Hermitian and positive sesquilinear form ® on [.#¢] of norm < 1.
As [#¢€] is a Hilbert space, it follows from the Riesz representation theorem [14, Theorem 2.4.1] that
there exists an operator Ty € B([.#¢]) with ||To]] < 1 such that

p(b*a) = (Tom(a)é, m(b)E), a,be A

It is clear that T} is positive, and by extending Ty to H by defining it to be 0 on the orthogonal
complement, then the resultant operator, which we will still denote by Ty, stays positive. Moreover,
for a,b,c € A, we have

(Tor(c)m(a)g, m(b)§) = @ (bca) = p((¢"b)*a) = (Tom(a)§, w(c) m(b)§) = (m(c)Tom(a)§, m(b)E).
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Hence 7(c)Ty = Tom(c) on [#€] for all ¢ € A. Additionally, for n € [.#¢]* we have

(m(c)n, w(a)§) = (n,w(c"a)§) =0,

so m(c)n € [#&)*. This implies 7(c)Ty = Tym(c) on H for all ¢ € A, so Ty € #'. Defining T =
(To)Y/? € ', then 0 < T < 13. Letting (eq)aca be an approximate identity for A, we have for all
a € A that

p(eaa) = (Tom(a)§, w(ea)§) = (m(aea)TE, TE) = wre(m(aea)) = wre(m(a))

and p(eqa) — ¢(a); hence ¢ = wre o m, completing the proof. O

Corollary 2.40. Let .# be a C*-subalgebra of B(H) and let {,m € H. If we: M — C is a positive
linear functional on ., there exists ¢ € H such that we,, = we on A .

Proof. Let T € .# be positive. Then we ,(T) = (T¢,n) = ({,Tn) = (In,&§) = wye(T) by the
assumption that we , was positive, we find since

(TE+mn),6+m) = (T(E=n),§—n) =2(T¢n) +2(Tn,§)

that
dwe y(T) = 2w y(T) + 2wy ¢(T) = we g (T) — we—p(T) < wWety(T).

Thus we,y < wiey1e. We can then apply Propositionwith 7 equal to the identity .# — B(H). O

After seemingly going in wildly differing directions up until now, we nonetheless combine all of the
above into one big lump of greatness. The next theorem can take your breath away if you are not
prepared.

Theorem 2.41. Let .# C B(H) be a von Neumann algebra and w a positive linear functional on 4 .
Then the following are equivalent:

(i) w is normal.
(i) w is ultraweakly continuous.

111 ere erisis a sequence \Cn)n>1 N satisjyin, _ n < 00 suc 1]
(iii) Th sts a seq (En)nz1 in M satisfying 327, [16ll? h that

w(T) = Z<T€n7£n>’ Te.

n=1

Moreover, every ultraweakly continuous linear functional on # is a linear combination of four normal
states and

My, = M.

Proof. If w is a (not necessarily positive) ultraweakly continuous linear functional, then w is obviously
normal by Proposition since strong operator limits are also weak operator limits; hence .#, C 4,
and (ii) implies (i). (iii) clearly implies (ii) by Proposition

Assume now that w is a normal state. By Lemma there is a family (P;);c; of non-zero mutually
orthogonal projections in .# with ), ; P; = 13 such that P; - w is weakly continuous for all i € I.
For finite subsets F' C I, let Pr = ), P;. Then for T' € (.# )1, we have T*T € (), as well, so for

any finite subset F' C I we find that
lw(T(1y — Pr))| < w(T* (1 — Pp)T)Y2w(ly — Pp)Y/? < w(T*T)Y?w(1y — Pp)Y/? < w(ly — Pp)'/2.

Therefore ||w—Pr-w|| < w(13—Pr)*/?. Asw is normal we see that w(Pp) — w(14) or w(ly—Pr) — 0.
Hence w is the norm-limit of the weakly and therefore ultraweakly continuous functionals Pg - w, so
w is ultraweakly continuous. Since (i) = (ii) then holds for states, it follows for any positive linear
functional as well.
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Defining the map A: .# — B(HY) by A(T)(&n)n>1 = (T€)n>1 for T € A and (&,)n>1 € HY, then
it is clear with help from Lemma that A(.#) is a unital *-subalgebra of B(HY). Now, if w is
positive and ultraweakly continuous, then w is of the form

Z Tgnann = (T)§,7I>

for elements & = (£,)n>1 and 9 = (9,)n>1 in HY. If A(T) is positive for some T € #, then for ¢ € H,
define (1 = ¢ and ¢, = 0 for n > 2. Then (T'¢,{) = (A(T)(¢n)n>1, (Cn)n>1) > 0, so T is positive and

(A(T)E,m) = w(T) = 0.
Therefore, by Corollary [2.40, we find ¢ = ((,,)n>1 € HY such that

oo

W(T) = (A(T),m) = = S TG, G-

n=1
Hence we obtain (iii) from (ii). Since

3

ATEm) =Y i™(T(E+im™), & +i™n)

n=0

for all &, € H and T € B(H), any ultraweakly continuous linear functional on .# is a finite linear
combination of four normal positive linear functionals; by scaling, each of the positive functionals can
be assumed to be a state.

Finally, if w € .#,, is Hermitian, it follows from Lemma that w decomposes into normal positive
linear functionals, so w € .#, since each of these is then ultraweakly continuous. Finally, if w € .,
then w; = 1(w + w*) and wp = 5 (w — w*) are Hermitian and normal by Lemma [2.37 - and hence
ultraweakly continuous. Therefore w = wy + iws is ultraweakly continuous, so .#,, = M. O

The above theorem is the reason why we will completely obliviate the notation .#, (.. looks nicer
anyway). It is also the reason that normality of a linear functional is oftentimes defined as continuity
with respect to the ultraweak operator topology. In this project however, we will stick to the fact that
My consists of all ultraweakly continuous linear functionals on .# and keep the above theorem in mind
throughout; hence, whenever a linear functional on . is normal, it belongs to .#,, and vice versa.

We might as well keep proving nice things about ultraweakly continuous linear functionals. Just like
the polar decomposition yields that any operator T in a von Neumann algebra .# decomposes into
the product of a partial isometry and a positive operator, both contained in .# [31, Theorem 18.9], we
are about to prove that any w € .#, decomposes in a similar way. It still requires some preparation,
but not a lot.

Lemma 2.42. Let A be a C*-algebra and ¢ € A*. If there exists a € A, with ||a]] < 1 such that
o(a) = ||l¢ll, then ¢ is positive. For any C*-subalgebra B of A and any positive linear functional
Y € B*, there ewxists a positive linear functional ¢ € A* such that p|g = ¥ and ||¢]| = ||¥||-

Proof. Assume first that A is unital. For any § € R and A € o(a), we have
(L= + e = A+eP(1-N)| <N+ 1=\ =1,

so we have o(a + e (14 —a)) = (1 — e?)a(a) + e C (C);, whereupon |la + e (14 — a)|| < 1 for all
6 € R. Choosing 0 € R such that (14 —a) > 0, we then have

lell = w(a) < p(a) +e“p(la—a) = pla+e?(1a = a)) < |l
, 80 p(14 —a) = 0. Therefore, p(14) = p(a) = ||¢], so ¢ is positive by [31, Theorem 13.5].

If A is not unital and ¢ € A", then the Hahn-Banach extension ¢ of ¢ to the unitization A satisfies
the condition for the unital C*-algebra A, so by virtue of what we have just proved, ¢ is positive,
implying that ¢ is positive.
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For the second statement, let 5 and 1 be as defined above. If B is unital, then for any Hahn-Banach
extension ¢ of ¢ to A [13, Theorem 5.7], we have

e(1s) = ¥(1p) = [[¥] = ll#ll

so the first statement yields that ¢ is positive. If B is non-unital, assume first that A has a unit and
and put By = B+ Cl 4. Extend 9 to a linear functional ¥: By — C by defining

(b +Ala) =o(b) + Al

As the map B — A given by (b, \) — b+ Al 4 is an injective *-homomorphism, so that B; is a unital
C*-algebra. Let (fa)aca be an approximate identity for B. Then for b € B and A € C, Proposition
yields

[P0+ AL)] = | (b) + Alell] = | lim $(bfa + Afa)l < [¥] sup [bfo + Alafall < N6+ ALall,
@ aE

so that ||¥] < ||¢||. Clearly we also have ||¥| > ||¢|, so we conclude that ¥(14) = ||| = ||¥]],
proving that WU is positive. Letting ¢ be a Hahn-Banach extension of ¥ to A, we see that ¢ extends v,
that ||| = ||| and that (1 4) = ¥(14) = ||¥]| = ||¢||. Hence ¢ is positive. Finally if A is non-unital,
then by replacing A with its unitization A and B; with the subset {(b,\)|b € B, X € C} of A in the
above argument, we obtain a positive linear functional ¢ on A with the wanted properties. Restricting
to A yields the wanted linear functional. O

Lemma 2.43. Let .# be a von Neumann algebra and w € #,.. Then for any T € A, we have

Proof. This is obvious from Corollary and Proposition O

Lemma 2.44. Let # C B(H) be a von Neumann algebra and let w € M. If a projection P € A
satisfies ||P - w|| = ||w||, then we have P - w = w.

Proof. We may assume that w is non-zero and that ||w|| = 1 by scaling. Putting @ = 1y — P, we will
show that @ - w = 0. Assume for contradiction that @ - w # 0. Then there is a T € (.#); such that
§:=(Q -w)(T) > 0. Since P -w # 0 by assumption, then by the Hahn-Banach theorem [13, Theorem
5.8], there exists ¢ € ()" such that ¢(P-w) = ||P-w| = |lw|]| =1 and ||¢|| = 1. Hence by Theorem
we obtain S € (#); such that (P -w)(S) = ¢(P-w) = 1. From seeing that

|SP+0TQ|? = ||[(SP +dTQ)(SP + 6TQ)*|| = |SPS* + 6*TQT*|| < 1+ 62,
we find ||SP + 0TQ| < (1 +6%)Y/2 < 1+ 62, since /x < x for all z > 1. However, this implies
1462 =(P-w)(S)+0(Q-w)(T) =w(SP+6TQ) < ||w|[||SP +6TQ| < 1+ 2,
a contradiction, so @ - w = 0. Therefore, w =P -w+ Q- -w=P -w. O
Now we are set.

Proposition 2.45. If # is a von Neumann algebra and w € M, then there exists a partial isometry
U € A and a positive linear functional ¢ € M, such that w=U -, ¢ =U"-w and ||¢| = |Jw].

Proof. We can assume that w is non-zero. By the Hahn-Banach theorem, there exists ¢ € (..)* such
that ||¢|| = 1 and ¢(w) = ||w||. By Theorem there exists S € (.#); such that w(S) = |lwl||. Let
S* = U|S*| be the polar decomposition of S*. Then

lw]] = w(S) = w(|S*|UT) = (U™ - w)(|S7]).
Define ¢ = U* - w. Since ||SS*||? < 1, then |S*| has norm less than or equal to 1; since
lell < Ul < flwll = (157 < llell;

we have ||¢|| = ¢(]S*]), so by Lemma [2.42] ¢ is positive. By [31, Theorem 18.9] we have that U € .#,
so P =UU* is a projection contained in .#. Note that U - ¢ = (UU*)-w = P - w and

(SP)* = P*S* = UU*S* = UU*U|S*| = U|S*| = S*,
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so that SP = S. Therefore
[P w| < lwll =w(S) =w(SP) = (P -w)(S) <||P-wl,

so P-w = w by Lemma [2.44, and hence w = U - ¢. Finally, ||w| < [[U]l[l¢]l < |U*[l|lw]l < ||, as
U= IU]l <1, so [lgl| = ||wll. .

The above expression of an ultraweakly continuous linear functional is called its polar decomposition.

2.8 Normal linear maps

One might have noticed that the definition of normality did not strictly depend on the fact that the map
in question mapped into C; as it is equally possible to taking supremums in von Neumann algebras,
there might be a possibility of generalizing. (Of course there is.) This section requires some of the
definitions encountered in Chapter 3, so if you, kind reader, are not familiar with the concept of a
positive linear map, skip ahead to page |68 and spend 10 seconds reading the relevant definitions and
the statement that positive maps on C*-algebras are Hermitian (do not continue reading from there,
since this chapter is still extremely relevant!). Here goes.

Definition 2.10. Let .Z and .4/ be von Neumann algebras and let ¢: .# — .4 be a bounded positive
linear map. Then ¢ is called normal if it holds for any bounded increasing net (T,,).c4 of self-adjoint
operators in .# that
¥ (Sup Toc) = sup p(Ta)-
acA a€A

One might expect that the above notion of normality has a connection to the one for linear functionals,
and as it turns out that tout est vraiment beau.

Proposition 2.46. Let .# and ./ be von Neumann algebras and let o: M — N be a bounded positive
linear map. Then ¢ is normal if and only if wo p € My for all w € A

Proof. Let (Ta)aca be a bounded increasing net of self-adjoint operators in .# with T = sup,c 4 Ta-
If ¢ is normal, then because p(T') = sup,c4 ¢(Ta), we have w(p(T)) — w(e(T)) for all w € A;.
Thus w o ¢ € A, for all w € A, by Theorem On the other hand, if w(p(T,)) — w(p(T)) for all
w € A, then ¢(T,) — ¢(T) ultraweakly and hence weakly. Since ¢ is positive, (¢(Ty))aca converges
weakly to S = sup,c4 ©(Tw), but then S = (7). Hence ¢ is normal. O

Corollary 2.4%. Let # and A be von Neumann algebras and let o: M — N be a bounded positive
linear map. Then ¢ is normal if and only if ¢ is ultraweakly-to-ultraweakly (or ultrastrongly-to-ulira-
strongly) continuous.

Proof. This is an immediate consequence of the preceding proposition. O

It is normal (pun intended) that ultraweakly-to-ultraweakly continuous positive linear maps are called
normal, and the above corollary is the reason why. We will adopt this convention throughout the
project, so that normal maps of von Neumann algebras are the ultraweakly-to-ultraweakly continuous
ones, also satisfying Definition [2.10]

The next two theorems are so useful that it hurts.

Theorem 2.48. Let .# be a von Neumann algebra and let w: # — B(H) be a normal unital repre-
sentation. Then w(.#) is a von Neumann algebra.

Proof. We have that (), is ultraweakly compact by Corollary As (n(A))1 = n((A)1) by
Proposition and 7 is normal, then (7(.#)); is ultraweakly compact and hence ultraweakly closed.
Since 14 € 7(.#), it follows from von Neumann’s bicommutant theorem (Theorem that 7(.4)
is a von Neumann algebra. O

Proposition 2.49. Let .# and A be von Neumann algebras and let w: M4 — N be a *-isomorphism.
Then m is a homeomorphism of the ultraweak and ultrastrong topologies on .# and AN .

Proof. As can be easily checked, 7 and 7! are normal *~homomorphisms. O
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The last one in particular is just amazing; who would expect that a *-isomorphism, a strictly algebraic
notion, is automatically ultraweakly-to-ultraweakly continuous?
Next follows a couple of examples of normal maps.

Proposition 2.50. Let .# be a von Neumann algebra and let p € S(.#) be a state. Let (H,7,&) be
its associated GNS triple (see page @) If ¢ is normal, then 7 is normal and w(.A) is a von Neumann
algebra.

Proof. Let 7*: B(H)* — .#* be the dual mapping of 7. For each R, S and T in .# we have

T (Wr(r)e,n(9)e)(T) = (w(T)m(R)E, 7(S)E) = ((STTR)E, &) = o(S™TR) = (R- - S™)(T).
Hence 7 (Wr(rye,x(s)c) = R~ - S € M. by Lemma since ¢ is normal. Let n € H, S € .# and
€ > 0. As w(#)& is dense in H, we can pick R € .# such that ||[7(R){ —n|| < e. Then as

17 (Wn,x(s)e) — T (Wr(r)e,m(s)e) | < Nln — T(R)EN7(S)EN < ellm(S)E],

we see that 7% (wy, r(s)¢) is contained in the norm closure of ., and hence in .#.,. In a similar way, one
proves that 7*(wy,, ) € A, for all n, x € H, so 7 maps all finite linear combinations of w,, , into ..
For any w € B(H)., we have by Proposition and Corollary that w = >"° | wy, .., converging
in norm, for square-summable sequences (1, )n>1 and (x»)n>1 in H where the series converges in norm.

Because
N 00 00
n=1 n=N-+1 n=N+1

for N — oo, we see that w o ™ = 7*(w) € .#.. By Proposition 7 is normal and hence 7(.Z) is a
von Neumann algebra by Proposition O

Proposition 2.51. Let H and K be Hilbert spaces and let # C B(H) and A& C B(K) be von
Neumann algebras. The maps 7: #4 — B(H® K) and p: & — B(H® K) given by n(T) =T ® 1
and p(S) = 14 ® T are normal *-homomorphisms.

Proof. As n: M — M @ Clg and p: A — Cly ® A are *-isomorphisms, the result follows from
Proposition O

Corollary 2.52. Let .# C B(H) be a von Neumann algebra and let I be a non-empty set. The map
Aol — P A given by A(T)(&)ier = (TEi)icr for T € A is normal.

Proof. Let K = ¢2(I) with orthonormal basis {§; |i € I} and define U: H! — H ® K by

Uli)ier =Y & ® ;.
iel
We saw in Section 1.3 that U was an isometric isomorphism. Assume that T, — T ultraweakly in .Z .
Proposition now yields that T, ® 1x — T ® 1 ultraweakly. As the map B(H ® K) — B(#H!)
given by S — U~'SU is an ultraweak-to-ultraweak homeomorphism, the proof of Proposition (1)
now tells us that A(T,) — A(T) ultraweakly. O

Proposition 2.53. Let (#;);cr be a family of von Neumann algebras with #; C B(H;) for each
i1 €1 and let A = @iel///i- For any io € I, let ¥,,: M;y — M and 0,,: M — M;, be the inclusion
and projection respectively. Then 9;, and 0,, are normal *-homomorphisms. Similarly, if J C I and
Vy: @yey My — M and O5: M — D, ; A; are the inclusions and projections respectively, then U ;
and 05 are normal homomorphisms.

Proof. Tt is easy to see that the maps in question are *-homomorphisms. Assume that S, — S
ultraweakly in .#;, and T,, — T ultraweakly in .#. For any square-summable sequences & = (£,,)n>1
and 17 = (M,)n>1 in @,;c; Hi, let &, and 7;, be the ig’th coordinate of &, and 7, for all n > 1, and note
that (€],)n>1 and (1),),>1 are square-summable. Hence

Z<19(Sa) - ﬁ(S))gna 7]n> = Z«Sa - S)ﬁ;ﬂ%’ﬁ - 0,
n=1 n=1

so that 9(S,) — 9(S) ultraweakly. That the other maps are normal is shown in a similar manner. 0O
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The next result combines some earlier results along with some new ones into a neat statement about
normal *-epimorphisms.

Proposition 2.54. Let .# and ./ be von Neumann algebras and let p: M4 — A be a normal
surjective *-homomorphism. Then there exists a central projection P € .4 such that ker p = Mp,
N %1Jﬂ_p and

M= Mp B M ,—p.

Proof. ker p is an ultraweakly closed, two-sided ideal in .#. Hence by Proposition there exists a
central projection P € .# such that ker o = .# P, so ker ¢ is isomorphic to .#p by Proposition
Moreover, the *-subalgebra .# (1 4 — P) is *-isomorphic to .#: the map ¢: 4 (14 — P) — A given
by (T(1., — P)) = (T (1.4 — P)) = ¢(T) is clearly a surjective *-homomorphism, and it is injective:
indeed, if o(T") = 0 for some T' € .# (1 4 — P), then T € ker ¢ and hence T'= SP for some S € .#. As
T(l,4—P)=T,wehave T = SP =TP =T(1y — P)P = 0. Therefore .4 is isomorphic to .#1 ,_p
by Proposition so M = Mp & M1 ,_p by Proposition O

Regrettably, the next theorem is stated without proof; however, a thorough proof would kill the
momentum of the chapter as it would require some results about Hilbert space tensor products that
obviously hold, but nonetheless would take quite a bit of time to prove. The statement of the theorem
is a little convoluted in itself though, so hopefully the reader will not miss a proof too much.

Theorem 2.55. Let # C B(H) and A C B(K) be von Neumann algebras. If w: # — N is a
normal surjective *-homomorphism, then there exists a Hilbert space L, a projection Q € .#' & B(L)
and an isometric isomorphism U: Q(H ® L) — K such that

m(T) = U [Q(T ® 12)louec) U
Proof. Omitted. See [22, Theorem IV.5.5]. O

The only reason we need the above result is the following corollary which we will come back to in a
few chapters.

Corollary 2.56. Let # C B(H) be a von Neumann algebra, and let P € .# be a projection with
central support Cp = l1y. Then A is isomorphic to a reduced von Neumann algebra of #p ® B(K)
for some Hilbert space K.

Proof. By Proposition there exists a *-isomorphism ¢: (.#)% — .#'. By Proposition [2.49] ¢ is
normal, so Theorem yields the existence of a Hilbert space K, a projection

Q€ ((A)p) ®B(K)=4p@B(K) C B(P(H)®K)
and an isometric isomorphism U: Q(P(#H) ® K) — H such that

o(T) = U(Q(T ® 1x)|op)ex))U "

Hence
M = U((//p)/ (9 (ClK)QU_l,

so M = U(Mp@B(K))QU ™! by Proposition Hence U induces a spatial isomorphism between
the von Neumann algebras .# and (#p @ B(K))g. O

For the next chapter already, we will need a result on how we combine two normal *-homomorphisms
into one normal *-homomorphism on the von Neumann algebra tensor product. We put it here for
reference, without proof.

Proposition 2.57. Let M1, Mo, N1 and N5 be von Neumann algebras and let p1: My — N
and po: My — N5 be normal unital *-homomorphisms. Then there exists a unique normal unital
*-homomorphism p: M1 Q My — N R No such that

o(T1 @To) = p1(Th) @ p2(T), Ty € M, To € M.

Proof. See |10, Proposition I1.4.5.2]. O
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2.9 The predual of a direct sum of von Neumann algebras

Since we have only now started working with ultraweakly continuous linear functionals in a more
developed manner, the next proposition has not had a place to be until now; since it does not fit in
anywhere else, we put it here; we will need it in the next chapter. For a family (X;);e; of Banach spaces,
its ¢'-direct sum, denoted by @,.; X;, is the set {(z;)ier |@; € X; foralli € I, >, |lzil| < oo}
equipped with pointwise addition and multiplication. Under the norm (z;)icr = ) ;o [l@ill, the
£'-direct sum is then a Banach space itself.

Proposition 2.58. Let (#;)icr be a family of von Neumann algebras with #; C B(H;) for some
Hilbert space H; for all i € I, and let M = @,.; . #;. For each i € I, define p;: M; — M by
pi(T) = (Tj)jer where T; =T for j =14 and T; =0 for j # i. Then there is an isometric isomorphism
O: M — D (M)« given by

®(w) = (wi)ier
where w; = w o p; for each i € I. Under this isomorphism, then for any T = (T;)ic1 € M we have

S
iel

Proof. Let ¢;: H; — H denote the injection related to the Hilbert space H; (see page , and let
H = @P,;c; Hi- We will first prove that @ is in fact well-defined. For any T' = (T});c; € .# and
& = (&)ier € H, note that

(Z Pz i > 51 icl = Z Ll(nfz) = T(gi)iGL

i€l el

$0 > ey pi(T;) = T where the sum is strongly and hence weakly convergent. For any finite subset
F C I, note that

H (sz z > 61 el
i€l

s0 || > icp pi(Ti)|l < sup;e; [|Ti]]. Hence by Proposition [2.1} >, pi(T;) = T where the sum is ultra-
weakly convergent. Letting w € ., this immediately 1mphes

T)=w (ZPz‘(Ti)> = wi(T)

i€l iel

2

> (&)

i€l

2
=S imlP < (swp ) fel®

i€l

Therefore,
(D) < Y sl T3 < (Sup T3 ||> D el = 170 Hewsl-
i€l el iel

For a finite subset F' C I, let € > 0, let X be the cardinality of F' and take operators T; € (.#;); for all
i € I such that 0 > w;(T;) > ||lwil| — 5. Since T'= ), p pi(Ti) € A now satisfies ||T]| < 1, we have

Dollwill €D wilT) + e <w(T)+e < ]| +¢.
icF ieF

Hence ), p ||lwi|| < ||lw|| for all finite subsets F' C I, s0 >, [lws < [lw||.

If we can now prove that w o p; € (), for all w € A, and i € I, we will have proved that ® is
well-defined, but this is easy: assume that T, — T ultraweakly in .#;. For any square-summable
sequences (£"),>1 and (n™)p>1 in H with £" = (£'),er and " = (n]")icr, note that

Z I€r? < ZZ €PN = Z 1€7]|* < oo,

n=1iel

so that we have

Z«Pz(T(x)_ ) 11 Z T Tgv,vnz >7
n=1

n=1
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whence p;(T,) — pi(T) ultraweakly. Hence w;(Tn) — w;(T), so @ is well-defined. & is also clearly
linear, and on the grounds of what we have proved, we can also conclude that ® is an isometry.

Finally we prove that ® is surjective. For any (v;)icr € @,c;(#i)«, define ¢: .4 — C by

o((T)ier) = Y @ilTy)-
iel
Then ¢ is clearly well-defined, linear and bounded. To prove that ¢ is ultraweakly continuous, let
F C I be finite and define op(T) = >, p 0i(T;) for T' = (Ti)icr € A . Let (Te)aca be anet in (A4),
with T% = (T*)eg for all o, let T' = (T;)ser € (A)1 and assume that T — T weakly. For ¢ € I and

(2

&,m € H;, note that

(T&m) = (T (&), i(n)) = (Twi(§), wi(n)) = (Ti&,m),
so T — T; weakly for all i € I. As ; is weakly continuous on (.#;); by Corollary we have

7

0i(T) — @i(T;) for all i € I. Hence pp(Ty) = ¢r(T), so pp € M. For e > 0,let T = (T});er €
()1 and choose a finite subset I* C I such that >, [|¢i|| <e. Then

D@ <D Ml T <Y lleall <,

i¢F i¢F i¢F

[o(T) = er(T) <

0 |l¢ — ¢r| < e. Hence ¢r — ¢ in norm, so since .#, is norm-closed by Theorem we have
p € M. Finally, it is clear that ®(p) = (¢;)ics, so ® is an isometric isomorphism. O

2.10 Intermezzo 3: o-finite von Neumann algebras

As promised, this intermezzo will use the knowledge of the two previous intermezzos along with some
ideas from the subsequent couple of sections.

Definition 2.11. A von Neumann algebra . is said to be o-finite or countably decomposable if every
family of non-zero pairwise orthogonal projections of .# is countable.

The notion of o-finiteness will be irrelevant for the moment, but will return with great vengeance
in Chapter 5 because of a result proved in this section. The result itself requires us to know about
equivalent conditions to o-finiteness for von Neumann algebras which we will investigate immediately:

Proposition 2.59. Let .# C B(H) be a von Neumann algebra. Then the following are equivalent:
(i) A is o-finite.
(i)

)
)

(iii
(iv) A is *-isomorphic to a von Neumann algebra A C B(K) admitting a separating and cyclic unit
vector.

There exists a countable family of separating vectors for A .
There exists a faithful normal state on A .

Proof. (i) = (ii): Let (£4)aca be a maximal family of non-zero vectors in H such that the subspaces
[4'¢,) and [.#'Eg] are pairwise orthogonal for oo # 8. Let P, be the projection onto [.#'¢,] for all
a € A. Assuming that P =3 _, P, < 1y, then there exists a non-zero { € H such that P,{ = 0 for
all a € A. For a € A and any T € .#’', we have T*[.4'¢,] C [A#'E,], so

(T&m) = (&T™n = (Pal, T*n) = 0
for all n € [A'¢,], so [#'€] and [#'E,] are orthogonal subspaces for all o € A, contradicting maxi-

mality. Hence
> Po=1y.

Hence for £ € H and ¢ > 0, there exists a finite subset F' C A such that [|§ - ., Paé|| < 5. Letting
A be the cardinality of F' and choosing Ti, € .4’ such that || To&n — Pl < 55 for a € F, it follows

that g
Hg_ZTaga g_zpag

acF ack

<

+ Z ||Ta£a - Paf” < g,

acF
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50 (£a)aca 1s a set of cyclic vectors for .#’. By Proposition (£a)aca is a separating set for ..
By o-finiteness, A is countable.

(ii) = (ili): Let (§1)n>1 be a sequence of separating vectors for .#. By scaling, we can assume that
>0 L lI€nll? = 1. Define w: .# — C by

Z (Tén,&n)-

w is then a normal state, and moreover if w(T*T) = 0 for T € .#, then ||T¢,|> = 0 for all n > 1,
implying T' = 0 since the sequence (&,),>1 Was separating.

(iii) = (iv): Let w be a faithful normal state on .#, and let (H,,, 7, &,) be the corresponding GNS
triple where m,, maps .# into B(H.,). Then by Proposition 7w(A) is a von Neumann algebra
and &, is a cyclic vector for m,(.#) by construction. Moreover, 7, is injective because w is faithful,
so M =7, (M) I 7,(T), =0 for T € 4, then w(T*T) = (r,(T*T)¢y, Ew) = ||mu(T)EL]? = 0, s0
T = 0 by faithfulness of w, implying that £, is separating for m,(.#) as well.

iv)=(i): Let w: A4 — A be the *-isomorphism connecting .Z to A4, let £ € K be the separatin
% g ) P g
and cyclic vector) for .4, and let (P,)aca be a family of mutually orthogonal projections in .Z.
Yy ) € y Yy g proj
Put P = > 4 Pa Then (7(Pa))aca is a family of mutually orthogonal projections in .4 and
T(P) = Y oca T(Pa) where the sum is strong operator convergent. Therefore

S m(PLEN? = [7(P)E) < oc

acA

by [31, Corollary 17.4], so m(P,)& is non-zero for only countably many o € A. Since ¢ is separating,
m(P,) and hence P, is non-zero for only countably many « € A, so . is o-finite. O

Because of its encompassingness, the next result is wonderfully surprising and surprisingly wonderful.

Proposition 2.60. Let .# C B(H) be a von Neumann algebra. Then

M =P,

acA

where M., is *-isomorphic to a reduced von Neumann algebra of #p, @ B(K,), K, being a suitable
Hilbert space and P, is a projection in # such that #p, C B(Py(H)) has a separating vector.
Moreover, each A p, is o-finite.

Proof. Let £ € H and let P be the projection onto [.#’¢]. Then by Lemma P e #. For
n € [A'E], there exists T' € .#" such that ||T¢ —n| < e, and hence ||PT|p3)§ — || < &, proving that
¢ is a cyclic vector for the von Neumann algebra (.#’)p C B(P(H)) and hence a separating vector for

((«#")p)' = Mp by Propositions and

Let Cp denote the central support of a projection P € .#. Choose a maximal family (£,)aca of
non-zero vectors in H such that Cp, and Cp , are orthogonal for o # o', where P, is the projection
onto [.Z'¢,] for a € A. Assume that ) ., Cp, < 13. Then there exists a non-zero vector in H such
that Cp & =0 for all @ € A. Letting P denote the orthogonal projection onto [.#'¢], then for n € H
and T € .#', we have

<T€> CPan> = <CPQ€7T*77> =0

for all « € A, so Cp, and P are orthogonal for all @ € A. Hence Cp, and Cp are orthogonal for all
a € A, contradicting maximality.

Hence } ., Cp, = 13, s0
=P,

acA

by Proposition Now Cp, Palcy, () = Palcp, (w) 18 a projection in .#¢,, whose central support
in #c,, is equal to the identity operator on Cp, (7—[) (see the proof of Corollary |2 - Corollary |2 -
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then tells us that .#c,_ is isomorphic to a reduced von Neumann algebra of .#Zp, ® B(K,) for some
Hilbert space K.

Finally #p_, has a separating vector £, by construction seen in the first paragraph of the proof, so by
Proposition AMp, is o-finite. O

2.11  The universal enveloping von Neumann algebra

So far this chapter might have seemed more like a “take-your-daughter-to-work day” thing than a
development of a single idea, say, the ultraweak topology. True, the digressions throughout we have
made have been necessary but nonetheless, reading through the preceding 10 sections has probably
not been the smoothest ride. We will make up for this by developing a concept, using a lot of the
concepts developed and theorems proved throughout the chapter, and the results will be of great use
for the remaining three chapters.

Knowing now that von Neumann algebras are really rigid concerning the various operator topologies
and that one of them, namely the ultraweak topology, has a lot in common with the weak* topology,
we can pass on to a very important application of what we have been proving up until now. It turns
out that a lot of theorems for C'*-algebras need only be checked for von Neumann algebras because of
a very special embedding of a C*-algebra into a von Neumann algebra that we will be working towards
finding from here onward. One might then consider that there could be a lot of von Neumann algebras
allowing for such an embedding, and therefore it would be the best thing to find a von Neumann
algebra that is possible to derive directly from the original C*-algebra, without any reference to a
specific Hilbert space. That is exactly what we will do: our specific von Neumann algebra will have
the structure of a dual space related to the C*-algebra.

To commence our search, we bring in another definition.

Definition 2.12. Let A be a C*-algebra and let 7: A — B(#) be a representation of A on a Hilbert
space H. Then 7 is said to be nondegenerate if m(A) is nondegenerate. If 7 is nondegenerate, then =
is called universal if it satisfies the following property: Given any other nondegenerate representation
p of A on a Hilbert space K, there exists a normal *~homomorphism pg of 7(.A)” onto p(.A)” such that
p = po o, ie., such that the diagram

commutes.

Note that the requirement above that p = py o m and that pg is normal implies that pg is actually a
*-homomorphism; this follows since 7(.A) is ultraweakly dense in m(.A4)"” by the von Neumann density
theorem. For instance, multiplicativity follows from letting =,y € w(A)”, whereupon there exist nets
(a)aca and (yg)gep such that 7(z,) — = and 7(yg) — y ultraweakly. Hence

polay) = lim lim, po(7(za)m(ys)) = lim, lim po(7(zays))
= lim lim p(zays) = lim p(zq) i
Jim, lim, p(Tays) = lim p(za) Ty p(ys)

= 1' 1' =
Jimy po(m(xa)) lim po(7(ys)) = po()Po(y),
as left and right multiplication are ultraweakly continuous operations.

The notion of a representation of course allows us to embed A4 in a von Neumann algebra, namely the
von Neumann algebra generated by the image of the representation. Requiring that a representation
be universal yields that this von Neumann algebra is essentially unique. Indeed, if 71: A — B(H1) and
ma: A — B(Hs2) are universal representations of A, there exist normal *-homomorphisms p; : 71(A)" —
ma(A)" and py: mo(A)" — w1 (A)” such that m9 = p; o m and m; = py o mo. Hence

pP20O0pP1OT] = P07 =71, P1OP20T2 = P07 = T2,
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S0 pg o p1 and p; o po are the identity maps on 71(A) and 72 (A) respectively. Because they are also
normal, they are the identity maps on 71(A)” and m2(A)”. Hence p; and py are isomorphisms and
inverses of each other, and m1(A)” and m2(A)” are isomorphic von Neumann algebras. Thus for a
universal representation 7: A — B(H), we may speak of the (universal) enveloping von Neumann
algebra w(A)"” of A; it is unique up to isomorphism.

We now aim at proving that the universal enveloping von Neumann algebra is related to A in a
very non-obvious way that nonetheless is very delicate. One might of course inquire first whether a
C*-algebra even has a universal representation. The GNS representation comes to our aid: for every
¢ € S(A), let (my, Hy, &) denote the GNS triple corresponding to ¢. Let H = @, ¢ (1) He and let

= @ .1 A— B(H),
pES(A)

ie.,

(@) (M) pes(a) = (Tp(T)Ny)pesa)y, = €A, (Ny)pesa) € H.
Then we have shown that 7 is a faithful representation of A (see page . 7 is also nondegenerate;
if A is unital, then this is clear as 7(14) = 1%. If A is non-unital, then there exists an approximate
identity (eq)aca of A that satisfies w(e,)n — n for all € H by Proposition Hence n € [r(A)H]
for all n € H, so 7 is nondegenerate.

Before going any further, we will prove an essential fact about *-homomorphisms of C*-algebras. The
proof below does not require the C*-algebras to be unital; the continuous functional calculus is involved,
but its use revolves around a function that maps 0 to 0 and hence can be approximated by a polynomial
with no constant term.

Proposition 2.61. Let A and B be C*-algebras and let p: A — B be a *-homomorphism. Then:

(i) If b € p(A) and b € Bs,, then there exists a € Asa such that p(a) = b and ||a|| = |||
(ii) If b € p(A), then there exists a € A such that p(a) = b and ||a| = ||b||.

Proof. (i) Take € A such that ¢(z) = b and set y = %(z + 2*). Then y € A, and ¢(y) = b. Define
a function f: R — R by

—[loll 2 < —[lb]
fle)=q = —[b] <z <|b]
ol x> [lo]l-

Then f is continuous and f(b) = b. Putting a = f(y), then a € As,, ||al] < ||b]] and

As ¢ is contractive, it also follows that ||b]| < ||a||, and hence we are done.
(ii) Take z € A such that ¢(z) = b. Define b € My(B) by
= 0 b
i-(3 %)
Then b= b* and [|b]| = [|b]|. As () : My(A) — My(B) is a *~homomorphism, and
@ (0 27 _
it follows from (i) that there exists @ € Ma(A)s, such that o) (a) = b and ||a|| = ||b||. Write
. (* *)
a= ,
a *

so that ¢(a) = b and ||a]| < ||a| = ||b]| = ||b||. As *-homomorphisms are contractive, it follows that
Ib]] < |la|| as well, and this proves the statement. O
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Corollary 2.62. Let A and B be C*-algebras and let o: A — B be a *-homomorphism. Then for all
>0, o((A)r) = (¢(A))r

Proof. If a € A with ||a|]| < 7, then ||p(a)|| < |la]| < 7, so p((A),) C (p(A)),. On the other hand, for
b € ¢(A) with |[b]| < r, then by Proposition [2.61] there exists a € A with ¢(a) = b and ||a| < r. Hence
O

(p(A)r € e((A)r).

If p: A — B is a bounded linear map of normed spaces, then its dual mapping ¢*: B* — A* or the
adjoint map of p is given by
P (Y) =1poe.

It is easily checked thate* is linear, bounded by ||¢|| and weak*-to-weak* continuous. Indeed, if ¥, —
in the weak* topology in B*, then for all z € A,

©" (Vo) () = Yalp(@)) = P(p(2) = ¢ (¢)(2),

50 ©* () — ©*(¥) in the weak* topology in A*. Moreover, for bounded linear maps ¢: A — B and
Y: B — C, then (po)* = ¢* o p*. In particular, if a bounded linear map ¢: A — B is bijective
and the inverse ¢~ !: B — A is bounded, then ¢* is bijective as well with (¢*)~! = (p~1)*; note that
if A and B are Banach spaces, then boundedness of the inverse ¢! follows from the Open Mapping
Theorem [13, Theorem 35.10].

Theorem 2.63. Let A be a C*-algebra and m: A — B(H) be a representation of A. Let .# denote
the von Neumann algebra w(A)". Then there is a unique weak*-to-ultraweakly continuous linear map

7: A — A such that the diagram

A i M

commutes, where t: A — A** denotes the natural inclusion. Moreover, T maps the closed unit ball of
A** onto the closed unit ball of .4 and is therefore a surjection.

Proof. Let Q denote the restriction of the adjoint linear map 7«*: .#* — A* to the predual Banach
space M, C M* of M., ie., Q = 7% 4. . Taking the adjoint of 2 yields a linear map Q*: A** —
(A)*; by composing with the inverse of the isometric isomorphism A: .# — (#.)*, we obtain a map
A"1oQ*: A** — _#. We claim that this is the wanted 7. First and foremost, it does extend 7 to A**,
as 7ot =m: indeed for all ¢« € A and w € #, we have

sofor=A"1oQ*or = 7. As adjoints of bounded linear maps are weak*-to-weak™* continuous and A~!
is weak*-to-ultraweakly continuous, it also follows that 7 is weak*-to-ultraweakly continuous. Because
t(A) is weak*-dense in A** by Goldstine’s theorem [2g, Theorem II.A.13], it follows that 7 is the only
weak*-to-ultraweakly continuous extension making the above diagram commute.

Finally, let . = 7((A**);). We claim that .7 = (.#);. Note that (¢(.A)); is the weak* closure of
(A**); by Goldstine’s theorem, and that 7((¢(A))1) = 7((A)1) = (7(A))1 since ¢ is an isometry and
7 is a *-homomorphism, by using Corollary As 7 is weak*-to-ultraweakly continuous, it follows
that . is contained in the ultraweak closure of 7(A);. Since the ultraweak closure of (7(A)); is equal
to ()1 by Kaplansky’s density theorem and Proposition it then follows that . C (.#);. For
the converse inclusion, note that

(m(A))1 = 7((A)1) = T((A)1) S T((A™)) =7

by Corollary By Alaoglu’s theorem 13, Theorem 5.18], (A**); is weak*-compact, so .7 is
ultraweakly compact and therefore ultraweakly closed. Hence . contains the ultraweak closure of
(m(A))1, which is (#); by Kaplansky’s density theorem and Proposition Therefore . = (M) .
It clearly follows that 7 is surjective. O
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Theorem 2.64. Let A be a C*-algebra. There exists a universal representation = of A onto a
Hilbert space H such that m: A — 7w(A)" extends to a surjective isometry 7w: A — w(A)" that is
a weak*-to-ultraweak homeomorphism. Moreover, the predual of w(A)" is isometrically isomorphic to

A*.

Proof. We will use the representation m= and Hilbert space H defined above Proposition By
Theorem there is a unique linear surjective map 7: A** — .# where .# = w(A)". Recalling its
construction, 7 was the composition of the isometric isomorphism A=': (.#.)* — .# and the conjugate
of the map Q: .#, — A* that itself was the restriction of the conjugate map 7*: .Z* — A*. We will
first show that € is a surjective isometry, yielding the second statement.

For all w € #,, then
QW) = [lw o n|| = sup{lw(n(z))| [z € A, |lz|| <1}
7 is an injective *~-homomorphism and hence an isometry, so

sup{|w(m(z))|[z € A, |lz|| <1} = sup{lw(y)[|y € 7(A), [lyll <1} <sup{lw(y)l|y € 4, [ly| <1}

In fact, the opposite inequality also holds. Since w(.A) is nondegenerate, it is ultraweakly dense in .#
by von Neumann’s density theorem. Hence for any y € (.#); there is a net (ya)aca with |yl <1
for all @ € A by converging ultraweakly to y because of Kaplansky’s density theorem and Proposition
Since w is ultraweakly continuous, w(y,) — w(y) as well, implying |w(ya)| — |w(y)|. Since

w(ya)| < sup{lw(y)| [y € m(A), [lyll <1}

for all a € A, it follows that |w(y)| < sup{|w(y)||y € 7(A), |lyll < 1} as well, proving the other
inequality. Finally, as
sup{lw(y)| |y € A, |y <1} = ||w],

we have proved that |Q(w)|| = ||w]|| for all w € .#,.. Hence Q is an isometry.

To prove that € is surjective, let p € A*. By Theorem it follows that ¢ = Z?zl Aip; for \; € C
and ¢; € S(A) where i = 1,2,3,4. Using the GNS representations of A, define elements £ and 7 in H

by 4 4
EZZ)‘ZQDN U:waa
=1 =1

where each &, is considered as an element in H. If w € #, is given by w(T') = (T¢,n) for T € A,
then for all 2 € A we have

2w)(2) = w(r(z)) = ((@),1) = 3 AT (@)s €0) = 30 AT @)6nis i) sz ~ ¢(@).

Hence (2 is surjective, so .#, is isometrically isomorphic to A4* under Q.

For the first statement, note that

127 ()| = sup{[p(Qw))| |w € A, [|lw]| <1} = sup{[p(¥)][¥ € A, [[¢] <1} = [|¢ll

by  being a surjective isometry, so 2* is an isometry. Finally, for ¢ € (#,)*, define ¢: A* — C by
Y(Q(w)) = ¢(w), possible as  is surjective. Then 1) is well-defined, linear and bounded above by |||
by Q being an isometry, and Q*(¢) = ¢, so Q* is surjective. Therefore 7 is a surjective isometry, and
since (2*)~1 = (Q71)*, it follows that Q* is a weak*-to-weak* homeomorphism, as dual mappings are
always weak*-to-weak™ continuous. It therefore follows that 7 is also a weak*-to-ultraweak operator
topology homeomorphism.

Finally, 7 is a universal representation. Indeed, let p: A — B(K) be a nondegenerate representation
of A onto some Hilbert space K. Then by Theorem p induces a linear map g: A** — p(A)".
Define pg = po 7!, Then pg is an ultraweakly continuous linear map of 7(A)” onto p(A)”, and
po(m(x)) = p(u(x)) = p(x) for all z € A. Furthermore, pg is also a *~homomorphism (see page 0
m is indeed universal. O
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The above theorem is truly a gold mine. The above surjective isometry allows us to identify the
universal enveloping von Neumann algebra of A with A** and A** can hence be endowed with a
C*-algebra structure, whereupon the surjective isometry 7 of Theorem becomes a *-isomorphism.
By Theorem the inclusion ¢: A — A** becomes a *-homomorphism. Indeed, if 7 is a universal
representation of A, then by the identification under the map 7: A** — w(A)”, then ¢ is just =.
Furthermore, as ((A) (or A) is weak*-dense in the dual space A**, it is ultraweakly dense in the von
Neumann algebra A**, and (A**), = A* by the isometric isomorphism : (A**), = A* given by

Qw)(a) =w(i(a)), we(A™)., a€ A
This is of course easy to remember; one of the asterisks cancels out!

Equally important is that the defining property of universal representations tells us that for any non-
degenerate representation p: A — B(#H), there exists a surjective normal *-homomorphism pg: A** —
p(A)" such that p = pp ot. Any linear map ¢: A — B of C*-algebras also induces a second adjoint
linear map @**: A** — B** of von Neumann algebras by composing with appropriate surjective isome-
tries, the aforementioned theorem again helping us out. We will investigate this before treading other
waters.

Proposition 2.65. Suppose that A and B are C*-algebras and ¢: A — B is a bounded linear map.
Let o**: A** — B** denote its second adjoint.

(i) ¢** has the same norm as @;
(i) @** is ultraweakly-to-ultraweakly continuous (i.e., normal) when considered as a map between the
enveloping von Neumann algebras;

(iii) if ¥: B — C is a bounded linear map, then

as maps between the enveloping von Neumann algebras;

*%

(iv) if ta: A— A* and 15: B — B** denote the natural inclusions, then ©** 014 = 15 0 ¢ as maps
of A into the enveloping von Neumann algebra of B.

Proof. (i) is clear from the outset (see page [61). To prove (iv), note first that as maps of normed
spaces, then for ¢ € B*, we have

¢ (ra(@)(¥) = (rala) o ¢*) () = ¢*(¥)(a) = P(p(a)) = ws(p(a)) (),

so that the equality holds for A** and B** as Banach spaces. Let m and p be universal representations of
A and B respectively, inducing surjective isometries 7: A* — 7(A)” and p: B** — w(B)"” by Theorem
When considered as maps between the C*-algebras and their enveloping von Neumann algebras,
14 and 15 are just the maps 7 and p, i.e., 1q = 7 ' omand 15 = p ' o p. Likewise, ¢** as a map of
von Neumann algebras is just the map po ¢** o 71, so as

pop™orlor=pop*™ o =poigop=poy.

Hence we obtain (iv).

For (i), it is clear that ||e**|| < |l¢*|| < |l¢ll. Let a € A be arbitrary. By the Hahn-Banach theorem
[t3, Theorem 5.8], there exists ¢ € B* such that ||| = 1 and ¢ (p(a)) = ||¢(a)||. Since

¢ (ra(@) (@) = vala) o @™ (¢) = ¢™(¥)(a) = P(p(a)) = [lp(a)l],

it follows that
le(a)[l = le™ (cala)) (@) < [le™ (la)]l < lle** [lall-

Hence [J¢|| < |l¢ so |l¢ll = |l¢**|| when considering ¢** as a map of dual spaces. For the von
Neumann algebra case, then note that because © and p as defined in Theorem are isometries, it
follows that [|po@** o7t < ||¢l||. For a € (A)1, ta(a) € (A**); and hence T = 7(14(a)) € (m(A)");.
Remembering that ¢** o 14 = 15 0 ¢, we have

3

5o od | 2 [Ipoe™ oa (D)l = 5(es(w(@))] = lle(a)ll,
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so ||¢]| < ||po¢** o7~ ||. Hence o** has the same norm as ¢.

To prove (iii), let w be a universal representation of C. As maps of dual spaces, we have (¢ o p)** =
(p*op*)* = p** 0™ (see . With 1)** seen as the von Neumann algebra map given by @o** op~!
and ¢** seen as above, we have

Boy™ o) o (pog™ oi™t) = o (o p) oi,

which is precisely the map (¢ o ¢)** considered as a map over the enveloping von Neumann algebras

of A and C. Hence (iii) follows, and the proof is complete. O

In the proof above, we used the explicit properties of the map connecting second duals to von Neumann
algebras; however, as one can see, it is rather tedious notation-wise which is why we will not make use
of this connection too often. We will return to other properties of the second adjoint map shortly in
the next chapter after introducing the next important concept, with (hopefully) more concise proofs.

We end the chapter with a nice application of the enveloping von Neumann algebra.

Corollary 2.66. Let A be a C*-algebra. If p € A*, there exists a representation 7: A — B(H) and
&,n € H such that
p(z) = (m(z),m), z€A

and ||| = [[€][[[n]]-

Proof. Let w € (A**), such that ¢(x) = w(i(z)) for all z € A. By Proposition we can write
w = U -9 for some partial isometry U € A** and a positive linear functional ¢ € (A**), such that
0|l = |w]|. Let ' = ||¢|| = 4, so that ¢’ is a state. Letting (H,7’,£’) be the GNS triple associated to
), then

o(x) = wi(z)) = Y(u2)U) = [$l{7" (u(z)U)E, &) = (r(x)¢, n)
for all x € A where 7 = 7' ® ¢, £ = n(U)&" and n = ||¢||’. Clearly || < [|€]lln]l, and as & is a unit
vector, we have

€1l < 1ol = llwll = llell,
completing the proof. O

If you, kind reader, have found the structure of the past two chapters too busy, I don’t blame you.
Focus has not exactly been the word of the day, but the next three chapters will hopefully make up
for it.



CHAPTER 3

COMPLETELY POSITIVE MAPS

It might be very easy to realize what it means for a map to be positive. Indeed, there is no way it
could mean anything other than sending positive elements to positive elements. If one were to be told
that there existed higher degrees of posivitity, there is at least some possibility that one could derive
the notion by transforming the original map into maps over matrix algebras, but more on that later.
For our definition to be the most encompassing, we will start out by defining a notion of positivity for
dual matrix algebras. The definition will then be given in the following section.

3.1 A matter of dual spaces

One should remember that there exists a notion of positivity for linear functionals and hence we
can derive one for maps over dual spaces of C*-algebras (sending positive functionals to positive
functionals). This section will bring along a couple of isomorphisms so that the definition of positivity
in the next section needs no explanation.

We will start out by classifying positive matrices with C*-algebra entries.

Lemma 3.1. Let A be a C*-algebra and n > 1. An element in A® M, (C) is positive if and only if it
is a finite sum of elements of the form

n
*
a:E aja; @ e€jj, Q1,...,0, €A,
,j=1

where (ei;)7;—, denotes the canonical set of matriz units of M,(C). Hence an element of M,(A) is
positive if and only if it is a finite sum of matrices of the form (aja;);';_; for ai,...,a, € A.

Proof. For ay,...,a, € A we have

Z aja; ® e = (Zaf ®€i1> Zaj ®ey | = (Zai ®61i> Zaj ®erj ) = 0.
i=1 j=1 i=1 j=1

ij=1

Hence elements of the above form are positive, so finite sums are as well (Proposition . Assuming
that a € A® M, (C) is positive, there exists b € A® M, (C) such that a = b*b. Since b is of the form
Z?jzl bij ® e;; for b;; € A, then we have

*

a= Z bij ® €5 Z bu®ew | = Zzbfjbkz ® ejiep = Z Z biibi @ eji,

ij=1 k=1 ij kl i=1 j,l=1
completing the proof. O

Lemma 3.2. Let A be a unital C*-algebra and n > 1. Then for any a = (aij)} ;=1 € Mn(A), the
following are equivalent:

(i) a is positive.
(ii) For allb € M, 1(A), b*ab =37 ._, bfa;;b; is positive in M; 1(A) = A.

i,j=1"1

65
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Proof. (i) = (ii) is clear. For the converse implication, assume that a is not positive. Let B be the
separable unital C*-subalgebra generated by the entries a;; for ¢, = 1,...,n. Then a € M, (B), and
a is not positive in M, (B). Since B is separable, we can take a faithful state w € S(B) by Proposition
Let (H,7,&) be the associated GNS triple, in which 7 is a faithful representation of 5. By the
construction of the matrix algebra M, (B), the induced map 7: M, (B) — B(H") is faithful as well,
and hence 7 (a) is not positive in B(H").

It is now easy to verify that {(7(b1)&,...,m(bn)§) | b1,...,b, € B} is dense in H™. This implies that
there exist by, ..., b, € B such that (#(a)n,n) is not a positive number, where n = (w(b1)¢, ..., 7(bn)&).
As

n n

@y = 3 (rlay)n(b)ewb)E) = 3 {r(biayb))&,€) = (x(brab)e, &),

i,j=1 i,5=1

where b = (b1,...,b,) € M, 1(A), we see that w(b*ab) is not positive, so b*ab is not positive. Hence
the proof is complete. O

It will become useful in the following discussion to identify the dual of a matrix algebra with other
vector spaces, establishing a notion of positivity by means of the positive linear functionals in the dual.
We will do this by establishing, not just one, but two linear isomorphisms on the dual, allowing for a
wider view on the identification.

The first isomorphism is created as follows. For a given C*-algebra A and n > 1, we let M,,(A*) denote
the vector space of matrices with entries in A*. For ¢ = (pi;)i;_; € M, (A”), define

Qe)(a) = > ¢ij(aij)

ij=1
for a = (ai;)} ;=1 € My(A). Then we have Q(p) € M, (A)* for all ¢ € M, (A*), as it is linear and
[2(e)(a)] < n® max [yl all

for all @ € M,,(A) by Lemma EI, and Q is linear as well. If Q(p) = 0 for some ¢ = (pi;)7;_; €
M, (A*), then it is easy to see that ¢;; =0 for all 4,5 =1,...,n, so ¢ is the zero matrix. Moreover, if
¥ € M,(A)* then by letting p;;: A — M,(A) be the linear isometry that inserts a at place (¢, ) in a
nxn matrix and puts 0 everywhere else, we can define a bounded linear functional ¢;; = 1op;;: A — C.
If o = (pij)ij=1 € Mn(A*) we then have

AUp)a)=v | > pijlayy) | = ¢la)

ij=1
for all a = (a;;)};—, € M, (A). Hence we can identify M, (A)* with M, (A*) by the isomorphism .

Also, by Corollary any element of the vector space A* ® M, (C) can be written uniquely as an
element of the form

Z Pij & €45,

0,J

where (e;;)7;_; denotes the canonical set of matrix units of M,(C). Defining a map M,(A*) —
A* © M, (C) by
(@ij)isj=1 — Z‘sz @ €ij,
0,J
it is clear that it is a linear isomorphism. This is the second isomorphism that we seek. We will say that
an element of A* ® M, (C) or M, (A*) is positive if it is identifiable with a positive linear functional

on M, (A)* by either of these two isomorphisms. It will be useful to know when such elements are
positive, and the next lemma will clarify this matter.
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Lemma 3.3. Let A be a C*-algebra and let p = (i)} j—1 € My (A*). Then ¢ is positive if and only
if
> wijlaia;) >0

ij=1

forall aq,...,a, € A.

Proof. Since
90((@ a;)ij— 1 Z pij(aja;)

4,j=1
for all ay,...,a, € A, the result follows from Lemma O

If £ is a subspace of the dual A* of a C*-algebra A, then we say that ¢ = (vi;)';—; € M, (E) if
pi; € Eforalli,j=1,...,n, and that ¢ € M, (E) is positive if ¢ is positive as an element in M, (A*).

In the case where . is a von Neumann algebra, it will be useful to know that the above isomorphisms
preserve the notion of ultraweak continuity. Here is a proof.

Proposition 3.4. For any von Neumann algebra .# C B(H) andn > 1, then ¢: M, (M) — M, (M ).
given by

¢((w1])1j 1)( ZJ 2] 1 Z

is a linear isomorphism. Moreover,
- max lw; || < [lo(w)] < Z [Jwis |
1,j=1,...,n
4,j=1
for all w = (wij)} =1 € Mn(A).

Proof. To see that ¢ is well-defined, let w = (wi;)7;—; € My (#.) and for all 4,5 =1,...,n write

§ : Werm

for suitable sequences in H. For any m > 1, let

E(z,]) (51]) U(T?,j) - Ll(UZL% Lj=1...,n,

where ¢, denotes the inclusion of H into the k’th copy of H in H". Then for all T = (T3;)}',_; €
M, (A ), we have

n

Do D AT i) = Z Z (Ty&iomiy) = Y wij(Thy) = w(T).

i,j=1m=1 i,j=1m=1 i,7=1
Hence ¢(T) € My, (M )+, so ¢ is well-defined. Not surprisingly, ¢ is linear as well. For any w € M, (A& ).,
define w;;: # — Cfori,j=1,...,n by
wij (T) = w(pi; (T))

where p;;(T) is the element of M, (.#) with T in position (i,j) and 0 everywhere else. To prove that
wij € My, write w = > we, - for suitable sequences in H™ and write &, = (&},,....&%) and
N = (nk,...,n") for all m > 1. Then

WU Z ng £m7 77m Z T77m
m=1 m=1

for all T' € .4, proving that w;; € .. It is then easily seen that ¢((wi;);';_;) = w, proving that ¢ is
a linear isomorphism, since it is injective by the remark after Lemma To prove the inequalities,
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we do the following: note that for all 4,5 = 1,...,n, then |p;;(T)|| = |T|| by Lemma for any
T € (). Hence for w = (w;;)}';—; € My (A.), we have

|wis (T)] = |$(w) (i (T))] < llW)],
proving the first inequality. Moreover, for any T' = (T3;)7 ;—, € (M,,(.#))1 we have
n n
D)D) < Y wislI Tl < Y Nwis T,
ij=1 ij=1

proving the second. O

3.2 Positive and completely positive maps

The next two sections should now be completely understandable.

Definition 3.1. Let A and B be either of a C*-algebra or a subspace of the dual of a C*-algebra. A
linear map ¢: A — B is called positive if it maps positive elements to positive elements.

Definition 3.2. Once again, let A and B be either of a C*-algebra or a subspace of the dual of a
C*-algebra. For n > 1, a linear map ¢: A — B is called n-positive if the tensor product map

pOid,: A® M,(C) = Bo M,(C)

is positive, where id,,: M, (C) — M,,(C) is the identity mapping. If ¢ is n-positive for all n > 1, we
say that ¢ is completely positive.

We shall often write ¢ ®id,, = ™. By identifying A ©® M, (C) and B ® M, (C) with M, (A) and
M,,(B) respectively, we see that (™) is also a map M, (A) — M, (B) given by

W(n)((aij)?,j:ﬁ = (So(aij))?,j:r

As compositions of positive maps are again positive, it follows that compositions of completely positive
maps are again completely positive.

The discussion of duals of C*-algebras will be set aside for the moment, and we will now concentrate
on positivity and complete positivity for C*-algebras only.

Proposition 3.5. Let A and B be C*-algebras. Then the set of completely positive maps A — B is a
cone, i.e., if ¢ and 1 are completely positive maps A — B and A > 0, then p+1 and Ao are completely
positive.

Proof. Let n > 1 and let a € M,(A) be positive. Then (¢ + )™ (a) = ¢ (a) + ™ (a) > 0 by
Proposition and (A\¢™)(a) = \p(™ (a) > 0, so the result follows. O

As positive linear functionals are Hermitian, it might be useful to know whether a similar property
holds for positive maps. We will deal with this straight away.

Definition 3.3. A linear map ¢: A — B of C*-algebras is called Hermitian if p(a*) = ¢(a)* for all
ac A

Proposition 8.6. A linear map ¢: A — B of C*-algebras is Hermitian if and only if v(a) € B for
all a € As,.

Proof. If ¢ is Hermitian, then it clearly satisfies the other condition as well. If p(a) € Bs, for all
a € Asa, let a € A and write a = a1 + ias with self-adjoint elements a1, as € Ag,. Then

*

p(a®) = plar) —ip(az) = (pla1) +ip(az))” = ¢(a)
for all @ € A, so ¢ is Hermitian. O

Proposition 3.7. Let A and B be C*-algebras. Then all positive linear maps A — B are Hermitian.
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Proof. Let ¢: A — B be a positive linear map and assume a € Ag,. Because |a|+a > 0 and |a|—a > 0
by the continuous functional calculus (note that = +— |z| maps 0 to 0, so that |a| can actually be
obtained by approximating with polynomials sending 0 to 0 — in short, it does not matter if A is
non-unital), it follows that ¢(a) = % (¢(la] + a) — ¢(|a| — a)) is self-adjoint, so that ¢ is Hermitian by
Proposition O

In Chapter 2, we depended upon the notion of positivity to define normal maps. As we now have the
concept and notation fully laid out, we will prove one last helpful thing about normal maps.

Lemma 3.8. If o: A4 — N is a normal linear map on von Neumann algebras # and AN andn > 1,
then ™ is normal as well.

Proof. Letting w € M, (./)., then Proposition [3.4] yields w;; € A4, 4,7 = 1,...,n in a way such that
for all T' = (T35)} j—1 € My (#) we have

n

w(et(T) = Y wij(e(Ty).

4,j=1

Proposition m tells us that w;; o ¢ € &, for all i,j = 1,...,n. Hence (w;j o @)}';_y € My(A4.)
defines an element ¢ of M, (.#), in the manner of Proposition so that we have

w(e"(T)) = (T).
Hence w o ") =) € M,, (M), for all w € M, (A4 )., so by Proposition ©(™ is normal. O
We will now derive some additional properties of positive maps as well as a property implying positivity.
Proposition 3.9. Let A and B be C*-algebras and let p: A — B be a linear map. Then:
(i) If v is positive, then ¢ is bounded.
(i) If A is unital and ¢ is positive and 2-positive, then ||¢| = |l¢(1.4)]-
Proof. (i) Let f € S(B). Then f o ¢ is a positive linear functional on A, so it is bounded as well. As

[(f o)) < [[fllle(a)ll = lle(a)l

for all @ € A, then the Uniform Boundedness Principle [13, Theorem 5.13] yields that the set of
bounded linear functionals {f o ¢ | f € S(B)} is uniformly bounded. Hence there exists K € Ry such
that

[(fop)(a)] < Ka]

for all f € S(B) and a € A. For a € Ag,, there exists a state ¢ € S(B) such that |¢(p(a))| = ||¢(a)|| by
Theorem [2.50] and hence [¢(a)|| < K|[al|. For a € A, then by decomposing a into the sum a = a; +iag
for a1, as € Ag,, we obtain

le(@)ll < llean)ll + llp(az) | < K(llaa]l + llaz]) = 2Ka]-

Hence ¢ is bounded.

(ii) We clearly have ||¢(1.4)]] < ||¢||- For the other inequality, we will pass to the matrix algebra Ma(A)
for useful information. Since —|ja||l4 < a < |la]|14 for a € As,, then by positivity we obtain

—llalle(la) < ¢(a) <|lallp(1a)

and hence |[p(a)]| < |lallll¢(1.a)] for all a € Ag,. Given any a € A, put
i— (2 ‘6) € My(A).
Clearly a = a*. To calculate the norm of @, pick a faithful unital *-representation 7 of A onto some
Hilbert space H, and let 7(® denote the induced faithful unital *-representation of Mj(A) onto H>
defined as in Proposition For ¢ = (¢1,&2) € H?, we have
2)(7)£)12 — m(a*)&2
I @el? = | (s

2
= [Im(a)*&l” + llm(a)sul|* < flall*€]1*.
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Hence ||a|| = ||[7®(a)|| < ||a||. For € > 0, then if 7 is a unit vector of H such that ||z (a)n||+& > |7 (a)]|,
then
2@ ()] = | sy | = 1@l = @l = & = el =
Since € > 0 was arbitrary, we conclude ||a|| < ||a||, thereby proving ||a|| = ||@||. One proves in the same
manner that
@@y~ ° @(a)*)
® ( ) <<p(a) 0

has norm ||¢(a)| and that | (1ps,(4))] = ll¢(La)]|. Since ¢ is 2-positive, then by what we proved
above, we have

le@)ll = le® @) < llallle® (Lary )l = lalllle(ta)l

for all a € A, and thus we conclude [|¢| < |¢(1.4)| and hence equality. O

Proposition g.10 (Russo-Dye, 1966). Let A and B be unital C*-algebras and let o: A — B be a
unital linear contraction. Then ¢ is positive.

Proof. Suppose ¢ is contractive and let w be a faithful unital representation of 5 on some Hilbert space
H (see, e.g., page . For any vector £ € ‘H, define w: A — C by

w(a) = (r(p(a))s, &)

Then w is a linear functional on A, |jw|| < ||£]|? and w(14) = [€]|?, so by [31, Theorem 13.5], w is
positive. Hence if a > 0, then

0 <w(a) = (m(p(a))§,§).

Since & was arbitrary, it follows that (7w (p(a))&, &) > 0 for all positive a > 0 and £ € H, so 7(¢(a)) >0
and hence p(a) > 0 for all a > 0, since 7 was faithful. O

We finally look into some examples of completely positive maps.

Proposition 3.11. Let A and B be C*-algebras. Then every *-homomorphism ¢: A — B is completely
positive.

Proof. Since any *-homomorphism is positive, and ¢(™ is a *-homomorphism for all n > 1, the result
follows. O

Proposition 3.12. Let A be a C*-algebra. Then any positive linear functional : A — C is completely
positive.

Proof. Let ¢ € A* be positive on .A. We have to prove for any n > 1 that (™) : M, (A) — M, (C) is
positive. By identifying M,,(C) with B(C™), then for aj,...,a, € A and £ = (&1,...,&,) € C", we
have

(™ (a7 ;) 1€, €) = ((wlafay)}j=1)€,€)

n

= (plaa;)&;, &)

ij=1
= Z p(aja; §J§Z = (Zfz%) Z@%‘ > 0.
i,j=1 j=1

Hence o™ ((a? a;)ij—=1) > 0. From Lemmait follows that (™) is positive for all n > 1. O
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3.3 Properties of second adjoint maps

In Chapter 2, we took our time to define the enveloping von Neumann algebras and how we could obtain
maps of these from maps over the original C*-algebras. Some properties were deduced in Proposition
We now return immediately to the properties of second adjoint maps between double duals (or
enveloping von Neumann algebras) of C*-algebras derived from linear maps, in a manner that sums
up everything that is needed for now.

Proposition 3.13. Suppose that A and B are C*-algebras and p: A — B is a bounded linear map.
Let o**: A** — B** denote its second adjoint.

(i
(i

©** has the same norm as @;

3k

©** is normal;

)
)
(iii) if ¢ is Hermitian, then so is ¢**;
iv)

)

)

(v

(vi

if  is positive, then so is ©**;
if © is a *-homomorphism, then so is ©**;
if @ is completely positive, then so is p**;

Proof. Let t4: A — A and 15: B — B** denote the canonical inclusions with ultraweakly dense
images. (i) and (ii) was the content of Proposition (i) and (ii).

For (iii), let T' € A** be self-adjoint. By Kaplansky’s density theorem (Theorem , there is
a bounded net (t4(aq))aca of self-adjoint operators in ¢4(A) converging weakly to T and hence
ultraweakly by Proposition Since ¢4 is faithful, a, is self-adjoint for all o € A. Since the adjoint
operation is ultraweakly continuous, it follows from (ii) that

@™ (T) = lim ¢™*(1(aa)) = lim t5(p(aa))

a€A acA
= i ste(a))” = (1 LB«o(aa»)* - (ii&w**(b(aa)))*
=o"(T)".

*

Hence ¢**(T) is self-adjoint, so ¢p** is Hermitian by Proposition

(iv) Let T € A** be positive. By Kaplansky’s density theorem, there is a bounded net of positive
operators in ¢ 4(A) converging strongly and hence weakly to T. As ¢** is normal, it is weakly-to-weakly
continuous on bounded sets by Proposition [2.1} so tg(p(z4)) = @**(ta(za)) — ¢**(T) weakly; as
18(p(zq)) is positive for all « € A and (B**); is weakly closed (indeed, .Z, is weakly closed for any
von Neumann algebra .#), it follows that ¢**(T') is positive.

(v) We only need to prove that ¢ is multiplicative by (iii). Let S,T € A** and take nets (t4(2Za))aca
and (t4(ys))pep in A converging ultraweakly to S and T respectively. Because the product is ultra-
weakly continuous in each variable and ¢** is ultraweakly continuous, it follows that

©**(8T) = lim lim ¢** (ta(zays))

a€A BEB
= lim 1im 15(p(2a))is(e(yp)) = lim e5(p(a))p™(T) = ™ (S)¢™ (T).

(vi) Let n > 1 and let T' € M,,(A**) be positive; we will show that (¢**)(™)(T) is positive. Since +(A) is
ultraweakly and hence weakly dense in A**, it follows from Proposition [1.36] that M,,(¢.4(A)) is weakly
dense in M, (A**). By Kaplansky’s density theorem, there exists a bounded net of positive operators
(Tw)aca in My (¢4(A)) such that T, — T strongly. Each T, is of the form Lff)(xfj)ﬁj:l where 2% € A
for all @ € A and 4,5 = 1,...,n. Since 1" is an injective *-homomorphism, then My, (ta(A)) is a
C*-algebra and hence each z, = (z¥)7;_; € M,(A) is a positive matrix itself. Note that for all a € A
we have
(") (To) = (¢ (cal@d))i jo1 = (@)1 o = 570" (20) 20

since ¢ is completely positive. As ¢** is normal by (ii) then (©**)(™) is normal by Lemma S0
Proposition yields that (¢**)™")(T,) — (¢**)")(T) ultraweakly. Since M, (B**), is weakly closed
and (¢**)")(T,) € M,,(B**), for all a as found above, we conclude that (¢**)™)(T) is positive. [
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A wonderful consequence of the properties of second adjoint maps is the following: it can be used every
day when taking a shower and twice on New Year’s Eve if there is no soup and cigarettes left.

Proposition 3.14. Let A be a C*-algebra with a closed two-sided ideal J. Then

Proof. Note that J and A/J are C*-algebras (see, e.g., [24, Theorem 8.1]). Let j: J — A denote the
inclusion map and let 7: A — A/J denote the canonical quotient map. Then j**: J** — A** and
7% A" — (A/J)** are normal homomorphisms by Proposition and j** is injective by Lemma
Furtheremore, (5°*(3**)), = 7**((3**),) and (7**(X**)), = 7**((X**),-) are ultraweakly compact
and hence ultraweakly closed for all » > 0 by normality of j** and 7** as well as Corollary Now
it follows from Theorem that 7*(J**) and 7**(X**) are ultraweakly closed. Since Lemma
yields that ker 7** equals the ultraweak closure of j**(J**) and that (A/J)** equals the ultraweak
closure of 7**(X**), it then follows that ker 7** = 7**(J**) and that 7** is surjective. Finally noting
that J** = j**(3**), the result follows from Proposition m O

Corollary 3.15. Let A be a non-unital C*-algebra, and let A denote its unitization. Then

Proof. As C** = C, the result clearly follows from Proposition O

3.4 Stinespring’s representation theorem

Let A be a C*-algebra. The *-isomorphism 1: B(C) — C given by V +— V(1) is of course a positive
map, so if p: A — B(C) is a positive linear map, then the corresponding linear functional ¢op: A — C
is positive. The GNS representation now yields a GNS triple (K, 7, ) such that ¥ (p(z)) = (w(2)&, )
for all € A. Defining V: C — K by V(\) = A¢, then as

(VA),m =X =An,E), AeC, nek,

we see that V*: K — C is given by V*n = (n,¢) for n € K. Hence

p(@)(1) = d(p(x) = (r(2)¢,§) = Vi (n(2)§) = V*(m(z)V (1)) = (V' m(2)V)(1)

for all # € A, so ¢p(z) = V*r(z)V. To summarize, if H = C, then for a given positive linear map
¢: A — B(H) we have found a Hilbert space K, a representation 7: A — B(K) and a bounded linear
operator V': H — K such that p(z) = V*r(x)V for all x € A. As it turns out, we can in fact generalize
this to any Hilbert space H if we put a notable restriction on ¢ — it has to be completely positive. The
proof is somewhat long, but it has a wide range of applications we cannot afford to miss out on.

Theorem 3.16 (Stinespring’s representation theorem, 1955). Let A be a C*-algebra and H a Hilbert
space. Moreover, let p: A — B(H) be a linear map. Then the following are equivalent:

(i) ¢ is completely positive.

(ii) There is a Hilbert space K, a representation w: A — B(K) and a bounded linear operator V: H —
K such that
pla) =V*r(a)V, a€ A

If A is unital, m can be chosen to be unital.

If A is a von Neumann algebra and ¢ is normal, then w in (ii) can be chosen to be normal.

Proof. The easy part is proving that the second condition implies the first one. Assume that (ii) is
satisfied, let n > 1 and let a = (a;;)}';,—; € Mn(A) be positive. We will identify M, (B(H)) with
B(H™). For any £ = (&1,...,&,) € H™, note that

n n

(" (@), nn = D (plai))& &dn = Y (m(aij)VE, V) = (r™(@)VE VE)kn,

i,j=1 2,j=1
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where V& = (V&,...,VE,) € K. Since 7 is a *~homomorphism, then 7(") is positive by Proposition
and therefore (p(™ (a)¢, &) = (7™ (a)VE, VE) > 0. Therefore (™ (a) is positive, so ¢(™) is positive
for n > 1. Hence ¢ is completely positive.

Now assume that (i) is satisfied. The aim is first to define a sesquilinear form (-, ), : AOHxAOH — C
on the algebraic tensor product A ® H such that

<Zai®§i,zbj®nj> = {p(bjai)&,m;)w. (31)
i=1 j=1 RN

The question is whether we can obtain a well-defined sesquilinear form satisfying the above equation.
To address this, we will show that there exists a sesquilinear form on A ® H that satisfies . For
a € Aand £ € H, the map (b,n) — {(p(b*a)€,n)s is bilinear and hence induces a unique linear map
fla,ey: A®H — C such that

fae(b@n) =M, e a)l)n, beA neH,

by universality of the algebraic tensor product. Letting (A ® H)* denote the vector space of (not
necessarily bounded) linear functionals A ® H — C, the map o0: A X H — (A ® H)* given by

0(a,8)(v) = flae)(v), veEAOH,
is bilinear, so universality again yields a linear map 6: A®H — (A © H)* satisfying
G(a®&)(b®@n) = flae(b@n) = (b a)s, n).

By defining (v, w), = &¢(v)(w) for v,w € AOH, (-, ), is sesquilinear and satisfies (3.1).
Observe that for aq,...,a, € Aand & = (&1,...,&,) € H", then if we define x € M, (A) by

ajar ... ajan

Lemma [3.1] yields that A is positive and hence

<Z ai ® &, Zai ® fz‘> = Z (plaai)és &)u = (o' (2)€,E)wn > 0,
i=1 i=1

o D=1

since (™ was positive by assumption. Hence (+,*)y is a positive semi-definite sesquilinear form, but
it is not necessarily an inner product. In order to turn it into an inner product, we need to pass to an
appropriate quotient space. Let A4~ C A ® H be defined by A = {v € A®H|(v,v), = 0}. By the
Cauchy-Schwarz inequality (Proposition we have

|<U’w>90| < (U,U>¢<w,w>¢
for z,y € A®H, so
N ={ve AOH|(v,w), =0forallwe A H}.

This makes it clear that .4 is a subspace of A ® H. We now define an inner product on the quotient
vector space (A ® H)/A by

<[.13]7 [y]>§0 = <.’13, y><p7
and we let KC denote the Hilbert space completion of the (A®%H)/4" with respect to this inner product.

We now assume that A has a unit 1 4. Given a € A, then since the map A x H — A ® H given by
(b,€) — ab ® & is bilinear, it induces a unique linear map 7’(a): A®H — A ©® H given by

71'/((1) (Z a; ® §¢> = Zaai R &;.
i=1 i=1
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fo=>3" a,®¢& € A®H,note that by defining

a O .« .. O a/l a2 “ e an

0 a ... 0 0 0 ... 0
a = NES ,

00 ... a 0 0 ... 0

then y*a*ay < ||a||*v*y = ||a||?y*y. Hence if we put & = (£1,...,&,), we obtain
n n
(r'(a)v, 7 (a)v), = <Z aa; ® &, aa; ® §i>
= =1 @

= Z aja”aa;)&;, &)n

1,7=1

= (¢ (y @ ay)€, Ewn < llal* (™ (y y)€, E)pn = llal* (v, v) .

Hence it is possible to define a bounded linear map 7 (a): (A© H)/ AN — (ASH)/ A by 7(a)([v]) =
[7'(a)(v)] for v € A ® H and by passing to completions (using Proposition we obtain a unique
bounded linear operator m(a) € B(K) such that 7(a)w = 7(a)(w) for w € (A® H)/.#". This gives
us a map 7: A — B(K). We claim that 7 is actually a unital *-homomorphism. Let a,b € A and
w=Yr 08 €(AOH)/AN. Clearly n(14)w = w and 7(a + b)w = 7(a)w + 7(b)w; moreover,

Zai ® & = 7(a) [Z ba; ® & | = m(a)m(b) lz a; ®&;

so m(ab)w = w(a)m(b)w. As
<7T(a*) [Z a; @& |, |:Z b; ® 7]_]'] > = [Z ata; ®&; |, |:Z i ® 77]] >
i=1 1 |i=1 © i=1 —1 .

— Z((p(b;a*ai)fianj>7'l
Xt

n

= Zabai ®&;

Li=1

m(ab)

b

(abj)*ai)&i, i) m

,m(a) [ébj®nj]>

K
[Z a; ®&;

e

we also have 7(a*)w = 7(a)*w. Using continuity of 7(14), m(a) and 7 (b), we conclude that 7 is indeed
a unital *-homomorphism.

Zaz®£1

B
>

Za2®£z

|
<
(e

Define V: H — K by V(§) = [1a ®&] for £ € H. Since V is clearly linear and

VIR = (1a®E,la®&)y = (la®&1a® &)y = (p(1La)E En < llelllEl%
for all £ € H, V is a bounded linear operator. Finally, for a € A, then we have for all £,n € H that
(V*m(@)VE nyu = (r(a)VE Vn)x
= (m(a)[la®¢],[la®@n))x
= ([a®&,[la®n)),
=(a®&1a®n)
= (p(124a)&; mn
= (p(a)&, M-
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Hence V*m(a)V = ¢(a), completing the proof of the unital case.

If A is non-unital, we consider instead the enveloping von Neumann algebra A**. It follows from Propo-
sition that o**: A** — B(#H)** is completely positive. Since B(H) is a von Neumann algebra, it
follows from the discussion after Theorem that there exists a representation 6: B(H)*™* — B(H)
such that 0(cp(3)(T)) = T for all T' € B(H). As 0 is completely positive, 6 o p** is completely pos-
itive. Because we know that (i) = (ii) holds for unital C*-algebras, there exists a Hilbert space K, a
representation 7: A** — B(K) and a bounded linear operator V: H — K such that

Oop™(a)=V*r(a)V, ac A™.
Since ¢** 014 = tp(3) © ¢ then for any a € A,

Vin(ea(a))V = 009" (vala)) = ¢(a),
somory: A— B(K) is the sought-after representation.

Finally, assume that A is a von Neumann algebra and that ¢ is normal and completely positive. Let
(Tw)aeca be a bounded, increasing net of self-adjoint operators in A with T € A being its strong
operator limit and least upper bound T € A. For any R and S in A, then because T,, — T ultraweakly
by Proposition[2.1]we see that R*T, S — R*T'S ultraweakly. By normality of ¢, p(R*T,S) — ¢(R*TS)
ultraweakly. For w = [}_1" | S; ® &) € (A© H) /A we then have

(Twwhs = Y (T[S @ 6L S 2 €))
= z": (ToSi ®&,5; &)y
= ) (p(S;TaSi)&i, &)

ij=1

= > {e(S;T8)&, &) = ((T)w, w),.

ij=1

As 7 is a *-homomorphism, (7(T,))aca is a bounded, increasing net of self-adjoint operators in
B(H) and hence has a least upper bound S that is also its strong operator limit. As this im-
plies (m(Tp)w,w) — (Sw,w) for all w € (A© H)/A, it follows that (7(T)w,w) = (Sw,w) for all
w € (AOH)/AN . Because (AOH)/ A is dense in K by construction, it follows that (7 (7)€, &) = (S¢, &)
for all £ € K, so n(T) = S. Therefore 7 is normal. O

Since the main concern of the project is von Neumann algebras, we are now interested in looking at
what consequences it has for completely positive maps on these. The two next results will reduce our
future work greatly.

Corollary 3.17. Let (M;)icr and (A;);cr be families of von Neumann algebras with #; C B(H,;)
and A; C B(K;) for families of Hilbert spaces (H;)icr and (K;)icr. Define M = @,;c; A and N =
D,cr N and let (¢i)icr be a family of completely positive maps M; — N; such that 0;(1.4,) = 1.4
forallic I. Then o =@, 0i: M — N given by

e((Th)ier) = (pi(T))ier

is a completely positive map with (1 4) =1 4. If all ; are normal, then ¢ is normal as well.

Proof. By Proposition il =1 for all i € I, so ¢ is well-defined, and clearly linear and bounded
as well with ¢(1) = 1. By Stinespring’s representation theorem then for all i« € I we have a Hilbert
space L;, a representation 7;: .#; — B(L;) and a bounded linear operator V;: K; — £; such that

0i(T) = Vim(T)Vi, T, € M.
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Note that 1 = [|p;(1)]| = [|[Vi*m(1)V;i]| = [|[Vi*Vi]| = ||[Vi||?, so |Vi|| = 1 for all i € I. It is now possible
to define a representation 7: .4 — B(D,.; L) by

T((T3)ier)(&)ier = (mi(T3)&i)icr, T € MG, & € Ly,

and a bounded linear operator V: @, ; Ki — @,.; Li by V((&i)ier) = (Vi&i)ier. In this case we see
that ©((T})ier) = V*1((T1)ier)V for all (T;);cr € 4, so Stinespring’s representation theorem yields
that ¢ is completely positive.

Assume that all ¢; are normal and let w € .4;. Then there is a family (w;)icr € @;c;(4i)« corre-
sponding to w in the manner of Proposition S0 w; 0 @; € (M;)« for all i € I by Proposition m
As Y icrllwiows]| <3 7cr llwill < oo, so there is a ¢ € .4, corresponding to (w;ow;)icr € @, (As)x,
again in the manner of Proposition Since

w(p((Ti)ien) = w((@i(T))ier) = Y wi o pi(Ti) = Y((Th)ier),

i€l
we have that w o ¢ € ., for all w € 4. Hence by Proposition ¢ is normal. O

Corollary 3.18. Let 4\, #>, N and N5 be von Neumann algebras. Let o;: M; — N, i =
1,2 be completely positive normal maps. Then there is exactly one completely positive normal map
o1 MMy — N RN such that
(T @T) = o1(Th) ® p2(T2), Ty €M, Ty € M.

Moreover, ||lo|| = [lo1lllle2]-
Proof. Assume that .#; acts on the Hilbert space H; for ¢ = 1,2 so that ¢; maps into B(H;). Stine-
spring’s representation theorem yields the existence of Hilbert spaces /C;, unital normal representations
i M; — B(K;) and bounded linear maps V;: H; — K; such that

ei(T;) = Vim(T)Vi, T € M;
for ¢ = 1, 2. Proposition in turn yields the existence of a unital representation

w MR Mo — B(K1 @ Ko)

satisfying 7(Th ® To) = m1(T1) @ m2(T3) for T; € #;, i = 1,2. From |14, Proposition 2.6.12] we obtain
a bounded linear operator V: Hi; ® Ho — K1 ® Ko from V; and V5 that uniquely satisfies

V(€ ®&)=ViE® Vb, &eH;, i=1,2.
Moreover, [V < [[Vi[||[Va]| and V* = V" ® V5" Define
o(T)=V*n(T)V, T e .M.

@ is clearly linear, and it follows from Stinespring’s representation theorem that ¢ is completely positive.
Moreover, ¢ is normal, since the map T +— V*TV is ultraweakly-to-ultraweakly continuous and 7 is
normal. For T} € .#, and T € .#5, we have

e(Th @ Tz) = (V'mi(T1)V1) @ (V3'ma(T2)Va) = 01(Th) ® 2(T2) € M © A2,
S0 o maps A O Mo into N © A5. Since AN Q A5 is the ultraweak closure of 4] @ A5 by von
Neumann’s density theorem and ¢ is normal, it follows that ¢ maps into 4] ® .45 and satisfies the

wanted elementary tensor property. Moreover, it is uniquely determined by this property since it is
normal. Finally, Proposition [3.9] yields

el = lle(Lay 5.2l = ller (L) @ w2 (L)l = llor (L)l 2Ll = llpallll 2],

completing the proof. O



3.4. STINESPRING’S REPRESENTATION THEOREM 77

Let # C B(H) and A4 C B(K) be von Neumann algebras. We will make an attempt to describe
the predual of .#Z ® 4. For any positive w € #, and ¢ € 4, then by Proposition w and ¢
are completely positive. As they are also ultraweakly continuous and hence normal, it follows from
Corollary that there is a unique completely positive normal map w ® ¢: .# @ A — C such that

(wWRP)(SRT)=w(S)®e(T) =w(S)e(T), Sec#,Tec. N,

that also satisfies ||w ® ¢|| = |lw]||/||¢||. In the above expression, we have identified the von Neumann
algebras C® C = C ® C (Lemma [1.34) and C by means of the *-isomorphism given by A ® pu — Ay
— this map is normal by Proposition [2.49, Hence w ® ¢ € (A# @ .A").. We define .#, © 4, to be the
linear span of all w ® ¢ in (A ® A"). constructed this way for positive w € #, and ¢ € .

For arbitrary w € ., and ¢ € A, Theorem yields that each of these is a linear combination of
positive ultraweakly continuous linear functionals on their respective von Neumann algebras, i.e.,

w = Z)\iwiv Y= Zﬂjsﬁj,
i=1 Jj=1

where each of the summands is a positive ultraweakly continuous functional. By defining

w®<p:=ZZ/\iujwi®tpj E(MRN).,

i=1 j=1

then for all S € # and T € A, we have

(WO SOT) =3 Ainjwi(S)e;(T) = w(S)e(T).

i=1 j=1

Hence any w € #, and ¢ € 4, induce an element w @ ¢ € M, © N, C (M DN ), satisfying the
above equality for elementary tensors, and moreover, it is the only linear functional in (A4 ® A). to
satisfy the above equality; if any other functional ¢ € (# ® 4), satisfies Y(S®T) = w(S)(T), then
1 and w ® ¢ are equal on .# © A, and since .# ® A is the ultraweak closure of .# ©® .4 by von
Neumann’s density theorem, it follows from ultraweak continuity that v» = w ® ¢. By this uniqueness,
some relevant calculus for these tensor functionals follows, namely

(i) (wWtw)@p=w1 ®p+ws® ¢ for w,ws € &, and ¢ € A;;
(i) w® (p1+92) =wp1 +w® e for w € A, and @1,z € A5
(i) M) @e=w® (Ap) =Aw® p) for we #,, p € A and A € C.

Finally, for any £ € H and n € K, then we € .#, and w, € ¥, are positive, hence inducing a unique
ultraweakly continuous linear functional we ® w,, € .#, ® .#; by Proposition satisfying

(we @wy)(S®T) = (S, E(Tn,m) =(S@T)E@n,E@m), Sed,TeN.
Hence
Wegn = We @ wy € My © N,

by uniqueness, so wg € A, © N, for all £ € H ® K. Therefore we is contained in the norm closure of
M. © N, for all £ € H® K; as this norm closure is also a subspace of (# ® A4)*, Theorem ﬁnally
yields the following elegant solution to our problem:

Proposition 3.19. For any two von Neumann algebras 4 and N, M, © N, is norm-dense in

(MR N )s.

However, this statement, although helpful, does not provide the entire story about the product func-
tionals w ® @ for w € A, and ¢ € A;. What are their norms? ||w ® ¢|| = ||w]|||¢|| is what one would
expect and this statement is indeed true; the proof requires the fact that any ultraweakly continuous
linear functional has a polar decomposition, proved in Proposition

Proposition 3.20. Ifw € 4, and ¢ € N;, then |w ® ¢|| = ||w]|]|¢]|-
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Proof. For any w € .4, and ¢ € ¥, Proposition yields the existence of partial isometries U € .#
and V € 4 as well as positive linear functionals n € .#, and ¢ € 4, such that

w=U"-n, n:U*'wv QDZV’Q[J, wZV*%

and moreover, ||w|| = ||n|| and ||¢|| = ||¢||. Counsider the positive linear functional n @ ¢ € (A ® N ),
and note that for all S € .# and T € .4 we have

We)(SOT) =w(S)e(T) =n(SU)Y(ITV)=no)(SeT)UV))=UaV) - ney)(SeT)

and similarly
RY)(SOT) =w(SUHp(TV*) = (U@ V*) - (w® ) (SeT).

Since (U®V)-(n®v) and (U*@V*)- (w® ) are contained in (.# ® .4"), by Lemma[2.37]and Theorem
it follows by uniqueness that

wRe=UaV) ey), n@¢=U"V") (Wap).
In particular, this implies ||w ® ¢|| = |7 ® ¥||. Hence

lw@ el = lIn @9l = lnllvl = lwiiel,

completing the proof. O

3.5 Completely positive maps over dual spaces

It may seem peculiar to the reader that we have defined the notion of positive linear maps for not
just C*-algebras, but also duals of these, and yet have not even been close to considering the lastly
mentioned case. This is where the dual spaces return, for only a short time but with a vengeance,
paving the way for some of the later and greater results of this thesis.

The first question one could ask is whether dual maps preserve positivity, and the answer is affirmative.

Proposition 3.21. Let A and B be C*-algebras. If o: A — B is a linear positive map, then ¢*: B* —
A* is positive. If ¢ is completely positive, then ©* is completely positive.

Proof. The second statement follows immediately from the first, since for all n > 1, ¢ = (1/11'3')2]‘:1 €
M, (B*) and a = (ai;)7j—1 € My(A), then

n

(™) (@) (a) = (Hop!™)( Z bij(plaig)) = D " (Wig)laig) = (9 ovy)7 1 (a) = (¢7) ™ (¥)(a),

,j=1 4,j=1

o (¢™)* = (¢*)(™. Assuming that ¢ is positive, then if 1) € B* and a € A are positive, then we have

implying that ¢* is positive. O

We will soon need to know when a bounded linear map A — B* for C*-algebras A and B is completely
positive. It turns out that there is a straightforward criterion for this to be true.

Proposition 3.22. Let A and B be C*-algebras and ¢: A — B* bounded and linear. Then the
following are equivalent:

(i) ¢ is completely positive.
(il) D5 ,=1 plafaz)(bib;) >0 for alln>1, a,...,a, € A and by, ... b, € B.

Proof. If ¢ is completely positive, then for n > 1 and any aj,...,a, € A, ¢ ((a} aj)itj=1) =
(¢(afa;))f -, is a positive element of M, (B*), so (ii) holds by Lemma Assuming instead that (ii)
holds, then for n > 1 and a4,...,a, € A, then Lemma [3.3] allows us to go backwards and say that
w(”)((a a;j)ii—1) = (cp(a;-*aj));szl is positive in M, (B*), so Lemmagtells us that ¢(™(a) is positive
for all positive a € M,,(A), as sums of positive linear functionals are positive. O
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The next proposition concerns functionals that we have met before — they are siblings of the functionals
described in Proposition

Proposition 3.23. Let A be a C*-algebra and let m: A — B(H) be a representation such that 4 =
7w(A) has a cyclic unit vector { € H. Let we be the corresponding vector state and let F' denote the
complex linear span of

Ce={pe A |0 p<weorh.
Finally, let 0: A#" — A* be given by
0(T)(a) = (n(a)TE,E), TeH', acA.

Then 0 is a completely positive linear isomorphism of .#' onto F with a completely positive inverse.

Proof. 61is clearly well-defined, linear, bounded and maps into A*. For any ¢ € F, write p = > 1" N
where \; € Cand ¢; € C¢fori =1,...,n. By Proposition there exists a positive operator T; € .4’
such that 07, o m = ¢;, in the notation of the aforementioned proposition. Since

pi(a) = 0r,(n(a)) = (n(a)T3€, T:€) = (n(a)(T3)*¢, &) = 0((T3)*)(a),

we have (31| Mi(T))?) = ¢; hence ¢ is surjective. Moreover, for any non-zero positive operator
T € .#' with A = ||T|| we have 0 < \~'/2T1/2 < 14, so by Proposition we find that the positive
linear functional functional (A7) = 65 _1/271/2 is mapped into C¢, whereupon 6(T') € F. Since any
operator in the unital C*-algebra .#" is a finite linear combination of positive operators [31, Theorem
11.2], it follows that 6 maps .#’ onto F.

Assuming that 6(T) = 0 for some T" € .#’', then 0 = 0(T)(b*a) = (T'w(a),n(b)¢) for all a,b € A.
Since £ is cyclic for ., it follows that T = 0. Hence 0: .#' — F is a linear isomorphism.

In order to prove that # is completely positive, it is sufficient by Proposition to prove that
n
Z 0(T;Ty)(aja;) >0, n>1,Ty,....T, € A, ar,...,a, € A.
Q=1
By straightforward calculation, we indeed see that
n

> 0T Ty) (a5 a;) =

4,j=1 1,J

(T7Tj)m(aja;)E, §)

1

(Tym(a;)&, Tim(as)€)

1

,J

Z TZ’]T(G,Z)&-
i=1

2

> 0.

Hence 6 is completely positive.

To prove that 6=': ' — .#' is completely positive, let n > 1 and let ¢ = (goij)?,j:l be a positive
element in M, (F); we must prove that (#=1)(")(¢) is a positive element of M, (.#'). We will identify
M, (B(H)) with B(H") in the following, and prove that (§~')(™)(y) is positive as an operator in
B(H™). Let ay,...,a, € A and define

§=(m(ar)§, ..., m(an)s) € H"™.
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Noting that 67! (p;;) is in .#" and hence commutes with all (a;) for all i,j = 1,...,n, we find that

n

(7)™ () &) = 3 (07 (pumlay)e m(ae)
- _i_1<91<soij>n<azaj>§,f>
- _i_lwoel)(w)(:a*m
- Z i TTT) = @ (T7T))m) = 0,

since (ajaj);szl is positive by Lemma Because € is cyclic for ., it is easy to see that elements
of the form (m(a;)é, ..., m(a,)€) for ai,...,a, € A are dense in H". Hence (=)™ (p) € M, (.4") is
positive, so 8~ is completely positive. O

Our last result will be concerning the isometric isomorphism connecting duals to preduals of double
duals.

Proposition 3.24. Let A be a C*-algebra. Then Q: (A*),. — A* given by
Qw)(a) =w(i(a)), a€ A

is an isometric isomorphism, where v: A — A** is the inclusion homomorphism. Moreover, Q and
Q1 are completely positive.

Proof. Define # = A**. We already know that €2 is an isometric isomorphism from the remarks after
Theorem [2.64] To see that Q is completely positive, let n > 1 and w = (wy)}';_; € Mn(4) be
positive. For any positive a € M, (A), we then have that (") (a) is positive by Proposition S0
w(t(™(a)) is positive. Therefore Q2 is completely positive. For the case of Q! assume instead that
¢ = (pij)i'j=1 € M, (A") is positive and let T, ..., T, € .#. For each ¢;; € A*, there is an w;; € /.
such that Q(w;;) = ¢i;. By Kaplansky’s density theorem (Theorem [2.34), we can find bounded nets
(t(z%))aca, of operators in ¢(A) such that «(a?) — T; strongly for all i = 1,...,n. Note that all the
index sets of these nets may be different; nonetheless, the fact that the nets are bounded gives us a
clear advantage, namely that ‘
u(wg) ulzl) = 7T

strongly for all 4,5 = 1,...,n. Using Lemma [3.3] and Corollary we have for all (ay,...,q,) €
[T7, A; that

n n n
0< Y gijlainal,) = > wi(@i)u=l,) = D wiy(TiTy),
ij=1 ij—1 ij—1

so by Lemma (wij)itj=1 s positive in M, (.#.). Hence Q™1 is completely positive. O
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INJECTIVE VON NEUMANN ALGEBRAS

We now, after more than pages, hit upon the first of the two big concepts that the project is
supposed to be about.

Definition 4.1. A C*-algebra A is injective if the following holds: Given C*-algebras B and B
with B C B; and a completely positive map ¢: B — A, then there exists a completely positive map
p1: B1 — A such that ¢1|g = ¢, i.e., the following diagram commutes:

B%Bl

“"l o
ya

A
where ¢ denotes the inclusion.

Note that if one considers the category of C*-algebras with completely positive maps as the morphisms,
the above notion of injectivity is exactly the property that defines the homological algebra version of
injectivity. We will not be using concepts from homological algebra to develop this particular concept,
though.

Whenever one introduces a property for an object, it is a natural question to ask whether isomorphic
objects have the property. Asking whether injectivity is not preserved by isomorphisms is essentially
the same as asking whether Elvis is still alive. (I'm sorry, but he isn’t.)

Proposition 4.1. Let A and C be C*-algebras for which there exists a *-isomorphism p: A — C. If
A is injective, then C is injective.

Proof. Let B and By be C*-algebras with B C B; and let ¢: B — C be completely positive. Then
p~low: B— Ais completely positive by Proposition Hence there exists a completely positive
map 7: By — A such that 7|z = p~1 o, since A is injective. Then po 7 is a completely positive map
by Proposition such that p o 7|g = ¢. Therefore C is injective. O

4.1 Injectivity and projections of norm one

A von Neumann algebra is injective if it is injective as a C*-algebra — so no different notion exists
for von Neumann algebras and no confusion can occur. The main aim of this section is to find a
criterion equivalent to injectivity for von Neumann algebras, but to get there, we will need to swing
by a downright shocking result, namely Tomiyama’s theorem (Theorem that does something so
big with so little to the degree that I couldn’t believe it at first.

We will rely on theory not covered in the project to prove this next theorem. It should be noted that
there are other ways to prove it; [g] does it by means of completely positive maps and the so-called
point-ultraweak topology.

Proposition 4.2. The C*-algebra B(H) is injective for any Hilbert space H.

Proof. Let B and By be C*-algebras such that B C B; and let ¢: B — B(H) be a completely positive
map. From Stinespring’s representation theorem (Theorem [3.16)), we obtain a Hilbert space Ky along
with a *-representation 7o : B — B(Kp) and a bounded linear operator V' : H — Ky such that

o(b) = V*m(b)V, beB.

81
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[0, Proposition 2.10.2] then yields the existence of a Hilbert space K together with an isometric imbed-
ding W: Ky — K and a *-representation 7: By — B(K) such that
mo(b) =W*n(b)W, be B.
Now define ¢1: B; — B(H) by
01(b) =V W*n(b)WV, be B;.

We claim that ¢; is the wanted completely positive extension of ¢ to B;. Clearly ¢ is linear and
01(b) = V*(W*n(b)W)V = V*ro(b)V = ¢(b) for all b € B. Additionally, for n > 1, a positive matrix
z = (;5) € Mp(B1) and € = (§1,...,&,) € H™, we have

<s0§")(x)£,£>w = Z (p1(wij)&5, &idm = Z (m(2i))WVE WVE ) = <7T(n) (@)Y, y)xcn
ij=1 i,j=1

where y = (WV¢&,...,WVE,) € K™. Since 7 is a *-homomorphism, it follows that cpgn) (x) is positive,
completing the proof. O

The next definition will make life a lot easier from now on.

Definition 4.2. Let A and B be vector spaces with B C A and E: A — B a surjective linear map. E
is called a projection if E(b) = b for all b € B, or equivalently Fo E = E.

Recall that the image of a *-homomorphism of C*-algebras is closed [31, Theorem 11.1].

Corollary 4.3. Let A be a C*-algebra, and let m: A — B(H) be a representation of A on some Hilbert
space H. Then the following are equivalent:

(i) w(A) is injective.
(ii) There is a completely positive projection E: B(H) — w(A).

Proof. For (i) = (ii), assume that m(.A) is injective. The identity map on 7(A) is a *-homomorphism,
so it is completely positive and can therefore be extended by injectivity to a completely positive map
E: B(H) — ©(A) which must also be a projection.

To prove (ii) = (i), assume that E: B(H) — m(A) is a completely positive projection onto m(A). Let
B and B; be C*-algebras with B C By and let p: B — w(A) be a completely positive map. Since
m(A) C B(H), ¢ is also a completely positive map B — B(H). Because B(H) is injective we now
obtain a completely positive map ;: By — B(H) such that ¢1|z = ¢. The map E o ¢y: By — m(A)
is now linear and completely positive. Moreover, for b € B we have E (1 (b)) = E(p(b)) = ¢(b) since
 maps into w(.A), so E o ¢ also extends ¢, and hence w(.A) is injective. O

Next up before the theorem of the day is the notion of a conditional expectation.

Definition 4.3. Let B and A be C*-algebras such that B C A. A conditional expectation is a
contractive and completely positive projection E: A — B satisfying

E(bzb') =bE(z)V, z€ A, bb € B,
i.e., F is a B-bimodule map.

Lemma 4.4. Let A and B be C*-algebras with B C A. Moreover, let j: B — A be the inclusion
and let E: A — B be a projection, so that E o j = idg where idg denotes the identity map on B.
Then j**: B*™* — A™ is an injective *-homomorphism, j**(B**) is a unital and ultraweakly closed
*-subalgebra of A**, and j** o E** is a projection of A** onto j**(B**).

Proof. The map j is a homomorphism, so j7** is a *~homomorphism by Proposition and j**(B**)
is a unital C*-subalgebra of A**. Note that A** and j**(B**) may not share the same unit. Moreover,
since (B**), is ultraweakly compact for all » > 0 by Corollary it follows from Corollary
that (§**(B**)), is ultraweakly compact and hence ultraweakly closed for all » > 0, so j**(B**) is
ultraweakly closed by Theorem Since E** o j** = idg+- by Proposition iii), j** is injective
and j** o E** is a projection of A** onto j**(B**) C A**. O
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As so it comes: the godsend.

Theorem 4.5 (Tomiyama, 1957). Let B and A be C*-algebras such that B C A, and let E: A — B
be a projection of A onto B. Then the following are equivalent:

(i) E is a conditional expectation.
(ii) FE is contractive and completely positive.
(iii) E is contractive.

Proof. Tt is obvious that (i) = (ii) = (iii). Therefore we “only” have to prove that (iii) = (i). Assume
that F is contractive. By Proposition [3.13] the second adjoint map E**: A** — B** is contractive, and
as the inclusion j: B — A is contractive, it follows that j** o E** is contractive as well. By Lemma[4.4]
j** o E** is a projection of .# = A** onto the unital ultraweakly closed *-subalgebra A4 = j**(B**).
Assuming that we have proved that j** o E** is a conditional expectation, then if 1 4: A — A™* and
tg: B — B** denote the canonical inclusions into the double duals, we have 14 o j = 7 o 1p and
tgo B = E** o1y, and therefore for all x € A and b,b' € B

i OLB(E(bwb')) OE** La((b)xj (V)
o B (1a(i(0))ealz
:LA(J(b)) ™ 0 B (ea())] ta(i (b))
3 [es(0)us(E(x))us (b))
=j" (s (bE(2)b)),

so since j** and ¢ are injective, it follows that E(bxb') = bE(x)b’. Moreover, as ¢4 and the inverses
of j**: B** — A" and 15: B — 15(B) are *-homomorphisms, it follows that

)
ta(i(v)))

—~

)
)

E=u5'0(j**) o™ o(soE) = (" ouso) o (j* 0 B*)oua

is completely positive. Hence to prove (iii) = (i), it suffices to prove the implication for a projection
E: M — AN where ./ is a von Neumann algebra and .4 is an ultraweakly closed unital *-subalgebra
of A (not necessarily sharing the same unit). Note that in the above case, B** is the norm closure
of the linear span of its projections, so since j** is a *-homomorphism and hence also contractive,
the same holds for 4. We can therefore also assume that the linear span of the projections in .4 is
norm-dense in A4".

Assume now that F: .# — .4 is a contractive projection. To prove that F is an .4 -bimodule map, it
suffices to check that E(pxp') = pE(z)p’ for x € .4 and projections p,p’ € 4, by the aforementioned
assumption that the linear span of the projections of .4 is norm-dense in .4 and the fact that E is
contractive. Fix x € .#. For any projection p € B, let p* =14 — p. Then we must have

pE(p*z) = E(pE(p*=)).

For any t € R, then if y = ptz + tpE(ptz) we see that

y'y = (z*pt +tE(p2)*p)(ptz + tpE(ptx)) = 2*ptz + *E(pTa) pE(pTa).

Hence
1yl = lly*yll = |=*p e + 2 E(p*a)*pE(p*a)||
< |la*ptal| + [[PE(pTa) pE(pTa)||
= |p*z|” + *|IpE(p )|,
SO

(1+t)*[lpE(p ) ||* = |[pE(pz) + tp(pE(p™x))|?
= [[pE(p*z + tpE(p*x))|?
<yl
<|lpta|? + £ pE(pr ).
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Hence (2t +1)||pE(p*tz)||? < ||ptz||? for all t € R, implying pE(p*z) = 0. Letting 1.4 and 1_4 denote
the units of .# and .4/ respectively, then for p = 1 4, we see that E(1Y,2) = 1 4 E(1Y,2) = 0. For
any projection p € A7, then because

(ly—p)t=1s—1y+p=1% +p,

we also see that
0=(Ly —p)E((Ly —p)"z) = (Ly —p)E((L +p)z) = (Ly —p)E(pz),
so E(px) = pE(px). This finally implies
E(pz) = pE(px) = pE(x —p*x) = pE(z) — pE(p*z) = pE(x).

Similarly one shows for any projection p € 4" and z € .# that E(xp’)p = 0, implying E(z1%,) = 0,
E(xzp) = E(zp)p and finally E(zp) = E(z)p. Hence

E(pxp) = pE(xp') = pE(z)p’
for all x € .# and projections p,p’ € A4, so E is an .4 -bimodule map.

It only remains to show that E is completely positive. Since yE(1.4) = E(l.4)y = E(y) = y for
all y € A4, it follows that F(1 4) = 1_4. Therefore F is a unital contraction and hence positive by
Proposition [3.10] Let n > 1. If 2 € M, (.#) is positive and b = (b1, ...,bn) € My 1(#), then

b EM(x)b= > biE(xi)b; = > E@jzib;) =E | > bizib; | >0

i,j=1 i,j=1 i,j=1

by Lemma Hence by the same lemma, E(™ (z) is positive, so E is completely positive. This
concludes the proof. O

The above proof of Tomiyama’s theorem is the most precise and thorough one that I myself can think
of; it combines the proof contained in [g] with the humility that I think the theorem deserves. (In
other words, if we want it to be true we’d better make sure that the proof is correct.) Nonetheless, it
yields the following important corollary.

Corollary 4.6. Let H be a Hilbert space and let .4 C B(H) be a von Neumann algebra. Then the
following are equivalent:

(i) A is injective.
(ii) There is a projection E: B(H) — .4 of B(H) onto .# with ||E| = 1.

Proof. Let m: .# — B(H) denote the inclusion. Assuming (i), then Corollary [1.3| used with 7 yields
that there is a completely positive projection E of B(H) onto n(.#) = .#. By Proposition

IE] = |[E(1x)]l = |[1x]] = 1. If (i) holds, then FE is completely positive by Tomiyama’s theorem
(Theorem [4.5)), so Corollary [4.3| yields that (.#) = .# is injective and hence we obtain (). O

The above result does not rely of .# being a von Neumann algebra — any unital C*-subalgebra of
B(#) will do just fine. As we shall almost exclusively be working with von Neumann algebras from
now on, there is really no reason to deal with this generality and much less with the original definition
of injectivity. From now on whenever we state or assume that a von Neumann algebra .# C B(H) is
injective, we assume that

M satisfies condition (i) of Comllary

Having done all necessary preliminary work, let us construct some injective von Neumann algebras!
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4.2 The construction of injective von Neumann algebras

There is no point in introducing all the upcoming results one at a time, so suffice to say that we
will investigate whether injectivity is preserved for some of the most typical von Neumann algebra
constructions.

Proposition 4.7. Let (A;)icr be a family of von Neumann algebras with #; C B(H;) for Hilbert
spaces (H;)icr. Then M = @, ; A, is injective if and only if .4; is injective for all i € I.

Proof. Putting H = @iel ‘H;, and using the natural injections ¢;: H; — H and projections m;: H — H,;
defined after Proposition then P; = ¢;¢} is the projection onto the closed subspace ¢;(H;) of H for
all i € I. Clearly ;B(H;)m; € B(H) and ;. #;7; C A and we shall identify .#; with 7;.# 1; (see page

).

Assume first that . is injective; then there exists a projection E: B(H) — .# of norm 1. For any
i € I, define E;: B(H;) — #; by E{(T) = mE(1;Tm;)u; for T € B(H;). Then Ei(T) € A for all
T € B(H), |E:(T)|| < |E(t;Tm)|| < ||T| and for T € A, then ;Tr; € M, so E;(T) = mjv;Tmie; =T.
Therefore each E; is a projection of norm 1 of B(#;) onto ;.

If #; is injective for all i € I, we have projections E;: B(H;) — #; of norm 1 for all ¢ € I. Define
E: B(H) — .# by
E(T) = (Ei(ﬂ'iTLi»ieI; Te B(H)

To see that E is well-defined, note that for all ¢ € T and all T € B(#), then m;Tt; € B(H;), so
E;(m;Tv;) € M;. Moreover, as F;(m;Tt;) is bounded by ||T|, it follows that E(T) is a well-defined
bounded operator in .#. It follows immediately that |E| < 1 and if T € .#, then T = (T});c; where
T; € M; for all i € I; therefore since 7;Tt; = T; it follows that E;(m;Tw;) = E;(T;) = T;, s0 E(T)=T.
Therefore FE is a projection of norm 1. O

Proposition 4.8. Let .# C B(H) be an injective von Neumann algebra and let P € .4 be a projection.
Then M p is injective.

Proof. Recall that .#p consists of all operators in B(P(H)) of the form PT|pcy) for T € .. Let
E: B(H) — .# be a projection of norm 1 and define E': B(P(H)) — .#p by

E/(T) = PE(PTP)|ps),

where PT'P is seen as an operator on #H. First of all, for all T € B(P(#)), we have E'(T) € .#p by
the definition of F and .#p. Clearly |E’|| < 1, as we have ||[PTP¢|| < ||T||||P¢|| and thus

|E(PTP)| < ||PTP| < |T||, T € B(P(H)).

Finally, if T € .#p, then T = PS|py for some S € .4, so PTP§ = PSP¢ for all £ € H. Hence
PTP = PSP e . #, so

E'(T) = PE(PTP)|pp) = PE(PSP)|p») = PS|lpay =T
since F is a projection onto .#. Therefore E’ is a projection of norm 1, so .#p is injective. O

Corollary 4.9. Let # and A be von Neumann algebras and let o: M — N be a normal surjective
*-homomorphism. Then ./ is injective if and only if ker ¢ and A are injective.

Proof. This follows from Propositions [4.8 [4.7 and O

Corollary 4.10. Let .# be a von Neumann algebra. Then

(i) If m: # — B(H) is a normal representation and .4 is injective, then w(.#) is injective.

(i) If (Ta)aca is a separating family of normal representations of M such that wo(A) is injective
for all o € A, then A is injective.



86 CHAPTER 4. INJECTIVE VON NEUMANN ALGEBRAS

Proof. (i) is a consequence of Corollary For (ii), let (Pg)gep be a maximal family of orthogonal
central projections in .# such that there for all § € B exists an a(f8) € A such that m,pg) is an
injective map on .# Pg. Define P = ZﬁeB Pg. Assuming for contradiction that P # 1_4, there exists
a non-zero T' € .4 such that TP = 0. Because (7,)aca was separating, there exists € A such that
mo(T) # 0. Note now that there exists a central projection P’ € .# such that

kerm, = M4 (1 4 — P')
by Proposition Then T(1,, — P)P’ = TP’. Assuming that TP’ = 0 yields
7alT) = 1a(TP) + o(T(La — P')) =0,
a contradiction. Hence T(1, — P)P' # 0 so P" = (14 — P)P’ is a non-zero central projection.

Moreover, 7, is injective on .# P”; indeed, if S € .# P" satisfies 7,(S) =0, then S =T'(1_4 — P’) for
some T" € ./, but then

S=8(1y—P)P =T (1.4 — P')(1.4 — P)P' =0.

Lastly, as P"”Pg = 0 for all 5 € B, we obtain a contradiction of the maximality of the family (Ps)ges,
so P =1_4, and hence

M= e,

BeB

by Proposition Since .# Pg = mop) (M Pg) = mo(p) (M )7o(p)(Ps) by injectivity of each my(g)
and 7,(3)(Pp) is central in the injective von Neumann algebra m,()(.#), it follows that all .#Zp, are
injective from Propositions and Hence .# is injective by Proposition [4.7] O

For our next result we will prepare ourselves by defining some helpful maps. Let .# and .4 be von
Neumann algebras. For any w € #, and ¢ € A, w ® ¢ denotes the ultraweakly continous linear
functional on .# ® .4 defined on page |E|that uniquely satisfies

(W) (S®S)=w(S)e(S), Se#,S8ecN.
For fixed w e M., T € M4 RN, let f,1r: N — C be given by

for(p) = (@ e)(T).

As |fuor(@)] < llw @ @lIITII = llwlllelll|T]], each for is a bounded linear functional on .4 and
by Theorem hence corresponds to a unique element R, (7T) of .#". Likewise, one obtains a map
MRON — M, T — L,(T) for each ¢ € ..

Lemma 4.11. R,: AN — N and L,: # QN — M as defined above are bounded linear
mappings with |R,|| = ||w|| and || L,|| = ||¢||. Moreover, they satisfy

n

R, <2n:s@®frz> :Zw(St)TZ, LLP <iSZ®T$> :Xn:gﬁ(Tz‘)Si, Sie.%, T, € N.
=1 =1 =1

i=1
Proof. R, is clearly a linear map; indeed, if A\, u € C and S,T € .# ® ./, then
Jorsiur(p) = (W@ @)(AS + pT) = Aw @ )(5) + plw @ ©)(T) = (Mu,s + tfo,r) (@)

for all ¢ € 44, so by uniqueness and linearity of the canonical identification A: A" — (A%)* (again
Theorem we have

Rw()\S + ,UT) = A71<)‘fw,5 + ,Ufw,T) = ARw(S) + ,URw(T)'
For all p € A, and T € .4 ® ., we have
P(Ro(T)) = o(A" (fu,r)) = MATH (fo,0))(#) = for(p) = (w@ @)(T),

so for ¢ € A, we have

n

@ <Rw (Z S ® ﬂ)) = (w®p) (Z S ® Ti) = w(S)p(T;) = (Z W(Si)Ti> .
i=1 i=1 i

1 i=1



4.2. THE CONSTRUCTION OF INJECTIVE VON NEUMANN ALGEBRAS 87

Since all ultraweakly continuous linear functionals on .4 agree on the two vectors, they must be equal;
indeed, if 4" C B(K) and it holds for two operators S, T € A4 that ¢(S) = ¢(T) for all ¢ € A%, then
in particular Proposition yields that for all vectors £, € K we have (S&,n) = (T'¢,n) and hence
S=T.

Using Lemma one easily sees that
151 = sup{le(S)l ¢ € A, [l <1}, Se A

Therefore for all T € # ® A4 and ¢ € A, we see that |p(R,(T))| = [(w @ o)(T)| < w|llellT]l
implying ||R,(T)| < |lw|||T|| and thus |R.|| < ||w|. For the converse inequality, note that for all
S € A we have

WS = llwSN .l = 1R (S @ 1) < [[RMIS @ 1|l = I RIS,
implying |lw|| < ||Rw|| and hence equality. The results for L, follow similarly. O

As one might expect, we will now investigate a statement about injectivity for the von Neumann
algebra tensor product.

Proposition 4.12. Let # C B(H) and A C B(K) be von Neumann algebras. Then the von Neumann
algebra A @ N C B(H ® K) is injective if and only if 4 and AN are injective.

Proof. Assume first that .# ® 4 is injective and let E: B(H ® K) — .# ® A4 be a projection of
norm 1. Let w € ., be an ultraweakly continuous state, and let §: B(K) — Cly ® B(K) be the
amplification. Define E': B(K) — A4 by E' = R, 0 Eof. Then for T € .4, we have

E'(T) = Ry(E(ly ®T)) = Ry(ly ® T) = w(ly)T =T.

As R, E and ¢ have norm 1, it follows that ||E’|| < 1, and as E’ is isometric on .4/, it follows that
E’ has norm 1. Therefore .4 is injective. A similar reasoning with an ultraweakly continuous state
p € N, proves that .# is injective.

The converse statement is not as easy. Assume that .# and A4 are injective and let Ey: B(H) — A
and Fy: B(K) — 4 be projections of norm 1. Let (P;);c; be minimal orthogonal projections in
B(K) corresponding to an orthonormal basis for I and for finite subsets J of I, define P; € B(K) by
P; = ZieJ P, and define P; € B(H® K) by P, = 14 ® Py. As Pj is a projection, it follows that Py
is a projection in B(H ® K) for all finite subsets J of I. The set J of finite subsets of I is of course a
directed set, ordered by inclusion, so (P;) ez and (}5_])‘163 are nets. Since Py — 14 strongly and thus
ultraweakly by Proposition it follows from Proposition that Py — 1yex ultraweakly. Hence
for all S € B(H)® B(K), we have
JBJSI:)J — S

ultraweakly on B(H)® B(K). For any J € J, Propositions |2.21}, [2.17| and [1.34] yield that

(B(H)@B(K))p, = B(H)® B(K)p, = B(H) @ B(P;(K)) = B(H) © B(P;(K))
because Py(K) is finite-dimensional.

For J € J define E;: B(H) ® B(P;(K)) —» .# © B(P;(K)) by E; = E; ® 1; where 1; denotes the
identity map B(P;(K)) — B(P;(K)). E; is then clearly a projection of norm 1, and helps define a
map Ej: B(H)® B(K) — .# ® B(P;(K)) by

EJ(T):EJ(pJTPJ)’ TGB(H)@B(’C),
where P;TP; is the operator PJT|’H®PJ()C). E; is then also a projection of norm 1.

For any J € J, any operator S € .# ® B(P;(K)) is of the form S = "' | S; ® T; for operators
Siy..., Sy € M and Ty, ..., T,, € B(P;(K)). Because any T; can be extended naturally to an operator
on K, just by defining it to be 0 on the orthogonal complement of P;(K), it follows that S can be
seen as contained in .# ® B(K) C .# ® B(K). Since this operation is clearly contractive, then for any
T € B(H)® B(K) we will have that the net (E;(T)) e is contained in the closed ball of .#Z & B(K) of
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radius ||T']|. Since this ball is ultraweakly compact by Corollary the net (E;(T)) e; has a cluster
point which we will denote by E1(7T). Note that the net can only have one cluster point: indeed, for
J,J' € J with J C J', we can naturally view P; as an operator in .#Z ® B(Py/(K)), so

PyE;(T)P; = PyEy(PyTPy)Py
== EJ/ (pJTPJ)
= E;(PyTPy)
= E4(T)
where we used Tomiyama’s theorem at the second equality. As there is a subnet (Eg(T))ses of

(E;(T))es converging ultraweakly to E1(T) by compactness of the aforementioned closed ball, we
can derive another subnet (Es(T))ses &' C & by defining ./ = {S € /| J C S}. This subnet

also converges ultraweakly to F1(T). By considering the above equalities for J' € . we find that
E;(T) = P;Ei(T)Py, but we have also found that E;(T) = P;E\(T)P; — Ei(T) ultraweakly.
Therefore E (T) is uniquely determined by the elements E;(T') as the ultraweak topology is Hausdorff,
and we thus obtain a well-defined map

E;: BH)®B(K) — .4 & B(K).

E; is in fact linear, since for Aj, \s € C and Ty, T5 € B(H)® B(K) we have
E\(MTy + M\oT) = };é% Ey(\Ty + XaTo) =\ }}g Ej(Ty) + X };g% Ej(Tz) = MEy(Th) + Mo By (T2),
where the limits are in the ultraweak topology. Since | E1(T)|| < ||T|| by construction, it follows that
IE1|| < 1. Moreover, for T € .# @ B(K), we have
E;(T) = E;(P;TP;) = P;TP; - T
ultraweakly, so E1(T) = T and hence E; is a projection of norm 1 onto .# @ B(K). Moreover,
E;(S®T)=E;(P;(S®T)P;) = E;(S® P;TP;) = E(S) ® P;TP;,

so BE1(S®T)=FE\(S)®T forall S € .#,T e .#. Similarly we can define a projection

Ey: B(H)®B(K) = B(H)® N

of norm 1, satisfying Ey(S @ T) = S ® Ey(T) for all S € 4, T € N .

Now let S € # @ B(K) and T € (# @ B(K)) = #" ©Clx C B(H)®.4". Then
E5(S)T = Ey(ST) = Eo(TS) = TE,(S)

by Tomiyama’s theorem, so Ey(S) € (.# ® B(K))"” = .# ® B(K). Therefore, for S € .# & B(K), we
have

Ey(S) e M4 DBK)NBH)RN = (M @Cl)U(Clx @ M) = (M SN = M@ N,

using the so-called commutation theorem for von Neumann algebra tensor products [15, Theorem
11.2.16]. We can therefore define F: B(H® K) - A4 @4 by E = FEy 0 Ey. E is linear, and
since F), and Ej both have norm 1, ||E| < 1. Moreover, for T € .# & .4, note that E;(T) = T and
Ey(T) =T, so E(T) = T, and therfore E is a projection of B(H ® K) onto .# & .# of norm 1. This
proves that .# ® .4 is injective. O

What we have done now is made sure that certain types of “new” von Neumann algebras inherit
injectivity from “old” ones, and we will in the next section make a digression that seems very much
out of place at the moment. One reason that we will even consider looking into the next couple of
von Neumann algebra concepts is that we can extract injectivity results somewhat similar to the ones
proved in this section, but the main reason is because of the next chapter: some of the next two sections
become absolutely indispensable when we will attempt to prove the main theorem. For the curious,
Theorem is the place to look...
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4.3 Continuous crossed products

The fact that the results of this and the next section depend on group theory (of all things) is a bit
surprising. This section will contain only one proof, a self-made one; the rest can be found in [§] (a
book I can only recommend, as the writing style is very clear and the material is self-contained). For
the rest of the project we will only need the definitions given herein, along with a minimal amount of
the theorems.

The first two definitions are probably familiar to any C*-algebraist; nonetheless we include them here
for completion.

Definition 4.4. Let A be a unital C*-algebra. An *-automorphism of A is a *-isomorphism ¢: A — A.
The group of *-automorphisms of A is denoted by Aut(A).

Note that ¢(14) = 14 for all unital C*-algebras A and ¢ € Aut(A).

Definition 4.5. Let ' be a group and let H be a Hilbert space. A wunitary representation of T' is a
group homomorphism I" — U (H).

The main point of this section is to create a new von Neumann algebra from a given von Neumann
algebra ., a group T and a homomorphism I' — Aut(.#). The following definition is where it all
starts.

Definition 4.6. Let .# be a von Neumann algebra acting on a Hilbert space H and let I" be a locally
compact group. A continuous action of I' on .4 is a group homomorphism «: T' — Aut(.#) such
that for any T' € ., the map s — as(T) := a(s)(T) is continuous if .# is considered with the strong
operator topology. The fact that « is a homomorphism is reflected in the equality

Qg oy = gy, S, t €T
In this case (#,T, «) is called a covariant system.

In the following, we will let I be a locally compact group, .# C B(H) a von Neumann algebra and «
a continuous action of I" on .#. We will denote the space of continuous functions on I" with compact
support and values in H by C.(TI',H). Hence a f: ' — H is contained in C.(T',H) if and only if it
satisfies the following criteria:

(i) If s;, » sin T, then f(s;) — f(s) in H.
(ii) The set {s € I'| f(s) # 0} has compact closure.

Letting p be a fixed Haar measure on I', we equip C.(I', ) with an inner product given by

(fg) = / () 9(s))dpu(s),  frg € C(T\H)

and we let L?(T",H) denote the completion with respect to this inner product. One important fact
about L?(T,H) is the following.

Proposition 4.13. There is an isomorphism of Hilbert spaces U: H @ L?(T') — L*(T',’H) satisfying
UE®[f)(s)=f(s)§, §e€H, feC(l), seT,

allowing us to identify H ® L?(T') with L*(T,H).

Proof. See [8, Proposition I.2.2]. O

We now define two types of maps essential for constructing the continuous crossed product:

% For T € .# we define a bounded linear operator 7(T) on the Hilbert space L?(T, H) by
(@ (T)f)(s) = as-1(T)f(s), feCe(l\H), seT.

7. M — B(L?(T',H)) is a faithful, normal representation of .# |8, Proposition I.2.5].
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% For t € I', we can define a bounded linear operator \(t) on L?(T",H) by
D)) = f(t's), [ E€Ce(TH),s €T,
A: T — B(L?(I',H)) is then a strongly continuous unitary representation of I'. [8, Proposition I.2.8]

An important property of these two types of maps is that they complement each other quite well, as
seen in the next lemma.

Lemma 4.14. For all T € # andt € T', we have
AR)T(T)AME)" = (0 (T)).

This implies that the set of finite linear combinations of operators of the form w(T)A(t) with T € A
and t € T' form a unital *-algebra.

Proof. See [8, Lemma I.2.9]. O

It follows that the double commutant of the above mentioned *-algebra is a von Neumann algebra —
the one we want, in fact.

Definition 4.7. Using the above notation, the (continuous) crossed product R(# ,«) of A by the
continuous action a of I' is the von Neumann algebra in B(L?(T", H)) generated by the set

{(r(T), \t)|T € 4, t T},
ie., R(,ap) = {n(T), \t)|T € 4, t €T}".

Because of Lemma and von Neumann’s density theorem, R(.#Z, ;) is also the strong (or weak,
ultraweak or ultrastrong) closure of the *-algebra of linear combinations of the operators w(T)A(t) for
Te#andtel.

Lemma 4.15. Let # C B(H) be a von Neumann algebra and let T be an locally compact group acting
continuously on A by the homomorphism 0: I' — Aut(.#). Then the set

My ={T € M|0(T)=T for all s €T'}
is a von Neumann subalgebra of ./ , called the fixpoint algebra for the action of T on .Z.

Proof. As 05(I) = I by assumption, .#, is non-empty and contains the identity operator. It is now
easily seen that .} is a *-subalgebra of .#. If T € .# and T, — T strongly for a net (Ts)gep in
M, then

Tp = 0s(Tp) = 04(T)

for all s € T, so T = 64(T) for all s € I' and hence ./ is strongly closed. O

Proposition 4.16. Let a: T — U(H) be a strongly continuous unitary representation with as := a(s)
for all s € T, satisfying
as(T)=asTa;, TeH, sel.

Defining a unitary operator W € U(L*(T',H)) by
(W[)(s) =asf(s), [feC(I\H), sel,

we obtain
7(T) =W (T @1y)W, As) =W "(as@A(s))W, Te#, scT.

In particular R(# , ;) is spatially isomorphic to the von Neumann algebra acting on H ® L?(T)
generated by the operators {T ® 1, as @ X\ |T € M, s € T'}.

Proof. See [8, Proposition I.2.12]. O
Corollary 4.17. R(A#, ;) embeds into .# @ B(L*(T)) C B(H ® L*(T)).

Proof. See [8, Lemma 1.3.1]. O
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Let A denote the modular function of T, i.e., the map A: I' — (0, 00) such that pu(s™'E) = A(s)u(E)
for every Borel set £ C I', where p is the fixed Haar measure on I'. We define the right translation
ps: L?(T) — L*(T) by

p(f)(s) = AW)'2f(st), feL’T), stel.
We then define adp,: B(L?(T")) — B(L*(T)) by

adpy(T) = piTp;, T € B(L*(T)).

For t € T, define 0; on .# @ B(L?(T")) by 6; = a; ® adp;. Then t + 6; is a continuous action of I' on
M ® B(L*(T)) |8, Proposition 1.3.3]. Furthermore, the following theorem holds:

Theorem 4.18. With 0; as above, we have
R(A,ap) = {T € #2B(L*T))|6,(T) =T for all t € T'}.
Hence R(A ,ay) is the fizpoint algebra of a continuous action of T' on .4 @ B(L*(T)).
Proof. See [8, Theorem I.3.11]. O

In order for the next theorem to make sense, we take an opportunity to remind the reader of the
notions of finiteness and semifiniteness for von Neumann algebras.

Definition 4.8. Let .# be a von Neumann algebra. For two projections P, Q) € .# we say that P ~ @
if there exists a partial isometry V € .# such that P =V*V and Q = VV™*.

(i) A projection P € .# is finite if P ~ Q and Q < P imply Q = P.
(ii) A projection P € . is semifinite if there for any non-zero projection @ € .# with Q < P exists
a finite non-zero projection R € .# with R < Q.
(iii) A is finite if 1 4 is finite.
(iv) A is semifinite if 1 4 is semifinite.

One is advised to consult [10] or [1] for results on semifiniteness and finiteness, as we will do in some
of the proofs contained in Chapter 5.

Assume now that .# is a o-finite von Neumann algebra and let w € .#, be a faithful normal state of
Proposition By Tomita-Takesaki theory, there exists a strongly continuous one-parameter group
(0%)ter of *-automorphisms of .# (that is, t — 0% is a homomorphism R — Aut(.#) and ¢; — ¢t in R
implies o’ (T') — o (T') for all T' € .#) that is uniquely characterized by satisfying the KMS condition.
The KMS condition is given as follows. For any given S, T € .#, there exists a complex-valued bounded
continuous function F' defined on {z € C|0 < Imz < 1} that is analytic in the interior and satisfies

F(t) = w(0?(S)T), F(t+i)=w(To?(S)), teR.

The map t — o} is a continuous action of R on .#. (0y):cr is called the modular automorphism
group associated to w, and the action ¢ — oy is called the modular action associated to w, yielding the
continuous crossed product R(.#,oy’).

Because of Connes’ cocycle Radon-Nikodym theorem and a theorem by Takesaki [8, Theorems II.2.2
and IL.2.3], R(#,0y) is in fact up to isomorphism independent of the faithful normal state that the
construction started with. For further comments, see [8 pp. 34-36]. Hence it is possible to write
R(A ,0;) instead of specifying a state w, but we will not do this.

The reason we introduce this specific crossed product is the following theorem that we will state without
proof.

Theorem 4.19. Let A be a o-finite von Neumann algebra with a faithful normal state w € #,. Then
R(A,0¥) is a semifinite von Neumann algebra acting on L*(R,H) = H @ L*(R).

Proof. See [8, Theorem I1.3.5]. O

For us, the most important fact about R(.#,0;) is that it provides a connection between a o-finite
von Neumann algebra .# and a semifinite one; this is in fact almost enough to go where Chapter 5
will take us.
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4.4 Amenable locally compact groups

However, before we go on to Chapter 5, we need to make a short stop in the beautiful world of amenabil-
ity. Amenability is a property for locally compact groups that generalizes finite groups and abelian
groups by introducing an function that makes it possible to take “averages” on bounded functions and
stays invariant under translation by group elements. For instance, if I' is a finite group it is easy to
take the average of a bounded function f: I' — C, namely

mm—a;ﬂw

As Y cp f(s) = X ,er f(t71s) for all t € T in this case, one obtains a function m: £>°(I") — C whose
values is not changed by translation by any element of I". Our definition of amenability will generalize
this.

Definition 4.9. Let T be a locally compact group with Haar measure py. A measurable function
f: ' — C is essentially bounded if there exists a non-negative real number M such that the set

{geT|[f(9)l > M}

has measure zero under p. L>°(T") denotes the Banach space of complex measurable essentially bounded
functions I' — C with the norm

[flloc = inf {M >0 pu({s € T[|f(s)| > M}) =0}, [feL=(T).

A mean on L*°(T) is a state on L>*°(T'), i.e m(1) = 1 and m(f) > 0 for any non-negative function
f € L>®(T). For any s € T, the left translation operator with respect to s is the map 7,: L>(T") — L>=(I)
given by

() = f(s7't), feL=() tel.

Note that the left translation operator is well-defined by left invariance of the Haar measure. A mean
m on L>®(T") is said to be left invariant if it satisfies the equality mo 7, = m for all s € T'. If L>°(T")
has a left invariant mean, I" is said to be amenable.

If " is a locally compact group with a mean m on L*°(T"), then it is customary for any f € L*°(T") to
write

Mﬂ=lf@®w)

Hence
/ Adm(s) = X and / f(s)dm(s) >0, AeC, feL*)y.
r r

The above integral is also linear, as
A /F fi(s)dm(s) + Ao /F fa(s)dm(s) = m(A1f1 + Aafa) = /F()\lfl () + Aafa(s))dm(s)
for all f1, fo € L®(T") and A1, A2 € C. The condition that m is left invariant is reflected in the equality
/Ff(sgls) dm(s) = /Ff(s) dm(s), fe L), socT.

Since m is a state, it is also contractive and hence we have

’ﬁf@®$)<wmnf€LWD~

If T is a discrete group, then a function f: I" — C is essentially bounded if and only if it is bounded,
and in this case it is customary to denote L>°(I") by £>°(T").

For our purposes, we will need to know that a very well-known group is amenable.

Proposition 4.20. The locally compact group (R, +) with Lebesgue measure is an amenable locally
compact group.
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Proof. The Lebesgue measure on R is a Haar measure. For n > 1, define m,,: L*(R) — C by

mn(f):% _n (t)dt, fe L®(R).

It is clear that m,, is a state on L*°(R) for all n > 1. Since L>°(R) is a unital C*-algebra, the state
space of L (R) is weak™ compact by [31, Proposition 13.8], so there exists a subnet (m,,_)oca of the

sequence (my,),>1 that converges to a state m € (L°°(R))*. This m is in fact a left invariant mean: for
f € L®(R) and r € R, we have

Mo, () = ) =g [ Fe=r) = fo)ar
- % (/_na_r F(t)dt — _na f(t)dt)

=g, ([ s [ o)

by the fact that (2" + [ = [""T 4 ["° . Hence

—No—T

_ Irl

[ (7 (F) = DI < 5= el Flloo + [Pl flloc) [flloe =0

Ne

1
2ng
Since m,,_ (7-(f)— f) = m(7.(f)— f) as well by the weak* convergence, it follows that m(7.(f)— f) =
or mo 7, =m for all » € R. Hence (R, +) is amenable. O

Just like the previous section, this section has a secret agenda: it also wants to connect a property of
a von Neumann algebra to a property of a crossed product. Note that any crossed product was in fact
a fixpoint algebra by Theorem Do you see where we are going?

Proposition 4.21. Let # C B(H) be a von Neumann algebra and let T be a locally compact amenable
group acting continuously on 4 by the homomorphism 0: T' — Aut(.#). Then there is a projection
E: M — M} of norm 1 where M, is the fizpoint algebra in .4 for the action of T on 4. In
particular, if A is injective, then M is injective.

Proof. Let m be a left invariant mean on L (T"). For fixed T' € .# and &,n € H, the function

s = (0s(T)E,m)

is a continuous function on I" bounded above by the constant ||T'||[|£||||n|| and hence it is an element of
L>(T"). This allows us to define a sesquilinear form on # by

@mzﬁﬁwmmM@.

Since

A%@mmm@

< 1Tl i

for all &, € H, then by the Riesz representation theorem [14, Theorem 2.4.1] there exists a unique
operator E(T) € B(H) such that

w@mmzﬁ@ammmm»sme%

It is easily seen that FE is linear by virtue of each 64 being a linear map .# — .# and each E(T)
satisfying the above property. Moreover, |[E(T)|| < ||T|| for any T € .#. We claim that E is our
wanted projection of norm 1. Fix T' € .# and note that the above equality can be written as

wm@@ﬂzﬁ%ﬂﬁﬁwm®,£m€%
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Let w € B(H). and take square-summable sequences (§,)n>1 and (,)n>1 in H such that w =
> one1We, ., Then

sup | Z e, (0

sel’

= sup
sel’

Z We,, . (0

< sup [0, (T)]| Z 1€ [lI7nl
s€l n=N

<71 Y il =0

n=N

as N — oo. Thus

nzN:lwﬁmnn( / <Z We 1, (0 >dm . / m(s)

as N — oo, proving that

W(B(T)) = / w(8s(T))dm(s), w € B(H)..

r

fwe . # ={we BH).|lwT) =0 forall T € .#}, then because 0,(T) € .# for all s € T,
we have w(fs(T)) = 0 for all s € T’ and hence w(E(T)) = 0. Therefore E(T) € #*++ = .# by
Lemma Moreover, for all w € B(H). and t € T, then since 6, is a *-isomorphism and hence
ultraweakly-to-ultraweakly continuous by Proposition we have that wo 0; € B(H). and hence

MME@mzzpom@GWM@=l@wanmmg=éw@@mmwzww@»

for all t € T, where we used left invariance of m at the penultimate equality. Hence we have 0,(E(T)) =
E(T) for all t € I'. Hence all E(T) are fixed by ¢, so E(T) € ). Also, if T € .4}, then

WGKWZA%@KWM@ZA@&MM$=@&m&meﬁ

so E(T) =T. Hence F is a projection of .# onto .#, of norm 1. O
As Christoph Waltz exclaimed near the end of the great movie Inglourious Basterds: “That’s a bingo!”

Corollary 4.22. If # C B(H) is a o-finite and injective von Neumann algebra with a normal faithful
state w, then R(A ,0y) is injective.

Proof. It follows from Proposition that .# @ B(L*(R)) € B(H ® L*(R)) is injective. Since

R(A,0%) can be embedded in .# ® B(L?(R)) by Corollary and is the fixpoint algebra of a
strongly continuous action 6, on .# ® B(L?(R)) by Theorem |4.18] then by Proposition R(A,0})
is injective. O



CHAPTER 5

SEMIDISCRETE VON NEUMANN ALGEBRAS

The notion of semidiscreteness arises from the concept of nuclearity of C*-algebras, a notion equivalent
to the one of ®-nuclearity in Chapter 1 (the reader is advised to consult [g] for more information on
this), and comes off as a “topological variant of approximate finite-dimensionality” at first sight. In
fact, we shall not only explore the various qualities of semidiscreteness in this chapter but also prove
that it is equivalent to injectivity, which will be the last goal of this project. This is very surprising
because the two concepts look nowhere alike.

Definition 5.1. Let .# be a von Neumann algebra. . is said to be semidiscrete if the identity
mapping id_4 : A4 — A can be approximated ultraweakly by normal, completely positive maps ¢ of
finite rank such that ¢(1.4) = 1 4. That is, .# is semidiscrete if and only if there is a net (¢4 )aca in
B(A4) of normal, complete positive maps of finite rank and ¢, (1.4) = 14 for all @ € A such that

lw(ea(T)=T)| =0, TeH, we MA,
or, equivalently, ¢, (T) — T ultraweakly for all T € .Z.
As in Chapter 4, we quickly make sure that semidiscreteness is preserved by *-isomorphisms.

Proposition 5.1. Let .# and A/ be von Neumann algebras for which there exists a *-isomorphism
p: M — N If A is semidiscrete, then A is semidiscrete.

Proof. Note that p is necessarily unital, since p(1_4) is a unit for p(.#) = A". Let (pa)aca be a net
in B(.#) satisfying the conditions of Definition For all « € A, let ¢, : A — A be the linear map
given by 1, = po v, 0 p~t. Let o € A. By Proposition 1o is completely positive, and since all
*-homomorphisms are contractive, 1, € B(.4"). Moreover, by Proposition 1o is normal; since
p is unital, ¥, (1.4) = 14, and v, clearly has finite rank, since p and p~! are linear isomorphisms.
Finally, for all w € A} and T € A, wo p € .#. by Proposition SO

w®a(T) = T)| = |(wo p)(palp™ (1) = p~ ()| = 0.
Hence (14 )aca is a net satisfying the conditions of Definition for 4, so 4 is semidiscrete. O

We will need an alternate criterion for a von Neumann algebra to be semidiscrete, realizing the concept
on a much more local scale. In many cases this criterion will be easier to work with than the original
formulation. There are no surprises in the proof: we only work with the ultraweak topology as a locally
convex topology, and the requirement of complete positivity and being finite rank is not used at all.

Proposition 5.2. Let .# be a von Neumann algebra. Then the following conditions are equivalent:

(i) A is semidiscrete.

(ii) For anye > 0, any given finite set F C A with F = {T1,...,T,} and any ultraweakly continuous
functionals w1, ... ,w, € My, there exists a normal, completely positive map ¢ € B(.#) of finite
rank satisfying o(1.4) = 1.4 such that

|wi(p(T;) — T3)| < e.

Proof. Assume that (i) holds, i.e., that .# is semidiscrete, and let (¢q)aca be a net in B(.#) as
in Definition Let ¢ > 0 be given, let F C .# be a finite set with F = {T3,...,T,} and let
Wi, ...,wy € M. Forany i =1,...,n, we can now take c; € A such that

lwi(pa(T3) — T3)| < €

95
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for all @ > «a;. Let ap € A such that ag > «; for all i = 1,...,n and let ¢ = ¢q,. Then clearly
¢ € B(.) is normal, completely positive, is of finite rank, satisfies p(1_4) = 1.4 and

lwi(p(T;) —Ti)| <e, i=1,...,n
since ag > «; for all i = 1,...,n. Hence (ii) follows.

Assuming instead that (ii) holds, let A = {F C .# | F is finite} be ordered by inclusion, making it
a directed set. Moreover, let B = {G C .#, |G is finite} be ordered by inclusion as well, and let
C = {(F,G) € Ax B||F| = |G|}. We make C into a directed set by defining (Fy,G1) < (Fs, G3)
it 1 C Fy and G1 € Gy. For any (F,G) € C, let ppg € B(#) be given as per (ii) such that
lw(pra(T)—T)| <Yriforal T € Fandw € G. Given T € 4, w € M, and € > 0, take (Fy,Gg) € C
such that T € Fy, w € G and |Fy| > 1/e. Then for all (F,G) € C such that (F,G) > (Fy, Gy), we have
|F| > |Fo| and hence

1 < 1 <
— < — <e.
|F| — |Fol

Therefore ./ is semidiscrete, as the net (¢r,c)(rq)ec satisfies the conditions of Definition O

lw(pra(T) —T)| <

5.1 Semidiscreteness and preduals

If # is a von Neumann algebra and (¢4 )aca is a net in B(.#) satisfying the properties of Definition
then for any w € . we have ¢% (w) € 4, as well by normality (this is Proposition , yielding
anet (¢4 7. )aca in B(.#,). By bringing in the canonical identification A: .# — (#,)* of Theorem
the convergence requirement of Definition [5.1] can be written as

IA(T) (s —ida) (W) = [w(pa(T) =T)| =0, TeM,we .

It becomes useful to describe this convergence by means of the point-norm and point-weak topologies
(see Appendix A for a runthrough of the definition), in which case we have ¢%| . — id 4, in the
point-weak topology. The purpose of this section is to find the properties of this net in order to
describe another condition equivalent to semidiscreteness.

In order for this description to be as thorough as possible, we will first need to discuss positivity
properties of the maps connecting .# to .#,. In particular, we will need to know if complete positivity
is preserved when passing to (duals of) matrix spaces, and in order to this to make sense, we need to
bring in some helpful isomorphisms. Hopefully the next two paragraphs will not be too confusing.

Let n > 1 and let .# be a von Neumann algebra. If ¢,,: M, (#.) — M, (4 ), is the isomorphism of
Proposition we can make M, (.#,) into a Banach space by equipping it with the norm of M, (.Z).
using ¢,, and we can define Q,,: (AZ.)* © M, (C) — M, (#,)* by

Qo | D @ey | (W) =D wigwiy), w=(wiy)ij—1 € Mu(M),

ij=1 ij=1

where (e;;)7;_; is the canonical matrix basis for M, (C). We claim that (2, is a linear isomorphism.
Indeed, it is first and foremost well-defined, as ,,(w) is linear and bounded by szzl || il for any w =
> e i @ eij € (M.)* © My (C), using Proposition 3.4} If Q,, (w) = 0 for some w € (4.)* ® M, (C),
then it is clear that w = 0, by checking values on matrices in M, (.#,) with only one entry different
from the zero functional, so 2, is injective. For surjectivity, let ¢ € M, (#,)* and for i,j =1,...,n,
define y;;: A. — C by
pij(w) = @(pij (W),

where p;;(w) is the matrix in M, () with w at position (7, ) and 0 everywhere else; clearly ;; is
linear and bounded, and QH(Zijl ©vij @ e;5) = @. We identify (A.)* © M, (C) with M, (.#,)* this
way, and in particular the positive elements, so that an element ¢ € (Z.)* ® M,,(C) is positive if and
only if Q,,(¢) is a positive linear functional in M,, (#.)*.

Now, let A: A — (M.)* and A,,: My (M) — (M, (A ).)* be the canonical identifications of Theorem
and let id,, : M,,(C) — M, (C) be the identity. Under the identification M, (.#) = .# © M,(C),
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we have for all w = (w;;)7';_1 € My (#.) that

A®1d Z T’zj & e w) = Z Wij(nj)7
i,7=1 3,j=1

and

O © An((T3)7 j=1) (W) = An((Ti5)7=1) (Pn(w))

Il
™

&

<.
=

SO
A®idn:Q;10¢;‘loAn.

A,, yields a one-to-one correspondence between positive elements in M, (.#) and positive linear func-
tionals in (M, (.#).)*. Moreover, remember from Section 3.1 that we defined x € M, (.#.) to be
positive if and only if ¢, (z) € M, (4 ). was positive.

Proposition 5.3. Let .# be a von Neumann algebra. Then the following conditions are equivalent:

(i) A is semidiscrete.

(ii) There exists a net in B(#.) of completely positive maps of finite rank, mapping states to states,
that converges in point-norm topology to the identity mapping id 4, : M — M.

Proof. Suppose first that .# is semidiscrete and let (¢n)aca be a net in B(.#) approximating the
identity map on .# as per Definition Defining o : M — My by Vo(w) = wo v, = @k(w)
for all o € A, then all 9, are well-defined by Proposition clearly linear, completely positive by
Proposition and of finite rank by Lemma Moreover, if w € ., is a state, then 1, (w) is
positive and 9, (w)(1.z7) = w(pa(l.z)) =1, s0 1, maps states to states. Since

[($a(w) = w)(T)| = |w(pa(T) =T)| = 0

for all w € A, and T € .#, and hence for all p € (#,)*, we have p(1)o(w) —w) — 0 by Theorem
Hence 1), converges to the identity map id_y4, on .Z, in the point-weak topology, so by letting
S = conv{y, |a € A}, we conclude that id_4, is in the point-weak closure of .. Hence id 4, is in
the point-norm closure of . as well by Corollary It can be checked easily that . itself consists
of completely positive maps of finite rank that map states to states, hence yielding (ii).

Assume instead that (ii) holds and let (xa)aca be a net in B(.#,) satisfying the conditions of (ii).
For each o € A, note that by considering the dual map x%: (#,)* — (#.)*, we can define a map
Yo' M — M by

Pa=A"Toxs oA,

where A: .# — (#,)* is the canonical identification from Theorem Since x7 has finite rank and
A is a linear isomorphism, ¢, also has finite rank. ¢, is clearly ultraweakly-to-ultraweakly continuous

by Corollary

To prove that ¢, is in fact completely positive, let n > 1. We will use what we know about the maps
Ay, ¢ and Q,, as well as id,,: M,,(C) — M,,(C), as defined in the discussion before the statement of

this proposition. Note that since x,, is completely positive, then ¢, oX )o oot My (M) — M, (M)
is positive as well. Hence

(@7) 7 o (X&) 0 ¢t (Mu(A)s)" = (Mo(A).)"
maps positive linear functionals in (M,,(.#).)* to positive linear functionals, so

Ao (en) o (x(M) o g0 A,

n n
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is a positive map M,,(.#) — M, (). For all w = (w;;)}';—; € My, (A.), then

Qo (x;, ®idy) Z i ®eiy | @) =Y wi(Xalwi)

1,j=1 1,7=1

=y Z Xa(#i; @ eij | (x{P ()

7,j=1

= (x{M) o Z pij ®eij | (w),

i,j=1
50 2, 0 (x4 ®idy) 0 1 = (x7)*. As

A o (dn) o (X)) o g o Ay = (AT @idy) 0 (x; ®idy) o (A@idy) = @l

Hence w&n) is positive, so @, is completely positive. Finally, let w € .#, and note that

(Aowa)(la))(w) = (xa ° A)(La)(w) = Xa(w)(La)-

By Theorem , w= Z?zl Aiw; where \; € C and wj; is an ultraweakly continuous state. Hence

4 4
(L) = 3 Analei) (L) = 30 = A(La)(w),

as x, sends normal states to normal states. Hence A(pq(1.4)) = A(lz), 50 pa(l.z) = 1 4. Finally,
for T € A and w € A, we have

w($a(T)) = Mpa(T))(w) = Xxo(AMT))(w) = Xa(@)(T),

SO
w(@alT) = T)| = |(Xa(w) = w)(T)] < [[Xa(w) —w[IT] — 0.

Hence . is semidiscrete, as (¢, )aca satisfies the wanted properties. O

Similar to the local condition of Proposition [5.2]equivalent to semidiscrete, we can derive a consequence
of condition (ii) above.

Corollary 5.4. Let # be a semidiscrete von Neumann algebra. Then for any w1, ... ,w, € M, and
e > 0, there exists a normal, completely positive map ¢ € B(#) of finite rank, satisfying o(1.4) =1 4,
such that

lwiop —w|| <e, i=1,...,n.

Proof. By Proposition there exists a net (Xa)aca in B(#,) having the properties mentioned in
condition (ii) of the proposition. Using this net, it is easy to find a normal, completely positive map
X € B(A#,) of finite rank that sends normal states to normal states such that ||x(w;) — w;|| < € for
all i = 1,...,n (the method used in Proposition can easily be applied here). As in the proof of
Proposition one can find that ¢ € B(.#) given by ¢ = A~ o x* o A where A: .4 — (M.)*
is the canonical identification of Theorem has every property mentioned in the statement of this
proposition. O

The final theorem of this section is perhaps a bit of a cheat, as one of the implications depends on
a result that we have not proved yet (even though we will). The reason that it is put here is simply
because the notation and mindset used in the proof is very much in keeping with the methods and
ideas used previously in this section, and one might have forgotten them all once we actually have all
the information we need to prove the theorem. We do however have the knowledge needed to prove
most of it, so here it is.

Theorem 5.5. Let A be a C*-algebra. Then the following are equivalent:

(i) A** is semidiscrete.



5.1. SEMIDISCRETENESS AND PREDUALS 99

(ii) The identity map A* — A* is the point-weak™ limit of a net of completely positive finite-rank
contractions, i.e., there exists a net (p)aca of completely positive finite-rank contractions A* —
A* such that p,(x) — x in the weak*-topology for all x € A*.

(iii) For any C*-algebra B, any completely positive contraction §: B — A* is the point-weak* limit of
a net of completely positive finite-rank contractions.

(iv) For any C*-algebra B, any state in S(A® B) is the weak™ limit of states in A* © B*NS(A® B)
(see page @)

(v) A is @-nuclear.

Proof. (v) = (i) follows from Theorem requiring the knowledge that semidiscreteness is the same
as injectivity (in other words, stick around for a proof). Let .# = A** and assume that .# is
semidiscrete. If (¢q)aca is a net in B(.#) approximating the identity map on .# as per Definition
recall that in the proof of Proposition [5.3] — specifically (i) = (ii) — we found a net (¢4 )aca in
B(#,) of completely positive finite-rank maps, sending states to states, that converged to the identity
map M+ — M. in the point-weak topology. If (¢n)aca and (1n)aca are such nets of B(.Z) and
B(A#.) respectively found in the proof of (i)=-(ii), then by letting Q: .#. — A* be the isometric
isomorphism of Proposition [3.24] we now define p,,: A* — A* by p, = Qo1p,0Q ! for all @ € A. Then
each p, is contained in B(A*), has finite rank and is completely positive. For y € A* and a € A, we
have

lpa GOl = Ilta 0 Q71 (x) o ¢ < 127 GO lalllell < IIx-

This proves that each p,, is contractive. Finally,

pa(X)(a) = Q7 () (¢a(t(a)) = Q7' (xX)((a) = x(a)

for all x € A* and a € A, so we have (ii). If B is a C*-algebra and 6: B — A* is a completely positive
contraction, then note that p, o §: B — A* is completely positive, contractive and has finite rank for
all @ € A and that p,(6(b)) — d(b) in the weak*-topology for all b € B, so (iii) follows from (ii).

Assume (iii). Let B be a C*-algebra and let ¢ € S(A ® B). Define §: B — A* by
5(b)(a) = p(a®b).

As [6(b)(a)] < 1 for all a € (A); and b € (B)y, then ||§(b)|| < 1 for all b € (B);. Therefore ¢ is a
contraction. For by,...,b, € Band ay,...,a, € A, write z =Y.' | a; ® b; and note

S 5(bby)(aiay) = platx) > 0.

ij=1

Thus ¢ is completely positive by Proposition Hence 0 = p* o4 is the point-weak* limit of a net
(0a)aca of completely positive contractions B — A* of finite rank by the assumption.

Let € > 0. Since [|¢||aig = 1, there exist a € (A); and b € (B); such that |§(b)(a)| = [p(a®b)| > 1 5.
Taking o € A such that a > ap implies [§(b)(a) — o (b)(a)| < §, we now see that o > a implies

18211 > 18 (D) ()| > &' (B)(@)| = 5 > 1 ~e.

Hence ||0,|| — 1. Defining &/, = ||0, || 10, for large enough «, it follows that 6/, — § in the point-weak*
topology. Each &/, is then a completely positive map of norm 1 and of finite rank. By universality of
the tensor product, then from each ¢/, we can derive a linear functional ¢, : A ® B — C that uniquely
satisfies

vala®b) =08 (b)(a), ac A beB.

For any z = """ ; a; ® b; € A® B, Proposition tells us that
pala*z) =Y 0, (bib;)(aja;) > 0,
ij=1

S0 (g is algebraically positive. Clearly ||¢q|lalg < 1. For any € > 0, let b € (B); such that ||d/,(b)||+
1, and let a € (A); such that |9, (b)(a)| + § > [|0/,(b)||. Then

[pala®b)| =15, (b)(a)] 21—,

€
52
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50 ||¢allale = 1. Hence ¢, € S(A® B).

But wait, there’s more! For any ¢/, then Lemma yields ¢1,...,p, € B* and ¥, ..., %, € A* such
that

=> @i(b)es, beB
i=1

Defining x = Y7, ¥ © ¢, then x € A* ©B*. We also see that for z = 337" | a; ®b; € AG® B, we have

m

z) = Z%(bj)(aj) =Y ilay)pilby) = Zx(aj ®bj) = x(z),

j=11i=1

S0 o € A* O B*NS(A® B) = M(A, B) (see page [26). Finally, for all z € A ® B, we see that

Za’ )(a %Za o(x),

hence (iv).

For (iv) = (v), we step outside the proof for just a moment. Assume first that A is non-unital and
let A denote the unitization of A. We shall soon see that (A)** is semidiscrete if and only if A** is
semidiscrete; this will follow from Corollary [3.15 and Proposition [5.7 as C is semidiscrete. Hence (iv)
holds for A as well. Now let B be a C*-algebra; (iv) then implies that

[#]lmax = sup{p(z*z) | p € S(A O B)} = sup{p(z"z) [¢ € M(A,B)}, =€ AOB.

(See page [25] for an explanation of the first equality.) If B is unital, then Corollary [1.48] yields that
|2 || max = ||a:||mlrl for all z € A ® B. Theorem now yields that A @ B has a unique C*-norm. If B

is non-unital, we similarly have ||z||max = Hac||Inln for all 2 € A® B, so A ® B has a unique C*-norm
by the same theorem. Hence we conclude that A is ®-nuclear. If A is unital, the same considerations
(but with no need to pass to unitizations) yield that A is ®-nuclear. O

Thus semidiscreteness is inseparably connected to the notion of ®-nuclearity which will help out a great
deal in the future, should we for instance want to prove that ®-nuclearity is preserved by well-known
C*-algebra constructions. We close out the section by one of the consequences of the above theorem,
for which Nathanial Brown notes in [3] that a C*-algebra proof cannot be easily derived (“good luck”
are his exact words).

Corollary 5.6. Let A be a C*-algebra with a closed two-sided ideal J. Then A is ®-nuclear if and
only if J and A/J are ®-nuclear.

Proof. As A** =2 3** @ (A/J)** by Proposition the result follows from Propositions and
and Theorem [5.5 O

5.2 The construction of semidiscrete von Neumann algebras

The purpose of the next two sections will be to show that the typical von Neumann algebra con-
structions preserve semidiscreteness, keeping in mind that we have to justify the “illegal” use of the
statement that semidiscreteness is equivalent to injectivity (which we haven’t yet proved) in the proof
of Theorem [5.5] and Corollary The constructions that we will investigate are therefore the same
as in Section 4.2, and the proofs are in a way much more delicate than those in the aforementioned
section, even though they are much longer.

Proposition 5.7. Let (#;);c1 be a family of von Neumann algebras. Then # = @, ; M; is semidis-

crete if and only if M; is semidiscrete for all i € 1.

i€l

Proof. We prove first that .# semidiscrete implies that all .#; are semidiscrete. Let ¢: .# — .# be
a completely positive map such that ¢(1.,) = 1.. Let ig € I be fixed. Define N = P, ; 4,
and let A: #;, — ./ be the diagonal mapping given by A(T)(&;)ier = (T&)icr- Note that A is a
*-homomorphism and hence completely positive by Proposition [3.11] as well as normal by Corollary
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2.52} satisfying A(1.4, ) = 1y. Furthermore let p € (.#;,). be a fixed ultraweakly continuous state.
Define maps 0,: #;, — #; for all i € I by

B T for i = ig
6:(T) = { p(T)1a, fori# o

6i: N — M by
0((Ti)ier) = (0:(T3))ier-

Then 6; is completely positive and normal for all ¢ € I. In the case i # iy this is clear, and since 6; is
the composition of p and the clearly normal *-homomorphism C — .#; given by X — A1 4, for i # 4o,
it should be clear as well. Thus 6 is completely positive and normal by Corollary and additionally
satisfies 0(1 4 ) = 1 4. Finally, let 7: .4 — #;, be the projection of .# onto .#;,. Then 7 is a normal
*-homomorphism by Proposition and thus completely positive, and 7(1.4) = 1.4,,- We can now
define a map ¢, : A;, — M;, by

and yet another map 0 = @,

Pip, =mopolfoA.

Hence if ¢: A4 — A is normal, completely positive and has finite rank with ¢(1_4) = 1 4, then the
same holds for ;.

Assume now that .# is semidiscrete and let (¢n)aca be a net in B(.#) approximating the identity
map on .# as per Definition On the grounds of what we just defined and proved, then for ig € I
the net ((pa)ig)aca in B(A;,) is a net of completely positive, normal maps of finite rank satisfying
(¢a)io (L)) = La,, for all a € A. Additionally, for any given w € (/). define @ =wom € (M),
using Proposition as 7 is normal. By defining T = 0o A(T) € 4 and noting that Tofo A = id.z,, ,
then

&(¢a(T) = T) = w(n(pa(T) = T))) = w((¢a)is(T) = T).
As |@(po(T) — T)| — 0 by assumption, it follows that .#;, is semidiscrete.

For the converse statement, assume that .#; is semidiscrete for all 7 € I and let J C I be a finite subset
of I. Define J' = I\ J and let M = @, ; #; and Ny = D, ; A;. For any i € J, let @; € B(#;)
be a completely positive, normal mapping such that ¢;(1.4,) = 1 4,. Define ¢': A — A1 by

¢ (T)ies) = (¢i(Ti))ies,  (Ti)ies € M.
Then ¢’ is normal and completely positive and ¢'(1 4, ) = 1.4, by Corollary
Choose an ultraweakly continuous state p € .y, let 01: # — A1 and Os: A4 — N5 be the projections,

and let ¢ : A — A and ¥5: N5 — .# be the inclusions. 61, 65, 1 and ¥ are normal and completely
positive by Propositions and [3.11]for all ¢ € I, since they are *-homomorphisms.

Now, define a map ¢: 4 — .# by
p=v10¢ 0 +V2000k0p,

where k: C — 4 is defined by k(\) = Al 4. Again k is normal and completely positive. It then
follows that ¢ is normal and completely positive, satisfying ¢(1_4) = 1 4. Moreover, if the @; for all
i € J have finite rank, then ¢’ also has finite rank, so as 5 0 6 0 k0 p has image contained in the linear
span of ¥2(02(1_4)), it follows that ¢ has finite rank.

Now let ¢ >0, T!,...,T" € .4 and w',... ,w" € 4. be given, where TP = (I7);c; with TP € .4, for
allie I and p=1,...,n. Since 4. = @, ,;(.#;). by Proposition wP corresponds to a family
(w?)ier where w! € (M), foralli € T and p=1,...,n and

Pl =) fwlf| <00, p=1,...,n.
iel
Hence there exists a finite subset J C I such that

YNl <e, p=1,....n
i¢J
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Let X be the cardinality of J. For i € J we can by Proposition find normal, completely positive
maps p; € B(.#;) of finite rank that satisfy ¢;(1.4,) = 1.4,, such that

|w? (@i (TF) = TP)| < 1eJ, p=1,...,n

<
A )
By defining ¢ € B(.#) by means of the ¢, for i € J as we did above, we then find that

[P (P(TP) = T7) = | Y wl (@il TF) = TF) + ) wf (L )p(T7)

ieJ i¢J
<D W ilTF) = TP + |p(T7) D |lw? |
icJ i¢J
<e+|T%|e
=@ +[T"|)e
for all p=1,...,n, it follows from Proposition that .# is semidiscrete. O

For the reduced von Neumann algebra case, note that if ' € .#p for a von Neumann algebra .# and
a projection P € .# and there is an S € .# such that PS|p¢) = T, we have PSP = PTP. Hence
PTP is an operator in . for all T € .#p.

Lemma 5.8. Let H be a Hilbert space, let 4 C B(H) be a von Neumann algebra and let P € .4 be
a projection. Then the maps v: Mp — M and w: M — Mp given by

U(S) = PSP, (T)=PT|pay, S€.lp, Tc.M

are normal and completely positive. Moreover, if & C # is a finite-dimensional subspace, then 7(%)
is finite-dimensional.

Proof. Note that ¢ and 7 are clearly linear, bounded and positive; the last property follows from the
equations

where £ € H and n € P(H), and S € #p and T € .4 are positive.

We now check normality. Therefore, let wy € A, and we € (A p). and pick square-summable sequences
(& )n>15 ()n>1 in P(H) and (£n)p>1, (n)n>1 in H such that

ZS@“% wa(T) = (T&n, ), S€.Mp, TEM,

n=1

using Theorem [2.7] and Proposition As

w1 (1(S)) =Y SP&, Pry),  wa(n Z T '), Se.dp, TeM,

n=1
it clearly follows that wy ot € (#p). and we o € M. Proposition then tells us that + and 7 are

normal.

To see that ¢ and 7 are completely positive, let n > 1, let S = (54)}';—; € My(Ap) and T =
(T3j)ij=1 € My (A) be positive matrices { = (&1,...,§,) € H" and n = (m1,...,1m,) € P(H)". Then

()6, €) = Y (PSij P&, &) = > (Si P&, P&) = (SPE, PE) > 0
i,j=1 i,j=1

where P¢ = (P&y,..., PE,) € P(H)™ and

n

i,j=1
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Hence ¢ and 7 are completely positive.

For the final statement, assume that . C .# is a finite-dimensional subspace with a vector basis
Ty,...,T, € &. Then it is clear that the operators PTi|p(3) € .#p (where i = 1,...,n) span the
subspace 7(.%); hence 7(.%) is finite-dimensional. O

Proposition 5.9. Let .# C B(H) be a semidiscrete von Neumann algebra and let P € A be a
projection. Then the reduced von Neumann algebra #p is semidiscrete.

Proof. Let ¢ >0, Ty,...,T, € A4 and wy,...,w, € #Ap, be given, and fix an ultraweakly continuous
state p € #p,. By Theorem[z.7]and Proposition[2.2] then for all i = 1,...,n we have square-summable
sequences (&))n>1 and (n),>1 in P(H) such that

Z n777n T e Mp.
n=1
By defining w}: .# — C for each i by
Wi(T) =Y (T& ), Ted,
n=1

we obtain linear functionals wj € .#,. Moreover, for all T € .#, we have wij(T) = w;i(PT|p))

7

and w(T) = w/(TP) for all T € .# since the sequences consist of elements of P(#). Since .# is
semidiscrete, then Proposition yields a normal, completely positive mapping ¢ € B(.#) of finite
rank with ¢(1_4) =1 4, additionally satisfying

|w; (p(PTiP + p(PTi|p3))(L.ar — P)) — (PT;P + p(PT;| p30))(Ly — P)))| <&, i=1,...,n,
i.e., we are approximating the operators PT;P + p(T;)(1.4 — P) € .# . Define ¢ € B(.#p) by
Y(T) = Pp(PTP + p(T)(1.y — P))lp(ry, T € Mp.

Since PTP is uniquely determined by T' € .#p, 1 is well-defined. Moreover, since P1 pe) P = P, then
Y(1px)) = 1p)- Then 9 has finite rank by Lemma From the same lemma, we see that the
map #Ap — A, T — PTP is normal and completely positive. Since p is ultraweakly continuous and
completely positive by Proposition and the map C — . given by A — A(1 4 — P) is clearly a
normal *-homomorphism, then Propositions and [3.5] yield that the map

T PTP+p(T)(1y — P), T € .dp,

is normal and completely positive. Hence Lemma [5.8] yields that the same holds for ). For the grand
finale, then for all i = 1,...,n we have

|lwi (V(PTi|p3y) — PTilpa))

(Po(PT;P + p(PTi|p3y) (L — P)pe) — PTilpa)) |

= |wi (p(PT:P + p(PTi| pan)) (L — P)) — PTiP)]

= |wi (p(PTiP + p(PTi|p30)) (L = P)) = (PT;P + p(PTi| p(3)) (L — P))P)]|
= |wi (p(PTiP + p(PTi|pu)) (L — P)) = (PTiP + p(PT;| pa)) (L — P)))|
< E&.

i

Hence .#p is semidiscrete by Proposition O

Proposition 5.10. Let .# and ./ be von Neumann algebras. Then .# @ N is semidiscrete if and
only if # and N are semidiscrete.

Proof. Assume that .# and .4 are semidiscrete. If ¢ € B(.#) and ¢ € B(./") are normal, completely
positive mappings, then there exists a normal, completely positive map ¢ ® ¢ € B(.# & A") satisfying

p@P(SRT) = p(S) @ Y(T)
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for all S € .# and T € A4 by Corollary Moreover, if ¢ and 1 satisfy ¢(1.4) = 1.4 and
Y(1y) =1y,then (0 @V)(1 45.4) =la®1ly =145 4, and if ¢ and ¢ are of finite rank, then
© ®1 has finite rank as well, as finite-dimensional subspaces of B(.# ® .4") are ultraweakly closed [14)
Theorem 1.2.17]. Moreover, if ¢ and 1 are of the above form, then ||¢ ® 1| = 1 by Proposition @

Let e >0, Th,...,T, € #4@N and wy,...,w, € (A &A), be given. We will show that ¢ and ¢
with the properties above can be chosen in a way such that

lwi((p@ )T, —T;)| <e, i=1,...,n.

Suppose first that we have found ¢ ® 1 such that the above inequality holds where all w; are of the
form «; ® B; for o; € A, and j; € A, (see page for an explanation of their construction). For new
e>0,T,....T, € £/ RN and wy,...,w, € (M RN ), let M = max{|T;|]||7 =1,...,n}. Because
M © N, is norm-dense in (A4 @ A),, we have

m;
; ; €

wi=) ol ®B])| < 7

=1

for appropriately chosen o € ., and ﬂf € N, where j = 1,...,m;, i = 1,...,n. Letting m =
>, m; and choosing ¢ € B(.#) and ¢ € B(./4") with the above properties such that

. . 6 . .

we then have for all i = 1,...,n that

wille @ )T —T)| < [wi =S el @B I(e o )T~ T + 3 lI(e? © B)) (¢ © ¥)Ts - T

j=1 j=1
€ e
< — 2M i —
=M LK™
19 13
§7+7:€7

2 2
proving the result in the general case, so that by Proposition M QN is semidiscrete.
To prove the result for w; of the form a; ® §; for a; € #, and 3; € 4, note that since .# and A

are semidiscrete, Corollary yields normal, completely positive maps ¢ € B(.#) and ¢ € B(.4") of
finite rank with ¢(1.4) = 1.4 and (1 _4) = 14 such that

e

e
7 - M a1 .:]-7"'a ’
s Bi0v =6l < s i=1im

lei 00— auf| <
where
K = max{||la;|| + ||1Bill |i = 1,...,n} -max{||T;|| |i =1,...,n}.
Note that for S € # and T € .4, then
o; @ Bi((p@Y)(S@T)) = ai((9))Bi(U(T)) = (aiop) @ (Bio)(S®T),

so by uniqueness, the ultraweakly continuous functionals (a; ® ;) o (p ® ¥) and (a; 0 ) ® (B; 0 ) are
equal for all i = 1,...,n, with the help of Proposition Hence for all i = 1,...,n, we see that

(s ® B)((¢ ® V)T, = T)| < Il (e 0 0) @ (B 0 %) = (i @ By
< IT (e 0 9) @ (B 0 w) = (a0 %) @ Bill + (@i 0 9) © i = (s ® Bi)])
< IT (loallB: % = Bill + llos o 0 — s [18:])
< 5Tl + 118:1)

<,

completing the proof of the first implication.
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Assume now that .# ® .4 is semidiscrete. Let id 4 : .# — .# be the identity map and let p € A,
be a fixed ultraweakly normal state. By Proposition and Corollary there exists a normal,
completely positive map id_y ® p: 4 @ N — .# @ C such that

(dg@p)(SRT)=S®pT), Se#, TecN.

As #RC = # @ C by Lemma then by letting 7: # — .# ® C be given by n(T) =T ® 1
it is clear that 7 is a *-isomorphism. Letting J: .# — # @ A be given by J(T) =T ® 1 4, it is
clear from the tensor product operator calculus (see page [8) that J is a *~homomorphism. Hence if
» € B(# ®./) is normal and completely positive, it defines a normal and completely positive map
@' M — M given by ¢ =171 o (id 4 ® p) o ¢ o J, using Proposition If ¢ has finite rank and
(1 45.4) =145 4, then clearly ¢ also has finite rank and maps 1.4 to 14.

Let 8: C — C denote the identity. For any positive functional w € .#,, Corollary yields a positive
linear functional w ® B: .# ® C — C. Since

(W p)o(idy @p)(SRT) =w(S)p(T) = (W p)(SOT)

forall Se€ # and T € A, and (w® ) o (id.z ® p) € (A @ N)., it follows from uniqueness of w ® p,
as noted in the remark before Proposition that

(wep)o(idyg®p) =wp.

Using the fact that any w € ., is a linear combination of four positive ultraweakly continuous linear
functionals (Theorem , the above equality holds for arbitrary w € .#,.. For any given S € #,
note that

(ide @ p)(P(T® 1y)) = m('(T)) = ¢'(T) ® 1 = (id.y ® p)(¢'(T) ® 1y).
Hence if any w € ., is given additionally, one sees that

Wep(e(T@ly)-Tely)=((wep)o(ids®@p)(e(T@1ly)-T®1ly)
=(wep)olidy @) (T @1y —T®1y)
=wap)((T)-T)®1x)

uf(<P'(T) T)p(1x)

w(@(T) = T).

Now, given € > 0, wy,...,w, € M, and T1,...,T,, € ., then by Proposition the semidiscrete-
ness of . # ® A yields a normal, completely positive map ¢ € B(.# ® .A4) of finite rank, satisfying
el y5x) =1lyz.n and

(wi@p)(eTi@ly)—T;®1y)| <e, i=1,...,n.
As proved before, ¢ induces a map ¢’ € B(.#) as above, satisfying
wi(@ (1) =Tl = [(wi @ p)(p(Ti ®1x) —Ti® 1) <e, i=1,....n
Hence .# is semidiscrete by Proposition In a similar manner, one sees that .4 is semidiscrete. [
Proposition 5.11. The von Neumann algebra B(H) is semidiscrete for any Hilbert space H.

Proof. Let (Ha)aca be the family of all finite-dimensional subspaces of H, and for each a € A, let P,
be the orthogonal projection onto H,. We make A into a directed set by defining o < 8 for o, 8 € A
if and only if #, C Hp or equivalently P, < Pg. Let p € B(H). be a fixed normal state. For a € A,
define a map ¢, € B(B(H)) by

0a(T) = P,TP, + p(T)(14 — P,), T € B(H).

This map is normal and completely positive which can be deduced as follows. Clearly the map T
p(T)(1y—Py) for T € B(H) is completely positive by Propositions[3.11]and[3.12as it is the composition
of the positive functional p and the *-homomorphism C — B(H) given by A — A(13 — P,). Moreover,
the aforementioned *-homomorphism is normal and p is ultraweakly continuous by assumption, so
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normality follows. The map T — P,TP, is clearly ultraweakly-to-ultraweakly continuous and hence
normal. To see that it is completely positive, let n > 1 and let T' = (T;)7;—; € M,(B(H)) be a
positive matrix and note that

*

P,T\ P, P.TisP, --- P.Ti,Pa P, 0 - 0 P, 0 -+ 0

P,T5,P., P.TosP, --- P.TonPa 0 P, -~ 0 0 P, 0
) . ) =| . ) . T .

P.To1 Py PuTpwoPs -+ PoTounPh 0o 0 .- P, o 0 - P,

is positive. This implies complete positivity of T'+— P,T P,. The sum of the two maps is normal and
completely positive as well.

We note that ¢, has finite rank and ¢, (1) = 14. Let w € B(H). and T € B(H), we know from
Proposition [2.2| that w = Y72 | we, », for sequences (£;);>1 and (1;);>1 in H such that Y= [|&]> < 0o
and Y22, ||n;]|* < oo. Let € > 0, choose n > 1 such that

00 = ) 5
3 ||@«||2<F, S il <y fo
1=n-+1 3||TH i=n+1 3||T||

and choose o € A such that & € P, (H) and T¢; € Py, (H) for all i = 1,...,n. Then for all o > g
we find that

o0
w(palT) =T = D ((PaTPo+ p(T)(1 = Po) = T)éi,mi)
i=1
=| Y (PaTPa+p(T)(1 — Pa) = T)éi,mi)
i=n+1
<3ITI Y el llnal
1=n-+1
o /2 o 1/2
<3| | D ||§i||2] [ > 77i||2]
i=n+1 1=n—+1
<e,
so that limye 4 w(9o(T)) = limgea w(T). Hence B(H) is semidiscrete. O

5.3 Semidiscreteness and the minimal norm

The main theorem in this section contains one of the most useful and important conditions equivalent
to semidiscreteness, and it cannot be overstated how much the proofs of the next section depend on it:

Theorem 5.12. Let .# C B(H) be a von Neumann algebra. Then the following are equivalent:

(i) A is semidiscrete.
(i) A Qmin N = M RQuvin A for any von Neumann algebra N .
(iii) For any Si,...,Sn, € M and Ty,..., T, € A" it holds that

i S;T; i S @T;
i=1 i=1

i.e., the representation n: M © M — B(H) satisfying n(S ®@T) = ST is contractive with respect
to the minimal norm on M © A'.

<

)

min

An important consequence is worth noting now, before we go any further.

Lemma 5.13. If # and A are C*-subalgebras of B(H), then

2": S, @T; i T, ®S;
i—1 im1

forall Sy,...,S, € # and Ty,...,T, € N .

min min



5.3. SEMIDISCRETENESS AND THE MINIMAL NORM 107

Proof. Let Sy,...,8, € # and Tt,...,T, € A. For any Y ;" & @ ni € H © H, straightforward
computation shows that || >, mr @ &l = || 22— & @ mil|. Furthermore,

(gsem) (o)

2

= > D (SieT)E& @m). (S0 T) & m)

i,j=1k,l=1
= > (Sikk, S;&) (Timw, Tym)

ij=1ki=1
=3 AT @ 8) (o @ &), (T; @ S;)(m @ &))

ij=1 k=1

’ n m 2
= | T ®Si> <Z7lk ®§k>
=1 k=1

2 2

<

2 2

IN

ZTﬂX)Si Zﬁk@)ﬁk ZTi®Si Z€k®7lk
=1 k=1 i=1 k=1

Hence |37, Si @ T)E| < | i, T @ Sif|||€]| for all € € H ® H, and continuity yields the inequality
for all £ € H® H, so that | Y0, Si@T;|| < |Xi;T; ® S| A similar argument (we have already
done most of it) shows that the opposite inequality holds, completing the proof since the inclusion
maps of .# and 4 into B(H) are faithful representations. O

Corollary 5.14. A von Neumann algebra .# C B(H) is semidiscrete if and only if its commutant
A" is semidiscrete.

Proof. Lemma tells us that condition (iii) of Theorem holds for .# if and only if it holds for
M. O
In order for Theoremto make sense, we now define the binormal norm || -||pin. Given von Neumann
algebras . and .4, we define bin(.#, /") C S(# ® .A) (see Definition by

bin={p € S(A & N)|(T,T") — (T @ T") is separately ultraweakly continuous}.

When the von Neumann algebras are clear from the context, we will just write bin = bin(.#, .4").

bin induces a C*-seminorm on || « ||pin o0 A4 ® A given by

[Z[[bin = sup |7y (z)],
pEbin

where m, is the representation in the GNS triple admitted by ¢ (see [23).

Given vectors &1,...,&, € H and n1,...,m, € K we define z = > @ e HOK CH@K. I
[ >k, &@m;l =1in H® K, we then obtain a vector state w, € S(.# @ .4). The restriction of w, to
M O N is algebraically positive and w, (1.4 ®1_4) = 1, proving that w, € S(.# ©.4"). Note moreover
that for T' € 4 and T’ € A, we have

w(TRT) = (TRT)w,2) =Y (T&R T & @n;) = Y (T, &I iy ;).
i,5=1 1,5=1

For fixed 7" € .4, we now see that the map T +— w,(T ® T") is a linear combination of vector
functionals and hence ultraweakly continuous. Similar, 7' + w, (T ®T") is ultraweakly continuous and
we conclude that w, € bin for all x € H © K with ||z|| = 1.

We can now prove that bin is in fact a separating subset of S(.#Z ® A"). If .#4 C B(H) and 4 C B(K)
and S € A © A satisfies ||S|lbin = 0, then clearly ¢(S) = 0 for all ¢ € bin. This implies that
wy(S) =0 for all z € H ® K with ||z|| = 1, in turn yielding S = 0. Thus || - ||pin is in fact a C*-norm
on A ©N.

With this in mind, we are in fact already able to prove part of the above theorem by not too complicated
means.
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Proof of Theorem|s.12, (i) = (ii) = (iii). Assume first that .# is semidiscrete and let .#* C B(K) be
any von Neumann algebra. Since we know from Theorem that || - [|min < || * ||bin, Propositions
1.41| and [1.47] tell us that it is enough to prove that Spin(A#Z © A) C S, (A © A") (see Definition
1.10). Because multiplication by a fixed element in B(H ® K) is an ultraweakly continuous operation,
one eagsily sees that the conditions of Lemma [1.42] and hence bin satisfies the conditions of Lemma
(one may need the Cauchy-Schwarz inequality to prove that we can in fact use Lemma [1.42).
Hence bin is weak*-dense in Sy, (# © A7), making it sufficient to prove that bin C S, (#Z © A).
By the comments before Proposition as well as Lemma we have that M := M(.#, /) is
weak*-dense in S, (.# © A"). Hence we just need to show that any ¢ € bin can be approximated in
the weak*-topology by elements in M.

Therefore, let ¢ € bin and define T,,: A — #* by T,(T')(T) = (T ® T"). Then T, (N) € M.
Since .# is semidiscrete, Proposition yields a net (¢4 )aca in B(#,) of completely positive maps
of finite rank, mapping states to states, that converges in point-norm topology to the identity mapping
id g, : M — M. Since || (T,(T")) — T, (T")|| = 0 for all S € A7, we conclude that ¢ 0T, — Ty, in
the point-norm topology and hence in the point-weak topology on B(.A", .4, ). It can be easily checked
by means of Proposition that T,, is completely positive, and hence 1, o T, is completely positive
for all a.

As the map
(T, T") = (tha o T )(T')(T)

is bilinear, we obtain a map ¢ : A4 ® A — C such that ¢ (T ®T") = (o 0T,)(T")(T). Since g 0T,
is completely positive, then if we let 71,...,T, € A4 and T7,..., T, € A and put S =>" | T, ® T/,

we have
n

Pa(S°S) = Y @alTiTy @ (T)'T)) = Y ($a o To)(T)) TH(T;Ty) 2 0,

i,j=1 i,5=1

so that ¢, is algebraically positive. Moreover, ¢o(l.z @ 14) = (Yo 0 Ty)(1.4)(14) = 1, because
T,(14)1x) = ¢(1.g ®1.4) =1 by Proposition and because 1), maps states to states. Hence
o 1s also an algebraic state.

Fix @ € A. Since 1, o T, has finite rank, then by Lemma there exist wi,...,w, € .4, and
fiy-oy fa € A such that

Gl Ty (1) = S fiTws, T/ €.
=1

Hence
Pa (ZTz ® T{) = [(Twi(T),
i=1 i=1

proving that ¢, € Z* © A4 as well. Hence ¢, € M. Finally, since
Pa(TOT') = (tha 0 Typ)(T')(T) = Typ(T')(T) = (T @ T),
it follows that ¢, — ¢ in the weak* topology on S(.Z © .#). Hence we have proved (i) = (ii).

Assume now that (ii) holds. If £ € H is a unit vector, then weon € bin(A#, #'). Hence if T € 4 .4,
then

* * 1/2
(Dl = sup In(T)El = sup (e om)(T )2 < WT Tlhf' = [Tl = 1T

Therefore (iii) holds. 0

The implication (iii) = (i) of Theorem [5.12]is by far the most difficult to prove, and we will go through
the proof in steps which will be throughly prepared.

Theorem 5.15. Let 4 be a von Neumann algebra and assume that for every ultraweakly continuous

state w € A, we have
i=1 i=1

min
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for el Ty,..., Ty, € my( M) C B(Hy,) and T},..., T} € n, (M) C B(Hy), where (Hy, 7w, &) denotes
the GNS triple associated to p. Then there is a net (pq)aca in B(A) of normal, completely positive
maps of finite rank, such that

W(pa(T)—T)| =0, TeM,we M.

In order to prove this, we will need some lemmas. To prepare for the following statement, let A be
a unital C*-algebra and let ¢ € S(A). Let (H,, 7y, &) be the GNS triple associated to ¢. Then
by bilinearity of the map A x 7,(A)" = B(H,) given by (a,T) + m,(a)T, Proposition yields a
representation 7: A ® m,(A)" — B(H,) given by

s <Z a; @ Tz) = Zﬂ'@(ai)T
i=1 i=1
Let ® be the algebraic state on A ® 7, (.A)" given by
P(z) = (m(2)8p, &p)-

Lemma 5.16. Assume that ® is contractive with respect to the minimal norm || - ||min on A® m,(A)’.
Then given € > 0, ai,...,an, € A and Th,..., T, € w,(A), there exists a completely positive map
V € B(A) of finite rank such that

[(mo(Va; —a;)ép, T )| <e, i=1,...,n.

Proof. Let p: A — B(H) be a faithful representation of A and note that the inclusion map ¢: 7,(A)" —
B(H,) is a faithful representation of m,(A)". Corollary now yields a faithful representation
poO: A®m,(A) — B(H ® H,) that satisfies (p ©)(a®T) = p(a) @ T for a € A and T € 7,(A)".
Equipping A ® 7,(A)" with the minimal norm, it is clear that p ® ¢ becomes an isometry. Defining
B = A®min,(A)’, Proposition now yields a faithful representation p: B — B(H®*H,,), satisfying
pla®T)=pla)@T for ac Aand T € 7, (A)".

By the assumption along with Proposition there is a state ® € S(B) extending ®. Let
X={wgop|f e HOm (A, [€]l =1} € S(B).

Since ® vanishes on ker 5 = {0}, [g, Proposition 3.4.2] then tells us that ® belongs to the weak*-closure
of the convex hull of X, since H ® 7m,(.A) is dense in H ® H,. Since

{wex ||w(a;T;) —P(a; Ty)| < e, i=1,...,n}

is an open weak*-neighbourhood of ®, this implies that there must exist Ai,...,\, € [0,1] with
Si;Aj=1land t,..., 0 € X such that

ZAj¢j(ai®Ti)—(§(ai®Ti) <eg 1=1,...,n.
=1

Put another way, if we let &7,...,§, € H O 7, (A)&, such that ¢; = we, @ p and define &; = /\;/2£§ for
j=1,...,k, we then have

k
Z (a; @ T))Ej, &) — B(a; @ Ty)| <e, i=1,...,n.

Write
an(g)ﬂ-(p &/N j:17"‘7k7

where m; € N, ) € H and a) € A for all p=1,...,m;. We now define an operator V7 € B(A) by

mj

Vi(a) = "> (p(a)n),n})(ad)"a)

p,q=1
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for each j =1,..., k. Then it is clear that each V7 has rank less than or equal to m3.

We now claim that V7 is completely positive for each j. For any m € N, we have by,...,b,, € A and
¢C=(C,---,Cn) € H™, we have

((p o V)™ ((b705)77=1)¢, €) = ((

—~

(pOVJ)(b b ))rs 1)( C>
((p o VI)(brbs)Cs Gr)

<p ( 5 <p<b:bs>n;;,ng><ag>*a;;) <s,<r>

= Z Z (b2bo ), ) (p((ad)7ad ) )

Ms

=
V)
Il
—

I
E»MS

3

= Tgm_:l pg;@(bs)ni, p(br)my){p(ag)Cs, p(ag)Gr)

- ijl il ) @ p(al) () @ Cs), (p(br) @ plad)) () @ C)ynen
_ <§;§; 5) @ plal)) (%@@),ii(p(br)®p(aé))(n3®Cr)>
- sz e 2o

Hence by Lemma poVi: A— B(H) is completely positive. Since p is faithful, it follows that V7
is also completely positive for each j =1,... k. Now we define V € B(A) by

k
- Z Vi
j=1

Then V is completely positive and of finite rank. Moreover, for a € A and T € 7,(A)’, we have

(mp(Va)l,, T"E,) = i(%(vja)&off*ﬁ@
= Zug:l a)ymh ) w(mo((ad) ad)ée, TS n,
_z: §1<p( )1, 1) 1 (T (7 (af)E) s T (af)Ep)
= ilpmz;«/)( ) @ T) (0} @ mp(a)p), 1) @ mo(ad) ) Ham,,
= :< <Z77 ® (@ &p) a§n§®7ﬂp(a2)&p>

HOH,

Ed

k
= Up(a) ®T)&1,&) = > (pla®@ T)E;, &)

j=1 j=1

Moreover, ®(a @ T) = (m(a ® T)¢,, ) = (mp(a)éy, T*E,) by construction. For any i = 1,...,n we
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thus have
(mo(Vai — ai)8e, Ti §p)| = [T (Vai)&e, Ti &) — (mp(ai)e, Ti'Eo)|
k
=) (pa®@ 1), 6) — a0 Th)| <e,
j=1
completing the proof. O

That should do it.

Proof of Theorem[5.15 It will be enough to show that for any given ¢ > 0, Ty,...,T, € .# and
Wi, ...,wy € My, then there exists a normal, completely positive map ¢ € B(.#) of finite rank such
that |w;(p(T;) —T3)| < e for all i = 1,...,n. This is because the proof of Proposition (ii) = (i) will
then yield a net (¢4 )aca C B(#) with the wanted properties (trust me on this one!).

That is not all, however. We can safely assume that the w; are positive and satisfy

n

Zwi(l/ﬂ) =1

=1

Indeed, assume that the assertion holds for w;’s satisfying this condition. Let ¢ > 0, Ty,...,T,, € A
and wy,...,w, € My, then Lemma and Proposition yield positive w;L,w[ € M, such that
w; =w; —w; foralli=1,...,n. If |w| =0 and ||w] || = 0 for all , then all w; are zero, in which
case the wanted inequalities obviously hold if ¢ is the zero map. Therefore we can assume that at least

one of the above norms are strictly larger than 0. Let

Q=3 o (La)+ Y wi (L) = llwfl+ D lley || > 0.
i=1 i=1 i=1 i=1

Defining wii = Q’lwii for all i = 1,...,n, then all ¢} and t; are positive and Y i ¢ (14) +
S i (1) =1. Thus there exists a normal, completely positive map ¢ € B(.#) of finite rank such

that
€ €

[ (P(T) =Tl < 5, W (P(T) =TI < 55

yielding the wanted result by virtue of cancelling out by Q! as well as the triangle equality.

1=1,...,n,

Hence, let ¢ > 0 and Ty,...,T,, € # be given and let wy,...,w, € #, be positive satisfying
S wi(lyg) =1 Then w= >, w; is positive and satisfies w(1 ) = 1, so w is an ultraweakly con-
tinuous state on .#. Let (., 7, &) the GNS triple associated to w and note that w; < w = we, o7,
for all i = 1,...,n. By Proposition [2.39[(ii), there exist self-adjoint operators TY', ..., T € m,(4#)
such that

wi(T) = (mu(T)w, (,Ti”)?€w>a T e

we define T} = (T/")? for all i and note that each 77 is self-adjoint.

As in the set-up for Lemma we obtain a representation 7w: .# © w,(#) — B(H,,) satistying
7(SRT) = m,(S)T for S € A4 and T € w,(A). It is possible to write 7 as a composition of two
*-homomorphisms m; and 7. Indeed, if we let m = 7, ©@id: A © 7, (M) — 7o (M) © 7, (M) and
let mo: w, (M) © 7w (M) — B(H,) be the representation satisfying mo(T @ T') =TT’ for T € 7, ()
and T" € m,(.#)'. By assumption, 75 is contractive with respect to || - ||min, and by Proposition
the same holds for 7y. Thus 7 is contractive with respect t0 || - ||min-

Defining ®(z) = (n(2)&w,&w) for x € A © 7w (A ), then ® is contractive with respect to | + ||min-
Lemma now tells us that there is a completely positive map ¢ € B(.#) of finite rank such that

£ > [mu(o(T;) — Ti)w, (T)) )| = |wi(p(T3) = T3)|, i=1,...,n.

We now only need to realize that ¢ is also normal. The proof of Lemma tells us that ¢ is given
by ¢ = Zle ¢’ where

T) = > (Tn), i) (T3)* T3,

p,q=1
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where m; € N, 7717,' € H, and TZZ € A forallp=1,...,m;. Thereason is that the faithful representation
p from the proof can just be chosen to be the identity map. Each ¢7 is clearly normal, so ¢ is normal
as well. [

And there it is. We are getting closer, but it is still going to take a while. Consider this next theorem.

Theorem 5.17. Let .# be a von Neumann algebra. If the identity map id_y4: M4 — M can be
approximated ultraweakly by normal, completely positive maps of finite rank, then # is semidiscrete.

Hence we can in fact remove the ¢(1_4) = 1_4 from the definition of semidiscreteness. Much ado about
nothing (but wait till you see the proof)! Nonetheless, we will also need a lemma to prove the above
theorem.

Lemma 5.18. Let ‘H be a Hilbert space. Then
16117 = &l < 116+ &6 — &, &,& e .

PT‘OOf. Define m = %(51 + {2) and N2 = %(51 — gg) Then

€011 = 116211 = llm + n2ll® = [lm — n21?
= 2(n1,m2) + 2(n2, M)
= 4Re<771a772>
< 4mlll[n=]l
= 161 + &2 — &2l

by using the Cauchy-Schwarz inequality. O

Proof of Theorem[5.17} For notational convenience, we will define CP(.#) to be the set of all com-
pletely positive and normal maps ¢ € B(.#) of finite rank, satisfying ¢(1 4) = 1.4. Let p € 4. be a
fixed ultraweakly continuous state and define id*, € B(.#) for 0 < A\ < 1 by

id%, (T)=(1 - NT + (T)ly, TeEM.

We claim first that if each idi,, can be approximated ultraweakly by maps of CP(.#), then so can .#,
meaning that .# is semidiscrete. The first condition translates to the following: For any 0 < A < 1,
there exists a net (0q)aca in CP(.#) such that o, (T) — id®, (T') ultraweakly for all T € .#. Assume
that this holds. As per Proposition [5.2] let ¢ > 0, T3,...,T, € # and wy,...,w, € #,. Define

C= Z |wi(p(Ti)1.r — T3)|

and let 0 < A < 1 such that CA < §. By the condition assumed to hold, we can now pick a ¢ € CP(.Z)
such that .
wilp(T) — i ()| < 5, i=1,....n,

as in the proof of Proposition (i) = (ii). This implies
jwi(p(T3) = Ti)| < lwi(@(T3) — iy (T))] + |wiidy (Ti) — 1))
€
<57t Awi(p(Ti)1.ar = T3)|
€
< Z
2

+ AC < e,

so we find that .# is semidiscrete.

To prove that each id’/\,, can be approximated ultraweakly by maps in CP(.#), we first take a net
(¢a)aca in B(A) of normal, completely positive maps of finite rank that approximates id_, ultra-

weakly (this is the assumption). Let . be the convex hull of the set of ¢, ’s.

Let € >0,Ty,...,T, € # and &,...,&, € H. We claim that there exists ¢’ € . such that

1 (T3) = T)&ll <e, i=1,...,n.
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This will imply that there exists a net (¢};)sep in . such that ¢}(T') — T strongly for all T' € .4 (the
net can be constructed in the same manner as in Proposition (ii) = (i)). Define T' = (11, ...,Ty,) €
A™ and consider ST = {(p(Th),...,o(Tyn) | € L} C #™. Because .¥ is convex, T is also
convex. For any w € (.#™),, there exist wy,...w, € . such that w(S) = > w;(S;) for all
S = (S1,...,8,) € .#™ by Proposition Because

w((pa(T3) — Ty = Zwi(%(:&) —T;) =0,

it then follows that 7" belongs to the ultraweak closure of .7 in .#™ and hence the ultrastrong
closure, since #T is convex (this follows from, e.g., Proposition and Theorem . Since ul-
trastrong closures are contained in strong closures, we now have a net (¢});e; C . such that
(pi(Th), ..., ¢i(T,)) — T strongly. In particular, we can find ¢’ € S such that

e > [[((¢"(Th) = T1)&rs -, (@'(Tn) = T)&n)l 2 1 (To) = )&, i=1,....n.

With our new net (¢5)sep in hand, choose 0 < A < 1. For 3 € B, we define a map 13 € B(.#) by

hp(T) = (1 = N@i(T) + Ap(T) L

Then 14 is normal, completely positive and of finite rank (it is the sum of two such maps, see, e.g.,
the proof of Proposition , and 1p3(T) — id’,(T) for all T € .#. We now define

S :=vs(La) =1 —Nps(lg) + M.z, Be€B.
Note first that Sg > A4 > 0 (since ¢ is positive) and that Sg — 1.4 strongly. We have
1/2 1/2
(S5 + 1S5 = 1a) = S5 — L
and since the spectrum of Sé/ 241 .« does not contain 0, S;/ 24 1_y is invertible. Therefore
1/2 1/2 _ 1/2 _
16857 = La)éll = 1S5 + 1) ™ (S5 = La)€ll < 1S5 + 1) M 11(S5 — L)€
for all £ € H. Since the spectrum of (S;/2 +1_4)7 " satisfies

O'(Sé/Q + 1//[)—1) — O-(Sé/Q + 1%)—1 C [1,00)—1 _ (0, 1]

by means of the continuous functional calculus, it follows that ||(S/13/ ®4+1.4)7Y <1 and hence that

155" = L)€l < 1S5 — LIl =0,
so that S;/2 — 1_4 strongly.
Since Sg > 0, it is now possible to define a net (¢53)sep in B(.#) by
(1) = S5 (1) S5,

Let 5 € B. Since multiplication by a fixed element in .# is an ultraweakly continuous operation and
1 is normal, we see that ¢} is normal. Moreover, 13 has finite rank since ¢4 has finite rank. Since

5/;1/2 0 0 551/2 0 0

1 (n) 0 551/2 o 0 (n) 0 551/2 o 0

= LT e | |
: : . i : : . i

for all T € M, (.#), v} is also completely positive. Finally, ¢55(1.4) = 1. by construction, so we
conclude that ¢} € CP ().
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We now prove that ¢j(7) — id%,(T) ultraweakly for all T € .#. By Proposition sl =1
for all 8 € B, so the net (¢4(T))gep is bounded for all 7" € .#. Hence it suffices to show that

Yu(T) — id?,(T) weakly by Proposition H Furthermore, as

3

A(SEm) = i(S(E+i"n).E+i™y), Se€.M, e,

n=0

we only need to show that we(¢5(T) — id’\%(T)) — O0for all T € # and £ € H. We can also safely

assume that 7" is positive with T' < 1 4. Indeed, if T' € .# is given, we can write T = 2?21 N;T; where
A; € C and the T; are positive. By scaling, we can assume that 7; <1 4 (or ||T;]| < 1) for all 4, and if
we (Yp(T;) — id*,(T;)) — 0 for all i and & € H, then the above convergence holds for 7.

To summarize, we have to show that
we(V5(T) —id}y (T)) — 0

forall ¢ € H and T € .4 with 0 < T < 1,4. Let such & and T be given. Since 1(T) — id’,(T)
strongly, it follows that we(15(T) — id’, (T)) — 0, so we will show that

we(V(T) = 1p(T)) = 0.

Note that 15(T) is positive by assumption and that ¢5(T)/? and 551/2 are self-adjoint for all g € B.
Therefore,

|we (95(T) — 95(T))|

[(Wh(T)E,€) = (5(T)E, )l

= [(55"26(1)551/%6,€) — (wa(T)E €)]

= (s (1)17255 2, 0 (1) /2551/2€) = (s (T)V/2¢, 00(T)/2)|

= [Jscrrezs; =] - Juserr el

< [[wa(m) /28512 + e (@) /2)e | || wa() 72552 — wa() )¢

— ‘,l/}ﬁ(T)l/2(S[;l/2 i 1%)£H HW(T)I/Q(S[;UQ NI

)

where we used Lemma for the above inequality. Note now that 15(T) < ¥5(1.4) = Sp for all
B € B, implying
[9a(T) 0l = (Ya(T)n,m"? < (Sgn,m)*/? = |\S/13/217||
for all n € H. This implies that
fwe(WH(T) = wp(T)] < [6a(T)172(55 % + 1) | [5(T)2(55 % = 10|
< |[85%055 ™ + Lae| || 5325512 - 10|

= [+ 55| [ 1 - 530¢]| -
Since S;/ | . strongly, we then have
|+ 85| > 2lel, || = 55| =0
(Just use the triangle equality.) Hence we(¢5(T) —15(T)) — 0.

Since this implies that idﬁfl for any 0 < A < 1 can be approximated ultraweakly by maps in CP(.#),
it follows from the opening remarks that .# is semidiscrete. O

We now proceed to the last big theorem before we put everything together.
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Theorem 5.19. Let # C B(H) with a separating vector n € H, i.e., TE = 0 implies T = 0 for all
Te#. If

<

z": T;T] z”: T, T}
=1 =1

for all Ty,....T, € # and T{,...,T) € .#', then for every ultraweakly continuous state w € M, we
have

min

< , T, Ty en, (), Ty,...,T. € n, (M),

min

zn: T,T; zn: ;T
i=1 i=1

where (H,,, Tw, &) is the GNS triple associated to w.

To prove this, first consider the following lemma.

Lemma 5.20. Let .# be a *-algebra of operators on the Hilbert space H containing 14, and let A
(resp. A1) be a*-algebra of operators on the Hilbert space K (resp. K1) containing 1. Let p: M — N
(resp. p1: M — N) be a surjective *-homomorphism, and suppose there is n € IC (resp. m € K1)
that is cyclic for A (resp. A1) and satisfies

(e(Mn,n) = (1 (M), m), TeA.

Then there exists an isomorphism U: K — Ky such that A = UAN U and o1 (T) = Up(T)U™! for
alT e .

Proof. For any T € .#, we have

le(Tnll* = {(T*T)n,m) = {2 (T T)n,m) = oa(T)ml.
Thus we obtain a well-defined map Uy: A4 'n — A1m1 given by
Uole(T)n) =1 (T)m, T e A,

since ¢ and ¢, are surjective. Uy is then a linear surjective isometry and extends to a linear isomorphism
U: K — K1 by Proposition Finally, for S,T € .# , we have

01(S)Up(T)n = p1(S)e1(T)m = @1(ST)m = Up(ST)n = Up(S)p(T)n,

so since all ¢(T")n are dense in K, continuity yields ¢1(S)U = Up(S). Hence ¢1(S) = Up(S)U~! and
M=UNUL. O

Lemma 5.21. If # C B(H) satisfies condition (iii) of Theorem[5.14, then condition (iii) also holds
for any reduced von Neumann algebra .#p C B(P(H)) where P € ./ .

Proof. Let P € .4 be a projection and let Cp € .4 be its central support. Note first that Corollary
yields a *-isomorphism ., — .#}, given by

CrT|cpiny = CPT'lpay = PT |pwy, T' €M,

This isomorphism in turn gives us a *-isomorphism .#p ®uin ///(’;P — M p Quin A which is isometric,
so that

n
Z PTiP|piny @ CpT}|cpm)

i=1

n
> PTiP|pa) @ PT{|p)
=1

min min

for Ty,...,T, € # and Ty,..., T, € #'. By the proof of Proposition ii), we have faithful

? n

representations .#p — B(H) and ¢, — B(H) given by o(PTP|p)) = PTP and (CpT'|cpp () =
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CpT' for T € # and T' € .#'. Hence

> PTiP|p) @ PT{|p) = |I>_ PTiP|py @ CpT|cp )
i=1 min =1 min
= ZPTZP ® CpT)]
i=1 B(H®H)
n
= ZPTz’P ® CpT}
i=1 min
> > (PT,P)CpT]
i=1 B(H)
> > (PT,P)PT{|p(a)
i=1 B(P(H))
= Z(PTiP‘P(H))(PTiI‘P(H))
i=1 B(P(H))

forall Th,..., T, € A and Ty,..., T, € #'. At the first inequality above, we used the assumption
that condition (iii) is true for .# along with the fact that CpT} € .4’ for all i = 1,...,n (this is the
reason we have to use the central support of P). O

Proof of Theorem[5.1g] Let w € .. be an ultraweakly continuous state. Since .# has a separating
vector, then by [10, Theorem III.1.4.4] there exists { € H such that w = we. Let P € .#' be the
projection onto [.Z¢], obtained from Lemma Then ¢ is cyclic for #p C B(P(H)). Indeed, for
any n € [#¢] and € > 0, there exists T € .# such that |[T¢ — n|| < €, and hence

IPTPpayé —nll = [IT€ —nll <e.

Now note that m,: .# — 7,(#) and the reduction map .# — .#p (given by T > T|p) are
surjective *-homomorphisms. Moreover, 13;, € 7, (#) and 1pyy € .#p. Finally, &, is cyclic for
7w () by construction, £ is cyclic for .#p, and

(Tp0)é: &) piwy = (T€,)n = we(T) = w(T) = (m(T)Ews Ew) .,

for all T € .#. It now follows from Lemma that there exists an isomorphism U: H,, — P(H)
such that #p = Ur, (A )U" and T|p(z) = Un,(T)U " for all T € .#. By Proposition [1.29, we also
have .4}, = (Mp) = Un,(#) UL

Since . satisfies condition (iii) of Theorem by assumption, Lemmas and yield that

isisg En:sl’.si i55®5i zn:&@b’;
i=1 i=1 i=1 i=1

for all Si,...,S, € #p and S1,...,S) € A}p.

<

min min

For Th,..., T, € my(M) and T}, ..., T), € m,(#)', we have UT,U ' € #p and UT[U ' € .4}, for all
%, SO

n

Y UTU ' @UT{U™!

S T =|U (Z TJ{) Ut = Do OnuTHUTiuTh|| <
i=1 i=1 i=1 i=1 min
Let £ = Zzlzl & @, € P(H) © P(H). Then
ZU71£k®U7177k = Z (U, UGN U e, U ) = Z (&k &) (s ) = Z§k®77k
k=1 k=1 k=1 k=1
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Defining & = >0, U1 @ U™ gy, € Hyy @ He,, we then have

2

n n m
| <Z UT,U " ®UT;U—1> gl =Y. > WUTU G, UL U &) (UT/U e, UT)U ')
i=1 i,j=1k,l=1
n m
=Y (UG U GNTU i, TIU i)
i,j=1k,l=1
n 2
_ ‘(ZT M) : ZT o 1 - [som o] 1ae
i=1
By continuity, this holds for all £ € P(H) ® P(H), proving that
NunuteuruTt  =|> ULUTeUTUT
i=1 min i=1 B(P(H)®P(H))
=1 B(Huw®How
=1 min
(In fact equality holds.) This completes the proof. O

The rest of the proof of Theorem may now seem a little anticlimatic.

Proof of Theorem (iii) = (i). By Proposition

M = P (Mp, T B(Ka))q.,,

acA

where IC,, is a Hilbert space, P, € .# is a projection such that .#p_ has a separating vector in P, (H),
and Q, € #p, ® B(K,) is a projection. Propositions and then tell us that that

A is semidiscrete if #p, is semidiscrete for all a € A, so that is what we will now prove.

Let o € A. As noted, .#p, has a separating vector. Therefore we can apply Theorem [5.19|to .#p,, in
turn implying that the condition of Theorem holds for .#p,. Hence there exists a net (¢g)gep of
normal, completely positive maps of finite rank such that

lw(pp(T)—T)| =0, TeH,we (MHp,):.

Therefore the condition of Theorem holds for .#p, as well, so .#p, is semidiscrete. Since « was
arbitrary, . is semidiscrete. O

In the last section of this chapter, Theorem will take us a very, very long way towards the main
theorem of this project.

5.4 Semidiscreteness of factors

We first make a short stop in the world of factors, i.e., von Neumann algebras .# C B(#) such that
AMNAM'" = Cly, to order to give a characterization of the semidiscrete ones in the language of Theorem

-T2}

Lemma 5.22. Let # C B(H) be a factor. If Sy,...,S, € M and Ty,..., T, € M’ are operators
such that i SiT; = 0, then there exists a matriz (\ij)} j—; € Myn(C) such that Y77 X;jS; = 0 and
>ie XLy = Ti.
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Proof. Define a subspace X C H™ by

= {(§1u7§n) EHn

> 8;i8¢ =0forall S € //z}

=1

Then X is closed. We now consider the von Neumann subalgebras A,,(.#) and A,,(.#") of B(H) (see,
e.g., page and define the diagonal *-isomorphism A: B(H) — A, (B(H)) by A(T) = (T,...,T).
For any T € 4 and £ = (&1,...,&,) € X, we have > | S;S(T¢) = Y1, Si(ST)& = 0 for all
S € A, and for any T" € A" we have > | S;ST'&; = T' (31, 5:9¢) = 0. Hence A, (#)X C X
and A, (.#')X C X. Letting P € B(H") denote the projection onto X, then we have PA(S)P =
A(S)P and PA(T)P = A(T)P for all S € .# and T € .#'. Therefore, PA(S*) = PA(S*)P and
PA(T*) = PA(T*)P for all S € # and T € .#'. Since .# and .#' are self-adjoint, it follows that
PA(S) = PA(S)P = A(S)P and PA(T) = A(T)P for all S € .# and T € .#’. Therefore

P e ALY NAWA'Y = My(M') O My (M) = My (' O M) = Myy(Cly)
by Proposition since .7 is a factor. Hence there exists a matrix (\;;)};—; € M,(C) such that
A€+ Anén

PE = : , E=(&,...,&) €H™.
n1§1+ +>\nn£n

Fori=1,...,n, and let ¢;: H — H"™ denote the inclusion of H into the i’th copy, and let 7;: H™ — H
denote the corresponding projection and recall that ; = m; (see, e.g., page . Since P* = P, then
for all £, € H we have

<)‘l]£a77> = <7TiPLj§,77> = <§77TjPLin> = <£a)‘jln> = </\7ﬂ£an>
Therefore \;; = /\Tl forallis,j=1,...,n

For all £ € H and S € .#, we have
> 8i8(Ti¢) = (Z ST> SE=0
i=1 i=1

by assumption. Therefore (T1&, ..., T,¢) € X and hence P(T1¢,...,T,§) = (ThE, ..., Ty€) forall € € H.
This in turn means that

717,6:2)‘1]11]57 izlv"'vna£€H7

Jj=1

orjust T; =3, A\i;Tj foralli=1,....n

Finally, for £ € H and (&1,...,&,) € X, note that

i=1 i=1

since 19y € 4. Thus (S;¢,...,S:€) € Xt for all € € H, so P(S;&,...,S:¢) = 0. This implies that
Z?zl AijSi& =0forall i =1,...,n and { € H. Taking adjoints, we see that Z;‘L=1 A;iS; =0, as
wanted. O

Proposition 5.23. Let 4 C B(H) be a factor. Then the representation n: M © #' — B(H) given

by
0 (Zsi@m) => ST
i=1 i=1

is faithful.
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Proof. Assume that
n <Zsi®Ti> => S8T;=0
i=1 i=1

for S1,...,8, € # and T, ..., T, € .#'. By Lemma there exists a matrix (Aij);'j=; € M, (C)
such that Y7 | Ai;S; = 0 and Y77, A\i;Tj = Ti. We then see that

ZSi®Ti:ZSi® Z/\ijTj ZZZSi@?)\ijTj:Z(Z)\iJ‘Si)®Tj=0’
i=1 i=1 j=1 i=1 j=1 j=1 \i=1
completing the proof. O

We now arrive upon the main result of this section.
Proposition 5.24. Let # C B(H) be a factor. Then the following are equivalent:

(i) A is semidiscrete.
(ii) For any Si,...,S, € M and Ty,..., T, € A" it holds that

z”: SiT; i S @T;
i=1 i=1

i.e., the representation n: M © M — B(H) satisfying n(SQT) = ST is an isometry with respect
to the minimal norm on 4 © A'.

)

min

Proof. Assume that .# is semidiscrete. Since 7 is faithful by Proposition we obtain a C*-norm
|- || on A © A by defining ||z||" = ||n(x)||. Since || - ||min is the smallest C*-norm on .# © .#' by

Theorem we have

! n

> ST,

=1

<

zn:Si T, Zn:Si ® T;
i—1 im1

for all S1,...,S8, € .4 and Ti,...,T,, € .#. The opposite inequality follows from Theorem SO
(ii) holds.

min

Assuming instead that (ii) holds, then in particular, n is contractive with respect to the minimal norm
on A @ .#'. Theorem m now tells us that .# is semidiscrete. O

5.5 The equivalence of semidiscreteness and injectivity

We now dig into perhaps the most deep collection of theorems that this project can offer — just in time.
The purpose here is, true to the title, to prove that semidiscreteness is equivalent to injectivity, and the
proof takes us through results of all the previous chapters. Hilbert-Schmidt operators and continuous
crossed products also make a surprise visit, only emphasizing that the proof is tremendously nontrivial.

Before going to the first big result, we will prove a nice result concerning the state space of the
C*-algebra B(H).

Lemma 5.25. Let H be a Hilbert space. Then the set of weakly continuous states is weak*-dense in
S(B(H)). “Weakly” can be replaced by “ultraweakly”.

Proof. Let T € B(H)sa and note that (T°€,&) > 0 for all £ € H with ||€]| = 1 implies T > 0. Then it
follows from Proposition [0.8 and Lemma [A.4] that any ¢ € S(B(H)) is the weak*-limit of states of the
form wg, + ... +weg, for &1,...,&, € H. The last statement follows immediately. O

It should be noted now that if a von Neumann algebra is finite (Definition and o-finite (Definition
then there exists a normal faithful tracial state 7: .# — C. A proof is given in [, Corollary
III.2.5.8].
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Proposition 5.26. Let .# C B(H) be a finite, o-finite and injective von Neumann algebra with a
normal faithful tracial state 7 on A (see, e.g., [1, Corollary IIl.2.5.8]). Let Sy,...,S,,T1,..., T, € M
and £ > 0 be given. Then there is a positive Hilbert-Schmidt operator P € B(H) such that

(i) [1Pll2 = 1;
(i) {SiP,P)a —7(Si)| <e foralli=1,...,n;
(i) | TP — PTi||l2 <e foralli=1,...,n.

Proof. Since every element in .Z is a linear combination of unitary operators, we may as well assume
that T3,...,T,, are unitaries (after proving the result for unitaries, the general case follows from
choosing a smaller ¢ than the one given).

Let E: B(H) — .# be a projection of norm 1. Then 7o E is a state on B(#). By Lemma [5.25] we
can find a net (p,)aeca of normal states on B(#H) such that ¢, — 7o E in the weak® topology. For
alli=1,...,nand a € A, we have T} - 9o — ¢qo - T; € B(H). by Lemma[2.37 and Theorem [2.41] and
hence for S € B(H) we find that

(Ti - ba = pa - Ti)(S) = 0a(STi = TiS) = 7(E(ST; = TiS)) = 7(E(S)T: = T E(5)) = 0

by Tomiyama’s theorem and the fact that 7 is a trace. Therefore T; - o, — o - T; — 0 in the weak
topology on B(H)., since the space of bounded linear functionals on B(H). can be identified with
B(H) by Proposition Note that by “weak topology”, we do not mean “weak operator topology”
but the coarsest topology such that all bounded linear functionals on B(#H). are continuous.

We now consider the vector space V = (B(H).)"™ ® B(H)* equipped with two topologies o1 and os.
They are given as follows:

% o7 is the product of the weak topology on B(#). and the weak* topology on B(H)*.
% 09 is the product of the norm topology on B(#). and the weak* topology on B(H)*.

Note that oy is finer than o;. Any linear functional w on V that is continuous with respect to o can
be written in the form

n+1

w(d}l, .. 'a¢n+1) = Zwl(wl)a wla ce 7¢n S B(H)*7 ¢n+1 € B(H)*
=1

where w;: B(H)« — C for ¢ =1,...,n are linear functionals on B(#),. continuous with respect to the
weak topology and wp41: B(H)* — C is a weak*-continuous linear functional. This can formulated
similarly for functionals that are continuous with respect to oy. Because (B(H).)* precisely consists
of the linear functionals that are continuous with respect to the weak topology on B(H)., it follows
that the set of continuous linear functionals on (V,o01) and (V,02) are the same. Hence it follows for
any convex set . C V| that the closures of . under o7 and o9 are equal (see, e.g., [22, Theorems 3.10
and 3.12]).

Define &, € V for « € A and ® € V by
D =(T1 0o —Pa Ty, T 00 — 0o Tn,¢a), ®=(0,...,0,70FE),

and let . be the convex hull of the set of all &, for a € A, i.e., . is the set of finite convex combinations
of ®,’s. Because ./ C V is convex and @ is contained in the closure of . in the o1 topology, it is also
contained in the closure of .# in the o5 topology. Let aq,...,a, € A and Ay, ..., A, € [0, 1] such that
=L I e=3" \a,, then any element of . is of the form

MPo, +.. .+ XD, =T o—¢-Th,.... T, -0 —¢-Ty, ).

As @ is now contained in the closure of . in the oy topology, the above observation yields a net
(1g) C B(H). of convex combinations of various ¢, such that | T;-1g—s-T;|| = Oforalli=1,...,n
and 3 — 7o E in the weak*-topology on B(#)*. That is not all, however: since all ¢, are ultraweakly
continuous states and S(B(#)) is convex, it follows that all ¢z are ultraweakly continuous states as
well. The existence of the above net thus yields a state ¢ € B(H). such that ||T; - — ¢ - T;|| < &2
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and [¢(S;) —7(E(S;))| <eforalli=1,...,n. By Theorem[B.16] there is a unique positive trace class
operator R € .7 (H) with |R||1 = ||¢|| =1 and ¢(T') = tr (RT) for all T € B(H).

We now claim that P = R'/2 is the desired Hilbert-Schmidt operator. P is a positive Hilbert-Schmidt

operator by Proposition [B:8 with

1/2
1P|l = |R[l* = 1.

Furthermore, for all T' € B(#), TP is Hilbert-Schmidt by Proposition and
(TP, P)y = tr(PTP) = tr (P?T) = tr (RT) = ¢(T)
by Corollary In particular,
[(SiP, P)a —7(5i)| = [¢(S:) — 7(E(Si))| < e
for all i =1,...,n. Hence P satisfies the conditions (i) and (ii).

Let i =1,...,n. Since T} is unitary, we have ||T;P — PT;|» = |T; PT; — P||2 by Proposition [B.7] The
Powers-Stgrmer inequality (Proposition then yields

|TPTy Pl < | TP°T; — P2,
as T; P?T; = (T, PT;)%. Moreover, T; P>T; is a trace class operator, so
tr (T, P*T;T) = tr (RT;TT)) = (TLTT) = (T -4 - To)(T), T € B(H).
As Tf -+ - T; € B(H). by Lemma and Theorem we then have
(T - Ty~ $)(T) = (LT} — PP)T), T € B(H).
Therefore || T -+ - T; — || = ||T; P?T; — P?||; by Theorem [B.16} so

TPy = P22 = ||Ty - T = |2 = T (- 1) = T (T3 )|V < [l T = T - /% < e

Hence
|IT;P — PT;|l» = |T,PT; — Pl < |T,P*T; — P?|}/* <&

foralli=1,...,n, so (iii) is satisfied as well. O

In the next big theorem, we will need the notion of a conjugate von Neumann algebra about which
Section B.2 should provide sufficient information. The reason that we do not relegate the following
lemma (in its own right, it is really a theorem) to that section is that we might as well keep all
results concerning tracial states together, as well as the fact that it lays some of the groundwork for
a branch of von Neumann algebra theory called Tomita- Takesaki theory. We merely seek to underline
its importance by putting it here with the other very serious theorems of this section.

Lemma 5.27 (The commutation theorem). Let .# be a von Neumann algebra allowing for a faithful
normal tracial state 7: .# — C. Then there exists a Hilbert space H such that .# is *-isomorphic to
a von Neumann algebra A C B(H), a cyclic vector & € H for A and a conjugate linear isometry
J: H — H that satisfies

(i

(ii) the map a: B(H) — B(H) given by o(T) = JTJ is a well-defined conjugate linear isomorphism;

J2 — 1?_[’.

(iv

(v

JN T =N, s0 a|y is in fact an isomorphism onto N';

zfz C B(H) denotes the conjugate von Neumann algebra of A4, then the map N — A" given
by T — JTJ for T € AN is a unital *-isomorphism.

)
)
(iil) a| 4 is a conjugate linear unital *-algebra homomorphism.
)
)

Proof. By (the proof of) Proposition the GNS triple (7,H,&y) corresponding to 7 consists of a
faithful normal representation 7: .# — B(H), and moreover & is a cyclic and separating vector for
the von Neumann algebra w(.#). Let A = w(.4).
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Because & is cyclic, 4 & is dense in H, and because & is separating, the map 4~ — A&y given by
T — T&q is a bijection. Hence we can transfer the *-algebra structure of 4" to 4§y by defining

(S0)(T¢o) := (ST)éo, (T&)" :=T"&, S,Te€N.

Since
ITél* = (T&, T&) = (T*Téo, &) = 7(I"T) = 7(I'T*) = (TT*&o, &) = | T"&lI?
because 7 is a trace, then by Proposition the *-operation on 4§, extends to a conjugate linear
isometry J: H — H. We have J? = 1y, by continuity of J and the fact that J2S& = S¢& for all
SeN.
For (ii) note that « is first of all well-defined: for all T' € B(#H), JTJ is linear and
[JTIEN =TIl < | T[[[[ 7€l = [T1<]-

« is conjugate linear, and moreover injective, since JT'J = 0 implies T = J(JTJ)J = 0, and surjective,
since a(JTJ) =T for all T € B(H). Hence « is a conjugate linear isomorphism, and (ii) is obtained.

For S,T,V € A, we have
(JTJS&, V) = (ST"&, V&) = 7(V*ST™) = 7(T*V*S) = (S0, VIT'&) = (S0, JT" IV &),

so by continuity, a(T)* = a(T*) for all T € 4. Also, for S,T € .4, we have (JSJ)(JTJ) = J(ST)J,
so « is multiplicative as well, and that « is unital is clear. Hence (iii) follows.

(iv) is the one that will require the most work. For T' € .4/, then for all S, A € .4 we have
(JTJ)SAEy = SAT o = S(JT)A* & = S(JTJ) Ao,

so (JTJ)S = S(JTJ) and hence a(AN) = JA'J C A", Now, for S’ € A", note that for T' € ¥, we
have

(JS'€0, T€o) = (T*(S") €0, &0) = ((S")"T™ &0, L0) = (€0, T'S"é0) = (€0, S'Té0) = ((S") "0, T0).

Hence
JSI&) = (S/)*§07 S e N’

by a continuity and density argument. To show 4" C J.A4"J, we can instead prove JA'J C N = 4"
since J? = 1y. Therefore let S, 7" € #'. We will show that .JS’J and 7’ commute, so that
JS'JC A" =N, Forany T € A, we have

(JS'I\T'(T€o) = (JS'J)TT'€ = JS'(JTI)(JT'€o) = JS'a(T)(T")*&

by what we proved above. Since S’, «(T) and (T”)* are contained in A4 then S'a(T)(T')* € A, so
we now find that

J(S' a(TYT") Vo =T a(T*)(S") € =T JT*J(S") g =T'IJT* S &g =T' JS'T*Eg = T'(JS'J)TE.
Hence (JS'J)T' =T'(JS'J) by continuity, so equality follows.
For (v), we prove in Section B.2 that the map T+ T is a conjugate linear, multiplicative, unital and

adjoint-preserving isomorphism. Restricting its inverse to .4~ and composing with « yields the desired
*-isomorphism, since the composition of two conjugate linear maps is linear. O

We now proceed to a really great result, reaping the harvest we have sown with Theorem

Theorem 5.28. Let .4 be a o-finite, finite and injective von Neumann algebra with a faithful normal
tracial state 7: M — C. Then A is semidiscrete.
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Proof. Let H be the Hilbert space and .#* C B(H) the von Neumann algebra *-isomorphic to .#
of Lemma with cyclic vector §, € H, with J: H — H being the conjugate linear isometry. It
will suffice to prove that .4 is semidiscrete. Letting .#~ C B(H) denote the conjugate von Neumann
algebra of .4, the map .4/ — .4 given by T + JTJ for T € .4 is an isometric *-isomorphism by
Lemma Hence it induces a *-isomorphism A ®min A — A Omin A~ that must be isometric.
To prove that .4 is semidiscrete is equivalent to proving, by Theorem that the *~homomorphism
n: N AN — B(H) given by

n n
n| D S;eT | =) ST
j=1 j=1

(see Proposition is contractive with respect to ||-||min on .4 ©.4”". From the above considerations,
this is equivalent to proving that the *-homomorphism n': A4 ® A4 — B(H) given by

n n
77’ ZSJ ®Tj :ZSJJT]J
j=1 j=1
is contractive with respect to ||-||min 0n .4 ®.4", by means of the isometric *-isomorphism A ®in A —

c/V®min f/V/-

To show this, note that since &, is cyclic for .4/, it follows that it is cyclic for n'(4 © A4") as well
because n'(T' ® 13;) = T for all T € 4. It will therefore suffice to prove that we, o7’ is contractive
with respect to || - ||min. To do this, we will regard 7 as a tracial state on 4.

For Si,...,8, € A and T3,...,T, € A we find

we, (1 (Y S5 @ Ty)) = <Z SjJTjJéo,fo> = <Z SjTj*50760> =7 | Y817
j=1 j=1 j=1

Jj=1

Thus we have to prove

> S eT;
=1

T iSjT; S
j=1

min

Let € > 0 be given. From Proposition we obtain the existence of a Hilbert-Schmidt operator
P € B(H) such that |P||z =1 and

<ZSjT;P,P> —7| Y ST || <e. DOITFP = PTy 2] S5l <.
2 j=1

j=1 j=1

To see this, apply Proposition to the operators S17T7,...,S, T, and ||S1||Ty, ..., ||S.||T; of A"
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Now we obtain

A DI R <ZSjT;P,P> +e
j=1 j=1 9
<DoSTrP| |IPl2+e
j=1 9
n n
<|>_8;PT; + > S;(T; P~ PT})|| +e
j=1 j=1 5
<|[D_SiPTr|| + Y IS;(TfP = PT})||z + ¢
j=1 , J=1
<|DoSiPTi| + D oIS P = PT))ll2 +e
j=1 , J=1
<> s;Pry| + 2
j=1 9

By Proposition P corresponds to a unit vector ¢ € H ® H. For any j = 1,...,n, then by
Proposition S; P corresponds to (S; @ 137)¢ and hence S; PT; corresponds to the vector

(I @ T;)(S; ® 13p)€ = (S; @ Ty )E.

Hence
DSPTH| =Y (S5 ©T))é <[> seT;
J=1 2 =t BueH) 1771 B(H&H)
Therefore
n n n
TSI <|DoSieT; +2=|> 80T +2,
J=t i=t B(H®H) j=1 min

as the identity maps on .4 and .4 are faithful representations. Since ¢ was arbitrary, it follows that

n n
T ZS]‘T; < ZS] ®T]
j=1 =1

min
This completes the proof. O

It is now time to call in the continuous crossed product from Chapter 4, giving us another criterion
for a o-finite von Neumann algebra to be semidiscrete.

Theorem 5.29. Let .# C B(H) be a o-finite von Neumann algebra with a faithful normal state
w € M, and assume that R(A,0y) is semidiscrete. Then A is semidiscrete.

Proof. We will prove that ./ satisfies the condition of Theorem We remember first that the con-
tinuous crossed product R(.#,0y) is the von Neumann algebra in B(L?*(R), H) generated by elements
of the form 7 (T) for T € .# and A(¢) for ¢t € R, where

(m(T)f)(s) = 0 (T)f(s), feCe(RH), seR

and

B f)(s) = f(t™ts), feC(T,H),s€eT.

Since R(.#,0%) embeds into .# ® B(L?*(R)) by Corollary and can hence be viewed as a subset,
it follows that .#Z' ® 172®) C R(4,0¢")" by Proposition
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Assuming that R(.#,0%) is semidiscrete, then it follows from Theorem that

n

S w(S)7(T)

=1

n

S w(S) @ (L)

i=1

<

for all Sy,...,S8, € # and Ty,...,T, € A, where
7'M — B(H)® B(L*(R)) = B(H® L*(R)) = B(L*(R,H))

is given by @'(T) = T ® 112(). 7: # — B(L*(R,H)) is by construction a faithful representation of
M and 7' M — B(L*(R,H)) is clearly faithful. Therefore Theorem ii) tells us that

n

> (S @w'(T)

i=1

n

> w(S) @ (1)

i=1

)

z": S @T;
i=1

min B(L?(R,H)®L2(R,H)) min

where the last equality follows from noting that the identity maps on B(L?(R,H)) are faithful repre-
sentations. Hence we have

<

s <Y s
i=1 i=1

for all S1,...,5, € # and T},...,T, € .#'. Hence if we prove that

min

n

ZW(Sz’)W/(Ti)

i=1

<

> ST
=1

for all such operators, it follows from Theorem that ./ is semidiscrete.

If | >0, SiT;|| = 0, then the inequality is trivial, so we can assume that || >, S;T;| # 0. Take
¢ € H with ||€|| = 1 that satisfies Y. | S;T;¢ # 0. As the function t — o(S) for ¢ € R is strongly
continuous for all S € ., it follows that the function

n

D oS80T

i=1

Bt , teR

is continuous. Moreover, since 0* is a group homomorphism, then o is the identity mapping on .Z,
S0

B(0) =

z”: SiTi€
i=1

Let 0 < & < B(0); by continuity of S, we can take 6 > 0 such that |t| < § implies 5(0) — B(t) < e.
Hence S(t) > £(0) —e > 0 for all |t| < 4.

Let g € C.(R) be your favourite continuous function with support contained in the interval (—4,J)
and ||g|l2 = 1, and define f € C.(R,H) by f(t) = g(t)¢ for t € R, so that f = £ ® g when seen as
an element of H ® L?(R) by Proposition For any T € .#’, we hence have 7'(T)f = T ® g or
(7"(T)f)(t) = g(t)T¢ for all t € R. Therefore

(r(S)7(T)f)(t) = g(t)o? (S)TE, Se.t,TeM, teR.

Note that 7(S)n'(T)f € C.(R,H), so this also holds for all finite linear combinations of functions
w(S)n'(T)f for S € A4 and T € .#’. Additionally,

IFII* = (£, F) = / lg@PllElPde = [lgl3 =1,
R
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so ||f|| = 1. This groundwork finally yields

2 2
>

Zw(sm’(n)

Zw(saw'(n)f

:/R >
-/ gammf

)
- / RORORY
4

2
dt

n

> (@ (S (T)f)(t)

2
lg(t)[*dt

> / (8(0) = &)?lg(0) ar
— (5(0) - 2 / lg(t)2dt = (B(0) — &)2.
-8

Since this holds for arbitrary 0 < ¢ < 3(0), we conclude that

En: SiTi€
i=1

Taking the supremum over all £ € H with ||£|| = 1, we finally obtain the inequality

n

> w8 (T)

=1

=p(0) <

S ST =D o wSHr @) < D osien
i=1 i=1 i=1 min
forall S1,...,S, € # and Ty,...,T, € A, so .# is semidiscrete. O

We now finally have all we need to jump to the big finale of this project that all of our previous
achievements have been working towards. Not surprisingly, it uses a variety of different results, making
the proof a tribute in some way to what we have proved up until now.

Theorem 5.30. Let .# be a von Neumann algebra. Then # is injective if and only if 4 is semidis-
crete.

Proof. By Proposition
M = P (Mp, ®B(Ka))q.,

where K, is a Hilbert space, P, € .# and Q, € #p, ® B(K,) are projections, and .#p,_ is o-finite

for all € A. By Propositions and we see that . is injective if and only if .#Zp,
is injective for all & € A. By Propositions [5-7 and [5-9] we see that .# is semidiscrete

if and only if .#Zp_ is semidiscrete for all @ € A. Since each .#p,_ is o-finite, we see that it suffices to
prove the result for o-finite von Neumann algebras, so we can from here onward assume that . is
o-finite. By Propositions and we can furthermore assume that .# C B(H) has a faithful
normal state w € .4, and a cyclic and separating unit vector £ € H. It follows from Proposition [2.22]
that £ is also cyclic and separating for .#".

Assume first that .# is semidiscrete. Defining the map 6: .# — (#')* by
O(T)(T") = (TT'E, ),

Proposition tells us that € is completely positive. The map .# x .#’' — C given by (T,T')
6(T)(T") is bilinear and hence induces a unique linear functional ¢: .# ®.#’ — C. For all Sy,...,S, €
M and Ty, ..., T, € #', we then have

n

® (Z S ® Ti) ZSJ' ® Tj = Z (SFS;T7T5€,€) = e(n)((S:Sj)?,jzl)((T;*Tj)?;jzl) 20,
i=1 j=1

ij=1
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so p(z*z) >0forall z € 4 & M Wt n: H & M — B(H) is the map given by

n (zn: S ® T{) = zn: SiTiI,
=1 i=1

then ¢ = we on. Since . is semidiscrete, Theorem yields that 7 is contractive with respect to
|| - [[min, SO ¢ is contractive with respect to || - [|min as well. Hence ¢ extends to a positive contractive
linear functional ¢: # ®min A4’ — C by Proposition (positivity follows from continuity and
algebraic positivity). As ¢(1y ® 13y) = 1, @ is then a state by [31, Theorem 11.5].

Since A Qmin #' embeds naturally into B(H) ®min -#’ by [4, Proposition 3.6.1|, the Hahn-Banach
theorem allows for an extension of ¢ to a state ® € S(B(H) ®min #’') by Lemma [2.42] Define
0: B(H) — (A")* by }

O(THT)=d(TT).

Note that for S € .#, we have

0(S)(T') = S(ST') = p(ST') = 6(S)(T"),
and more specifically that (13)(T") = 0(13)(T") = we(T") for all T" € .#'. For positive T € B(H)
and T € A', then T = S*S and T" = (5')*S’ for S € B(H) and S’ € .4, so that

O(T)(T") = @((S @ )" (S®5)) > 0.

Hence 6(T) is a positive linear functional on .#’ for all positive T € B(H).
and positive with A = ||T|, then 0 < A\7'T < 14, and hence §(A\71T) <

notation of Proposition O(A\~'T) is then contained in

If T € B(H) is non-zero
0(13) = we. Using the
Ce={pe (M) |0<p<we,

so that 6(T) and hence (B(H)) is contained in the complex linear span F' of Cg, since any operator
in a unital C*-algebra is a finite linear combination of positive operators [31, Theorem 11.2].

For al Ty,...,T,, € B(H) and T7y,...,T), € .#’, we see that

> o) - 3 aenygen) <o ((Lren) (Ynen))=o
ij=1 i=1 i=1 i=1

so Proposition tells us that 6 is completely positive. Moreover, we proved in Proposition that
0: A4 — F is a completely positive linear isomorphism with a completely positive inverse. Defining
E: B(H) — # by

E=0"'00,

E is then completely positive and for T' € .#, E(T) = T. Hence ./ is injective.

For the converse, assume that .# is injective. By Corollary the continuous crossed product
N = R(A,0y) is injective. Moreover, .4 is a semifinite von Neumann algebra by Theorem
Hence the identity of .4 is a semifinite projection. By [0, Corollary III.2.4.2], there exists a finite
projection P € .4 that has the same central support as the identity; therefore Cp = 1_4. Hence A4p
is finite and also injective by Proposition [4.8

To see that .4#p is semidiscrete, note that by repeating the handling of Proposition [2.60]in beginning of
the proof, we only need to prove that all o-finite reduced von Neumann algebras of .4p are semidiscrete.
But by Proposition any reduced von Neumann algebra of .45 is injective and by [0, Proposition
1.6.8.11], any such is also finite. Hence Theorem implies that any o-finite reduced von Neumann
algebra of 4p is semidiscrete, so A4p is semidiscrete itself.

We now want to pass back to .#". Since Cp = 14, then by Lemma A is isomorphic to a
reduced von Neumann algebra of A4p ® B(K) for some Hilbert space K. Propositions and E
yield that Ap ® B(K) is semidiscrete, in turn yielding that .4 is semidiscrete by Propositions and
Theorem now tells us that .# is semidiscrete, completing the proof. O
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And there we go. As promised in Theorem [5.5] we bring a theorem that puts the final piece of this
humongous jigsaw puzzle into place. The proof resembles the one of the previous theorem a lot.

Theorem 5.31. Let A be a @-nuclear C*-algebra. Then A** is injective.

Proof. Let ¢ € S(A) and let (H,,7,,&,) be its associated GNS triple. Note that ¢ = we, o 7, by
construction. Letting C' = {1 € A*|0 < 1) < ¢} and F be the complex linear span of C, we define
0,: m,(A) — E by

0,(T)(@) = (T7, (@), 6s), T’ € mo(A), ac A

By Proposition 0, is completely positive with a completely positive inverse.
Let B=A® m,(A)’. The map (a,T) — 0,(T)(a) for a € Aand T € 7,(A)" is bilinear and hence

induces a linear functional ¢: B — C such that ¢¥(a ® T') = 0,(T)(a). For all a1,...,a, € A and
Ty,...,T, € .4, we then have

n

p (Z a; @ Ti) Zaj ® T = Z (mo(a;a;)TiTiée, Ep)
i=1 j=1

4,j=1

= 95:)((E*Tj>2j:1)((a:aj)2j:1)
>0,

so Y(z*x) > 0 for all x € B. Moreover, by Proposition there is an induced representation
Q: B — B(H,) such that
Qa®T)=Try(a), a€ A Temy(A).

As ||2)]] < ||z||max for all z € B, it follows for x = Y. | a; ® T; € B that

<Z Tww(a)£¢,§¢> ZTww(a)

50 ¥ is || - |max-continuous and therefore || - [|in-continuous, since A is ®-nuclear. Therefore ¢ extends
to a positive contractive linear functional ¢: A ®min 7,(A)" — C by Proposition (again, positivity
follows from continuity algebraic positivity of ).

n

> 0,(T) (@)

=1

()] = < < €117 = 12(2) | < l|2/lmax;

Since A@min Ty (A)’ embeds naturally into A®min B(H,,) by Theorem [1.43} the Hahn-Banach theorem
allows for an extension of 1/3 to a contractive linear functional ¥ € A ®uin B(H,) by Lemma @
Define 0,: B(H) — A* by

0,(T)(a) =T(a®T).

For all a € A, we then have
0,(T)(a) =¥(a@T) =pla®T) = 0,(T)(a),

and more specifically that §¢(1H¢)(a) = 0,(1%,)(a) = p(a) for all @ € A. For positive T" € B(H)
and a € A, then T'= §*S and a = b*b for some S € B(H) and b € A, so that 6,(T)(a) = ¥((b®
S)*(b® S)) > 0. Hence 0,(T) is a positive linear functional on A for all positive T € B(H). Finally,
if T € B(H,) is non-zero and positive with A\ = |7, then 0 < A™*T < 14_, and hence 0,(A\~'T) <
0,(12) = ¢. Hence 0,(A\~1T) is then contained in C so that 0, (T) and hence 6,,(B(H)) is contained in

F, since any operator in B(H) is a finite linear combination of positive operators [31, Theorem 11.2].
Finally, for all T,...,T, € B(H) and ay,...,a, € A we note that

S T T)afay) = Y (e @ T) 0y £ T) = ¥ ((Z@T) (Z ®T>> >0,

so Proposition tells us that 910 is completely positive. Defining E: B(H,) — m,(A)’ by

_p-1.p
Efe@ of

iy
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E is then completely positive and for 7" € w,(A)", E(T) = T. Therefore 7,(A)’ is injective and hence
semidiscrete, so Corollary tells us that m,(A)" is injective.

Since ¢ € S(A) was arbitrary and m, is nondegenerate in every case, then for all ¢ € S(A) there exists
a surjective normal *-homomorphism p,: A** — 71,(A)” such that m, = p, o ¢, where ¢ denotes the
inclusion A — A**; this follows from the discussion after the proof of Theorem If we can prove
that the family (p,),es(4) is separating, then Corollary will yield that A** is injective.

Therefore assume that p,(T") = 0 for all ¢ € S(A). Let (za)aca be a net in A such that o(zo) = T
ultraweakly. Then

To(a) = po((a)) = pp(T) = 0
ultraweakly for all ¢ € S(A), and therefore
o(rq) = <7T¢(ma)§s07£<p> — 0.
By Theorem we then see that ¥ (z,) — 0 for all ¢p € A*. Note that because Q: (A**), — A*
given by
Qw)(a) = w(t(a))

is an isometric isomorphism (see page [63), then for all w € (A**),, we have w(i(z,)) — 0 for all
w € (A**),. Therefore t(z,) — 0 ultraweakly, and hence T' = 0, completing the proof. O

This concludes the main part of the project.



APPENDIX A

TOPOLOGICAL AND ALGEBRAIC PROPERTIES OF
BANACH SPACE OPERATORS

All sorts of small and useful results are needed in the main parts of the project, and this chapter is
devoted to proving them. The range of results here is quite wide, and no connection between the
sections is intended. Hopefully most readers won’t find the proofs too trivial.

1.1 Operator extensions

Throughout the project, we need the important fact that any bounded operator on normed spaces
extends naturally to their completions. A proof is given here, along with an important corollary.

Proposition A.1. Let V and W be normed spaces and let T: V — W be a bounded linear operator.
If X and Q) are Banach spaces and oy : V — X and pw: W — Q) are linear isometric maps with dense
range, then there is a unique bounded linear operator T € B(%,9) such that To oy = owoT, ie.,
the following diagram commutes:

Tow

%
SOV\L liﬂw
x

.
The extension satisfies ||T|| = ||T|| and the following statements hold:

(i
(i

) If there exists ¢ > 0 such that | Ty| = c|ly|| for all z € V, then | Tz|| = c||z|| for all z € X.

) ~
(iii) If T is a surjective isometry, then T is also a surjective isometry.

)

)

If T is surjective and bounded below, then T is surjective as well.

(iv) If T is not linear but conjugate linear, then T is conjugate linear.

(v) If V and W are inner product spaces, X and Q) are Hilbert spaces and T is isometric, then T
preserves inner products.

(vi) If V and W are normed algebras (resp. normed *-algebras), X and Q) are Banach algebras (resp.

Banach *-algebras) and v, ow and T are homomorphisms (resp. *-homomorphisms), then T
is a homomorphism (resp. *-homomorphism) as well.

Proof. Uniqueness of the extension is clear: if T, and T are bounded linear operators X — 9) satisfying
Ty ooy =T 0 py = @w o T, then by picking a sequence (x,,),>1 in V for any given z € X such that
ov(z,) — , continuity of T} and T3 yields

Ti(x) = nh_}n;o Tlgov(xn) = nh_}n@lo Tg(pv(xn) = Th(x).

The big question here is how to define T in the first place. Since we want T to be continuous and
pv (V) is dense in X, we may try to define

T(z) = lim ow (Ta,)

n—oo

where (z,,)n>1 is a sequence of V' such that v (x,) — =z, but it is not at all clear that it is well-defined:
if there is a limit at all, is it then independent of the choice of sequence?

130
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To address this, let € X and let (x,,),>1 and (y,)n>1 be sequences in V such that v (z,) — = and
v (yn) — z. First and foremost, (v (z,))n>1 is a Cauchy sequence in X, so (z,),>1 is a Cauchy
sequence in V since ¢y is an isometry. Therefore, as

lew (Tzn) = pw (Tam)|| = 1 Tzn — Tam|| < (T(zn — 2mll

for n,m > 1, (ow(Txn))n>1 is a Cauchy sequence in ), and hence converges to some & € ) by
completeness. Same goes for (ow (Tyn))n>1 that then converges to some j € ). Since

lew (Tzn) — ow (Tyn)l| < (T Nllzn — yall = [Ty (2n) = ov (Ya)ll

for n > 1, it follows from boundedness of T" that

12 = gll <12 = ow (Tan)ll + [IT][lev (@n) = @v(yn)ll + 17 — ew (Tyn)| = 0

for n — co. Hence ¥ = g. Hence we can define T by ijx = #. Note for y € V that Ty (y) = ow (Ty),
so T also satisfies the needed equation. Moreover, T is linear. Indeed, for x,y € X and sequences
(Zn)n>1 and (yn)n>1 in V such that ¢y (z,) — 2 and ¢y (yn) — v, then oy (x, +yn) — = +y. Hence

ow (T(2n +yn)) = ow(T(zn)) + ow (T(yn)) = T + Ty,

so T(x +y) = Tx + Ty. Similarly one proves that T()\:cz = Tz for z € X and A € C if T is linear,
and if T is conjugate linear, then conjugate linearity of 7' follows in the same way, proving (iv) once
the general statement is proved.

Now note that

lew (T = 1Tyl < Tyl = 1TIllew )]l
for all y € V. Let € X and take some sequence (z,,),>1 in V such that ¢y (x,) — x. Since we then
have ||ew (Tzn)| < (|T)|||¢v (zn)] for all n > 1, we obtain ||Tz|| < ||T||||z|]. Moreover, for any = € V,
we have ~ B

[Tz|| = llew (T2)[| = | Tev (@) < [IT]||],

so we finally have ||T|| = ||T'||. This concludes the proof of the general statement.

If |Ty| = c|ly| for some ¢ > 0 and all y € V, then for any = € X, if ¢y (z,) — « for some sequence
(Zn)n>1 in V, then

Il = lim [l (Twa)| = lim [leall = lim_ oy ()] = el

proving (i). If T is surjective and bounded below, i.e., || Tx| > ¢||z| for some ¢ > 0, and y € ), then
ow (yn) — y for some sequence (y,)n>1 in W. Take z,, € V for all n > 1 such that Tx,, = y,,. Then
ow (Txn) = y. As

lov (@n) = @v(@m)ll = [|n — Zmll < ¢ Hlyn — ymll = ¢ Hlow () — ow (yn)|

for all m,n > 1, we see that (py(z,))n>1 is a Cauchy sequence, hence converging to some = € X

that must satisfy T2 = y. Hence T is surjective, proving (iii). Moreover, (v) is a consequence of the
polarization identity.

Finally, assume that the conditions of (vi) are satisfied and let =,y € X. Then ¢y (z,) — z and
v (yn) — x for sequences (x,,),>1 and (yn)n>11in V, so ¢y (znyn) — zy since the convergent sequences
are necessarily bounded. Then

T(zy) = lim ow(T(znya)) = lim [ow (Ten)ow (Tyn)] = TaTy.
n— o0 n—00
If the spaces in question are *-algebras and the maps are *-homomorphisms, note that
lev (@) — (@) < [lzy, — 2| = [[#n — =[] =0,
since the involution is isometric, so that

To* = lim gw(T(x) = lim pw(T(e,))" = (T2)",

n—oo n—oo

proving (vi). O
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Corollary A.2. Let X be a Banach space with a dense subspace V. Let p: V xV — C be a sesquilinear
form for which there exists C > 0 such that

()| < Ellzllllyll, =yeV.

(We say that ¢ is bounded by k.) Then ¢ extends uniquely to a sesquilinear form @: X x X — C such
that |@(z, y)| < kllz||||yll for all z,y € X. Moreover:

(i) If v is Hermitian, i.e., o(z,y) = (y,x) for all x,y € V, then $ is Hermitian.

(i) If ¢ is positive, i.e., p(xz,x) > 0 for all x € V, then @ is positive.
Proof. Fix y € V and note that the map V' — C given by & — ¢(z,y) is a linear functional on
V', bounded by k|ly||. Proposition tells us that there exists a unique bounded linear functional

@y X = C such that ¢ (x) = p(z,y) for all x € V, also satisfying ||, | < k||y||. Hence we obtain a
map : V — X* given by Q(y) = ¢,. For any given y1,y2 € V and A1, A2 € C we have

Q(Ay1 + Aay2) (@) = (2, My + Aayz) = (@, y1) + Aop(@,y2) = Mgy, (2) + Aoy, (2)
for all x € V, so uniqueness of ¢, yields that € is in fact conjugate linear. Moreover,
Q@) (@) = oz, y)l < Elzllyl, zeX, yeV,

so || < k. Propositior£ now says that 2 extends to a unique conjugate linear operator Q:x - x*
that uniquely satisfies Q(y) = ¢, for all y € V and also satisfies ||Q2|| < k. Define ¢: X x X — C by

o(x,y) = Qy)(z). Then ¢ is sesquilinear and

|6z, y)| = 12y) (@)] < 1)zl < Ellz|l]lyl]

for all x,y € X. Finally, ¢(z,y) = Qy)(z) = oy (z) = p(z,y) for all z,y € V, so ¢ extends .

For uniqueness, let ¢: X x X — C be another sesquilinear form that extends ¢ and is bounded by k.
For any y € X, note that ¢, : X — C given by ¢, (x) = ¢(z,y) is a bounded linear functional on X.
Note now that ¢, (x) = ¥(x,y) = p(x,y) = py(x) for all z,y € V. Defining U: X — X* by U(y) = vy,
¥ is continuous as it satisfies | ¥(y)|| < k|jy|| for all y € X; moreover ¥(y) = ¢, = Q(y) for all y € V.
Hence ¥ = by continuity, and therefore

P(x,y) = Qy)(x) = Y(y)(z) = ¥(z,y)
for all z,y € X, so ¢ is uniquely determined by the boundedness and sesquilinearity of .
Note that if z,y € X and z,, — = and y,, — y for sequences (zy)n>1 and (yn)n>1 in X, then

[o(@n, yn) — (@, 9)| < Ek(llen = zlllynll + [l2lllyn —yll) =0

as (||yn|)n>1 is bounded, so ¢(xn, yn) — ¢(z,y). For z,y € X choose sequences (z,)n>1 and (yn)n>1
in V such that x,, — x and y,, — x. If ¢ is Hermitian, then

@(x’y) = nhan;o Sﬁ(l’n,yn) = lim (yna xn) = @(yax)a

n— oo
and thus ¢ is Hermitian as well. If o is positive, @¢(x, ) = lim,, o, ©(2n, x,) > 0, so @ is also positive,
completing the proof. O

1.2 A property of the weak® topology on state spaces

Recall that for any Banach space X that the weak™ topology on X* is the locally convex Hausdorff
topology given by the separating family of seminorms given by ¢ — |p(x)| for x € X. Hence in X* a
net (4 )aca converges to ¢ in the weak* topology if and only if ¢, (z) — ¢(x) for all x € X.

We use the opportunity to give a characterisation of weak* continuous linear functionals.

Lemma A.3. Let X be a Banach space and let ip: X* — C be a linear functional. Then 1 is weak*
continuous if and only if there exists an x € X such that ¥ (p) = p(x) for all ¢ € X*.
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Proof. Assume that 1 is weak® continuous. Then there exist x1,...,2, € X and € > 0 such that
{oe X [lo(i) <e, 1<i<n} C{peX"||P(p)] <1}

By defining a linear functional #: X* — C by &(¢) = ¢(x), then if ©;(¢) = 0 for all 1 < i < n we see
that #;(A¢) =0 for all A € C and 1 <4 < n. This implies |A||¢(¢)| < 1, so ¥(p) = 0. Hence

n
U ker z; C ker .
i=1
Defining a map m: X* — C" by (@) = (¢(x1),...,¢(xn)), then kerm = |J_, ker#; C ker, so 7
induces a linear map v: w(X*) — C given by (7 (p)) = ¥(¢). Since 7(X*) is a complete subspace of the

Hilbert space C™, the Riesz representation theorem [17, Theorem 2.3.1] provides a A = (A1,...,A,) €
m(X*) C C™ such that y(7(¢)) = (m(v), A). Hence

¢(<,0) = Z /\i@(xi) =@ (Z )\1332) .

The other implication is trivial. O

The above lemma is all the more effective when combined with the Hahn-Banach separation theorem
for the weak™ topology as the next lemma amply demonstrates.

Lemma A.4. Let A be a unital C*-algebra and let X C S(A). Suppose that it holds for all a € As,
that p(a) > 0 for all p € X implies a € Ay. Then the weak® closure # of the convex hull of X is equal
to S(A), i.e., the convex hull of X is weak*-dense in A.

Proof. Since S(A) is weak*-compact and convex by [31, Proposition 13.8], it is clear that . C S(A) no
matter what. Suppose that there exists ¢ € S(A) such that ¢ ¢ .. By the Hahn-Banach separation
theorem for locally convex topological vector spaces [14, Corollary 1.2.12] and Lemma there is a
weak*-continuous linear functional on A4*, thus an a € A, and a real number A such that

Rey(a) < A < Reyp(a), v e€.7.

Letting b = % (a + a*), we have 1(b) = 2 (¥(a) + ¥(a)) = Rey(a) for all ¢ € S(A) so that
() s A<pb), eI

As ANg—b € As, and (Al —b) = A —4)(b) > 0 for all ¢ € X, we have Alp—b € A;. As ¢ is a state,
it follows that ¢(b) < A, a contradiction. Hence . = S(A). O

1.3 The point-norm and point-weak topology

Another pair of locally convex topologies become useful in Chapter 5. Here they are.

Definition A.1. Let X and 2 be Banach spaces. The point-norm topology on B(X,9)) is the locally
convex Hausdorff topology generated by the separating family of seminorms

T |Tx|, =z€X,

and the point-weak topology on B(X,9)) is the locally convex Hausdorff topology likewise generated by
the separating family of seminorms given by

T |e(Tx)|, z€X, €D

Note that if X is a Hilbert space, then the point-norm topology and point-weak topology on B(X) are
respectively just the strong operator topology and the weak operator topology by the Riesz represen-
tation theorem |13, Theorem 5.25]. Similarly, for arbitrary Banach spaces X and 9), if (T4 )aca is a
net in B(X), T € B(X,9) and T, — T in the point-norm topology, then T, — T in the point-weak
topology.

Proposition A.5. Let X be a Banach space. If w: B(X) — C is a linear functional, then the following
are equivalent:
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(i) w is continuous with respect to the point-norm topology.
(il) w is continuous with respect to the point-weak topology.
(iii) There exist x1,...,x, € X and p1,...,p, € X* such that

w(T) = Z(pi(Tmi), T € B(X).

Proof. The implications (iii) = (ii) = (i) are obvious. Assume that w is continuous with respect to the
point-norm topology, and take C' > 0 and z1,...,x, € X such that

w(T)] < CZ [T, T e B(X) (A1)

by [13, Proposition 5.15]. Equip the vector space X" = X @ ... ® X with the norm | - |ltaxi, i-€.,

n
||(y17--'7yn)||taxi:leyiua Yi,--Yn €X
i=1

(the reason for the name is because the norm is often called the tazicab norm) and let
YD ={T=x1,...,Tz,)|T € B(X)}.
Then 9) is a subspace of X™. Define ®y: 2 — C by
O0((Tx1,...,Txy)) =w(T), T e B(X).

® is then well-defined by (A.1]), linear and ||®o|| < C. By the Hahn-Banach theorem [13, Theorem
5.7], there exists a linear functional ®: X" — C such that ®|y = P and ||®|| = ||Po|| < C. Define a
linear functional p; € X* foralli=1,...,n by

pi(x) = ®(1i(x)),

where ¢;: X — X" is the inclusion into the i’th copy of X in X". Then
n
W(T) = ®((Tar,...,Ta,)) =Y ¢i(Tz;), T € B(X),
i=1

establishing (i) = (iii). O

Proposition A.6. Let X be a locally convex topological vector space and let ) C X be a convex subset.
Then the following are equivalent:

i) ye.
(ii) There exists a net (Yo )aca in QY such that p(yo) — ©(y) for all continuous linear functionals ¢
on X.

Proof. (i) = (ii) is obvious. Assume for the converse that (i) does not hold. Since ) is convex, then
from the Hahn-Banach separation theorem for locally convex topological vector spaces, it follows that
there exists a continuous linear functional ¢: X — C and X € R such that

Rep(z) > A > Rep(y), y€9.

In particular, Rep(yq) < A for any net (yo)aca in 2), so Rep(y,) cannot converge to Rep(y) as that
would imply Rep(y) < A. Hence ¢(yo) # ¢(y) for any net (ya)aca in 2, so (ii) does not hold
either. 0

The next result is really the essential one. Everybody uses it all the time, even in their sleep.

Theorem A.7. Let X be a vector space equipped with two locally convex topologies 7 and To. Assume
that the set of linear functionals on X that are continuous with respect to 71 coincides with the set of
linear functionals continuous with respect to 5. Then for any convex subset Y C X, the closures of )
with respect to 1 and T are equal.
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Proof. For any i = 1,2, Proposition tells us that y € )" if only if there exists a net (Yo )aca such
that ¢(yo) — ¢(y) for all 7;-continuous linear functionals ¢ on X. As the sets of 73-continuous and
To-continuous linear functionals on X coincide, the result follows. O

The connection to the topologies defined in this section follows immediately from Proposition [AZ5}

Corollary A.8. For any Banach space X and any convex subset ¥ C B(X), the point-norm and
point-weak closures of & coincide.

1.4 Everything you always wanted to know about finite rank operators

This section contains a lot of small results about finite rank operators, including a C*-algebraic proof
of the fact that any finite rank operator on a Hilbert space has finite spectrum. Lemmas abound!

In the general Banach space case, two results are all we will need.

Lemma A.g9. Let A and B be Banach spaces and let ¢v: A — B be a bounded linear map of finite
rank. Then there exist by,...,b, € B and 1, ...,¢0, € A* such that

Ula) = pi(a)hi, acA
i=1

Proof. Let {b1,...,b,} be a vector basis for ¢)(A). It is then clear that ¢ is of the above form, so
we only need to prove that the ¢; are linear and bounded. Linearity is easy, since for a,b € A and
A1, Ao € C, then

n n

D (A@ia) + Aai(b))bs = Aatp(a) + Aath(b) = ¥ (Ara+ Agb) = D pi(Ara + Aab)bs,

i=1 i=1

yielding
pi(A1a + A2b) = Arpi(a) + Azpi(b)

for all i = 1,...,n by linear independence of the b;. Define wy: A — C™ by wi(a) = (¢1(a),...,evn(a))
and wy: C" = @(A) by wa(A1,..., ) = >y Aib. Then ¢ = wy ow;. As ws is clearly a bounded
isomorphism with respect to the || - ||;-norm, it follows from the Open Mapping Theorem [13, Corollary
5.11] that wy ! is bounded. Hence for all i = 1,...,n and a € A, it follows that

lpi@)] < lwi(@)ll = llwy ' (@)l < [lwy 1] llall,
so all the p; are bounded; hence p; € A* for all i =1,... n. O

Note that this implies, along with the Riesz representation theorem |17, Theorem 2.3.1], that any finite
rank operator on Hilbert space is a finite sum of elementary operators, as found in Section 2.2.

Lemma A.10. Let A and B be Banach spaces and let ¢: A — B be a bounded linear map of finite
rank. Then ¢*: B* — A* is of finite rank as well.

Proof. Using Lemma [A-g] there exist aq,...,a, € A, ¢1,...,¢, € A* such that
n
Y(a) = Z pj(a)a;, a€ A
j=1
Hence for w € A* and a € A, we have

Ut (w)(a) = w((a) =Y wla,)p;(a).

Jj=1

Therefore 1*(w) = >."

j=1w(a;j)pj, so 1" has finite rank. O

Recall that if A is a unital C*-algebra and p € A is a non-zero projection, then pAp is a C*-algebra
with unit p.
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Lemma A.11. Let A be a unital C*-algebra and let p € A be a projection different from 0 and 1 4.
Then x € pAp and y € (14 — p)A(1la — p) are invertible if and only if x + y is invertible in A.

Proof. If x + y is invertible in A with inverse z € A, then note that (z + y)p = xp = px = p(z +y),
so that (pzp)xr = pz(x + y)p = p and z(pzp) = p(x + y)zp = p, so that x is invertible with inverse
pzp € pAp. In a similar manner, one proves that y is invertible with inverse (14 — p)z(14 — p). For
the converse statement, let a € pAp be the inverse of z and b € (14 — p).A(14 — p) be the inverse of y.
Then it is easy to see that a + b € A is the inverse of x + y. O

Lemma A.12. Let A be a unital C*-algebra, let p € A be a projection different from 0 and 14 and
let © € pAp, so that x = pxp. Then

oa(x) = apap(x) U{0}.
Proof. For any A € C we have

A ¢ opap(z) and A # 0 < x — Ap is invertible in pAp and X # 0
<z — Ap — A(14 — p) is invertible in A
& x — Al y is invertible in A
S A oa(x).

At the second biconditional, we used Lemma along with the fact that —\(14 — p) is invertible in
(14 —p)A(l4 — p) for all X #£ 0. O

Lemma A.13. For a Hilbert space H and any non-zero projection P € B(H), the restriction map
PB(H)P — B(P(H)) is a unital *-isomorphism.

Proof. The reader will hopefully forgive the ramshackle proof. Define ¢: PB(H)P — B(P(H)) by
©(T) = T|x where X = P(H). Then it is easy to check that ¢ is additive and unital. Moreover, for
S,T € PB(H)P, we have PSP = S and PTP =T and therefore

@(ST) = ST|x = (PSP)(PTP)|x = (PSP)|x(PTP)|x = 5|xT|x = ¢(5)e(T),
o0 ¢ is multiplicative. For any &,n € P(H) and S € PB(H)P, note that

(&, 0(5")n = (£, S™n) = (S&,m) = (p(5)&,m),

50 ©(S*) = p(S)*. Therefore ¢ is a unital *~homomorphism. ¢ is surjective; indeed if T € B(P(H)),
then the operator PT'P € PB(H)P has image T under . Finally, if S|x = T|x for S,T € PB(H)P,
then S¢ = SPE =TPE =T for all £ € H, so ¢ is injective. O

Lemma A.14. For anyn >1 and A € M,(C), o(a) is the set of eigenvalues of A.

Proof. Let I € M,(C) denote the identity matrix. For A € C, \] — A is not invertible if and only if
it is not injective. Hence AI — A is not invertible if and only if there exists a non-zero vector z € C"
such that (A\I — A)z =0 or Az = Az, i.e., if A is an eigenvalue of A. O

Recall that if a Hilbert space H is finite-dimensional, then it is isometrically isomorphic to C™ for
some n > 1. Thus B(H) = M,(C). As any complex n X n matrix has finitely many eigenvalues, it
then follows that any T' € B(H) has finite spectrum since unital *-isomorphisms preserve spectra |31}
Corollary 9.3].

Lemma A.15. A finite rank operator T on a Hilbert space H has finite spectrum.

Proof. We can assume that 7' # 0. Let &,...,&, be an orthonormal basis for T'(H), and let Ho
be the linear span of the vectors &1,...,&, and T%&,...,T*¢,. Then Hy is a Hilbert space and
N = dimHy < oo. Note that for all £ € H, T¢ € Hy. Moreover, since there exist A\y,..., A, € C
such that T¢ = Y7 | \;&;, then T*T¢ € Hy. If P is the orthogonal projection onto Hy, it is clear that
PT =T. If £ € Hy, then

0= (T°T¢,€) = (T€,T€) = |T¢|.

Thus T(13 — P) =0, s0o TP =T and hence PTP =T. As PB(H)P = B(H() & My(C) by Lemma
we see that opp()p(T) is finite. Hence Lemma tells us that 7" has finite spectrum. O
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1.5 Separable C*-algebras

Recall that a metric space is separable if it has a countable dense subset. The last result of this section
is needed in Chapter 3 to prove a criterion equal to positivity of a matrix with C*-algebra entries.

Lemma A.16. Any non-empty subset . of a separable metric space X with metric d is separable.

Proof. Let {z,,}»>1 be a countable dense subset of X. Let {gy, }»>1 be an enumeration of the positive
rational numbers, and let ., ,, = {x € 7 |d(z,z,) < g }. For any n,m > 1, let =, ,, be a point of
nm if 5 m is non-empty. The collection of all x,, ,, is clearly non-empty — otherwise X would not
be separable — and moreover countable. Now let x € . and let £ > 0. Then there exists n > 1 such
that d(z,z,) < § and m > 1 such that $ < ¢, < 5. As & € .7}, , then .7}, ,,, is non-empty and hence
d(x, Tnm) < d(x,2,) + d(Tn, Tnm) < T+ 5 < e. Hence the collection of all x,, ,, is a countable dense
subset of .&. O

The above metric space result then has the following application.
Proposition A.17. Let A be a separable C*-algebra. Then A has a faithful state.

Proof. Since A is separable, then the preceding lemma tells us that B = {a € A, [||a| = 1} has a
countable dense subset {a, |n > 1}. For each n > 1, choose ¢, € S(A) such that ¢,(a,) = ||a,|| =1
by Theorem Define ¢: A — C by

pla) = 27"pn(a).

¢ is clearly well-defined, linear, positive and satisfies [|¢]| < >°0° 27" = 1. Furthermore, if (e¢q)aca
is a bounded approximate identity for A with e, > 0 for all «, then for any N € N, we have

N N N
lell > le(ea)l = D 27" pnlea) = > 27" lpul = > 27"
n=1 n=1 n=1

by Proposition From this we deduce that ||¢|| > 1 and hence ¢ € S(A). Moreover, ¢ is faithful.
Indeed, let a € A be non-zero and positive and let a’ = ||a|]|~ta. Then ' € B, so there exists n > 1
such that ||a’ — a,|| < 1. Then

11— @n(a/” = |pn(an — al)‘ < llan —a/H <1,

o0

0 @, (a’) > 0 and hence p(a’) =3~ 27" pn(a’) > ¢,(a’) > 0. Therefore p(a) > 0, completing the
proof. O

1.6 Effects of second adjoint maps on exact sequences

This section is devoted to one small lemma concerning what happens to inclusion and quotient maps
on Banach spaces.

Lemma A.18. Let X be a Banach space and ) C X a closed subspace, with the inclusion map
j: 9 <= X and quotient map w: X — X/%). Then

(i) 7% D™ — X** is injective.
(i) kerm** is equal to the weak* closures of j**(1n(Q)) and j**(V**) where 1: Y — V** is the
canonical inclusion.
(iil) (X/9)** is equal to the weak*-closures of m*(1x(X)) and ©**(X**) where tx: X — X™* is the
canonical inclusion.

Proof. Let tx, tg and tx /9 denote the inclusions into the biduals of X, ) and X/9) respectively, and
recall that tx0j = j" ouy and 13/ om = 7" orx. As we will be using results about weak™ convergence

(199 25

to no avail in this proof, we will abbreviate “in the weak* topology” as “w*”.

Assume that j**(¢) = 0 for some ¢ € 9**. By Goldstine’s theorem [2g, Theorem II.A.13], there exists
some net (Yo )aca in P such that iy (yo) — ¢ w*. By w*-continuity of the second adjoint maps, we
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then have tx(yo) — 0 w*, or ¥(y,) — 0 for all ) € X*. The Hahn-Banach theorem [13, Theorem 5.7]
now implies 9’ (y) — 0 for all 9" € 9*, 50 19)(ya) — 0 w* and thus ¢ = 0. Hence j** is injective, and
moreover j**(9**) C ker 7**, as 7** o j** = (w0 j)** = 0.

Assume now that ¢ € ker 7**. Then porn* =0 for all ¢ € (X/9)* or p(1p) = 0 for all ¢ € 7*((X/D)*).
By [22, Theorem 4.9(b)],

7 (X/D)7) = D" = (v € X [d(y) = 0 for all y € D) = {4 € X" [0 j =0},

so (1) = 0 for all 1 € Y. Assume now that ¢ ¢ 3 where 3 denotes the w*-closure of j**(19(%))) C
X**. By the Hahn-Banach theorem for locally convex topological vector spaces [14, Corollary 1.2.13],
there is w € X* such that ¢(w) =0 for all ¢ € 3 and p(w) # 0. Hence for all y € ), we have

0=7" ()W) =) W) =w(y) =wy),

so w € P*. Hence p(w) = 0, a contradiction, so ¢ € 3. Hence ker 7**

7 (19(2)), from which the last part follows by continuity of j**.

is equal to the w*-closure of

Finally, note that 1,9 (X/9) C 7**(12(X)), so that the w*-closure of 7**(1x(X)) is (X/9)**. The last
part follows similarly. O

For the record, this result might not be very intriguing in itself, but watch what happens in Proposition
when we start working with second adjoints of *-homomorphisms. That result owes a lot to what
we have just proved, but also proves that *-homomorphisms are slightly more “magical” than linear
maps, for lack of a better term.



APPENDIX B

TRACE CLASS AND HILBERT-SCHMIDT
OPERATORS

We will in this chapter discuss an important class of bounded operators on a Hilbert space. For the
sake of completeness, we include some results concerning generalized sums. In the following, let H
denote a Hilbert space and for any non-empty set I, let §; denote the directed set of finite subsets of
1.

Proposition B.1. Let (z;);c; be a family of non-negative real numbers indezxed by a non-empty set I.
If 3, cr xi converges in R, then

Conversely, if the above supremum ezxists in R, then the sum converges and is equal to the supremum.

Proof. The inequality < is obvious. Let x = ), ; z;. For e > 0, let F' € §; be a finite subset such
that for all H € §; with F C H, we have |x — >, 75| < e. For any G € §1, we have

leg Z T <xT+E

i€eG i€EFUG

since F' C F'UG. Hence the supremum over all G € §; exists and

sup ZCEZ <z+e,
GESI 1EG

and since € was arbitrary, the inequality > follows.

Now assume that the supremum exists and denote it by X. Let ¢ > 0 and take F' € §; such that
Y icp Ti+€ > X. Then for all G € §; with F C G, we have

in—X‘:X—in<X—Z:ri<s,

i€G i€G i€EF

so that >._;x; converges to X. O

iel
Corollary B.2. Let (z;)icr and (yi)icr be families of non-negative real numbers indezed by a non-emp-
ty set I such that x; < y; for all i € I, and assume that ), ;y; converges. Then ), ; x; converges

too, and ) xi <) o1 Vi

Proof. Let y = »_,;yi- For e >0, let F' € § such that | Y, -y —y| < e for all G € §r such that
F C G. For any G € §r, then

el

Yoai< Y i< Y yi<y+e

i€G 1€EFUG 1€ FUG

since F' C F'UG. Since G was arbitrary, the supremum over all G € §; exists and

sup Z T, <y+e.
GES1 e

Because ¢ was arbitrary, we can conclude that the supremum is less than or equal to y, and Proposition
now yields that Y, ; #; converges and that >, ; z; < y. O

139
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2.1 Potius sero quam numquam
We now turn our attention to Hilbert spaces.

Lemma B.3. Let (¢;)icr and (f)jcs be orthonormal bases of H. For any positive operator T € B(H)
then convergence of ), (Te;, e;) implies

ST 1) = (Teies).
jeJ iel
In particular, if 3, (Te;,e;) does not converge, then Y, (T fi, f;) does not converge either.

Proof. First of all, T = S*S for some S € B(H). Note that Y-, ; |(Se;, f;)|* = ||Se;||* for any i € I,
S0

DD NSei f)F = (Teies)

i€l jeJ il
converges. For any finite subset F' of J, Corollary yields that

ZZKS*ei’f] <ZZ| ez»f] _Z<T6ivei>~

i€l jeF el jedJ el

Since

ST E) =D Y USH el =D (S e £,

JjeF JEF i€l i€l jeF

then . ;(T'f;, fi) converges by Proposition with > .. (Tf;, f) <> icr(Tes, ei). Equality then
follows. The second result also follows easily, since if ijel<Tfj, fj) converged, then >, (Te;, e;)
would converge as well. O

This particular result allows for a name for the above value in [0,00] (since T' was assumed to be
positive), independent of the orthonormal basis chosen.

Definition B.1. Let A be a Hilbert space with orthonormal basis (e;);e;. For any positive operator
T € B(H) the trace of T is given by

trT = Z(Tei,ei> € [0, o0].
iel
If an operator T € B(H) satisfies tr|T| = tr (T*T)"/? < oo, T is called a trace class operator (we will
oftentimes say that T is ¢race class), and the set of trace class operators on H is denoted by 7 (H).

Proposition B.4 (Properties of the trace). For positive operators S,T € B(H) and A > 0, we have

() tr(S+T)=trS+trT.

ii) tr(AS) =X trS.

(iii) tr(UTU*) = trT for any unitary operator U € B(H).
(iv) If S <T, then trS < trT.

Proof. (i), (ii) and (iv) are clear. Finally, if U € B(#H) is unitary, note that if (e;);cs is an orthonormal
basis of H, then (Ue;);cr is an orthonormal basis as well (indeed, if (Ue;,&) = 0 for all ¢ € I, then
U ¢ =0,s0 & =UU*¢ =0). Hence

tr(UTU*) =Y ((UTU*)Ue;,Ue;) = Y (Te;,e;) = trT,
i€l el

completing the proof. O

Lemma B.5. If T € B(H) is positive and U € B(H) is a partial isometry, then tr (U*TU) < trT.
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Proof. Let (e;)icr be an orthonormal basis for H such that e; either belongs to ker U or (ker U)* for
i € I and let J be the subset of I consisting of all i such that e; € (ker U)*. Then the set (Ue;);cs is
orthonormal and may be extended to a full orthonormal basis (f;);c; for H, yielding

tr(U*TU) = Z<TU6i7U€i> Z<TU€¢,U€i> < Z<Tfiafi> =trT,

i€l icJ i€l
completing the proof. O
Proposition B.6. Let H be a Hilbert space. Then

(1) T(H) is a vector space,
(i) for all T € T(H) and S € B(H), then ST € T (H) and TS € T (H),
(i) f T € T(H), then T* € T(H).

Hence T (H) is a two-sided *-ideal of B(H).

Proof. (i) Since |\T| = (|\*T*T)/? = |\||T| for all T € 7 (H) and X € C, we have tr|\T| = |\|tr|T|
by Proposition and thus Z(H) is closed under scalar multiplication. Assume that S and T are
in 7 (H). To show that S +T € J(H), we will make use of the polar decomposition for bounded
operators. Let U, V and W be partial isometries in B(#H) such that

S=U|S|, T=VIT|, S+T=WI|S+T|.

Moreover, let (e;);c; be an orthonormal basis of . For any finite subset F of I, note that
SO + Tlewses) = SW (S + Ther,ea) < 32 (W UlSles, e + 3 |00V Tles, e,
icF i€F i€l i€F

By the Cauchy-Schwarz inequality, we have

SO HWUlSles, el < 3 [1512e|| | 151/20 W

i€F

i€F
1/2

1/2
<[Shsref] [Slhsreewe]
i€EF i€F
1/2 1/2
[Z(Ski,ei)] lZ(W*U|S|U*W€i,eZ—>1

i€l el

A

< tr|S|M2 -t (WHU|S|U*W)2
< tr|S|M2 .t (U|S|U*)Y?
< tr[S],

using Lemma [B.5| and the fact that W and U* are partial isometries. Similarly one proves that
Sicr (W*V|Tes, ;)| < tr|T), yielding

> IS + Tles, eq) < tr|S| + tr|T| < o0
1€EF

for all finite subsets F' of I. Hence tr|S 4+ T| < tr|S| 4 tr|T| < 00,80 S+ T € (H), and we conclude
that 7 (H) is a vector space.

(ii) Since any S € B(#) can be written as a finite linear combination of unitary operators [31, Theorem
10.6] and 7 (H) is a vector space, we need only show the result for unitary operators. For U € B(H)
unitary and T € .7 (H), we have |UT| = (T*U*UT)"/? = |T|, yielding UT € .7 (H); furthermore since

(UHT|U)? = U*T*TU = (TU)*(TU),

we have |TU| = U*|T|U by uniqueness of the square root, so Proposition B.4fiv) yields that TU €
F(H).
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(iii) Let U be a partial isometry in B(#) such that T'= U|T| by polar decomposition. Then
TT* =U|T]*U* = (U|T|U*)?,

so |T*| = U|T|U* by uniqueness of the square root. Therefore tr|T™*| = tr (U|T|U*) < tr|T| < oo by
Lemma [B.5| since U* is a partial isometry. Hence T* € 7 (H). O

Note that if tr|T| = 0 for T € 7 (H) and (e;);en is an orthonormal basis for 7, then

S| = S umies e =0,

i€l el

so |T|'/? = 0. Hence T*T = 0 and thus T' = 0. Since the proof of Proposition yielded that
tr|AT| = |Altr|T], tr]|S 4+ T| < tr|S| + tr|T]
for all S,T € (#H) and X € C, we obtain a norm on 7 (H).
Definition B.2. The trace norm || - |1 on 7 (H) is defined by
1Tl = w|T), T e 7(H).

In fact, 7 (#) is a Banach space with the trace norm, and we will prove this later. Now it is time to
introduce a new class of operators, the definition of which will be expressed in terms of the trace.

Definition B.3. For T € B(H) we say that T is a Hilbert-Schmidt operator if |T|*> = T*T € T (H),
Le., if 3., IT€;|* < oo for some orthonormal basis (e;);e;. Note that the sum is (still) independent
of the choice of basis. We denote the set of all Hilbert-Schmidt operators on H by % (H) and for
T € Z5(H) we define the Hilbert-Schmidt norm | T||2 of T

1/2
T2 = 1T 11/,

i.e., the norm satisfies ||T'||5 = |||T|*|l = >_;c; || Tes||* for any orthonormal basis (e;)ic;-

Note that .7 (H) C Z(H) by Proposition It is not immediately clear that the Hilbert-Schmidt
norm is actually a norm, and we will establish this now, as well as a lot of other properties of Z5(H).

Proposition B.7. Let H be a Hilbert space. Then

(1) (Z(H), | -l2) is a normed space.
(i) If T € (M), then T* € To(H) and | T*||2 = ||T|2-
(i) For T € Z(H), we have ||T|| < ||T2-
(iv) For S € B(H) and T € F(H), then ST € F(H) and T'S € Fo(H) with ||ST||2 < ||S|||T]|2 and

ITSl2 < ISIIT1]2-
(v) For U € B(H) unitary and T € F2(H), we have |[UT |2 = ||[TU|2 = |T||2-

Hence Z5(H) is a two-sided *-ideal of B(H).

Proof. Fix an orthonormal basis (e;);cr for H. For S, T € J5(H) and A € C, note that for finite subsets
F of I, the triangle inequality on the Hilbert space CF" yields

1/2 1/2
2
[Z||(S+T)ei2 <[Z(||S€i|+||Tei||)
ieF ieF
1/2 1/2
< IDCUSel? |+ Do ITelP| = 1Sl + T2 < oe.
icF i€EF

Hence S+ T € S(H) with [|S + T|l2 < ||S|l2 + |T|l2. It is clear that AT' € (H) as well with
|AT||2 = |A|||T||2- Finally, if [|T||2 = 0 for some T' € Z2(H), then ||Te;||*> = 0 for all i € I, implying
T = 0. Therefore (i) follows. Additionally

STl =SS (e e = S (Tes e = S 1T,

iel icl i€l i€l i€l
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so (ii) holds as well. For (iii), let £ be a unit vector of H. By choosing an orthonormal basis (e;);er
for H containing £, we have
ITEN? <D I Teill” = 1713
iel

Since ¢ was arbitrary, we obtain (iii).

Finally, for an arbitrary orthonormal basis (e;);c; for H and all i € I, we have ||STe;||> = ||S||?||Te; ||
for S € B(H) and T € F(H), implying ST € Z(H) and ||ST||2 < ||S||||T]|2. Hence we can also
infer S*T* € F5(H) for any S € B(H) and T € F5(H), so (ii) implies that T'S € F5(H) as well, as
ITS|l2 = [1IS*T*|l2 < IS*IIT*|l2 = IISIIT||2- For (v), note first that UT € Z2(H) by (iv) and that
Sier ITUE > = 3, [ Tes||* because (Ue;)ier is also an orthonormal basis for H. Hence | TU||y =
IT]|2. Therefore |UT||2 = |[T*U*||2 = |T*||2 = ||T||2 as well. O

As a consequence of Proposition (ii), we have
Ty = tx|T) = 171215 > [1T1Y2)1° = 7)) = | T]-

Already from the definition of Hilbert-Schmidt operators one might suspect that there is some deep
connection between these and trace class operators, other than the inclusion. The following proposition
sheds some light on this.

Proposition B.8. For T € B(H), the following are equivalent:
(i) T e T(H).

(i) T2 € Z(H).

(iii) T is the product of two Hilbert-Schmidt operators.

|T| is the product of two Hilbert-Schmidt operators.

~— — ~— ~—

(iv

Proof. For (i) = (ii), note that |||T|'/2¢||? = (£,|T|¢) for all ¢ € H. In the following, let T = U|T|
be the polar decomposition of 7. If (ii) holds, then T = (U|T|'/?)(|T|*/?), and as U|T|*/? € F(H)
by Proposition (iii) follows. If (iii) holds, then assume that T = RS for R,S € Z5(H). Then
(U*R)S = U*U|T| = |T| because U*U is the projection onto the closure of the range of |T|, and
U*R € F(H) by Proposition Finally, if (iv) holds, then suppose that |T'| = RS for R, S € Z(H).
For any orthonormal basis (e;);c; for H and F € §;, we have

1/2 1/2
D (ITles es) <Y lISeill| R el| < [Z [[Sesll? YR e|?]  <oo
ieF ieF il il
by Proposition yielding tr|T| < oo. O

Our first big result (in the sense that it is immensely useful) concerning trace class operators is the
following theorem that provides some structure not only for the aforementioned operators, but also
the Hilbert-Schmidt operators.

Theorem B.g. Given T € 7 (H) and any orthonormal basis (e;)icr for H, then Y, (Te;,e;) con-
verges absolutely in C and the limit is independent of the choice of basis.

Proof. Since T' € J(H), we can write T = S*R for Hilbert-Schmidt operators R and S. For A € C
and i € I, note that since ||(R — AS)e;||?> > 0, we obtain

| Reill? + |A%||Seil|? > (Res, ASe;) + (A\Sey, Re;) = 2Re(Re;, ASe;) = 2ReX(Re;, Se;).
Hence if |A\| = 1 and A\(Re;, Se;) = |(Re;, Se;)|, we obtain

1
(Tei, e5)] = [(Res, Ses)| < 5 (| Real|* + | Seil|*)

for all i € I. Therefore >, ; [(Te;, ;)] < > ic; |Reil|* + 3,/ [1Ses]|* < 00, 50 3, (Tes, €;) converges
absolutely. To prove that the sum is independent of the choice of basis, observe that for any j € I we
have

IR+ S)e;|I* = (R — S)e;l|* = 2(Re;, Se;) + 2(Se;, Re;) = 4Re(Re;, Se;) = 4Re(Te;, e5)
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and
I(R+iS)e;|)” = |[(R—iS)e;||* = 2(Re;, iSe;) + 2(iSe;, Re;) = 4Re(—i(Re;, Se;)) = 4Im(Te;, e;).

Recause R+ S and R — S are also Hilbert-Schmidt operators, we see that

Rez (Tej,e;) ZRe (Tej, ej)

jel jel

ZIIR+56JH =D IR =S)ell*| =

JeI JjerI

(IR +SI3 — 1R = S3]

>~

and likewise

1 . .
ImZ(Tej, ej> = Z “|R + ZSH% - HR - ZS”%] ’
jel
so that
13
> (Teses) =1 Z "IR + "S5
JeI n=0
Hence ), ;(Te;, e;) is independent of the choice of basis. O

This inspires the following definition.

Definition B.4. Let H be a Hilbert space. The map tr: 7 (H) — C given by

trT = Z(Tei,el),

iel
where (e;);es is any orthonormal basis, is called the trace.

Now the face of the reader might look like a question mark: is this the same trace as defined for
positive operators? The answer would be yes and no. It is clear that we are dealing with two separate
classes of operators, but it is also not hard to see that the traces of a bounded operator are equal if
the operator is both positive and trace class. The reason that we “expand” our notion of the trace to
the trace class operators is that it offers the operator algebraist a nice architectural background for
considering .7 (H) as more than just a normed space. The first thing we shall look into is that it turns
out that the trace defined above indeed lives up to its name.

Proposition B.10. The map tr is a linear functional on J(H) satisfying
tr(T*) =T, tr(TS)=tr(ST), |tx(ST)|<|SIT|x T € TH), S€ B(H).

Proof. Linearity and the first equality are clear from straightforward calculation. Fix an orthonormal
basis (e;);cr for H. Since any S € B(H) is a finite linear combination of four unitary operators, it
suffices to check that tr(7'S) = tr (ST) for T € .7 (H) and a unitary operator S € B(H). In this case,
defining f; = Se; for i € I, (f;)icr is an orthonormal basis and S*f; = e; for all ¢ € I, yielding

tr(TS) =Y (T'Sei,ei) = > (Tfi,S*fi) =Y (STf;, fi) = tr(ST).
el el i€l

Finally, if S € B(H), T € 7 (H) and T = U|T is the polar decomposition of T', note that the operators
|T|/2U*S* and |T|*/? are Hilbert-Schmidt by Proposition Hence for any finite subset F' of I, the
Cauchy-Schwarz inequality yields

Y UTSesei)) < [T 2Ses, |TI2Ues)|
ieF i€l

<> ||irzsed| |1 2ves
1€l

REE 1/2
icl

= 128|171 2U -

2
> H|T|1/2U€z‘
icF
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Hence
tr (T8)] < TS N2NT 12Ul < NTIM2IZ1SIT < TSI = 1T S,

completing the proof. O

From this it follows that for S € B(#H), the map T — tr(ST) is a linear functional on .7 (H). This is
not the whole story, though. A consequence of the trace being well-defined is that 75(#) can in fact
be equipped with an inner product.

Proposition B.11. For any S, T € 9(H), define
<S, T>2 =tr(T789).
Then (-,-)2 is an inner product on F2(H), inducing the Hilbert-Schmidt norm.

Proof. (-,-)9 is well-defined, as T*S € J(H) for any S,T € F5(H), from Proposition Linearity
follows from the trace being linear. For any S,T € 95(H), we also have

(S, T)s = tr(T*S) = tr (S*T) = (T, S)s

from Proposition Finally, (T, T)s = || T3 for any T € Z(H) so (-, )2 is indeed an inner product
on J5(H) inducing the || - ||2 norm. O

We now expand our knowledge of finite rank operators a little. We will now race towards a great finish
concerning the structure of .7 (H) and % (H) as normed spaces. It turns out that the norms turn the
spaces into complete ones.

Proposition B.12. Let H be a Hilbert space. Then (Z (H),||-|l1) is a Banach space and (F5(H), (-, )2)
is a Hilbert space.

Proof. Let (e;)ier be an orthonormal basis for H. If (T,),>1 is a Cauchy sequence of trace class

operators in || - |1, it is in particular a Cauchy sequence in || - || and hence converges to some 7' € B(H)
under the operator norm. This is our candidate for a limit under || - ||;. For € > 0 there exists N > 1
such that

Z<|Tn — Tm|€i, €i> <e

1€G
for all n,m > N and an arbitrary finite subset G C I. If S,, — S in norm, then S} S,, — 5*S in norm
as well, and by approximating the square root function by polynomials on a non-negative interval, we
obtain |S,| — |S|. Therefore |T,, — T,,,| = |T, — T| in norm for m — oo, so

<|Tn - Tm‘ei76i> = <‘Tn - T|€i76i>

lim
m—r 00
for all i € I. Hence

> AT = Tlese) < e
ieq@
for all n > N and finite subsets G C I, and hence

Z<|Tn —Tle;,e;) < ¢

iel
forn>N,s0Tny —T € J(H). Hence T =Tn — (Ty —T) € T (H), and the above inequality yields
convergence of (T},),>1 to T in || - ||1. Therefore 7 (#) is a Banach space.
Similarly, if (7},)n>1 is a Cauchy sequence of Hilbert-Schmidt operators in || - ||, then it is a Cauchy
sequence in || - ||, converging to some 7' € B(H) in this norm. For € > 0, take N € N such that
Z (T = Tn)es]|* < €2
ied

for n,m > N and an arbitrary finite subset G C I. As before, this implies

DT = Tes|* < &

iel
for all n > N, in turn yielding that 7 is Hilbert-Schmidt, and that |7, — T||]2 — 0. Hence 9(H) is a
Hilbert space. O
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The following results are useful facts concerning the relation of finite rank operators to our two new
operator classes.

Proposition B.13. The elementary operators E¢ ,,: H — H given by E¢ yw = (w,n)¢ (see also p.
satisfy the following:

(1) Eg,'f] = n.§-
(i) For any T € B(M), we have TE¢ , = Er¢ , and E¢ )T = E¢ 1+y.
(iii) Eey € T (H) with |E¢qll = [[Elllln] and trE¢y) = (€, n)-

Proof. For wi,ws € H

(Wi, By gwa) = (w2, §)(w1,m) = (w1, )&, we) = (B¢ yw1,w2),

o (i) holds. (ii) is easily verified. Because E, ¢FE¢ w1 = (w1,n)(£,&)n = [|€||*E, w1, we obtain
Ef, Een = |EIIPE,,. If n =0, it is clear that E, € . (H) with [|E¢ [ = [[£][|7]]. Assuming from
here onward that 1 # 0, we see that

I€1% o
i

||f|| En n = EE nEE LR

so |Ee | = I€l/InI £,y - Hence

9]} _ ligll _ i€l 9]}
Z<|E§17I|ei’e’b H || Z m,n €, ’L || || Z 1777 777 ’l || ||Z| n,e ’L 2 H || ||77||2 Hf””n”
iel

for any orthonormal basis (e;)icr, so E¢, € 7 (H) with ||E¢ »||1 = [|£]|||n]|- Moreover,

trBe = Z<E£,nez‘a€i> = Z<<€i,7l>§’€z‘> - Z<<§7€i>€iﬂl> = <Z<§’€z‘>€i,77> = (&)

il icl icl icl
Hence the proposition follows. O

Proposition B.14. Let H be a Hilbert space. Then (F2(H), | - ||2) contains the finite rank operators
as a dense subspace, implying that all Hilbert-Schmidt operators are compact.

Proof. Fix an orthonormal basis (e;);cr for H. Note that because
D N Eeneill® < 1€17D 7 Kewm* = 1€17 ]I,
i€l il

then all finite rank operators are Hilbert-Schmidt by Proposition For T € 95(H) and € > 0, then
since >, [ Te;]|? converges, there exists a finite subset £ C I such that

D ITeil* < &2
i€I\F

Defining Se; = Te; for i € F and Se; = 0 for ¢ ¢ F, we obtain a finite rank operator S € B(H). Then

ST - Sl = Y [Tl <<

el 1€I\F

Hence the finite rank operators are dense in J5(#). Because || - | < || - ||2, the inclusion into the
compact operators follows. O

Corollary B.15. For any S,T € J5(H) we have tr (ST) = tr (T'S).

Proof. The equation makes sense because of Proposition As |tr (ST)| = (T, S*)a| < ||S]|2/IT|2,
the map Z5(H) x F2(H) — C given by (S,T) — tr(ST) is continuous in both variables, it suffices by
Proposition to check the equality for T" being finite rank, but this follows from Propositions
and B.ad O
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To the reader, all of these theorems may have seemed like a massive stroke of information overload. We
have defined the trace, but have not used its properties yet. Why do we need to know about density of
finite rank operators in the trace class operators? Is it essential that 7 (#) is a Banach space? One’s
confusion should be laid to rest immediately by looking at the next two theorems, concluding our past
adventures with a colourful and surprising flourish.

Theorem B.16. Let &: T (H) — B(H)* be the linear map defined by
O(S)(T) =tr(ST), SeT(H), T e B(H).

Then for all S € T (H), ®(S) is ultraweakly continuous, and ¥ is an isometry, i.e., ||S|1 = ||P(9)]|
for all S € T(H). Conversely, if w € B(H)., then there is a trace class operator S € T (H) such that
®(S) = w, so ® is in fact an isometric isomorphism T (H) — B(H).. Moreover, S € T (H) is positive
if and only if ®(S) is positive.

Proof. First of all, Proposition tells us that @ is well-defined and linear. Fix an orthonormal
basis (e;);csr for H and assume that T,, — T ultraweakly in B(H) and that S € 7 (H). By writing
S = Ry R; for two Hilbert-Schmidt operators R; and Ry by Proposition then there are only
countably many ¢ € I such that Rie; # 0 and Rge; # 0. Hence we can define a surjection  from
Ninto {i € I'|Rie; # 0 or Rye; # 0} so that (Rieq(n))n>1 and (Rzeqm))n>1 are square-summable
sequences in H. Since for any A € B(H) we have tr(RyR3A) = tr(R3AR,) by Proposition and
Corollary we find that

O(S)(Tn) = tr(STy) = tr(R5ToRy) = > (ToRaei, Roes) = Y (TaRieqn), Racon))
el n=1

— Z(TRleg(n), Rgeg(n)> = Z<TR1€Z', R2€i> = tr (ST) = @(S)(T)
n=1 icl

Hence ®(S) € B(H).. Moreover, by Proposition [B.10] we have ||®(S)| < ||S|l1. If S = U|S| denotes
the polar decomposition of .S, then because

(S)(U") = tr (U*S) = tr|S] = |[S]]1,
we have that ® is an isometry.

For any w € B(#). then by Proposition we have w = > we, . for sequences (&,),>1 and
(M )n>1 of H such that D07 | [|€,]> < 0o and Yo7 ||7,]|? < co. Define

o]
S = Z EEnJM»
n=1

which converges in 7 (H) in the trace norm, as & (#) is a Banach space and

0o 0o 1/2 0o 1/2
1= l€alllnall < <Z |§n||2> (Z ||77n||2> <0
n=1 n=1

n=1

o0
Z HEfnﬂ']n
n=1

using Proposition[B.13] Then because S — tr(T'S), S € 7 (H) is a bounded linear functional on .7 (H)
for all T € B(#) by Proposition it follows that

O(S)(T) = tr(T'S) = Y tr(TEe, ) = Y _(Tén,tin) =w(T), T € B(H),

so that ®(5) = w.

Finally, let S € .7 (H). If S is positive, then for all positive T € B(#), as S*/? is Hilbert-Schmidt by
Proposition B8] so
tr(ST) = tr(S'/2TS8"?) = (ST'/?e;, T"%e;) > 0
el
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by Corollary B.15¥ If tr(ST) > 0 for all positive T € B(H), then because ||||*E¢ ¢ = Ef (E¢ ¢ for all
£ € H, we see that F¢ ¢ is positive and hence

0 < tr(SEee) = (5€,€)
for all £ € H. Therefore S is positive. O
Just for closure (no pun intended), we include these two side effects, falling like dominoes.

Proposition B.17. Let H be a Hilbert space. Any trace class operator is of the form

oo
Z Ee, ..
n=1

with the series converging in ||-||1 and (&,)n>1 and (n,)n>1 being sequences such that Y.~ [|a]]? < oo
and Y77 ||nal|? < co. Hence (Z (M), | - ||1) contains the finite rank operators as a dense subspace,
implying that all trace class operators are compact.

I

Proof. Let T € Z(H). Using the isomorphism ®: 7 (H) — B(H). from Theorem then by
Corollaryand Proposition there are sequences (£,),>1 and (17,),>1 satisfying > - | [|€,]|? < o0

and Y7 | [[nn]/? < oo such that ®(T) = >"°7 | we, ;. converging in norm. Since 7" is an isometry and

O(Eg, 1.,) = We, .y, for all n > 1, it follows that T = Y | E¢, , with series converging under the
trace norm. Since || - || < || - ||1, the rest of the statement follows. O

Theorem B.18. Let .7 (H) be the Banach space of trace class operators equipped with the trace norm.
The map V: B(H) — T (H)* given by

U(S)(T) = tr(ST), SeBH), T e T(H)

is an isometric isomorphism. Moreover, U is an ultraweak-to-weak* homeomorphism, and S € B(H)
is positive if and only if U(S) € T (H)* is positive.

Proof. Let A: B(H) — (B(#H).)* be the canonical identification of Proposition [2.5{and let
*: (B(H)«)" — 7 (H)"
be the adjoint map of ®. ®* is an isometric isomorphism with (®*)~! = (®~1)*. Then
O (A(S))(T) = AS)(@(T)) = D(T)(5) = tx (ST) = W()(T),

so W = ®* o A. Hence V is an isometric isomorphism. Moreover, since A is an ultraweakly-to-weak™
homeomorphism by Corollary and ®* is a weak*-to-weak* homeomorphism, it follows that U is
an ultraweak-to-weak® homeomorphism. The last statement can be proved the same way as it was in
Theorem [B.16 O

2.2 Further properties of the Hilbert-Schmidt norm

In this section, we will introduce the notion of a conjugate Hilbert space and find an interesting
connection between the Hilbert-Schmidt operators over a Hilbert space and a Hilbert space tensor
product related to the original Hilbert space.

Let #H be a Hilbert space and define a map F: H — H* by F(§)(n) = (n,§). Then F is conjugate
linear, and by the Riesz representation theorem it is also a surjective isometry. Defining £ = F(¢) for
& € H, we hence obtain a bijective map H — H* given by £ — & that satisfies

E+n=E+7, X=X &neM, AeC. (B.1)

We now define 7 = {£|£ € H} as a set. The elements of A are then in bijective correspondence with
elements of #, and we give H a vector space structure by

E+m=C+n, MN=X, &neH, AeC.
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The vector space axioms can then be verified by using the equations of (B.1)). Finally, # can then be
given an inner product by defining

<gvﬁ>ﬁ = <na£>7-la 5777 € Ha

so as |||l = [€]l% for all £ € H, H becomes a Hilbert space, called the conjugate Hilbert space of H.
The map H — H given by £ — £ is thereby a conjugate linear surjective isometry.

For any T' € B(H), define T: H — H by T £ = TE. T is then linear and bounded, as || T €|z = || T¢||n
for all £ € H. Hence the map B(H) — B(H) given by T + T is an isometry. It is easily checked that
the map is conjugate linear, and moreover, it is surjective, since for any S € B(#), then by letting
G: € — ¢ denote the conjugate linear inverse of the map ¢ +— ¢ and defining T¢ = G(S¢) for € € H,

then T is linear and bounded, and T¢ = S¢ for all £ € H. Hence the map T +— T is a conjugate

linear isometric isomorphism B(#H) — B(#H). It is in fact also multiplicative and adjoint-preserving,
asTS =TS and B B
(T&m) =T = T"n,&) = T*n), &{neH,

for all S,T € B(H).

Considering the map B(H) — B(H) given by T' — T+, one can quickly check that it is linear, isometric
and actually a bijection, since for S € B(#), then by defining T' € B(#H) by T¢ = G(S€) for £ € H we
find that T maps to S, as

((T*)*&,m) = (TEm) = (S¢,m), &ne

Moreover, since S* T* = S*T* = (T'S)* for all S,T € B(H), T — T* is a linear isometric anti-isomor-
phism.

Since any finite rank operator on H is of the form Y. | E¢, ;. for &1,..., &1, .. 0 € H, we can
define a unique linear map from the finite rank operators on H to the inner product space H ® H by

i=1 i=1

This map is obviously linear and surjective. Because

*

Eéj,'r]j Efz:ﬂ]iw = Eﬁjij&,’fliw = <w’ m><§i’ §j>77j = E<€i75j>nj>77iw
for all w € H we have

<E£M7i ) E&j,m‘ >2 = <€w £j><77j’ 77i>-
We then see that

2 2

ZE&JM = Z <E5177711’E£j77]j>2 = Z (&, &) (M M)y = Zgl © 1
i=1 9 ig=1 ij—=1 i—1

It follows from Proposition that the above map extends to a surjective isometric linear map
Fa(H) — H @ H. We have hence proved the following result:

Proposition B.1g. The unique map p: %(H) — H ® H satisfying p(E¢ ) = £ @1 is an isometric
isomorphism.

This isomorphism allows for a simple description of maps over Z5(#) in a tensor product language.
Proposition B.2o. Let ‘H be a Hilbert space.

(i) The map Fo(H) — To(H) given by T +— T* corresponds to the unique isometry ®: HOH — HOH
satisfying ®(E @7) =N @ E.

(i) Let S € B(H). The maps Fo(H) — Fo(H) given by T — ST and T — TS correspond to the

maps S ® 13 C B(H®H) and 14 @ S* C B(H Q@ H).
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Proof. (i) It is clear from the definition of the tensor product and Proposition that ® exists and
is unique with the elementary tensor property. As the set of finite linear combinations of elementary
operators is dense in 75 (H), we only need to check that the two maps correspond under the isomorphism
for elementary operators, but this follows from from Proposition (1)

(ii) Let §&,m € H. As SE¢, = Es¢, corresponds to the vector S ® 177(§ ® %) and E¢,S = FE¢ g+,
corresponds to the vector 1y ® S*(€ ® 7)), the statement again follows. We have used Proposition
[B-13{(ii) for the above identities. O

Let . be any subset of B(H) and let .¥ C B(H) be the image of .# under the map T + T, and let p
be the conjugate linear and multiplicative inverse of this map. For any given T € ., then

TS=TS=ST=5T

for all S € .7, so .7 C 7. On the other hand, let R € 7 and S € .. As SR = RS, we have
Sp(R) = p(R)S, so p(R) € #'. Hence R € .. Thus we have proved

T =7, & CBH).
This implies that for any von Neumann algebra .# C B(H), then .# is a von Neumann algebra, as
M = =A" =
The algebra . is called the conjugate von Neumann algebra of A .

We conclude this section with a proof of the Powers-Stgrmer inequality, needed in Chapter .

Proposition B.21 (Powers-Stgrmer inequality). Let S and T be positive operators in B(H). If S'/?
and T'/? are Hilbert-Schmidt operators, then ||SY/? — T2y < ||S — T|1-

Proof. Define two self-adjoint operators A, B € B(H) by A = S§Y? — T2 and B = SY/? + T'/2. By
Proposition A is compact. This yields existence of an orthonormal basis (e;);c; for H consisting
of eigenvectors for A with corresponding real eigenvalues (\;);er [32, Theorem 3.2.3]. It is clear that
B > A and B > —A, so [(4§,&)| < (B¢, &) for all € € H, and straight calculation yields that
+(AB+BA) = S—T. Note also that for any self-adjoint operator R € B(#), we have —|R| < R < |R|
by the continuous functional calculus, and hence

—(|R[¢, &) < (RE,€) < (RIS, €)
or [(RE, &) < (|RIE,E) for any € € H. As AB + BA is self-adjoint, we see that

1
S =T =3 S4B + BAlei,e:)
el
1
>3 5I(AB + BAjer,ex)
iel
1
= Z §‘<B€i,A€i> + <BA€’£7€'£>|
el

1
= Z 5\A¢<Bei,e¢> + Ai(Be, e3)|

el

= Z |/\i<Bei, 61>|
i€l

> > ll(Aes, el = 30 N2 = Y (A%, e)| = tr [ (S1/2 = TV/2)2]
icl icl icl

completing the proof. O



INDEX

(X)r,

adjoint map,
amenable group,
amplification,
A**,

B(H), 1

B(H)~,

B(H).,[31} 32
bounded above,

Ce(I',H),
center, [306]

commutant,
completely positive map,
conditional expectation,
conjugate

Hilbert space,

von Neumann algebra,
continuous action, [Sg|
(continuous) crossed product,
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density theorem
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GNS representation, []
GNS triple, see GNS representation

Hermitian
linear functional, [46]
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Hilbert space
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injective C*-algebra,

Jordan decomposition, [46]

KMS condition,
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L*(T,H), 89
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linear functional
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positive,
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mean,
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MON,
MR N,
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ML o]
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M, 34
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nondegenerate
representation, [59]
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C*-norm,
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