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Introduction

These notes contain an expanded version of some lectures given during my stay in Essen
in the first half of 1093. The main purpose is to give a description of the interplay between
combinatorics (especially the study of partitions and related objects) and irreducible repre-
sentations of some classes of finite groups (especially symmetric groups and their coverings
and some linear groups). The origin was the study of (numerical) properties of the repre-
sentations of symmetric groups including the degrees and the distribution into blocks. Of
course the symmetric groups are very special in several respects, but as it has turned out
some of the combinatorial analysis applied there may be modified to give results for other
groups.

In the first chapter we present the combinatorial concepts and results needed for our
study of irreducible representations and blocks. Thereby an attempt has been made to
make analogies very clear. Thus for instance cores and quotients, which are well known
for partitions, may also be ‘defined for bar partitions and symbols. Their definitions are
inspired and even helped by the properties we want them to have to be able to apply them
to study degrees of irreducible characters and to enumerate characters in blocks. Chapter
II is devoted to the analysis of character degrees, especially the description of power of a
given prime dividing a given character degree. This is important in chapter III, where we
consider characters in blocks. It should be stressed that the combinatorial methods may
be 'gsed to obtain much more information about representations than described here.

I have been interested in this subject since 1975 and substantial parts of these notes are
slightly modified excerpts from some of my papers written partly in collaborations. Some
of the sections were written from scratch. In the later parts of the notes some proofs are
only sketched or even omitted so that the last sections have the nature of surveys. Also
some items in the notes classified as »remarks” are really up-to-date surveys over related
problems and topics which could not be treated here.

These notes were prepared during a relative short period of five months and some lapses
of notation and inconsistencies may have escaped my attention. For these I apologize and
offer the quotation below. \

I wish to thank Professor Michler for suggesting to write these notes and the ”Institute
for Experimental Mathematics” in Essen for the hospitality during a very productive stay.
Thanks are also due to Ms. Sabine van Ackern for her quick and competent preparation
of the manuscript.

"So eine Arbeit wird eigentlich nie fertig,
man mu sie fiir fertig erklaren,

wenn man nach Zeit und Umstanden
das méglichste getan hat.” (J.W. Goethe)

Copenhagen, November 1993 , J.B. Olsson




I. Combinatoriés with Partitions

1 Partitions, hooks, 3-sets

Let n € N. A partition A of n is a decreasing sequence of integers
A =(a1,a2,... ,0n)

satisfying @y > a3 > ... 2> a,, > 0 and a1 + a3 + ... + a, = n. The integers a; are called
the parts of A and m = I(A) the length of A. The set of partitions of n is denoted by P(n)
and p(n) = |P(n)|. We put P(0) = {(0)} and p(0) = 1. If A € P(n) we also write |A\| = n.

When A = (@1,a3,...,a,) is a partition we define
YA)={(G5)eNxN|1<i<m, 1 <j<a}

Thus |Y(A)| = |A| and the set V() is visualized in the Young diagram (also called the

Ferrer’s diagram) of A containing n boxes arranged as follows:

l . a; boxes

Y(X): ~ ] az boxes

[:]::I a., boxes

Thus

Y(5,3,2) :

The conjugate partition A° of ) is the partition satisfying
YA = {(,i) e Nx N | (5,5) € Y(\)}

Thus the Young diagram Y (A°) is obtained from Y()) by reflecting it in the diagonal:

Reflecting : yields

whence (5,3,2)° = (3%,2,1%). (Here, as elsewhere, the exponents denote the multiplicities
of the parts.)




For (Z,7) € Y()), A a partition, we put

=7 and i >1

Hi(A) = {(i',j') e Y\ i=4¢ and j'>j or },

the (2, 7)-hook in A. It is easy to visualize the hooks of A in the Young diagram Y (). The
boxes with x show the (2,3)-hook of A = (8,7,5,4,1)

|

XXX XX
X
X

The (¢,7)-hooklength of A is hij(A) = [H;;(M)]. I A° = (b1,bs,...,b) is the partition
conjugate to A then obviously V
hij(A) = (@i — j) + (b — i) + 1.
We put
aij(A) = a;—j the (i,7)-armlength of A
bij(A) = bj—1i the (i,7)-leglength of A
so that
’ hij(A) = aij(A) + bij(A) + 1.
(In the above example with A = (8,7,5,4,1) we have hy3(A) = 7, azs(\) = 4, ba(A) = 2.)

We »ma;xr form the hookdiagram of A, Hook (), by inserting the (¢, j)-hooklength of A in
the (7, j)-box of Y(A).

Example. Hookdiagram of A = (8,7,5,4,1) -

12[10| 9| 8| 6] 4] 3] 1]

10 8] 7] 6] 4] 2] 1

71514 3] 1 = Hook (8,7,5,4,1)
5[3[2]1

1]

We put Hi(A) = {hia(A), hiz(A), ..., hie;(A)} and H(A) = U;Hi(X). H(X) is considered as a

"multiset”, i.e. the elements are counted with their multiplicities. Thus

Hook (3,3)=[4]3 |2
3[2]1

H(3,3) = {4,3,3,2,2,1}

It is also useful to consider the rim of A
RO ={(#,7) € YA) | G'+1, ' +1) ¢ YO)}
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and for (z,7) € Y(X)
Rij(N) = {(,iN € RO | #2i and j 2}

The boxes with 0 show the (2,3)-rim of A = (8,7,5,4,1):

<
(@] L)

L

Notice that if A° = (by,...,b) then (b;,7) € Hi;(A) N Ri;(A). Write a ¢ in this box of
R:;(A). In the remaining boxes (7', j’) of Ri;(\) we write an a, if (¢ +1,;") € R(A) and a
bif (i +1,5') € R(A). In the above example we get

. blala

bia

It is clear that the boxes marked with an @ in R;;(A) are exactly those in the positions
(bj1,3"), § < j' < a;. Moreover, as is easily seen, the boxes marked b in R;;(X) are exactly
those in the positions (¢, ay41), 1 < ' < b;. Thus a;;(A) boxes of R;;(A) are marked a and
bi;(\) boxes of R;;()A) are marked b. We have proved

Lemma (1.1). For (i,7) € Y(X)
[Rii (M) = hij(A)-

The argument involving the marking of boxes in R;;(X) by a’s and b’s is also helpful in the
proof of the following *

Proposition (1.2) (Frame, Robinson, Thrall). For (i,5) € Y(A) we have in the above
notation '

{Rigr(A) | 7' = 5} U {Rhi;(X) = hiry(X) | §' > 4} = {1,2,... , hi;(A) }.

Proof. Write the integers 1,2,...,%;()) in the boxes of Ri;(A) starting at the top and
going from the right to the left. For example

) 3121
Byl 4
7164




Then in the boxes marked a by the above procedure we have the integers hiji(}), ;' > j
(by (1.1)!) and in the boxes marked b we have the integers hi;(A) — kirj(}), @' > i. The box
marked c is of course numbered h;;(A).

(In the above example the 5 in the boxed marked b is 7-2 where 7 = hy3()) and 2 = hys(A)
and the 6 in the box marked a equals hz4(X).)

We next describe the removal of the (i, j)-hook of the partition A, when (i,5) € Y(A): The
partition A\ H;;(A), defined by

YO\H;(A) = YONR;(A)
is a partition of n — hy;(A), when A € P(n). Then A\ Hj;(}) is said to be obtained from A
by removing the (i, j)-hook. We also often write A\ H;; or simply A\ H for such a partition.
Thus if A = (8,7,5,4,3) then A\ Hzs = (8,4,3,2,1).

Instead of removing R;;(A) from Y(\) we may also remove the boxes corresponding to
$i;(\) from the Young diagram Y()). This gives us two diagrams (possibly empty) which
pushed together form Y (A\ H;;).

Example.

12 | HEREE 12 [ 1]
10| | x| x| x| x|x 7

HIRE — | — |5

5] |X ] 3

L1 - 1

In the above example we have included the hooklengths h;;1(A) and hi(A\Haz). They are
12, 10, 7,5,1 for A and 12,7,5, 3, 1 for A\ Hy3. The only difference between the hooklengths
is that 10 (for A) has been replaced by 3 = 10—7 for A\ Has. Moreover 7 = hy(A). This
suggests that the removal of a hook in A may be described by a subtraction operation on
a set of non-negative integers related to A. This is indeed the case: ‘

A B-set is a finite subset
X = {h1,ha,... , b} (M >Vh2 >...>h 20)
of Ng = NU {0}. If s € Ny and X is as above we deﬁne a new fB-set X+* as follows:
Xt = {h1+3s,h2+s,... Jhi+s,8—1,8—2,...,0}.
The partition P*(X) associated to the #-set X as above is defined as
PA(X) = (hy — (= 1), ha — (= 2),.. , he) = A

where we neglect the parts 0. We call X a S-set for the partition X if P*(X) = A.

An easy calculation shows the following;:




Proposition (1.3). Let A = (a1,a3,... ,an) bea partition. Put Xy = {hu(A), hn(A).. ..,
hm1(A)} where ki (X) = h; + m —i. Thus X consists of the "first column hooklengths” of
A. Then the f-sets for \ are exactly the sets Xi*, s € No.

Suppose that X = {k1,... , h:} is a B-set for the partition A = (a1,... ,am). We put
Ho(X) = {1,2,... ,hi\{hi — h; | § > i}

for 1 < i < t. It follows from the definitions that [Hi(X)| = @; for 1 £ i £ m and
Hi(X) = § for i > m. Notice also that Hi(X+*) = H(X) for all s = 0.

Proposition (1.4). I X is a f-set for A, then
Hi(X) =H;(\) for all (relevant) 1.

Proof. By the above remarks it suffices to show the statement, when X = X, is as in

(1.3). But in that case the result follows immediately from the definition of Hi(X}) and
(1.2) for j = 1. ‘

Corollary (1.8). If X = {hq,...h:} is a B-set for A and h € N then
heH{\) & hi—h>0 and hi—hgX.

Proof. By (1.4) Hi(A) = Hi(X). Assume h; —h > 0. Then h — h € X < (There exists &
j.s.t. hi = k= h;) < (There exist a j, s.t. h = h; — hy) & b & Hi(X).

As before H(A) is the multiset of hooklengths of the partition \. |
Corollary (1.8) (Nakayama). Let h € H(}), A a partition. fe e N, elh, then ¢ € H{A). |

Example. Since 12 € H(}), A = (8,7,5,3,1) we must also have 2,3,6 € H(}). Indeed,
6= }hs(/\), 3= h17(}\), 2= hge()\).

Proof. Let X = {hy,...,h;} be a f-set for A. Assume that h = ef € Hi(}) = H(X). By
(1.5) hi = hi —e0 € X and h; = h = h; —ef ¢ X. Thus there exists an L0 < fauch
that h;—el € X and by ~e(I+1) ¢ X. If then h; — el = h; we get that e € H;(}), by (1.5).

A related result to (1.6) can be proved using (1.2) directly. We omit the proof which is
not difficult.

Corollary (1.7). Suppose that hii{(A) = ef, where ¢,f € N. Then exactly f of the
hooklengths

hap(X), (57 € H5(3)
are divisible by e. :
The next result is of fundamental importance for our investigations:

Proposition (1.8). Let X = {h1,hs,... ,hi} be a B-set for A = (@1,a2,...,am). Let
(i,7) € Y(A). Then h; = hi;(A) 2 0, i ~ hii(X) ¢ X and

Y = X U {hi = hi(MPN{A}
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isa B-set for A\ H;;.

Proof. The first part of the statement was proved in (1.5). We may assume that X = X,
so that ¢ = m. Let a;;(\) = a, b;;(A) = b. Then the removal of the (%, j)-hook from A
only affects the parts a;,@iy1,.-. ,aits of A. Considering Y (A\H;;) as being obtained by
removing the boxes corresponding to £;;(A) in Y()) and pushing the obtained diagrams
together shows that

MNH;; = (a1,a2,. .. ,8i-1,8i41 — 1,642 — 1, . aipp — 1,a; — (@ + 1), @igbr1, - - - 5 Qk).

Now it is easy to compute a (-set for A\ H;; with cardinality m explicitly. This 8-set turns
out to be Y.

Remark (1.9). In the notation Proposition of (1.8) and its proof we have: If we order
the elements of Y in decreasing order, then the element h; — h;;()) is numbered 7 + b;;(A).
This follows from the explicit description of A\ H;;.

This remark will also be of importance later.

2 Partition sequences and Frobenius symbols

When Frobenius [22] determined the irreducible characters of S, for the first time in 1900
he Was aware that they may be indexed canonically by the partitions of n. However, he
preferred a "more useful” indexation of the characters by what he called ”characteristics”.
He also considered fB-sets for partitions which arose naturally in his construction of the
characters. In this section we describe a theory of cuts in partition sequences which
associates to a given partition ) an infinite sequence of symbols including all the (-sets for
A and also Frobenius’ ”characteristic”.

This section gives a different viewpoint to the results of section 1 and it is also of particular
importance for the study of "bar partitions” and thus for the study of properties of spin
characters. (The material below was taken from [48].)

As in section 1 we use the following notation. Let
A= (a1,a2,-.. ,8n), @ 2a2...2 0, >0
be a partition. The dual (or conjugate) partition of A will be denoted by
A= (by,byy... b)), b 2b2...25>0
The set of first column hook lengths of X is
Xy={a;i+(m—1)|i=1,2,... ,m}
so X C No (= NU{0}). If X C Ny and r € Ny we define

Xt ={z+r|zeX}Uu{r-1,r-2,...,1,0}.
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Then the B-sets for A are by (1.3) exactly the sets X", r € Nq.

A partition sequence A is a double infinite sequence of zeros and ones, such that if we
consider the sequence going from the left to the right we have:

(i) All entries to the left of a certain point are zeros.

(ii) All entries to the right of a certain point are ones.

Thus for example

(1) ... 0010011010011

is a partition sequence, where the dots on the left and the right represent infinite sequences
of zeros and ones, respectively. For simplicity we may symbolize infinite sequences of zeros
and ones by 0 and 1, so that (1) may be written

(2) | 01001101001

In a partition sequence A, the zeros will be numbered 1,2, 3,4,... in the order they occur
moving from the right to the left in A, and similarly the ones will be numbered 1,2, 3,4, ...
in the order they occur moving from the left to the right in A. We call this the natural
numbering of the zeros and ones in A.

In the above example

5 4

.. Natural numbering of the zeros.
3 0 100
1

3 21
110100 1

2 3 4 e Natural numbering of the ones.

If the number of ones to the left of the i-th zero (in the natural numbering of A) is a;, we
write

(4) P(A) = (ay,az,... ,an)

if am # 0, @m41 = 0, so that P(A) is in fact a partition.
Example. If A is the partition sequence in (2) then

P(A) = (4,4,3,1,1) = (4%,3,1%).

This is seen from (3).
It is obvious from the definition that

Lemma (2.1). The map P is a bijection between the set of all partition sequences and
the set of all partitions of nonnegative integers.

Note. The sequence A = 01 is mapped onto the empty partition (0) of 0.

9




If P(A) = ), we call A the partition sequence of X. The partition sequence A of the partition
)\ incorporates in a natural way all the B-sets for A as we shall see. This is one of the reasons
why we formally consider infinite sequences.

A B-numbering of a partition sequence A is obtained by numbering some entry in A oc-
curring before the first entry one (or the first entry one itself) as 0 and then the following
entries as they occur going from the left to the right by 1,2,3,.... In such a f-numbering
the numbers of zero entries form a finite subset of Np, i.e. a B-set. If P(A) = ), this B-set
is in fact X", where r is the number of first entry 1 in the f-numbering.

Example. Let A be as in (1) and (2). A f-numbering of A is

3 56 78 9 10 11 12 13 B-numbering
1 0110

012 4
000010 10 0 1 1 1

The corresponding A-set is {11,10,8,5,4,2, 1; 0} (representing the numbers of the zeros).

This equals {8,7,5,2,1}*® and {8,7,5,2,1} is the set of first column hook lengths of
P(A) = (42,3,1%).

For completeness we note the following: If A is a partition sequence, we may define its dual
A° as the partition sequence obtained by reading A from the right to the left with zeros
and ones interchanged. We then have, of course:

Lemma (2.2). In the above notation
P(A)® = P(AY).
Example.

A =0101101001, P(A)=(44,31)
A = 0110100101, P(A% =(4,3,3,2).

Lemma (2.2) is in a certain sense generalized in the theory of cuts described below.

A p-sequence is an infinite sequence of zeros and ones, such that if we read the sequence
from the left to the right all entries to the right of a certain point are ones. We number
the entries in a S-sequence by 0,1,2,... from the left to the right. Obviously B-sequences
correspond bijectively to 8-sets. Namely, if x is a S-sequence we put

Q(x) = {i € No | the ith entry of x is zero}
so that Q(x) is a B-set. By adding an infinite number of zeros in front of a -sequence, it
is turned into a corresponding partition sequence. :

Lemma (2.3). If x is a B-sequence and A the corresponding partition sequence, then

Q(x) is a B-set for P(A), i.e.
PY(Q(x)) = P(A).

10




Proof. Obviously the numbering of x described above gives a S-numbering of A, so the
result follows.

Suppose that the partition )’ is obtained from another partition A by removing a hook of
length A € H(A). If X is a B-set for A, then by Proposition (1.8) we obtain a 3-set Y for
X' by replacing an element ¢ (> &) in X by ¢ — h, whereby ¢ — h ¢ X. Thus

Y =(XU{c—hh\{c}, [Y]=IX].

This means that the B-sequence of Y is obtained from that of X by exchanging the zero
in the ¢’th position with the one in the (¢ — h)’th position.

Therefore it is natural to define a hook in a partition sequence A as a pair of entries in A,
a zero and a one, such that the one (called the arm) is to the left of the zero (called the
leg). The hook is removed by exchanging the arm and the leg. The hook is said to be in
the ¢-th row and the j-th column if its leg has the number ¢ and its arm has the number
7 in the natural numbering of the zeros and the ones. By definition there are a; ones to
the left of the :-th zero, so there are a; hooks in the i-th row. Thus there is a canonical
bijection between the hooks of A and the hooks in the (Young diagram of the) partition
A = P(A). Moreover the map P is compatible with the removal of hooks.

We may now give the following interpretation to the arm- and leglengths defined in section
1.

Lemma (2.4). The leglength b;;()) (armlength a;;())) of the (7, j)-hook in A or A = P(A)
equals the number of zeros (ones) between the arm and the leg of the hook, excluding these.

Indeed the statement about b;;()) is a consequence of Remark (1.9) and the statement
about a;;j(A) follows by duality.

Example.
arm leg
A= 01001101001, A = (4%,3,1%).

I |
hook

The hook considered is the (2,1)-hook in A as illustrated. (Boxes are indicated by nodes.)

|. . .
3

The length is 7, the armlength and the leglength is 3. Removmg the hook we get A’ =
01101101 and X' = P(A') = (4, 2).

Let us state explicitly that when the hook is removed, its leglength is the difference between
the number of the leg in the natural numbering after and before the removal. (In the above
example the leglength is 3 =5 —2.)
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A cut in a partition sequence A is a dividing line between two entries, such that A is divided
into two disjoint parts A; and A,, where A; (Ag) consists of all entries to the right (left)
of the dividing line.

Example.
cut

A: 010011101001,
As Ay

The coordinates of the cut are (g,h), where g is the number of zeros in Ay and h is the
number of ones in As. The position of the cut is then defined as h—g.

Example. In the above example the coordinates are (3,3) and the position is 0 = 3 — 3.

Suppose that a cut with the coordinates (g, k) is moved one step to the right, so that
an entry is added to A, and the same entry is deleted in A;. Then the new cut has the
coordinates

(g,h + 1) if the entry is one,
(¢ —1,h) if the entry is zero.
Thus in any case the position is increased by 1. This shows:
Lemma (2.5). For each i € Z there is exactly one cut in A with ¢ as its position.

We fix a partition sequence A and let P(A) = ) be as above. Moreover we let (g;,h:) be
the coordinates of the i-th cut in A (the cut with position 7), so that

(5) hi—gi=1 forall :€Z.

Each cut in A determines two B-sequences, namely A; and AJ. Here AJ is the dual of As,
that is A, read from the right to the left with zeros and ones exchanged. If the cut is in
the i-th position, 7 € Z, we write

(6) Fi(A) = F;()) = (X | Y3)
where
X =Q(A1), Y:i=Q(AY)

and call F;(A) = Fi(X) the i-th Frobenius symbol of A or A. Then X; and Y] are 3-sets and
by definition we get

(7) |1 X:] =gi, |Yil=hi

so that |¥;| — |X;| = ¢ by (5). In (X; | ¥;) we simply write the elements of X; and Y; in
decreasing order.

Example. Consider the cut with position 0 in the previous example. We have

Xo = {31 270}7 Yo = {3,1,0},

12




SO

Fo(A) = (3,2,0 | 3,1,0).

Further examples of Frobenius symbols for our given A are

Fi(A) = (4,3,1]3,0),
F_s(A) = (8,7,5,2,1]0),
FR(A) = (2,1]5,2,1),
FyA) = (0]8,5,4,2).

(Note that 8,7,5,2,1 and 8,5,4,2 are the first column and first row hooklengths of A.)
From the definition and Lemma (2.2) we get

Proposition (2.6). If F;(A) = (X |Y) then F_;(A°) = (Y | X).

It is also easy to see that the following holds: |

Proposition (2.7). If X and Y are (-sets, there exists a unique partition A = P(X | Y)
having (X | Y) as a Frobenius symbol. Then (X | Y) = F;()), where : = |Y] — | X|.

Proof. We simply write the dual B-sequence of Y in front of the B-sequence of X to get
a partition sequence with a cut at the place where the 8-sequences meet.

Example. X = {4,2},Y = {3,2,1}.

B-sequence for X: 1101 0 1.
Dual 3-sequenceforY: 0 1 1 1 0.
Partition sequence: 61110 | 11010 1

Partition A = (6, 5, 3).
If again F;(A) = (X; | ¥), then X; and Y; are (3-sets for certain partitions, say
Af = P*(Xy), Al :=P*(Y)).

1

Proposition (2.8). In the above notation we have

(i) The Young diagram Y'()\{) is obtained by removing the first h; columns from the
Young diagram Y'(}), i.e.

)\f = (bhi+17 bhi+2, ey bl)o'

(ii) The Young diagram Y'(A)° is obtained by removing the first g; rows from the Young
diagram Y'(}), i.e.

T 4]
Ai - (agi+17a9i+27 cee ,am) .
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In particular X¢ = 0 if h; 2 [ and A7 = 0 of g; 2 m.

Proof. The hooks of A are recognized as pairs of zeros and ones in A as described above.
But the partition sequence of )¢ is obtained from that of A by changing the first h; ones
(in the natural numbering) into zeros. The result (i) follows and (ii) is proved similarly.

We now give a complete description of the hooks of A(A) in terms of Fi(A) = (X; | Y),
where again X; = Q(A;), Y: = Q(A)).

Proposition (2.8) suggests that the Young diagram of A may be decomposed into three
parts as follows:

h;

gi A B

il

Part A is the intersection of the first g; rows with the first k; columns. The nodes in A
- correspond to those hooks of A whose leg is in A; (to the right of the cut), and whose arm
is in A, (to the left of the cut). These hooks are called mized (relative to (X; | ¥;)). Part
B is the Young diagram of A¢ and the nodes represent hooks, whose arm and leg are in A;.
Similarly part C is the Young diagram of (A\7)° and the nodes represent hooks whose arm

and leg are in Ay. The hooks in the parts B and C are called unmized. The terms mixed
and unmixed reappear in section 4, where the above concepts are applied.

To compute the mixed hooklengths write

X; = {d,ch....¢}, d>d>...> ¢, 20

Y, = {d,d,...d.}, di>di>...>dj, 20
As before ag(A), berr(A), harr()) denotes the armlength, leglength and length of the (k, k')-
hook in A.
Lemma (2.9).

1) For1<k<gi:ci=ar—k—1i=am())—1
(i) For1 <k < hi:di, = by —k +1=bpp(X)+1.

Proof. Since X; is a (-set for A¢ we have that for 1 < k < gi, ¢, — (g: — k) has to equal
the k-th part of the partition in X¢, that is ax — h; (by (2.8)). Thus using (5) we have

c};zgi—k+ak—h;=ak-k—i.

Trivially ax — k = age(X), so (i) is proved and (ii) is proved in a similar way.
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(It should perhaps be noted that in the above notation ay — h; =2 0 for k = 1,2,...,4;,
since by the definition of the coordinate of a cut, the first h; ones are to the left of the first
g; zeros. Thus the first g; parts of A are at least equal to h;.)

In particular for ¢ = 0 we have
Corollary (2.10). For k=1,2,...,ho = go:
ngak—-k, dg:bk—k.

This corollary shows that the entries of Fo()) are also the entries in Frobenius’ ”character-
istic” for A ([22], §4) (see also [31], p.3, or [56], p.49). So Fy(}) consists of the armlengths
and leglengths of the diagonal hooks in A. If ¢ > 0, we shift the diagonal by : positions
starting then at the (1, 4+ 1)-node. If i <0, we start at the (—i + 1,1)-node. Going diag-
onally we shall in any case hit a rim node in the position (gi, k:). Then the hook lengths
() in Part A of the Young diagram are exactly all the possible sums of an entry in X;
with an entry in Y; plus 1. Indeed, adding the equations in (2.9) we get:

Corollary (2.11). For 1 Sk Sgi, 1 £ ¥ £ h; we have
c + diy = hw(X) = 1.
(Note also that
(8) . amw(N) =c +14, bw(N) =dy —1,
which explains the shifting mentioned above.)
Collecting the information above we have:
 Proposition (2.12). In the above notation:
(i) For 1 < k < g; the hook lengths in the k-th row of A are
{¢+di,+1|K=1,2,...,h}U{1,2,... AN —d | 1>k}
(it) Forall j=1,2,...,h;
(g1 (N)s g2 V), -+ iV} = {1,2,... , &iN\{d; — &3 | 5’ > 5}

Proof. (i) describes the hook lengths in parts A and B using (2.11) and (2.8) (1), and (ii)
describe the hook lengths in part C using (2.8) (2).

Example. Let A be as in (5),
A= (4%,3,1%), FR(A)=(2,1]5,2,1), ¢1=2, hy=3.

8 5 4|2

)
2
1
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The hook lengths in the first row are
(2+5+1,2+2+1,2+1+1}U{1,21\{2~1} = {8,5,4,2}.
We may of course also compute directly the first column hook lengths of A, that is X},

from the Frobenius symbol:

Proposition (2.13):. In the above notation
Xy={+d+1]i=12,...63U{L2,... . & \{d; —di|j=2,...,h}.

Note 1. Mixed hooks (relaﬁive to (X; | Yi)) correspond canonically to pairs of elements
(c,d), ¢ € X;, d € Y;. The corresponding hook length is ¢ + d + 1, by (2.11). Removing
this hook we get a partition having (X;\{c} | ¥;\{d}) as Frobenius symbol!

Note 2. We may compute |A| = a; + ...+ @ from (X; | ¥;). Indeed
. X 1 1
A =3+ dp+ '2‘(9i + hi) — 'é’(gi — hi)?.
k K

This follows easily, since part A contains g; - h; nodes, part B contains 3 ; ¢ — (92‘) nodes
and part C contains 3 di, — (’;‘) nodes.
For i = 0, the formula coincides with Frobenius’ [22], formula (7) in §4.

Note 3. (2.12) allows us to generalize two further formulas of Frobenius (for the degrees
of the irreducible characters in S,,). Let

A(mla <en ,-’Et) = H1_<_£<j5t(33j - wi)-

Let fx be the degree of the irreducible character of S, corresponding to A (see section 6).
Then . : A :
nIA(, &, ... db)A(dy,dy, . .., dh,)

C'I'Ca‘ . C;"d'l'd’z' e dii!ﬂk,k'(c}; + d}c: -+ 1)
This is a common generalization of [22], (6) in §3 and (9) in §4.

hHh=
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3 Cores and quotients for partitions

We describe for a given partition A and a given positive integer p, not necessarily a prime,
the p-core A(;) and the p-quotient AP of X, Given A(p) and AP it is possible to recover
X. There is a certain analogy to the division process of an integer by p where A(;) is the
"remainder” and A(®) the "multiple” of p occurring in the division. The p-core A(;) has no
hooks of length (divisible by) p and in the p-quotient all information about hooks of length
divisible by p in A may be read off.

The p-core A(,) may be obtained from X as follows: If A has no hooks of length p, A = A,).
Otherwise remove a p-hook from X to get X. If X’ has no hooks of length p, Ay = .
Otherwise remove a p-hook from ). Continuing like this we eventually reach a partition
with no p-hooks which is then the p-core Ay,). It is not obvious that the partition thus
obtained by removing all p-hooks from A is unique. This may be proved using a (-set for

A.
Let X be a B-set and p € N. For 0 < i < p—1 define

XP ={aeNo |ap+ie X}

and
Xy =Ulgfap+i ] 0<a < XD}

We have as is easily calculated

Lemma (3.1). In the above notation
(i) Fori >0 (X+*)® = x&).
i) (X = (X2

(iii) (X*)p) = (X))t

(@v) P ((X*)p) = P*(X@).

(v) P* ((X +1 )f-”)) = P*(X{)), when the i’s are computed modulo p.

The equation (iv) shows that if X is a f-set for A, i.e. P*(X) = A, then the partition
A = P*(X(p)) does not depend on the choice of X. We call Ag) the p-core of A. However,
‘the partitions P*(X() are permuted cyclicly when X is replaced by X*', by (v). These
partitions form the p-quotient of A, but in order to avoid ambiguities we must fix the
cardinality of X mod p.

Suppose that X is a 3-set for A satisfying p | |X|. Then the p-quotient A®) of X is defined
as

AP = (Xo,..., A1)
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where \; = P*(X,-(p)).

To see that Ay = P*(X(y)) is obtained from A by removing p-hooks and that A¢) has no
p-hooks we place the elements of X on a p-abacus (as suggested by G. James). The abacus
has p runners going from north to south numbered 0,1,... ,p — 1. On each runner there
are positions numbered 0,1,2,.... We visualize X on this abacus by placing a bead in the
a-th position on the i-th runner if and only if ap +: € X. Therefore, the sets X,-(p ) list the
positions of the beads on the i-th runner. On the (p—)-abacus of X the hooks of length
pin X are easily recognized. Indeed if X = {hy,...,h:} there is a hook in the j-th row
of \ of length p if and only if h; —p > 0 and h; —p ¢ X, by (1.5). Thus there has to be
a vacant position just above the bead representing h; on the abacus. Moving the bead to
the vacant positions gives the bead configuration for a B-set Y of the partition obtained
from A by removing the p-hook in row j, by (1.8).

Let us consider an example: Let A = (6,5,2,1%), p = 3. As B-set for A we choose X =
{11,9,5,3,2,1} of cardinality 6 (divisible by p = 3). The 3-abacus for X and the hook
diagram for A are:

NOXe)

4} 3] 1|

1 7]5
® 4 O® 9/5]3l2[1
6 7 8 5|1

® 101 ——g’—
................ 1

The beads 11, 9 and 3 have empty positions immediately above them, so A has three 3-
hooks. (The empty position 0 above 9 represents a hook of length 9 — 0 = 9.) Movement
from 11 to 8 yield the B-set for the partition partition A\\Hys = (4%,2,1%). Movement from
" 9 to 6 yields A\ Has = (6,2?,1%) and movement from 3 to 0 yields A\\Hya = (6,5, 2).

Generally, the removal of p-hooks in A corresponds to moving beads upwards on a runner.
The removal process stops when all beads on the abacus are in their highest possible
position (i.e. with the lowest numbers). Then we have the bead configuration of the set
X(p), so we have proved:

Proposition (3.2). If P*(X) = ), p € N, then the p-core
Awy = P* (X))

is the unique partition without p-hooks which may be obtained from A by removal of a
series of p-hooks. In particular, if 4 is a partition obtained by removing some p-hooks from
A, then )\(p) = H(p)-

We proceed to study the p-quotient of A. When p | |X|, then we have defined
A(p) = (/\07 Al) ey ’\p—-l),

where A; = P*(X,-(p )). We note that if we consider a given runner ¢ on the p-abacus as the
unique runner in an 1-abacus, then the beads on that runner represent the 3-set Xf;(p ) for
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Ji. Using again (1.8) on X and on the X,-(p Vs we get easily the following: Define a hook in
the p-quotient A®) as a hook in one of the partitions );, and the removal of a hook in @)
analogously. Then

Theorem (8.3). There is a canonical bijection f between the (multi-)set of hooks of A
of length divisible by p and the (multi-)set of hooks of A®). Thereby a hook Hj;(}) of X of
length p- h is mapped unto a hook of length h. For the removal of the hooks we have

(NH5O)® = XN\ (Hii (1) -
Moreover, f(H;;()\)) is a hook in A., where e = a; — ¢(mod p).

Proof. Suppose that X = {hy1,hs,... ,hep} is a B-set for A with p | | X|. If hy; = hp, then
by (1.8) h; — hp > 0 and h; — hp ¢ X. Now a; = h; — (cp — i) so that h; = a; — i(mod p).
If the bead representing h; is paced on the e-th runner of the p-abacus then by definition
e = h; = a; — i (mod p). Writing h; = h'p + e we get from the assumption that A’ € X
' —h >0and b —h ¢ Xgp). Thus A. contains a hook of length A in the row of A,
corresponding to the element %’ in the B-set A%P) for A.. This unique hook of A®) is defined
to be f(H;;())). Then the result follows easily from (1.8), applying the definition of p-
quotient to the B-sets X for A and Y = X U {h; — hp}\{h:} for A\H;;(1). Note that
|Y| = | X| has cardinality divisible by p. ‘

Remark (3.4). The Young diagrams for the partitions ). in the p-quotient AP =
()\0,&, .ev yAp—1) of X may be visualized as subdiagrams of nodes with hooklengths di-
visible by p in the Young diagram Y (A) of A as follows: Let e be given, 0 < e < p—1.
Suppose that a;, > a;, > -+ > a;,, i1 > i3 > -+ -1, are exactly the parts a; of A satisfying
a; — 1t = e(mod p). Suppose that the ¢;-th row of A contains age) nodes of length divisible
~ by p. Then A, = (a&e), ... ,a{?)). This may be seen from (3.3) and the results of section 1.

Example.
a; — ¢ (mod 3)
@[ 14] 18] 10]@[ 8 [®] 5| ¢ [(3] 1 1
13/ 12| 11/ 8| 7|6|4|3]|2]|1 2
p=3 gl7l6|3]|2]|1 0
4(3|2 | 2
®| 2|1 1

Y
The circled nodes form Y(3,1), where A; = (8,1). From row 2 and 4 we see that A\; = (3,1)
and from row 3 that Ao = (2).

Proposition (3.5). Let A be a partition with p-core ;) and p-quotient A®) = (Mg, Ayy- -t
Ap-1)- Let A° be the conjugate partition to A\. Then

Ay = Ow)°
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and

(/\0)(;)) = ()\p 1 p—27 7/\8)

Proof. The statement about (A%, is clear from the description of the p-core as the
partition obtained by removing all p-hooks. The statement about (A\°)") may be deduced
most easily from (3.3) and (3.4) by noting the following: By definition h;;(A) = a; — ¢ +
b; — j + 1 where b; is the j-th part of A% If k;j(A) = hp and if a; — i = e(mod p), where
0<e<p-—1,thenbd;—j=(p—1)— e(mod p).

The next definition is very important for our work: Let A be a partition. If A® =
" (Xoy- -+, Ap—1), then the integer

wp(A) = [of + [Maf + -+ 4+ [Apa

is called the p-weight of A.
Proposition (3.6). Let A be a partition. We have

(i) The number of p-hooks to be removed to go from A to Ag) is wy(A).

(i) 1A= Pl + pwp(R).

(ii1) Exactly wy(A) hooklengths in A are divisible by p.

Proof. By (3.3) the removal of a p-hook in X is equivalent to the removal of a 1-hook in
the p-quotient A(® of A. Since exactly w,()) = ¥; |Xi| 1-hooks may be removed from AP,
(i) follows. (ii) is immediate from (i) and (iii) is a consequence of the bijection established
in (3.3).

By definition a p-core of n is a partition of n without p-hooks. A p-quotient of n is a p-tuple
(Ao, A1y .. 5 Ap—1) of partitions satisfying 3 || = n. The set of p-quotients of n is denoted
K(p,n). The cardinality of K(p,n) is k(p,n), see (3.11) and also (9.13) (iv).

<+ Proposition¥3.7). Givén a p-coré'x and a p-quotient (Ao, A1, ... ,"Ap21) there exists a

unique partition A such that Ap) = & and AP) = (Ao, A1, ..., Ap—1). Moreover, |A| = |&|+pw,
where w = |Xo| + « -+ + |Ap-1]).

Proof. Choose a 3-set Y for « satisfying that p | |Y| and that forall 7,0 < ¢ < p—1
Y;(p ) contains at least I(X;) elements. By (3.1) such a choice is possible. Choose (-sets
Xo, X1, y Xp—1 for Ao, A1,. .., Apq respectively satisfying [X;| = IY(p)I for all :. This is
possible by (1.3). Then by deﬁmtlon

X‘“‘ z—O{xp+zlw€X}

is a B-set for a partition A with Ay = & and AP = (Aq,...,Ap—1). Moreover, if p is
another partition with the same p-core and p-quotient as A, choose a B-set X' for p with
|X’| = |X|. Then the definition of p-core and p-quotient above forces X = X', i.e. A = p.
The fact that |A| = |&| + pw follows from (3.6) (2).
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Let & be a p-core and w € NU {0}. We define B(w, £) = {A € P(|c| + wp) | A) = &}, the
set of partitions with p-weight w and p-core .

Corollary (3.8). Let & and &’ be arbitrary p-cores, w € NU {0}. There is a bijection
or v : B(w, k) — B(w, ')

satisfying that ©¥ ,(A) = X’ if and only if A and X’ have the same p-quotient.

Krye!

Proof. Immediate from (3.7).

Remark (3.9). The previous Corollary (3.8) is of particular interest when one of the p-
cores, say &', is chosen as the partition (0) of 0. Then 6 = O 1s called a reduction map.
The effect of ©¥ is to "throw away the p-core”. If one would like to replace the p-tuple
of partitions in the p-quotient of a partition A by a single partition which incorporates
the complete p-hook structure of A\ and has an empty p-core, this partition should be
N = 6¥()), where w = w,()) and & = A,). Note that by (3.6) (2) |A| = [Am)| + [N

Remark (3.10). By (3.9) if « is a p-core and w > 0 then |B(w, £)| = |B(w, (0))| equals
the number of p-quotients (Ao, A1, ... ,Ap—1) With of w. Thus |B(w, )| depend only on w
and p. Thus cardinality play an important role in the following and is denoted k(p,w).
We have obviously

(3.11) E(p; w) = T (wo i swpq) P(W0)P(w1) - - P(Wp-1),

whete (wo,...,wp-1) runs through all p-tuples of non-negative integers with 3, w; = w.
In particular k(p,1) = p, k(1,w) = p(w).

Let us mention that for any p-core & and any w > 1 there is an action of the wreath
product Z; wr S, on B(w, ). Indeed we let Z; wr S, act on the set K(p,w) of p-quotients
of w which then by (3.7) induces an action on B(w, ). The base subgroup Zs X - -+ X Z
acts on the quotients by conjugating the partitions in a quotient and S, by permuting the
partitions in a quotient. Since P(n), the set of all partitions of an integer n, is a union
of sets B(w, k) for suitable w’s and &’s we get an action of Z; wr S, on P(n). To the
knowledge of the author, this interesting action has never been studied seriously.

We finish by some miscellanous results and remarks, some of which are needed later.

First we describe a nice theory of relative p-signs for partitions having the same p-core.
(See (11.6) later.)

Let X be a B-set. We number the elements of X with the numbers 1,2,...,|X]| in two
different ways:

In the natural numbering the elements of X are numbered according to their size in in-
creasing order. (Thus c is numbered lower than d if and only if ¢ < d.)

Next, let p be an arbitrary positive integer. We represent the elements of X as beads on the
p-abacus as above. (So there is a bead in the a-th row of the i-th runner (0 <: < p—1)
if and only if ap + i € X.) The j-th layer, j > 1, consists of those beads which have
(j —1) beads above them on their respective runners. In the p-numbering the element of X
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represented by the j-th bead in the i-th runner is numbered before the element represented
by the j;-th bead on the ¢;-th runner if and only if

j<ji or j=j1 and i<y
(i.e. according to the layers!).

When we compare the natural numbering of X with the p-numbering of X we get a
permutation 7,(X) of {1,2,...,|X|}, whose sign is denoted by 6,(X). It is easily verified
that 6,(X) = 6,(X*!) and so if X is any f-set for the partition A we may define

8p(A) = 85(X),

the p-sign of .

Example. Let p = 3 and consider the S-set X = {9,8,7,4,1,0} for the partition A =
(4,4,4,2). The 3-abacus of X is

@ @ >
3 5
6 @

©) 10 11

The first layer is 0,1,8, the second layer is 9,4, and the third layer is 7. Thus
@1 @2 2 ‘ @1 @2 2
3 @®; 5 3 (@ 5

Natural numbering;: 3-numbering:

64@54 6@6
® 10 11 ®, 10 11

and so
1 23 45 6
”3(X)=(1 256 3 4)2(35)(46)
and |

85(X) = 65()) = 1.

Suppose that the partition u is obtained from A by removing a sequence of p-hooks. Then
we define the relative sign 6,(A, ) by

6p(A, 1) = 6p(A)6p(p)-
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Trivially, the relative sign is transitive. If p is obtained from A by removing a sequence
of p-hooks, and ( is obtained from g by removing a sequence of p-hooks, then §,(A,() =
8p( X, 1)65(p,¢). Therefore we are led to consider the minimal case where y is obtained
from X by removing a single p-hook H;;()) say. Then a B-set Y for p is obtained from X
by replacing h; by h; —p and by (1.9) the leglength of the hook is b;;(A) = {d € X | hi—p <
d< h,}l

Since the number of beads above the one representing h; on the relevant runner on the
p-abacus for X equals the same number for h; — p on the p-abacus for Y, the p-number
of h; € X equals the p-number of h; — p € Y. But obviously the natural numbering is
changed by a cycle of length b;;(1) 4+ 1. Thus

Lemma (8.12). If p is obtained by removing the single p-hook H;;()) from A, then
50 k) = (150

where b;;(1) is the leglength of the hook.
From this and the transitivity of the relative sign we get:

Proposition (3.13). If u is obtained from A by removing a sequence of v p-hooks having
leglength b, b, ... , by, then

(A p) = (=1)°

where b = 3, b;. In particular the residue of b(mod 2) does not depend on the choice of
p-hooks being removed in going from A to u.

This result can be applied in particular to the case where u = A(;), the p-core of A. For a
B-set for A(;) the natural numbering and the p-numbering coincide since the beads on the
p-abacus are all in the highest possible position. Thus ,(A)) = 1 and we have

Corollary (3.14). For any partition

s =5(0).
Note. This shows that 6,()) is the sign o of Robinson [56] or [25], p.82.

Remark (3.15) (On the p-core/defect 0 problem). Let ¢(p,n) be the number of p-cores
of n. We are concerned with the following question:

For which p and n is ¢(p,n) #0?

This apparently purely combinatorial question is of importance in the representation theory
of symmetric (and other) groups. As we shall see in section 6, when p is a prime, then
¢(p,n) equals the number of p- blocks of defect 0 in S, whereas for general p ¢(p,n) counts
unipotent characters of general linear groups GL(n,q) which are of defect 0 for suitable
primes not dividing ¢ (the "non-defining characteristic”), see (8.8).
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Trivially all partitions of n are p-cores when n < p, so in that case ¢(p,n) # 0. Moreover,
¢(1,n) = 0 when n # 0. It has been known for a long time that

! if n=~Fkk+1)/2 forsome k>0
o2,n) = { 0 otherwise.
The 2-core of k(k + 1)/2 is the partition (k,k—1,...,1).
It is also known that ¢(3,n) = 0 for infinitely many n. For example ¢(3,7) = 0.
However, looking at tables of ¢(p,n) for p > 4 it seems reasonable to conjecture.

Conjecture (3.16). For alln and all p >4

e(p,n) # 0.

The following is known to the author about (3.16):

(i) Many authors (Klyachko, Atkin, Andrews, ...) have given an explicit formula for
¢(5,n) implying in particular ¢(5,n) # 0 for all n ([27]).

(i1) Erdmann and Michler ([17]) have explicitly exhibited how to construct a 5-core of n
for any given n.

(ii1) From (1.6) we get: If p | p’ then a p-core is also a p’-core. Thus: If p | p' then
c(p,n) < ¢(p',n). In particular, if ¢(p,n) # 0 then ¢(p’,n) # 0.

(iv) K. Ono has shown: ¢(p,n) # 0 if p > 4 is even (see [53]).

(v)>Several authors (Klyachko, Atkin, Ono, ...) have noticed that for p > 4 there are at
most finitely many n, s.t. ¢(p,n) # 0. However, it does not seem to be possible for
a given p to give an explicit bound m, s.t. ¢(p,n) # 0 for n > m.

e (vi)~Ifpis divisible by 7,9, or 11 then é(p,n) # 0 for all n (Atkin, Ono, ...). This list of
odd numbers/primes may probably be extended by a case-by-case analysis.

Most of the non-trivial results above including (iv) — (vi) have been proved using the theory
of modular forms. The point is that the generating functions for ¢(p,n) (see (9.17)), given
p, may be expressed using a quotient of Dedekind’s 5-function which is a modular form of
weight 2% on T'o(p) (see [27], [53],... for further details). An alternative approach which
is quite interesting but does not appear to be easy to use for obtaining results is this:

Let X be a minimal §-set for a p-core. Then 0 ¢ X and the 0-th runner on the p-abacus
for X must be empty and X = X(;). This means that X is characterized by a (p— 1)-tuple

(21,T2,...Tp_1) of non-negative integers where |XP| = z; for 1 <i <p—1 (|X{P| = 0).

24




If X is characterized by (21,...%p-1) is a B-set for the p-core £, then we get by an easy

calculation that - sore
T . i=1 T4
W=l (3) +ix] - (757).
The right hand side may be seen as a polynomial of degree 2 in the z;’s. Then Conjecture
(3.15) is equivalent to the question whether any positive integer is represented by this
polynomial for non-negative integral z;’s. A variation on this is presented in [23]. This
finishes our remarks on (3.16).

It is quite easy to prove some surprising results about 2-cores of classes of partitions. As
an example, let us look at the following result:

Proposition (3.17). Let p > 0 be odd. Let & be any p-core. Then the p partitions in
the set B(1, x) have at most two different 2-cores.

This result is proved using (-sets. We have seen that the 2-cores are exactly the following
partitions & where

' k= (k,k—1,...,1)
k > 0. From (3.2) and its proof we get easily the following:

Lemma (3.18). Let X be a B-set for the partitions A. Suppose that X contains r odd
integers and s even integers. Then in the above notation A(y) = ki, where

k—{ g$—r if s>r

r—s—1  if s<r

Proof of (3.17). Let Y be a f#-set for £ with the property that all runners in the p-abacus
for Y are non-empty (Y ?) = {§ for all e). By (1.8) we obtain SB-sets for the p partitions in
B(1, &) by replacing elements h; € Y by h;+ p. (The h;’s are represented as those beads on
the p-abacus having an empty position immediately below them.) Obviously h; and h; +p
have different parity since p is odd. If Y has r odd integers and s even integers then the
B-sets for the partitions in B(1,«) has r — 1 odd integers and s 4+ 1 even integers (if h; is
" odd) or r +'1 odd integers and s — 1 even integers (if &; is even). The result follows from

(3.17).

Remark (3.19). In (3.17) « does not really need to be a p-core: If & is any partition,
p odd and if B is the set of partitions obtained by adding an arbitrary p-hook to &, then
the partitions in B have two different 2-cores at most. The same is true for the set B’ of
partitions obtained by removing a p-hook from «.

4 On bar partitions

In this section we describe a non-trivial analogue of the results of sections 1 and 3 for
partitions into distinct parts. This is needed for the study of spin characters of the covering
groups of 5.
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If X is a partition of n with all parts different we call A a bar partition. (Such a partition
is usually also called 2-regular.) We assume that

(1) A=(a1,-..,am), a1 >a3> >y >0

is a bar partition of n. The set of bar partitions of n is denoted P(n) and |P(n)| = ¢(n).
Let S(A) be the shifted Young diagram of A. It is obtained from the usual Young diagram
of A by shifting the ¢-th row (i — 1)-positions to the right. For example, if A = (4,2,1) then

S(A):

The j-th node in the i-th row will be called the (i,j)-node. To each node in S(A), we
associate an integer bar length as follows: The bar lengths in the :-th row are obtained by
writing the elements of the following set in decreasing order:

(2) Hi(N) ={1,2,...,a:} U{ai+a; | § > i}\{ai —a; | § > 1}

(Soin {1,2,... ,a;} one replaces a; — a; by a; + a;). Thus the first (m — 7)-bar lengths are
a; + @41, .. ,0; + am (in this order), and then the remaining a; — (m — ¢)-bar lengths are
the hook lengths in the i-th row of the partition A* = P*()) (considering A as a f-set!). As
was the case with hooks we put H()\) = U;H;()), a multiset.

In the above example the bar lengths are

6 1

5 4
3 2
1

41
(Note that 2 is the hook diagram for (2,1%) = P*({4,2,1}).)
1

We denote the (i, j)-bar length by h;;()). To each node (i,3) in S()\) we associate a bar,
i.e. a subdiagram of S(\) consisting of h;;(\) nodes. If i 4+ j > m the (3, )-bar consists of
the last h;;(\) nodes in the i-th row of S(A). Such a bar is called unmized. If i + 5 < m,
the (Z,j)-bar consists of all the nodes in the i-th and all the nodes in the (z + j)-th row
of S(A) (a mized bar). If we remove the nodes of the (7, j)-bar from S()\) and rearrange
the rows of the diagram obtained according to size we obtain a new shifted diagram S(u)
and say that u is obtained from X\ by removing the (4, j)-bar. Thus u € P(n — hi;(X)). The
parts of u are

a1,az, ... ,8i-1,8;i — hij(A), i1, ... yam i i+ > m

and

Aiyeee 3 Qin1y Qitly v 504515 Qigjtls -2 O if +7J § m.
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If the (i, )-bar is removed from X to get p we write p = A\H;;(A). A bar of length [ is
called an I-bar. The (1, j)-bar is said to be of

Typel, if i1+j2m+2
C Type2, if i1+j3j=m+1
Type3, if i+j<m mixed bar

unmixed bar
(3) }

This is illustrated in the following shifted diagram:

('ElQZ 1

mixed unmixed

We define the leglength b;;(X) of the (i, )-bar of A as follows:

Bii(\) = {k | @i > ax > ai — hij(A)}] for bars of type 1 and 2
VYT aigi + {k | @i > ak > aig;}|  for bars of type 3.

We investigate all bars in A whose lengths are divisible by a fixed positive integer p. As
was done in section 3 (for B-sets of partitions) we represent the parts of A as beads on a

p-abacus. This abacus has runners and positions on the runners as described in section 3.
For 0 < i < p— 1 we define

X} = {a € Ny | There exists a k,1 < k < m, such that a = ap + 1},

so that the X} are B-sets. The bead configuration of A on the p-abacus then includes a
bead in the j-th position of the i-th runner if and only if j € X2,

(The material on the following pages has been taken from [48].)

We define a p-bar core A(z) (abbreviated p-core) and a p-bar quotient A®) (p-quotient) for A
having properties analogous to the p-core and p-quotient for arbitrary partitions described
in section 3. Especially we want the structure of A®) to describe the bars of length divisible
by p. In general this is only possible for p odd. Consider the following:

Example. ) = (3,1). The bar diagram is * :13 ! . So ) contains a 4-bar, but no 2-bar.

This shows that for p = 2 there cannot be a p-quotient having the property of Theorem
(4.3) below. The same difficulty arises when p is even. (Then (3p/2, p/ 2) has a 2p-bar but
no p-bar.) This also shows that both statements of the Corollary in [38], p.31, are false for
p(--‘ q) even. Another difficulty arises also when p is even. Part of it is reflected in [38],
Theorem 2(2). In [38], p-quotients are also defined for p even but they are not suitable for
our purposes.

However, a careful examination of the arguments below shows that the difficulties will not
arise for A when X;\IZ = 0.
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We assume from now on that p is odd and put ¢ = (p—1)/2. Then we define the p-quotient
AP = (Xo, Aty ee s Ae),

where )\ is the bar partition whose parts are the elements in X2 and wherefor 1 S j St

“4) =P (X} | X;;)
in the notation of (2.7). Thus )i,...,\; are partitions. The runner 0 determines X and

for 1 £ j £t the conjugate runners j and p — j determines ;.

The removal of a p-bar is registered on the abacus as follows (see (3)):

Type 1: Move a bead one position up to the same runner.

Type 2: Remove the bead in the first position on the 0-th runner.

Type 3: Remove the two beads in the 0-th position on the j-th
and the (p — j)-th runner for some j, 1 £ j < t.

(3)

When we remove recursively all p-bars from A we see (using (5) repeatedly) that the
p-abacus configuration is changed until the following configuration is obtained:

(i) There are no beads on the 0-th runner.

(ii) For 1 £ j < p— 1 the j-th runner contains l; = Max (| X}| — |X,_;],0) beads in the
[; first positions.

Thus:

Proposition (4.1). The p-core )\ of A obtained by removing all p-bars from A is
uniquely determined by A and p.

Putting f; = |X}| — |X)_;| for 1 £ j < t, we see that the {-tuple (f1,.-. s ft) of integers
determines Az completely. We call it the characteristic of Ap)-

Example. ) =(17,14,13,11,9,5,2), p = 5:
5-abacus: 0 1 @ 3 4

@678@
10 @ 12 @ @

15 16 @ 18 19

X3 = (1), X} = {2, X = {3,0}, X = {2}, X = {2,1}. Thus do = (1), M =
P(2[2,1) = (4,2), \ = P(3,0 | 2) = (3,1%).
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Partition sequence for A;: 0110|1101.

Partition sequence for Ay: 0100|01101.

Characteristic: (-1,1) Ag = (4,2).
Suppose that ()\6, M,...,)\) is given where ) is a bar partition and Ay, ..., s are parti-
tions, and suppose that (fi,... , fi) € Z!. Let Xo be the set of parts of Ao and for 1 1St

let

Fr(x) = (Xi | Xpi)-
Then the bar partition A having X} = X; for i = 0,1,...,p — 1 has (XosA,.-- 5, A¢) as a
p-quotient and its p-core has (f1,..., fi) as characteristic. (As in section 2 F' denotes a
Frobenius symbol.) We have proved:

Proposition (4.2). A bar partition determines and is uniquely determined by its p-core
and its p-quotient.

We may generalize (5) as follows:

The removal of an Ip-bar, [ 2 1 is registered on the p-abacus as follows:

( Type1: Move a bead ! positions up to the same runner.
Type 2: Remove the bead in the I-th position on the 0-th runner.
Type 3: (i) Remove the two beads in the 0-th runner in the [;-th
(6) 4 and lg-th position, 1 § 11 < 12, ll + 12 =[.
’ (ii) Remove the bead in the /;-th position and the j-th runner
and the bead in the l;-th position and the (p — j)-th runner,
\ 1§J§t7ll+12=l—1

Defining an I-bar in A®) = (X, A1, ..., A¢) to be either an [-bar in )¢ or an [-hook in one of
the partitions Ay,...,A; and the remowval of an I-bar in M?) correspondingly, we have the
following important result:

Theorem (4.3). There exists a canonical bijection g between the set of bars of A of
length divisible by p and the set of bars in AP Thereby an Ip-bar is mapped on an [-bar.
Moreover, for the removal of corresponding bars we have

O\H)P = AP\g(H).

Proof. Suppose that H is an Ip-bar, I 2 1. We adapt the notation of (6).

Type 1. The removal of H is registered by moving a bead [ positions up on (say) the j-th
runner. In A®) this corresponds

if j = 0 to the removal of an I-bar of type 1 in Ao,

if 1 < j <t to the removal of an [-hook in part B of the Young diagram of A;,

ift+1<j < p—1to the removal of an [-hook in the part C of the Young diagram of A,_;.
(The letters B and C refer to the decomposition of a Young diagram described in section
2.
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Type 2. The removal of H is registered by removing a bead from the 0-th runner. Corre-
spondingly the [-bar of type 2 is removed in Ao.

Type 3. (i) The removal of H is registered by removing beads representing lip and lsp.
Correspondingly a mixed I-bar (of type 3) consisting of the parts [, I3 is removed from Ao.
(ii) The removal of H is registered by removing beads on the j-th and p — j-th runner
(1 £ £t). Correspondingly a mixed hook relative to (X} | X,_;) is removed from }; (in
part A of the Young diagram).

The above describes how the map g has to be defined in order to be cdmpatible with the
removal of bars and shows its existence. Thus (4.3) is proved.

If A® = (X, A1,... ,A\s) we define the p-weight of A as

wp(A) = Aol + [Ax] + -+ 4+ |Ae].
Repeated use of (4.3) (with ! = 1) shows (cfr. also (3.6)):
Corollary (4.4). Notation as above.

(i) The number of p-bars to be removed to go from A to A is wp(A).

(i) Al =A@+ pws(X).

(iii) Exactly wz()) bar lengths in A are divisible by p.

Corollary (4.5). If ) contains an Ip-bar, I > 2, p odd, then A contains also a p-bar.

As we have seen, wp(A) p-bars have to be removed going from A to A). One may ask how
many of these p-bars are of type 1,2 and 3 respectively. This number will depend on A
and AP as follows (let as usual I(\) denote the number of parts in the bar partition J, i.e.

the length of A):
Corollary (4.6). Let A®) = (Xg, Ay,..., ).

(i) The number of p-bars of type 2 being removed going from X to A is {(Ao).
(21) ))The number of p-bars of type 3 being removed going from X to A(z) is (I(A) —I(A)) —
1(Xo))-

Proof. (i) is an easy consequence of the proof of (4.3).

(ii) By the removal of a bar of type 2, the number of parts in a bar partition is reduced
by 1, and by the removal of a bar of type 3 the number of parts is reduced by 2. So if a is
the number of p-bars of type 3 being removed going from A to A, then by (i)

I(3) ~ 1) = %) +2a.
The result follows.
Let « be a p-core and w € NU {0}. We define

Blw, k) = (A € (x| + wp) | Mgy = r)
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the set of bar partitions of p-weight w with p-core «.
Corollary (4.7). Let s and &’ be arbitrary p-cores, w € NU {0}. There is a bijection

™, : Blw,k) — Blw,«")

satisfying that ©%,()\) = X if and only if A and X’ have the same p-quotient.

Remark (4.8). By (4.7) if k is a p-core and w > 0 then |B(k, w)| equals the number of
p-quotients (Ao, A1, ..., As), with 3;|A\i| = w. Here t = (p — 1)/2, Ao is a bar partition and
A1, ..., are arbitrary partitions. Thus (see also (3.10))

B(k,w)| = k(p,w), where
q(p,w) = §Q(i)k(t,w-—i)

It is possible to prove analogous (considerably more complicated) of the results on relative
p-signs in the previous section (see (3.12) — (3.14)) in the case where A is a bar partition
and where bars replace hooks. Again it is reasonable to restrict ourselves to the case where
p is odd. The relative p-sign is of importance when you consider iterated versions of the
spin analogue of the Murnaphan-Nakayama formula (see [37] from which the following is
taken) and may also be of relevance in another connection (see (13.15)).

A ~v-set X is a finite subset of Z with the following property: If ¢ € X and ¢ < 0 then
t+1eX.

The y-set X consists of two disjoint subsets

X = {iex|i20}
Xt = {iex|i>0}

If the elements of Xt form the parts of the bar partition A we call X a «-set for A and write
P*(X) = A. Thus a bar partition A has infinitely many +-sets. These are distinguished
simply by |X~| (since |X~| of course determines X~ = {0, -1,...,—(|X"| - 1)}).

Example. X = {-2,-1,0,1,4,5} is a y-set for P*(¥) = A = (4,5,1) € P(10).

Our idea is to describe the removal of p-bars in terms of «-sets which have the same
cardinality for these partitions. This will make it possible to define the p-bar sign (p-sign)
of A as the sign of a permutation.

Suppose then that P*(X) = A, P*(2)) = p, that |X| = |2)|, and that p is obtained from A
by removing a p-bar. Then

19~ = %7, D" \{e}H)U{a—p}, a>p if the bar is of type 1,
19~ =1X"|+1, 9*=x"\{p}, if the bar is of type 2,
D |=%"|+2, Pt =%*\{q,a'}, (a +a' = p) if the bar is of type 3.
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As was the case for $-sets in section 3, we number the elements of a v-set X by 1,2,...,|X|
in two ways: :

In the natural numbering the elements of X are numbered according to their increasing
order. For an odd number p we definé the p-numbering of X as follows: The elements of
Xt are placed on the p-abacus as usual. Two elements of Xt are called conjugate if

(i) their beads are situated on two conjugate runners,

(ii) they are in the same layer, i.e. the number of beads above these beads on their
respective runners is the same.

An element in X% having no conjugate element will be called isolated. We then decompose
Xt as

Xt = {a€ x| pdivides a}

X}t = {a€ X |ahas a conjugate element in X%}
Xt = {e€Xx*|ptfaandaisisolated}.

We first number the elements of X~, then those in X, then X}, and finally X}. The
elements of X~ are given the same numbers as in the natural numbering. Then the elements
of X¢ are numbered in their increasing order. The elements of X} are numbered as follows:

(i) Suppose that a and o’ are conjugate elements. Then they will be given two consec-
utive numbers k and k + 1 with the condition that a will get the lowest number k if
and only if the corresponding bead is on a runner with an even number.

(ii) If (a,d’) and (b, ') are pairs of conjugate elements, then a and a’ are numbered before
b and ¥, if and only if min{a,a’} < min{b, ¥'}.

Finally, the elements of X} are numbered according to layers as follows: An element
represented by the j-th isolated bead on the i-th runner is numbered before the element
represented by the j;-th isolated bead on the i;-th runner if and only if j < jyor j = 53
and ¢ < 2:1. :
When we compare the natural numbering of X with the p- numbering of X we get a
permutation 75(%), whose sign is denoted by §5(%). Since the numbering of the negative
elements of X is the same in the natural and in the p-numbering we have that 6;(%X) = §;(2)
if X and ) are y-sets with X* = 9*. Therefore we may define the p-sign of A by

E5(\) 5= 65(%)
if X is a y-set with P*(¥) = \.

Since the above rules and definitions are quite complicated, we illustrate them with an
example.
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Example. ¥ ={-1,0,1,6,8,9,10,13,14,15,16,17,21}.
P(%) = A = (21,117,16,15,14,13,10,9,8,6,1). Let p = 5.

5-abacus for X+

¥~ = {-1,0}. o @ 2 3 4
x¢ = {10,15}. 5 (6 7 ©)
¥+ ={1,6,8,9,14,17}. @ 11 12 @ @&
Conjugate pairs: @ do d 18 19
(1,9), (6,14), (8,17). 20 @ 22 23 24

¥F = {13,16,21}.

The elements of ¥~ are numbered 1, 2 in both numberings. After that we have

Natural numbering 5-numbering
0 @, 2 3 4 0 @D, 2 3 4
5 ©, 7 ®, O, 5 ©, 7 ®,0,
@, 11 12 @, @3, @, 11 12 @3, 0,
®, ®, @, 18 19 ' ®, ®, @, 18 19
20 @),22 23 24 20 @), 22 23 24

(In the 5-numbering 9 is numbered before 1 because 9 is on the 4-th (even) runner and 17
is before 8, since 17 is on the second runner. The layers of X} are {13,16}, {21}. Then 16
is before 13, because 16 is on the first runner and 13 on the third.) We have

¥

1234 567 89 1011 12 13
126 8 10 5 3 127 41 9 13

- (3’ 6,5,10,4,8,12,9, 7)

m5(X) =

and so,

85(%) = 65(3) = (-1)° = 1.

If i is obtained from ) by removing a sequence of p-bars we define the relative sign 65(\, 1)
as

65(A, 1) = 5(A)65(1)-
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We trivially have transitivity. The following may be proved by considering bars of type 1,
2 and 3 separately. We omit the details:

Lemma (4.9). If u is obtained from A by removing a single p-bar H, then
85\, 1) = (=1)°)
where B(H) is the leglength of the p-bar H.

Analogous to section 3 we get:

Proposition (4.10). If p is obtained from A by removing a sequence of v p-bars with
leglengths b1, b2,... ,b, then )
85\, ) = (~1)2,

In particular, the residue of ¥ b;(mod 2) does not depend on the choice of p-bai‘s being
removed in going from A to p.

If X is a p-core and X is a v-set for A, then X* = X} and so the natural numbering of X
coincides with the p-numbering. Thus §;(A) = 1.

Corollary (4.11). If A is a bar partition, then
613(A) - 65()\, A(ﬁ))'

Remark (4.12) (The p-core problem). Let p € N be odd. A p-core « is called a p-core of
n if |k| = n. Let ¢(p,n) be the number of p-cores of n. Above we have developed a theory
of p-cores and p-quotients in complete analogy with the theory of p-cores and p-quotients
in section 3. Therefore it seems reasonable to ask (see (3.15)):

For which p and vn, p odd, is ¢(p,n) # 09

As we shall see, ¢(p,n) equals the number of associate classes of spin characters of p-defect
0. Numerical evidence seems to suggest:

Conjecture (4.13). Foralln and alloddp>#2
c(p,n) # 0.

Contrary to (3.15) not much is known about this question. The main reason is that
methods involving modular forms cannot be applied here. This has to do with the form of
the generating function for ¢(p, n) (see section 9). However, recently Erdmann and Michler
[18] verified (4.13) for p ="~ -7 using another method.

5 On Lusztig’s symbols

The unipotent characters of the finite classical groups are indexed by combinatorial objects
which G. Lusztig called "symbols”. They may be seen as generalized partitions/f-sets and
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the ideas of sections 1 and 3 may be applied to study the unipotent character degrees as
we shall see in section 8.

In section 2 we described ”Frobenius symbols” for partitions as an ordered pair of -sets.
Lusztig’s symbols are infinite classes of such pairs of S-sets. The theory developed in
section 2 does not really Lave any connection with the following. The material in this
section has been taken from [46].

If X is a fB-set for the partition A we define the rank of X by
tk X = |P*(X)] = |l

We fix e € N. Suppose that X is a f-set with X = X(¢) (see section 3), i.e. a fB-set for an
e-core. Suppose that g, A1, ... ;Ae—1 are partitions such that there exist for each ¢ a (-set
Y, for \; with |¥;| = |X{?|. Then we define

e—1
(1) X %Moy Mye e dem) = J{ze+i|z €Y}
. =0
The proof of (3.7) shows that P*(X x(Xo,... ;Ae—1)) = A is a partition with Ay = P*(X),
)\(e) = (/\0, Pen ,Aé_l).
A symbol is an unordered pair [X,Y] of finite subsets of No (B-sets). One identifies the
symbols [X,Y] and [X*,Y*] for all ¢ > 0. Define then

(2). (X, Y] = [P*(X), P(Y); | X| = V],

so w[X,Y] is a triple [\, p;2] where X and p are partitions and z € Z. The map = is
compatible with the identification of symbols. One has to identify [), p; 2] with [g, A; —2]
since a symbol is unordered. Then 7 is a bijection between the set of symbols and the set
of such triples. Lusztig calls ||X| — |Y|| the defect of the symbol [X,Y]. However, to avoid
confusion with a concept in modular representation theory we call

dix,Y]=IX| - ¥l

the difference of the symbol. We call P*(X) and P*(Y) the associated partitions of the
symbol [X,Y]. There are always infinitely many symbols having the same pair of associated
partitions. These are distinguished by their differences.

Throughout this section we assume X = {a1,4a2,... ap}, Y = {b1,bo,... ,bi}, where a; >
ag >+ >ap>0,b >by>--->b >0. Then the rank of [X,Y] is defined by

k i 1\ ?
(3) rk[X,Y]:Zai+;bj— (.’?_té__l”

=1

where [c] denoted the integral part of c. Using that

()« () -[5))
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we find
dx, Y]\’
(4) k[ X, Y] =rk X + kY + l:(——i——) } .

In particular rk [X,Y] > rk X + rk Y with equality if and only if d[X,Y] < 1.
We now consider hooks and cohooks of a symbol [X,Y]. Put

HH[X, Y] = H(X) U HE).

Then H*[X,Y] is the multiset of hooklengths of [X,Y]. Thus a hooklength of [X,Y]
is simply a hooklength of one of the associated partitions (by Proposition (1.4)). If
e € HY[X,Y], say e € H;(X) we remove the corresponding hook of [X,Y] by replac-
ing [X,Y] by [{a1,.-. ,0i-1,a; — €,8i41,... ,ax},Y]. We proceed analogously if e € H;(Y).
By Proposition (1.8) removing an e-hook of [X,Y] means simply removing an e-hook in
one of the associated partitions.

For 1 <i<kand1l<j <! wedefine

(5) 'H,'(X, Y) = {1,2,. .. ,ag}\{a,— - bj ] bj < a,-}
(6) HJ(Y; X) = {1,2, cee ,bj}\{b-—- a; [ a; < bj}
(7) HX,Y) = UHi(X,Y)

(8) HY,X) = (Y, X)

and

Ho[X,Y] == H(X,Y) | H(Y, X).

Then H~[X,Y] is the multiset of cohooklengths of [X,Y]. If e € H™[X,Y], say e € Hi(X,Y)
we remove the corresponding cohook of [X, Y] by replacing [X, Y] by [X\{a:},Y U{a;—¢€}].

When we remove and e-hook from [X,Y] the rank is reduced by e and the difference is
unchanged. When we remove an e-cohook the rank is reduced by e and the difference is
changed modulo 2.

As in section 3 it is convenient to visualize a symbol on two runners of an abacus, the
runners going from north to south. On one runner the positions of the beads indicate the
elements of X (a bead in the i-th position if ¢ € X) and similarly the beads in the second
runner indicate Y. To remove an e-hook (e-cohook) means on the abacus that you move
a bead e positions up to an empty space on the same runner (the opposite runner).

The hooklengths of H*[X,Y] may be arranged in the hookdiagrams of the associated
partitions. In a similar way the cohooklengths of H(X,Y") and H(Y, X) may be arranged
in two ”cohookdiagrams” as illustrated by the following example:
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9 8 6 4
4 2
1

Example. Let X = {9,7,4,2} and Y = {3,1,0} so =X, Y] = [(6,5,3,2),(1);1].
31 '
1

Hookdiagrams:  H(X) : HY) : 1

3 2

HY,X) ©

7
Cohookdiagrams:  H(X,Y) : 5
2

Here the first row of H(X,Y) is {1,2,... ,9}\{9-3,9—-1,9— 0} = {7,5,4,3,2,1} and the
first row of H(Y, X) is {1,2,3}\{3 — 2} = {8,2}.
Let us list the formulas for the numbers of hooks and cohooks of a symbol. If A*[X,Y] :=
|H+[X,Y]|,h"[X,Y] := |H7[X,Y]| then we have
9 RH[X,Y] = tkX +1kY =) a;+ Y b~ (I;) - (;)

i J

(10) R[X,Y] Za;+25j~kl+]XﬂY|.
: ; j

Il

The formula (9) is obvious by the definition. The set of cohooklengths is obtained by sub-
tracting the kl—|X N Y| elements {|a; — b;| | a; # b;} from UAL,... ,atuUi{L,2,...,b}.
This proves (10). Whereas by (4) h*[X,Y] < rk[X,Y] it is not true that in general
r~[X,Y] < rk[X,Y]. ,

The following result generalizes a result of Na,kayama on hooklengths, see (1.6). The proof
is similar. '

" Lemma (5.1). Let ¢ = %+ be a sign, t,e € N. Suppose that te € HE[X,Y]. Then
e € HX,Y].

There are examples to show that generally, the elements of H™[X, Y] cannot be arranged
in a union of hookdiagrams (i.e., there do not exist sets Xi,...,X; with H~ X,Y] =
H(X,)U -+ U H(X,)). It is not known whether the same is true for HYX, YU H™[X,Y].
This question appears not to be easy to answer. But there exists a partition whose hook
structure determines H*[X,Y] and H~[X,Y] in a unique way.

Consider the set
Z:=(02X)U@QY +1)={2a; | 1 <i<k}U{2b;+1]1<j <1}

Then P*(Z) is called a parity partition of [X,Y]. Note that if X and Y are replaced by
X+t X+t then Z is replaced by Z*? so that the partition is unchanged. If X and Y are
interchanged we get the other parity partition P*(Z’) where 2’ = (2Y)U (2X +1). By
definition the 2-quotient of P*(2') is (P*(X), P*(Y)) if k + l is even and (P*(Y), P*(X))
if k+1is odd (see section 3). The 2-core of P*(Z) is the partition (z — 1,2 —2,... ,1) of

37




z=k—1>0and (—2z,~2z—1,...,1)if z=k — 1 < 0. This follows from (3.18). Then it
is easily seen that ‘

|P(2)] - |P*(Z)] = 1—F,

SO

diX,Y] =||P*(2)| - |P*(Z)]I-

The above remarks show that we may assume without loss of generality that 0 ¢ X, i.e.
0 ¢ Z. Consider then the hooks of p := P*(Z). By Thereom (3.3) the hooks of even length
in p are in bijective correspondence with H(X) U H(Y) = H*[X,Y]. Thereby a hook of
length 2e in p corresponds to a hook of length e in H+[X,Y].

Similarly, with the exception of |Y| — |X NY| hooks of length 1 (which occur in rows
of p whose largest hooklength is odd), the hooks of odd length in p are in bijective
correspondence with the cohooks of [X,Y]. Indeed, let Z = {c,c2... ,Ck+1}, where
g > ¢y > -+ > cppr > 0. Suppose that h € H;(Z) is odd. If ¢; = 2a; is even then
(h +1)/2 € Hi(Y,X) and if ¢; = 2b; + 1 is odd then (A —1)/2 € Hi(Y,X). This is not
difficult to see from the definition. If a € X NY then for some j ¢; = 2a + 1, ¢j41 = 2a, so
1¢ H;(Z), whereasif a €Y, a ¢ X then 1 € H;(Z) if ¢; =2a + 1.

Let us briefly discuss the analogues of cores and quotients. Again we want to register in a
natural way all hook- (and cohook-) lengths divisible by a given e € N.

The e-core [X, Y]Z‘;) of a symbol [X,Y] is obtained by removing récursively all hooks of
length e from it. As in the case of partitions, the final result is independent of the order in
which these hooks are removed. (The argument is the same.) Using the results of section

3 we see in fact that if 7[X,Y] = [, p; 2] then n[X, Y]?;) = [Me)s i(e); z]- The e-weight is

defined by
w? X, Y] = w,(\) + we(p).

By replacing X,Y by X*!, Y** we may assume that k + 1 = 0 or 1(mod 2e). Then for
0<i:<(e—1) we define Xi(e) and Y}(e) as in section 3 and put -

A= PH(X), pi o= P YO0 <i<e—1.
Then
(11) [X, Y19 := [Aos Aty -+ - » Aem1 05 ity - -+ 5 Hemt]

is the e-quotient of [X,Y]. Note that if we replace X by X*** and Y by Y** the condition
k+1=0 or 1(mod 2e) is still fullfilled and the partitions in (7) are exactly the same. If X
and Y are interchanged we get by the same construction (05 1y -+ s Be=15 A0y A1y e - - s Ae—1]
so one has to identify [Ao, ... , Ae—1; Koy - - - 5 fle—1] With [fro, ... 5 fe=15 A0y Aye vy Ae—1]- Sothe
e-quotient is an unordered pair of e-tuples of partitions satisfying

(12) SN+ 3 Il = wd X, Y]
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Just in the case of partitions ((3.3)) we see the following

Proposition (5.2). There is a bijection between the hooks of [X,Y] of a length di-
visible by e and 'H(f)[X, Y] := U/H(OOUU;H (i), where [Ao, ..., Aem1; oy - - -  fe—q] 15 the
e-quotient of [X,Y]. Thereby a hook of length te is mapped onto a hook of length ¢.

Obviously a symbol determined its e-core and e-quotient in a unique way, but contrary to
the case of partitions there may be two different symbols having the same e-core and e-
quotient. Indeed, suppose that [X’,Y"] is an e-core (i.e., a symbol without an e-hook) and
[Aos- -+ s Aemtjfoy - - - » He—1] an unordered pair of e-tuples of partitions satisfying 3; | A:| +
Y luil = w. Let |[X'| = K, [Y’| = I'. By replacing X'+, Y'+t by X'+ Y’ for suitable
t we may assume k' 4+ I' = 0 or 1(mod 2¢) and that for all 1,0 <2 < e—1, lX'("),- > w

and IY’(e)gl > w. Then the symbols [X’ * (Ao, A1,- -, Ae=1), Y * (o, p1,--- , Be—1)] and
[X" % (Xoy--+ s Ae=1)s Y * (pio, .-, pte—1)] (see (1) for the definition of the operation *) have
the same e-core [X’,Y"] and e-quotient [Xo, ... , Ae—1; ff0, - - - , le—1]. These symbols may be
equal, but generally they are not. We have in fact, as is easily seen,

Proposition (5.3). In the above notation

[X, *(A07 e 7)‘6-—1)7 YI * (ﬂO) e 7,“6-—1)] = [X’ * (Il'(), e 7”6—1)7Y, * ()\03 cey )\e—l)]
if and only if X' =Y’ or (Ao, ... ,)\?,1) = (foy- -+ » Me=1)-

Let us now consider the cohooks. We want the e-coquotient to register those hooklengths
which are an even multiple of e and those e-cohooklengths which are an odd multiple of e.
These hooklengths and cohooklengths may be seen more conveniently in the e-quotient of
the "e-twisting” of the symbol. Assume again that k¥ + 7= 0 or 1(mod 2¢). Put

% = {aex l H iseven}U{bEY ‘ E} odd}
¥ = {aex l 4] isodd}U{beY | E] even}

Then we call [X, V] the e-twisting of [X,Y]. Note that if X,Y are replaced by X+, Y** or
interchanged, the symbol [)2 , f/] is unchanged. So the e-twisting is an involutory bijection
on the set of symbols. By e-twisting the difference of the symbol is changed modulo 2.
(Here, as also in the case of the definition of e-quotients the condition k+I = 0 or 1(mod 2e)
is only to assure that that we do is well defined.) Using the visualization of a symbol on
two runners on an abacus described above we see that the following holds:

Proposition (5.4). Let [X,Y] be the e-twisting of [X,Y].

(i) If t is odd there is a bijection between the cohooks of lengths te in [X,Y] and the
hooks of lengths te in [X,Y].

(ii) If t is even there is a bijection between the hooks of lengths te in [X,Y] and the
hooks of length te in [X,Y].
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The e-cocore [X, Y], is obtained from [X,Y] by removing recursively all e-cohooks from
[X,Y]. Again the final result does not depend on the order in which the cohooks are

removed. By the above remarks it is quite obvious that the e-cocore is also the e-twisting
of the e-core of [X,Y] where [X,Y] is the e-twisting of [X,Y]. Let

w][X,Y] = (tk[X, Y] — 1k [X, Y]G,)) /e,

the e-coweight. Define the e-coquotient [X, Y](_e) as [X ,f"]g‘_g), i.e., the e-quotient of the
~ e-twisting. From (5.2) and (5.4) we get

Proposition (5.5). Let [X,Y]Sf) = [Ao, Ayeev s Aem1) oy Sy -« 5 Pemi]-

(i) If ¢ is odd there is a bijection between the cohooks of length te in [X,Y] and the
hooks of length ¢ in U; H(A:) U U; H(p;) == HE[X,Y].

(ii) I ¢ is even there is a bijection between the hooks of length te in [X Y] and the hooks
of length t in H9[X, Y.

Similar to the case of e-cores and e-quotients a symbol determines uniquely its e-cocore
and e-coquotient. There may be one or two symbols sharing the same e-cocore [ X', Y’
and e-coquotient [)\0, vy Aem1] HOy - -+ 5 Me—1]- Asin (5. 3) the former case occurs if and only

if X'=Y"or (Aoy---sAe=1) = (Hoy -y fle1)-

Finally we want to count the number of symbols of a given e-weight having a given e-core.
This gives then also a count of the number of symbols having a given e-coweight and a
given e-cocore.

As in section 3, k(s,t) is the number of s-tuples of partitions (A1, Ag,... ,A,) satisfying
i |A] = t. The symbol [X,Y] is called special if X =Y. Using methods similar to those
of section 3 we can prove: ‘

Proposition (5.6). The number of symbols of e-weight w having given non-special e-core
is k(2e,w). '

Proposition (5.7). Let [X, X] be a special e-core.

(i) If w is odd then the number of symbols having [ X, X] as e-core and e-weight w is
1 3k(2e,w). These symbols are all nonspecial.

(i1) If w = 2w, is even then the number of special symbols having [X, X] as e-core and
e-weight w is k(e,w;) and the number of nonspecial symbols having [X, X] as e-core
and e-weight w is 2(k(2e,w) — k(e, wy)).
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II. Character degrees

In this chapter we study the degrees of irreducible characters of the covering groups of Sy
and of the unipotent characters of certain linear groups. Basically we want for a given
prime p to describe the power of p dividing the degree of a given character and to compute
the socalled McKay numbers for some of these groups. Generally, if p is a prime, a > 0
and G a finite group then Irr (G) is the set of irreducible characters of G and

ma(p, G) = |{x € Irr (G) | p* is the exact power of p dividing x(1)}]

the a-th McKay number of G (w.r.t. p). We will be interested in the height and defect of
irreducible characters, defined by hy(x) = v(x(1)), do(X) = 5 |G| = Rp(x)-

6 Character degrees in S, and A,

As is wellknown [25], [56] the irreducible characters (representations) of the symmetric
group S, are parametrized by the partitions )\ of n. The character corresponding to
X € P(n) is denoted by [A] and its degree (dimension) by fr = [A](1).

It follows already from Frobenius’ work that if X = {h1,ha,... yh:} is a f-set for A, then

» — n!A(hl,...,htl — n!H1<§<J<g(hi—hﬂ
(6.1) h==nmr = Th:!

(see the end of section 2 above) and then the definition of H;(X) in section 1 shows

n!
h=a——7
Mrernx)h
and from (1.4) we then get the famous "Hook formula”
n!
(6.2) fA = Mher(nh

When m is an integer, p a prime, then vp(m) is the largest integer a > 0, s.t. p° | m. We
put

ho(A) = vo(fr), the height of [A] in Sy,

d(A) = vp (Mhenpnh) = vp(nl) = hy(R),  the defect of [Nin Sn.

The relevant facts about cores and quotients needed now were proved in section 3.

For a given A € P(n), p € N, we define its p-core tower as follows: It has rows numbered by
i=0,1,.... Its i-th row contains p' p-cores. The 0-th row is A(,), the p-core of A. The first
TOW i8S Ag(p)s - - + » Ap—1(p)> Where A®) = (X, ..., Apo1). Let /\?” = (Xioy-- . , Aip—1)- Then the
second row is the p-cores of oo, y Aop—1; A10, - - -  Ap—1p—1, in that order. Continuing this
process of taking cores of quotients gives us the p-core tower of A\. A partition is described
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uniquely by its p-core tower, which contains only finitely many nonzero partitions. This
follows by repeated use of the fact that by (3.7) a partition is uniquely determined by its
p-core and p-quotient.

Example. ) = (5,4,2%1%) € P(15), p = 2. The hooklengths of A are

194 7] 4] 3] 1]
2|1

5
2
1

[ o s [en]oo

We get A@) = (1), A® = ((2%,1%),(1)). The 2-core tower of A looks like this

@
(0) (1)
(0) (1) (0) -0
(1) (0) (0) (0) (0) (0) (0) (0).

Let for a given partition A and for 7 2 0, Bi(p, ) be the sum of the cardinalities of the
partitions in the i-th row of the p-core tower of X. Thus fo(p,A) = [A)|. It follows from
the construction of the p-core that the following holds (see (3.6) (ii)):

Lemma (6.3). n=|\=Y;08ip, A)p‘, where the summation is on ¢ 2 0.

If ap + a1p + ... + axp® is the p-adic decomposition of n and A € Par(n), define the
p--deviation of A as

ep(A) = (;ﬂi(% A) - EJ:“:‘) [(p=1) (120,055 =k)
Since p' = 1(mod p — 1) for all i 2 0, we get
n = Xi:ﬁi(z% A) = ;%‘ (mod (p—1)),
so ep(A) is a nonnegative integer.

Proposition (6.4). If A € P(n), and p is a prime then k(1) = e,(}).
Proof. It is wellknown that

(1) vp(nl) = (n‘— ;) az’) /(p—1).
Moreover, if A?) = (g, A1, ..., Ap—1) then by (3.3)
2) 8,0 = w(0) + 3 do(A)

1=0
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Now, as is seen by (6.3)

(3) wy(X) = > Bi(p, Mp* ™t

i>1

By iteration of (2) we get‘then that

(4) 4,(\) = gﬂ,(p, NA+p+...+p)
= (g Bi(p, (' — 1)) /(p—1)

= (n - Zﬂi(pa ’\)) /(P - 1)

i>0
using (6.3) for the last equality. We then subtract (4) from (1) to get the result.

Remark (6.5). The above proof shows that d,(1) = 0 & w,(A) = 0. Thus the characters
of p- defect 0 of S, are labelled by the p-cores of n.

The above result gives a purely combinatorial interpretation of the height of [A]in Sy hp(A),
i.e. the exponent of p dividing [A](1) = fy. We proceed to compute the McKay numbers:

Let again p € N be arbitrary. An p-ezpansion of n is a sequence (o, 011, . .. ) of nonnegative
integers such that n = ap+a1p+oe p®+.... The set of these expansions is denoted E(p,n).
If a = (a0, 01,...) € E(p,n), let the deviation of o be

e(p ) = (zai—zaj) /(p—1) 20,0555k

where the a;’s are as above. E,(p,n) denotes the set of p-expansions of n of deviation a.
Let us note that (ao,a1,... ,ax,0,0,...) is the unique element in Eo(p,n).

As in section 3, ¢(p, n) is the number of r-cores of n. Moveover, Cp(r,n) denotes the set of
r-tuples (Ki,K2,.. . , k) Of p-cores s.t. T |ki| = n and ¢(r,n) = |Cp(r,n)|. Thus

(5) Cp(T, n) = Z C(p, wl)c(p’ w?) T C(p, ws)

(w1 yeee ywr)

where (wy,...,w,) runs through all r-tuples of non-negative integers with } w; = n.
(Compare with (3.11).)

Let us note that ¢,(r,n) = k(r,n) if n < p, since any partition of w < p is a p-core.

Proposition (6.6). Let p be a prime, a > 0. Then
ma(p, 5a) = L ea(1, 20)c5(p; a)ep(ph 02) -
where the summation is over all a = (ag, @, ... ) € Eo(p,n). In particular
mo(p, Sn) = (1, a0)cp(p, a1)cp(p?, a2) -+ - -
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Proof. By (6.4)if A € P(n), then hy(X) = a if and only if (Bo(p, A), br(p, A),--.) € E,(p,n).
We then count the partitions A with A,(A) = a by counting for each a = (ap,1,...) €
E.(p,n) the possibilities for the p-core towers s.t. ‘the sum of the cardinalities of the
partitions in the i-th row is o4, 1 > 0.

To compute the McKay numbers for A, we need to discuss associate classes of characters.

Remark (6.7). Suppose that the finite group G has a subgroup H of index 2, |G : H| = 2.
Let o be the non-trivial linear character of G with kernel H. If x is an irreducible character
of G, then so is x' = x - 0. Either x = x’ and then x is called self-associate (s.a) or
x # X' and then x and x’ are called associated, and x, X' a pair of non-selfassociate (n.s.a.)
characters. By Clifford’s theorem the restriction of s.a. characters to H is a sum of two
irreducible characters of H (which are conjugate in G) whereas two associated characters
have the same irreducible restriction to H. This remark applies also to modular irreducible
characters in characteristic > 2.

We apply (6.7) to G = Sp, H = A, and later to the covering group of S,.

In the case of G = S,,, H = A,, the linear character o in (6.7) is of course the sign character
o = [1*]. The trivial character of S, is [n]. It is not difficult to prove that for A € P(n) we
have [A]' = [\°] where A° is the partition conjugate to A. \

As in section 3 K(r,w) is the set of r-quotients of w, i.e. the set of sequences (o, A1, ..., Ar-1)
of partitions with 3|\ = w and C,(r,w) is the corresponding set where the A;’s are
all p-cores. We have a ”conjugation map” on K(r,w) and Cy(r,w) by mapping A =
(Ao, - - s Ar—1) onto A% = (A2_;, A2_,,...,A3) and we call A self-conjugate if A = A% Obvi-
ously A is self-conjugate if and only if A} = A\,_;_; for all i. In particularif r =2{ +11s
odd then X; = A). Let '

Ko(r,w) = |K°(r,w)|,  (r,w) = |¢§(r, w)|

be the cardinalities of the subsets of self-conjugate elements in K(r,w), Cp(r, w). In par-
ticular ¥°(1,w) = p°(w) ((1,w) = ®(p,w)) is the number of self-conjugate partitions
(p-cores) of w. We obviously have

Lemma (6.8). Notation as above.

(i) If r = 2t is even, then
E(r,w) = k(t,w),
cg(r, w) = (L, w).
(ii) If r = 2t + 1 is odd then
Brw) = Sk i(w - i)

1=0

O(ryw) = écp(t,i>c°<p,w—i)
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Repeated use of (3.5) shows that given A and p then A = A° if and only if each row in
the p-core tower of ) is self-conjugate. Using the above observations and notation we may
compute the McKay numbers of A,:

Proposition (6.9). If pis an odd prime, a > 0. Then
1
ma(p, An) = 2m(p, 50) + ~ (ma(p, Sx) = m3(p, Sn))

where mqu(p, S») is given in (6.6) and m(p, S,) is defined analogously with each ¢,(p’, )
replaced by ¢)(p, @).

We omit the proof which is straightforward.

For p = 2 a similar formula may be obtained but there is a complication since the power of
2 occurring in [A](1) and in the degrees of the constituents of [\]4, differ by 1if A = °.

-~

7 Character degrees in S,

Schur [57] proved in 1911 that the symmetric groups S, have covering groups S, of order
2|Sn| = 2n!. Thus there is a non-split exact sequence

1—+(z)—+.§'n——-).5'n——+1

where (2) is a central subgroup of order z in S,.

The irreducible characters of S, which have (2) in their kernel will be referred to as ordinary
characters of §,,. They are of course exactly the irreducible characters of Sn = S./(z) and
were studied in the previous section. The other irreducible characters of S, are referred to
- as spin characters.

The results in this section were taken from [48].

The associate classes of spin characters of S, (cfr. (6.7)) are labelled canonically by the
bar partitions of n. The set P(n) of bar partitions (see section 4) is divided into

Pt(n) = {XeP(n)|n—I)even}
P~ (n) = {AeP(n)|n-I())odd}

where I(}) is the length of \. Put ¢*(n) = |P*(n)|, ¢~ (n) = l “(n )I Then each A €
P~(n) labels a pair of non self-associate spin characters (A) and ()’ and each A € P*(n)

labels a self-associate spin character (\) of S,. We write o()\) = o if A € P?(n) and call
o(X) = (=1)"'P) the sign of A.

When A € P(n) then f) denotes the degree of the spin character(s) labelled by A. Schur
proved that if A = (a1, as,... ,a,) € P(n), then

(7.1) j—»‘;\ — 2[n-m/2 Hn' H:(g ai—a;

aita;
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(see [58], §41). Then the definition of H()) in section 4 shows that
F. — 9ln—-m/?] n!

(Here [-] signifies "integral part of”.) Apart from the power of two which is a special feature
when dealing with spin characters the formula (7.2) has a striking similarity to (6.2). For
spin characters "hooks” are replaced by "bars”. We put when p is an odd prime

(1) b)) = v(H)s
JP(A) = Vp(n!)"ﬁp()‘)

- o 3L,)

Consider A € P(n). Let A\ and A = (X, \1,..., M), t = p — 1/2, be the p-core and
F-quotient of A. Let w = wy()) be the p-weight of A (see section 4). By (4.4) (ii)

() n =A@ +wp
Moreover, by (4.3)

(3) dp(X) = wy(A) + dp(Ro) + 3 dp(N)

Now we may of course also apply (3) to the bar partition Ao and formula (3) of section 6
to the partitions A;, 1 <2 <t

In analogy with the previous section we define the p-core tower of A € P(n) as follows:
It has rows numbered 0,1,2,..., where the i-th row contains one p-core and (P’ —1)/2
p-cores. The zeroth row consists of A). If AP = (Ao, A1, .., At), the first row consists of
Ao(s)» M(@)s - - - » Ai(p)- Now the bar partition Ao has a p-quotient and the partitions As,... , A
have p-quotients. Then the second row consists of the p-core of the first partition in ,\3’3 )
and the p-cores of the remaining partitions in /\g‘7 ). followed by the p-cores of the partitions
in AP, ..., AP, Continuing this way we get the p-core tower.

Example. Consider again the example following (4.1). We have
Ao = (4,2), 2O =((1),42),(3,1%).
The 5-core tower is the following;:

(4,2)
(1) (1) (3,1%)
© © © © ©® © @ 0 0 0 (© (© ©

The remaining entries are (0).
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Using (3.7) and (4.2) we see that we may always recover a bar partition from its j-core
tower. Let Bi(p, ) be the sum of the cardinalities of the partitions in the i-th row of the
p-core tower of A\. Then we get from the definition

(4) Y A

>0

If a; + a1p + ...+ axp® is the p-adic decomposition of n and A € P(n) let

&()) = (z: Bi(pr, ) - zaj) /(o —1).

Then a proof completely analogous to that of (6.4) shows:
Proposition (7.3). If A € P(n) and p is an odd prime then k,()) = &,()).

Let us define m,(p, Sy) = mq(p, S.) — ma(p, S,) which is then just the number of spin
characters (A) of S, with h,()) = a and correspondingly m.(p, A,).

As shown by (7.4) below, contrary to the case of S, there is a nice duality between the
formulas for the McKay numbers of spin characters in S, and A,. This duality also occurs
for the p-blocks, p odd, as we shall see. This has of course to do with (6.7) and the fact
that the partitions in P(n) label associated classes of characters.

Let' € be a sign and A € P(n). As above we write o(\) = o if A € P°(n). Moreover for
r>0,w>0,

&2r+1 w) = l{()\o A1 Ar) Ao p-core, A, ..., A, p-cores }
4 H y gere 3 Ap

Xl = w, (=1)»70) = o

Obviously ¢;¢(2r + 1, w) is expressible in terms of the integers c,(r, w) of section 5 and the
numbers ¢ (5, w) of p-cores of w with sign €’. (Their generating functions are computed in
section 9, see also (13.9).)

If A € P(n), then I(A) = I(Ag) + 1(Xo) if AB) = (Ao, Ay, ... yA¢). This follows from (4.6)
(ii) and the definition of p- core and p-quotient. Using this and (4) above we get o()\) =
o(A@) - (—=1)¥7'C9) where w = wz()), since p is odd. We may apply this also to the
partition Ao. Iterating this we see that the sign o()\) of A € P(n) is the product of the
signs of the rows in the p-core tower of A\ where generally

U(Ao, Al, ceey AT) —_ (_1)2. If\il"l(/\o).

(In particular, o(A) = o(AP)o(A().)
Finally, if o is a sign, a > 0, put

mg(pa n) = Z Hie;i(ﬁia ai)




where o runs through E,(p,n) (as in section 6) and o runs through all sequences of signs
satisfying Ilo; = o.

From the above we get then

Proposition (7.4). In the notation above
ﬁza(p, gﬂ) = ‘fh:(p, n) + Qma(p, TL)
ma(p7 An) = ﬁ’la(p, n) + 27;’;5:_(177 n)

From (6.6), (6.9) and (7.4) we may then compute the McKay numbers of S, and A, for p
odd.

For p = 2 the situation is quite different. Again let
ha(N) = (),
C-l.g(A) = Vz(n!) e 7&2(/\)

Note that here d()) is not the ”defect” of the character (\) (see the beginning of chapter
IT or section 10). To get the defect you have to add 1, since v5(|S,]) = 1+ v(n!). We define

t2(/\) = V2 (Hheﬂ(/\)h)
a(d) = [n—1(0)/2]

so that ~
da(A) = ta(A) — a(A).

If X = (a1,82,... ,am) € P(n), m = I(X), let A,(\.) be the partition consisting of all the
odd (even) parts of A.

Example. X =(8,5,2,1), A, = (5,1), Ac = (8,2).
Lemma (7.5). In the above notation
tz(X) = 13(Xo) + t2(Xe).
Proof. The power of 2 dividing the product of the integers in the set
(11,2, 0 U oty | 5> i) \ai— ;| § > i)

(which are the bar lengths in the i-th row of ) equals the power of 2 dividing the product
of the inters in

({1,2,...,a;}U{a; +a; | > 1, a; = aj(mod 2)}) \{a: — a; | j > i, a; = a;(mod 2)}

because when a; # a;j(mod 2), then vy(a; + a;) = v2(a; — a;) = 0. From this (7.5) follows
easily.
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Lemma (7.6). If all the parts of A are even, let x be the bar partition obtained by
dividing all the parts of A by 2. In that case

t2(A) = [N+ 2(X).

Proof. Let A = (ay,...,an), a; = 20;. Then the even bar lengths in the i-th row of \ are
in the set
({2,4,...,20:} U {205 + 20 | j > i}) \ {204 — 205 | > 3}.

Dividing all integers in this set (which is of cardinality ;) by 2 we get the bar lengths in
the th row of .

This is all we need to derive a formula for #5()) in terms of partitions with all parts odd.
We define for ¢ 2 0 inductively bar partitions A, A\() A as follows:

(1) 2@ =),
(ii) AD(AD) is the partition consisting of the odd (even) parts of A(),

(iii) A(*Y) is obtained by dividing all parts of A0 by 2

(Of course these partitions are not relevant for the cores or quotients of A)

The above lemmas imply
]A(‘)l - ]ASj)] +2 ]A(*‘“)} for i20
BOD) = HOD)+ A+ 650 for 20,
Using these equations we get by an easy calculation

n=[\ = Zl/\(ﬂ]zf

t(N) = th (A9) + 2(2‘
= th (/\ff)) + (n - E l/\ﬁi)l) .

To simplify notation, we put A\ = A{), i > 0 and so each A has only odd parts. In fact, ¢
is a part of A! if and only if ¢ is odd and 2t 1 is a part of \. We have proved:

Proposition (7.7). If A € P(n) write

A= A0+ 2)0 +4)2 &
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where each ) is a bar partition with all parts odd. Then

(5) o= T

(6) () = ;Jtz(xn(n'_g[,\f;).

Next we make a similar decomposition for a(A) = [(n — I(}))/2].
Lemma (7.8). In the notation of (7.7)

Proof. Trivially I(A) = i I(X¥). Moreover || — I(X) is even for all i, since A\ has
only odd parts, so a()) = (JA'| —I(A\")) /2. Using this and (5), (7) follows by an easy
calculation.

Proposition (7.9). In the notation of (7.7)

(7 a(A) = > a(X) + [2 (n - ;} l)\i

i>0

®) HO) = DO+ | (n+1~§2l*‘l)}

>0 >0

120

= SO+ |- (1+Z,\*|(2* )}

Proof. Use (7 7), (7.8) and the fact that for any integer k we have k = [k + 1/ 2] + [k/2].
Corollary (7.10). For all X € P(n), d2(X) > 0.

Proof. By (8) it suffices to show dz()\) = 0, when A has all parts odd. In that case, a())
is just the number of even bar lengths in A, as is easily seen. (There are (a; — 1)/2 even
bar lengths in the i-th row of A.)

(Of course this result may also be deduced from the fact S, cannot have 2-blocks of defect
0.) :

We have reduced our problem to the case where all parts of A are odd (i.e. A = \%). As we
just mentioned, a()) is then the number of even bar lengths in A. Therefore, to compute
t2(X) or da(A) we need only consider bars of a length divisible by 4. Let (as in section 4)

X} = {aeNy|a;=2a+1 forsome je€{1,2,...,m}}
X} = {a€Ny|a;=4a+3 forsome je€{1,2,...,m}}

(so | X} + |X3] = m) and put
p(d) = P(X} | X3)
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in the notation of section 2. So p()) is a partition. An argument analogous to the one
used in the proof of (4.3) (the bars of type 2 do not occur) shows that we have:

Proposition (7.11). Let A € P(n) have all parts odd. For I = 1 there is a canonical
bijection g between the set of 4l-bars in A and the set of [-hooks in u()). If H is a 4l-bar
in A we have '

pONH) = p(M)\g(H).
Note. The reason that the difficulties mentioned in section 4 do not occur here is really
that A has no parts which are congruent 2 modulo 4.

If 4 is an ordinary partition, let dy(p) = v2 (R(p)), where h(y) is the product of the hook
lengths of . Then dy(p) has been computed in section 6. We have

Proposition (7.12). Let A € P(n) have all parts odd. Then
£2(A) = (M) + d2(1())

Proof. If p = pu(A), then a()) bar lengths of A are divisible by 2 and |u| bar lengths are
divisible by 4 (using (7.11)). The bars of length divisible by at least 8 are registered as
hook of even length in g (by (7.11)). Thus

B0 = a(X) + ] + da(n)
as df:sired.

This. finishes our study of the power of two dividing spin character degrees. We do not
compute the McKay numbers in this case.

8 Character degrees in linear groups

In this section we are concerned with character degrees of finite linear groups, more specifi-
cally the general linear, unitary, symplectic and orthogonal groups. For the last two classes
of groups we consider only unipotent characters.

8.1 The case of GL(n,q) and U(n,q)

We let G = G(n,q) be GL(n,q) or U(n,q) where we for U assume that ¢ = ¢2. The
irreducible characters of G are indexed by G-conjugacy classes of pairs (¢,v) where ¢ is a
semisimple element of G and v is a unipotent character of Cg(?).

Let F = GF(q) be the field with ¢ elements. Let F[X] be the polynomial ring in the
indeterminant X over F, and F; the subset of monic irreducible polynomials different
from X. In the case ¢ is a square, say ¢ = ¢2, let ~ be the permutation of F; of order 2
defined by mapping

AX)=X"4+ ana X" 4+ X +ap
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onto A(X) = (ag)! X™ASJ (X~ 1). (Here J is the unique automorphism of order 2 of F.)
In particular « is a root or A(X) if and only if a® is a root of A(X ) Thus A = A if and
only if A has odd degree d and the roots of A have order dividing qd + 1. We let

Fi = {A]AeFo,A=A}
F, = {AA| A€ Fo,A#A}

The polynomials in F; and F; have odd and even degrees respectively. The degree of
a polynomial I' will be denoted by dr. In addition, we define a reduced degree ér for
polynomials in Fo U F; by

So = { dr if T'eFo )

"7\ 4dr if TeR.

Following [20] we let F = Fo if G is general linear and F = F, UF; if G is unitary.
If the semisimple element ¢ € G has primary decomposition ¢ = Ilrertr, then
Ca(t) = [] Gr(mr(t),¢")
TeF

where
Gr = U if Gis unitary and I' € Fy
I'™ 1 GL otherwise

and mr(t) is the multiplicity. We know from the decomposition of the underlying vector
space that

(1) n = ;mp(t)‘dp.

Correspondingly a unipotent character ¥ of Cg(t) is decomposed ¢ = Irtr where 9 is
a unipotent character of Cg(t)r = Gr(mr(t),¢’T). Thus each ¢r corresponds canonically
to a partition pr of mp(t). Since only the partitions play a role for us, we will denote the
labels of irreducible characters by (¢, p) where ¢ is as above and p = IIrpr. Alternatively
we may see the irreducible characters x of G labelled by maps © : F — P satisfying

(2) 3 10(M)|dr =n

TeF

where P = U,»0 P(n) is the set of all partitions.

The characters where mx_1(t) = n (or O(X —1) € P(n)) are then the unipotent characters
of G.

For A € P(n), A = (a1,dz, ... ,an), we define a n(A) = T, (6 — V)ag. A = (by, b,...,00)
then it is not difficult to see that '

) ) = 30
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We define also n/(A) = n(A%) = T2,(%). If A is written exponentially A = (™) (i.e. m;

=1

parts of A equals j), then obviously
J
@ w() = £ m;
i>1
Given A as above we also define a polynomial

XTI, (X —1)
Mhenpy(Xh—1) °

The unipotent character of G corresponding to A then has degree

HX) =

5 ilg) i G=GL
5 = X
%) Fao={ 20 5 &=g
Generally, the character x(;,) of G labelled by (%, p) has degree
(6) Xn)(1) =G : Ca®)l, T for(a™)
reF

where ...y means the part of a polynomial in ¢ which is prime to ¢. (Thus (¢% — q)y =
(¢ —1).) Here £,.(¢°) denotes the degree of a unipotent character of Gr.

Let us first look at the case of the defining characteristic, i.e. p is the prime dividing q.
Since the degrees of characters are polynomials in ¢ it is reasonable to consider m,(a,G)
as the number of irreducible charcters of G whose degree is divisible by ¢* exactly. Thus
if ¢ = p?, then
0 if ftd
, ——
my(d’, G) = { my(a,G) if o = fa.

By (6) the power of ¢ dividing x:,, is

(7) ho(t,p) = > érn(pr).

TeF
For each I' € F write pp = (]mf‘) exponentially and put u(t,p) = (r™), p'(t,p) = (r™3)
where m; = ¥r drmi., m} = Yp érmi.

Thus |u(t, p)| = n and n(y'(t, p)) = he(t, p). Notice that if G = GL, then u(t,p) = u'(t, p)
for all ¢, p.

Lemma (8.1). Let u = (j™) € P(n) be given. The number of pairs (¢, p) as above with
p(t, p) = p equals the number of semisimple conjugacy classes in the group

HjZIG(mja Q)'

This number equals ¢"®~"()(g — 1)"® for G = GL and ¢ ¥ (g + YW for G =U
where I'(1) is the number of different parts in p.
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Proof. Given g, we have for each j to count all decompositions on the form
my = Z df'mr
T

where the 7 are non-negative integers. Trivially each such decomposition corresponds to
the semisimple conjugacy class of elements in G(m;, ¢) whose characteristic polynomial is
IpI'™. If m is arbitrary, the number of semisimple conjugacy classes in GL(m,q) equals
the number of monic polynomials of degree m over GF(g) with non-zero constant term,
ie. (¢~1)¢™ 1. (Just count the possibilities for the coefficients in the monic polynomial.)
The mapping 7 on F3 may of course be extended to a mapping on the set of all monic
polynomials with non-zero contant term. Then it is easy to see that the number of monis
polynomials of degree m with non-zero constant term fixed by ~ is (gg+ 1)g7~!. Therefore
this is the number of semisimple conjugacy classes in U(m, ¢). From this the result follows
by a simple calculation. (This argument has been taken from [51].)

Corollary (8.2). Let G =GL{n,q), a > 0. Then A
my(a,G)= 3 ¢W(g-1)d" .
{ueP(n) | n'(n)=a}
Proof. Follows immediately from (8.1) and the remarks preceding it.

Remark (8.3)., If G = U(n,g), a > 0 the obvious analogue of (8.2) (replacing ¢ — 1 by
90+ 1 and ¢ by go) does not hold. The reason is that u(t, p) may be different from u'(t, p)
and it is y'(%, p) which determines the relevant a. There does not appear to exist an elegant
closed formula like (8.2) in the unitary case. However using the above it is not difficult for

any given a and n to compute explicitely m,(g, U(n, ¢)).

We now consider the case of the non-defining characteristic and a prime r, such that r } ¢.
We will assumne that r # 2 and that r | |G]. :

Let ¢ = min{i € N | r | (¢ ~ 1)}, i.e. the multiplicative order of ¢ modulo r. Let
¢ = 1,(¢° — 1). Generalizing this let for T € F

_ | (=1) if G is unitary and T’ € F
T=11 otherwise '

and .
er=min{i € N|r| (erg)™ ~1)}.

Thus ep is the minimal integer such that » l IGp(ep,q"l‘) . Of particular impdttance is
¢ = ex_y. An easy calculation shows that the following holds ([20], [34]):
Lemma (8.4). (i) If & is linear then e = ¢/, If 7 is unitary then
fd € ifr | (¢§— <~1)e)
2 ifr | (g8 +(-1)%).
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(ii) In any case we have for all I' € F that
er = €'/(e, 8r).
Lemma (8.5). LetI' € F, h € N. We have . |
r I ((epq)sl‘h - 1) & er | h.

If er | b then v, ((erq)’t? — 1) = ¢ + v,(érh).

Using the degree formula (6) above it is easy to describe the (r—) defect of a character
X(t,0) of G. Indeed

(8) A ()= T (™ -1).

TEF heH(pp)

Let us abbreviate for a partition A

(9) | GV =3 u (g -1)

heH())

so that
(10) & (xen) = X (or)

For a given A € P(n) and integers e and r (which are assumed to be relative prime) we may

generally define the (e, r)-core tower of X as follows: It has rows numbered 0,1,2,.... The
0'th row is A(), the e-core of \. If A() = (Aq,..., A._;) then the first row is Ao@p)s - - )\e—1(p)-
The next row contains the r-cores of the pa.rtltlons in A, AP ... etc. Thus for i >1 the

ith row consists of the (i — 1)th row of the r-core tower of )\0, followed by the (z — 1)th
row of the r-core tower of Ay, etc. Of course the (e,r)-core tower is a generalization of the
p-core tower introduced in section 6. (Indeed the (1,r)-core tower of A is just the r-core
tower of A with an added initial row containing the partition (0).)

We let Bi(e,r, A) denote the sum of the cardinalities of the partitions in the ith row of the
(e, 7)-core tower of . By repeated use of (3:7) we see that ) is uniquely determined by its
(e,r)-core tower.

Lemma (8.6). Let A € P(n). Let e,r be given. We have the following:

(1) n= 1A = Bo(e,r, A) + Tis1 Bile, r, Aeri=?
(i) we(A) = Ti>18(e,r, A)ri-1

Proof. By definition Bo(e,r,\) = ]A(e) Let A = (Xo,A1,...,Ae—1). Then w(X) =

Y326 |Aj| by definition, and applying (6.3) (with p = r) to each of the part1t10ns A; and
adding the results yields (ii). Then (i) follows by (3.6).
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Consider again the integer d¥()\) defined by (9). We have
Proposition (8.7). Let I' € F, A a partition. Then

dr(N) = 3 Bia(er,n, V) [(e + veldr) v + (= D/(r = 1))].

i>0

Proof. By (3.6) exactly we.()) hooks of A have length divisible by A. Therefore, by (8.5)
we get (using also (3.3))

e~1
() dr() = wer (Ve + ve(dr)] + 3 dr(A))
3=0
where Ar) = (Ao, A1,... , Aep—1). The integers d,();) may be computed using formula (4)
of section 6. We get

(%) Tdy) = Z(IM—Zﬂe(r;Af)) /1)

; i>0

= (wer()\) - %Eﬂi(r, Aj)) [(r—1)

= (wer()\) - gﬂiﬂ(er‘, T )\)) [(r=1)

‘ since‘ by definition Y; Bi(r, A;) = Biya(er, 7, A). By (8.6) (ii)
(* * *) wep(/\) = Z ﬂH—l(eFa r, A)ri‘

i>0
Now (8.7) follows by a straightforward calculation from (x), (**) and (* * *).

From (8.7) and formula (8) above we may compute then the defect (and therefore also the
height) of any irreducible character in G. Let us note the following;:

Corollary (8.8). Let x = x(,y) be an irreducible character of G. Then x has r-defect 0
if and only if pr is an ep-core for all I' € F (see [20], [10] for the general block theory of
__\these groups).

The above illustrates clearly how the general theory of cores and quotients of partitions
may be used in the study of character degrees in general linear and unitary groups. Next we
explain briefly how the analogous theory for Lusztig’s symbols (section 5) may be applied
for the classical groups.

8.2 The case of classical groups

As was shown in [30] the unipotent characters of finite classical groups (symplectic and
orthogonal) are labelled by symbols as considered in section 5.
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Consider a symbol [X,Y] where X = {ay,a,...,a;} and Y = {by,b,,... ,b;} are B-sets
and a3 > a2 > -+ > ag, by > by > -+ > b;. We need some notation in addition to the
notation used in section 5.

We write the elements of XUY in decreasing order, XUY = {¢y,cs, ..., Chti}, 1 2 ¢ 2
cor 2 cpp 2 0. Let

k L
(11) n(X) = 3(-Da, n(X) :=n*(X)—Z(2)

i=1 i=1

(12) n*(X,Y) = g:l(i—l)c,-, n(X,Y)=n="()(,y)—k+zlf2 [(;)2}

=1 =1

Using the identity (5) = [(n/2)*] + [((rn — 1)/2)?], n € N, we have

(13) n(X,Y)=n"(X,Y)-Y ( k+ ;“ 2 ) :
i>1
Finally let
HEL _1XnY|] #X#£Y
4 , X, V)= [ 2
(14) XY {0 X =Y

Let us note that for t € No we have n(X+?) = n(X), n(X*,Y+) = n(X,Y), X+, Y+) =
o(X,Y), so n(X,Y) and ¢(X,Y) are invariants for the symbol. Moreover, if PY(X)= A
then n(X) is the integer n(A) considered in the first part of this section.

Example. X ={9,7,4,1},Y = {3,1,0}, XUY = {9,7,4,3,2,1,1,0}, n(X) = 18—4 = 14,
n(X,Y)=33-13=20, ¢(X,Y)=3-1=2.

Let ¢ be a power of the prime p and put (using section 5)

HX,q) == ]I (¢"-1)

heH(X)
HX,Y,q) = I -1 ] (@"+1.
hE'H'*'[X,Y] hE'H"[X,Y]

If G is a general linear group over GF(q), then the unipotent characters of G are indexed
by partitions as we have seen. If P*(X) = ), then the degree of the unipotent character

indexed by A is
rkx

¢TI (¢ - V)/H(X,q) = PG|, /H(X, )

i=1
(see the first part of this section).

So the denominator has a factor for each hooklength of X (or A). The same is true in case
of the classical groups. We have
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Proposition (8.9). Let G be a classical group over GF(q) and xix,y] the unipotent
character of G indexed by the symbol [X,Y] (So rk [X,Y] is also the rank of G). Then

(15) X[X,Y](l) — qn(X,Y)z—c(X.Y) Gad

o HX Y, q).

Proof. We assume p # 2. The proof for p = 2 is essentially the same. Put

A(X’ Q) = H(qai - qaj),

i<j
A*(X, q) E= H(qa‘—aj — 1),
i<j
AX,Y,q) = TI(¢" +4*),
Vi
AX,Y,q) = I @@ %+1) JI (% *%+1)
{Gd)ai>b;} {(i:9)|ai<b;}
k  a . ¢
G(X’ Q) = H H(qj - 1)
. i=1 j=1

6, = TITI(@ +1)

1=1 j=1

c = [1"—“5—;-—11] EX ALY, c=k=lifX=Y

By section 8 in [30]

Xix,yi(1) = lGadlp, Dix,v1(9),

where

Dix,v1(9) = A(X, 9A(Y, 9)A(X, Y, 9)/O(X, ¢)O(Y, ¢*)2°¢"

d=2(k+12_2i).

i>1

with

First, we claim that ¢ (') is the exact power of ¢ dividing A(X, ¢)A(Y,¢)A(X,Y,q).
Indeed, let XUY = {c1,¢cz,... ,ces1} be as above, so n*(X,Y) = Y1 cicjck1 s 88 is easily
seen. Let 1 <i<j<k+Il lfe,c € X then ¢% | ¢* — ¢%, a factor of A(X,q). We argue
similarly, if ¢;,¢; € Y. In the remaining case ¢% | (¢% + ¢%), a factor of A(X,Y,q). Since
~ we in each case consider the exact power of ¢ dividing the factor, our claim is proved. Now
it follows from (13) that ¢"*¥) is the exact power of ¢ dividing Dixy}(¢) and x(xy}(1). By
(14) (X,Y) = ¢— | X NY|. That the power 2 occuring in (15) is correct is seen as follows:
For each a; = b; € X N'Y we get a factor 2 from the factor ¢% + ¢% = 2¢% of A(X,Y,q).

By easy calculation we see that it remains to show that

() O(X,¢")0(Y,q")/A"(X,q)A(Y,9)A%(X, Y, q) = H(X,Y, q).
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Note that ©(X, ¢%) = 0(X, ¢)0(X, q).
For a fixed 1 < < k we have (by the definition of H;(X) in section 1)

I @-0=T-1/ I @ *-1)

ReMi(X) j=1 {# | >4}
SO ’
H(X, Q) = G(Xa Q)/A*(X’ Q)’
H(Y,q) = O(Y,q)/A Y, q).

A similar argument shows that

I (¢"+1)=06(X,q)8(Y,q)/A%(X,Y,q).
heH-[X,Y]

Then (*) follows and (15) is proved.

We now briefly consider the question which unipotent characters are of r-defect 0, where
r is a prime, r # 2, r # p. This has also been done in [21]. Let e be multiplicative order of
¢*> modr,sor|(¢**—1). We call r linearif r | ¢°— 1 and r unitaryif r | ¢° + 1 (following

[21]).
Lemma (8.10). We have

e & HY[X,Y] ifris linear
riHX,Y,q) & { e é’H’%X, Y} if r is unitary
Proof. If r is linear, then r { (¢" + 1) for all & and r | (¢" — 1) if and only if e | k. Thus
r | H(X,Y,q) if and only if te € H*[X,Y] for some ¢t € N. By (5.1) this is equivalent to
e € H*[X,Y]. If r is unitary, then r | (¢" + 1) if and only if e | » and (k/e) is odd and
r | (¢" — 1) if and only if e | h and (k/e) is even. Again (5.1) shows r | H(X,Y,q) if and
only if e € H[X,Y].

Corollary (8.11). Let r and e be as above. If the unipotent character x of a classical
group is indexed by [X, Y], then x has r-defect 0 if and only if e € H*[X, Y] if r is linear
and e € H~[X,Y] if r is unitary.

Proof. Follows immediately from (8.9) and (8.10).

The quotients and co-quotients of symbols may be used to giire an explicit description of
the power of r dividing H(X,Y,¢) for a given symbol [X,Y]. The method is the same as
is applied in the proof of (8.7). We omit further details.

9 Some generating functions

For the computation of some block invariants which will be the topic of the next chapter it
is useful to know some relations between the generating functions of the partition function
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and other functions. Generally, if f: NU {0} — C is a function then the formal power
series

F(z) =" f(i) € C[la]

=0
is called the generating function for f. The idea is to try to find alternative simpler
expressions for F'. For example if f is the constant function f (2) = 1, then the generating

function '
F(z) =) 2

equals (1 — 2)™", the inverse of the element 1 — z in the ring Cl[[z]]. Under certain cir-
cumstances it is possible to define the infinite sum or the infinite product of elements from
Cllz]]. If fi(z),..., fa(z),... is an infinite sequence of elements in Cl[[z]], then ¥; fi(z)
makes sense as a well defined element of C[[z]] if for any given i > 0 only finitely many
7;i’s have the coefficients to z* different from 0. Similarly II; fi(z) makes sense if all f;
have constant term equal to one and if for any given : # 0 only finitely many f;’s have
nonvanishing coefficient to z*. Only such infinite sums and products occur below. (The
following has been taken from [49].)

Let n € No, o a sign. We consider the following numbers where p is an odd prime:
 p(n), the number of partitions of n (section 1)
* ¢(n), the number of bar partitions of n (section 4)
. ¢°(n), the number of bar partitions of n with sign o (section 7)
* §°(n) =gt (n)
 ¢(p,n), the number of p-quotients of weight n (section 4)
e ¢°(p,n), the number of p-quotients of weight n with sign o (section 7)
¢ &(7n) = ¢ (p,n)
® c(p,n), the number of p-cores of n (section 4)
o c’(p,n), the number of p-cores of n with sign o (section 7)
o &(p,n) =V(F,n)
The corresponding generating functions will be denoted (in the same order)
P(z), Q(2),Q° (), Q°(2), Qp) (=), Q3(2), Q3 (z), Fy(z), FZ (), F2 ().
It is wellknown that

Proposition (9.1).
= 1

i=1
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Proof. If we want to compute the coefficient to z” in

11 — = (2" + 2 + 2?1 4 )(20? +a” 42?2 )@ ).
i=1 -

we get a contribution 1 to z™ whenever n is written as n = (G1-14+43-24... ). Each

expression n = ¢; - 1414, 2+ ... corresponds to a partition of n having i; parts equal to
1, 22 parts equal to 2 etc.

The above argument is easily modified to show that

Proposition (9.2).

ﬁl(l +z°)
= P(z)/P(z?
o 1

= H 1 g2i-1

i=1

Q(z)

Proof. The first equality is clear since we are counting partitions without repetitions.
Moreover, by (9.1)

P(z)/P(z*) = %i%{%

If we in this expression divide each (1 — z*) into (1 — z%) we get

P(e)/P(s?) = T](1 + 2.

=1

If instead we cancel all factors (1 — z%) we get

| P(z)/P(z*) = ﬁl I‘:%ﬁ;:;

Proposition (9.3). We have
() @*(z) +Q(2) = Q=)
(i) @*(2) +Q(2) = Q(z)
(i) @*(z) — Q= (z) = P(z)
(iv) @*(z) — Q~(2) = @*(—2) — Q~(~z) = P(—a)1,

Proof. (i) and (ii) are trivial. To prove (iii), we notice that ¢t(n)— g (n) is the coefficient
to " in the product (1 — 2)(1 — #?)...(1 — z"): Writing n as a sum of different parts we
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get a contribution 1 (resp. —1) to this coefficient when the number of parts is even (resp.
odd). Thus

Q*2) - Q@ (2) = [I(1 - =),
io1
so (iii) follows from (9.1). Comparing coefficients it is easy to see that RQt(z) - Q (z) =
Q*(—z) — @~ (~z), so (iv) follows from (iii). ‘

Let us consider P(—z), which is involved in several formulas in this section. Using (9.1)
above we get easily

P(=z) = P(z*)’/P(z)P(z*)
P(-2)" = P(z)P(z*)/P(2*)* = Q(z)/Q(z*)P(z?).

Then an easy calculation shows

Proposition (9.4). We have

() @°(=) = 57 (1+ o 7E})
(i) @7(2) = 3°55rE5

2 P(x)P(z2) -

Thus using the results of section 7 we get

Proposition (9.5). The generating function for the number of spin characters in S, is

o . P(z) (3 1P(zY
0= 5iab (3~ 37

Note. - Of course P(z) is the generating function for the number of irreducible characters
in S,.

Next we consider p-quotients.

Proposition (9.6). We have (with ¢ = (p — 1)/2)
() @p(z) = Q(z)P(z)* = P(z)**'/P(z?)
(i) QF (=) + Q7 (z) = Qx()

(i) QF(z) + Q5 (z) = Qy(x)

(iv) Q§(z) = Q°(z)P(x)"
(v) Qf(2) - Q5 (z) = P(z)"!

(vi) QF(z) — Q5 (z) = P(—z)?
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Proof. (i) follows from the definition and (ii) and (iii) are tivial. (iv): Suppose that
(Ao, A1,...,Ar) is a p-quotient of weight n and sign (—=1)"¢. Then (=1)?) = o, If
|Xo| = no then 0(Xo) = (—1)™0 and there are §°(no) choices for Ao and then the remaining
partitions Ay,...,A; may be chosen arbitrarily subject to M|+ 4 x| = n = no. The
relation (v) follows from (iv) and (9.3) (iii) and (vi) is then true since Qi {z) — Q7 (z) =
QF (—2) - Q5 ().

Corollary (9.7). We have

) Q5(=) = jP(@) (B +0)

e\ Mo P(z)t+1 P(z2)3t-3
(ii) Q7 (z) = % ( Ig(zﬁ) + o'p(z)c(-11):»(x4)t—1) .

Proof. A straightforward calculation using (9.6).

Now we consider the p-cores and defect 0 spin characters. If A is a bar partition and
o(A) = 1 then o(AP) = o()), by section 7. Since a bar partition is uniquely determined
by its p-core and its p-quotient and since '

I’\I = l)\(ﬁ)l +pz ’/\1] if /\(5) = (’\0,)‘1a~- . ’At)

(by (4.4) (ii)), we see
Proposition (9.8). We have

(i) @¥(z) = QF (2*)Ff (2) + Q5 (z°)F; (z)
(i) @7 (z) = Q}(2")F; (z) + Q5 (s*)F (z)
(i) Q*(2) = QF (=) F# () + Q5 (+")Fy (o)
(iv) @~ (z) = QF(=*)F; (z) + Q5 (2?) i ()

We want to determine the number of spin characters of p-defect 0 in S,. The labels of such
characters have to be p-cores, e.g. by formula (3) in section 7. On the other hand p-cores
label defect 0 spin characters by (7.2). Thus the desired number of defect 0 spin characters
is ¢*(p, n)+2¢7(p,n). The corresponding generating function is Fi(z)+2F; (). Similarly
the number of defect 0 characters in S, equals ¢(p,n), the number of p-cores of n whose
generating function Fyp(z) is computed later in (9.14). /

Proposition (9.9). We have

(i) F# (@) + Fy (2) = Fy(a)
() Fif(2) + Fy (2) = Fy(a)
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() Fyla) = P(2)P(a™)/P(a?)P(a")*!
(iv) Fg(m) =3 (Fﬁ(a:) + G-P(:L-)—lp(xp)l—t)
(v) Fl(z) = ;(F5(z) + o P(—z) "1 P(—2?)'"?)

Proof. (i) and (ii) are trivial, so if we add (9.8) (i) and (ii) we get Q(z) = Qx(z” VEy(z)

and using (9.2) and (9.6) (i) we then get (iii). If we substract (9.8) (iv) from (9.8) (iii) we
get, using (9.3) (iii) and (9. 6) (v),

P(2)™ = P(a”)"" (Ff(2) — Fy (2)) .
Then 3 3
F (2) = F5 () = P(2)™" P(2?)'
and substituting £ — —z we get as before
Ff(z) — Fy (z) = P(—z) ' P(—zP)'".
Combining the last formulas we get easily (iv) and (v).

Proposition (9.10). Let p be an odd prime. The generating function for the number of
spin characters of p-defect 0 in 3§, is

ﬁﬁ(w) = Fj(z) + 2F; ().
Note. The results of section 7 or elementary block theroy shows that there are no spin

characters in .S' or A of 2-defect 0.

The remarks about ”duality” between S, and A, make the following ” dual” results of (9.5)
and (9.10) obvious.

Proposition (9.11). The generating function for the number of spin characters in A, is

2 o P(z) (3 1 P(z*)
o= 7035 (3 7).

(Indeed }g(x) =Q (z) +2Q*(z).)

Proposition (9.12). Let p be an odd prime. The generating function for the number of
spin characters of p-defect 0 in A, is

ﬁﬁ(x) = 2F}(z) + Fy (z).

The similar calculations for S, and A,, are somewhat simpler. We remind the reader that
a partition A is called self-conjugate if A = A° and by (8.5) ) is self-conjugate for a given
e € N if and only if both its e-core and e-quotient are self-conjugate (see the definition
following (6.7)).

Let n € Ny, e € N. We consider the following integers:
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e p*(n), the number of self-conjugate partitions of n

e p"(n), the number of non-self-conjugate partitions of n

o k(e,n), the number of e-quotients of weight n (section 3)

e k°(e,n), the number of self-conjugate e-quotients of weight n (section 6)
® k"(e,n), the number of non-self-conjugate e-quotients of weight n

¢ c(e,n), the number of e-cores of n (section 3)

e c*(e,n), the number of self-conjugate e-cores of n

e c"*(e,n), the number of non-self-conjugate e-cores of n

The corresponding generating functions will be denoted (in the same order) P*(z), P*(z),
P(z), P(z), PX(x), Fe(z), F(), F(=).

Proposition (9.13). We have

(i) P*(z)+ P*(2) = P(z)
(ii) P*(z) = P(z)P(z*)/P(z?)?
(iii) P"(z) = P(z) (1 — P(z*)/P(z?)?)
(iv) P.(z) = P(z)°
(v) P*(z)+ P:(z) = P.(z) ’
) o= { BP0 ezape e

Proof. (i) and (v) are trivial. The diagonal hooklengths in a symmetric partition form
the parts of a partition of n with all parts different and odd. Thus (arguing as in the
beginning of this section)

P(z) = (14+2)1+2®)(1+2%)...(1 4+ 2%+, ..
P(z)P(z*)/P(z*)*

using (9.2). (iii) follows from (i) and (ii). Clearly P(z)° is the generating function for the
number of e-tuples of partitions so that (iv) is trivial.

(vi): Let (A1, A2,..., ) be a self-conjugate e-quotient of weight n. If e = 2f then A0 =
ey A9 = Aoty ;A% = A31. Thus the f-tuple (A1,...,)\;) determines the e-quotient
completely. Since [Aj] 4+ -+ + [Af] = |Agpa| + -+ + [Ae] = n/2, our claim follows. If
e =2f+1, Az has to be symmetric. Otherwise the argument is analogous.

Proposition (9.14). We have
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() Fo(z) + Fi(z) = Fe(x)
(ii) Fe(z) = P(z)/P(z°)°
(i) F¢(z) = P*(z)/P:(z°).
Proof. . (i) is trivial. (ii) is a consequence of (3.7), (3.8) and (3.11): The number of

partitions of n with a given e-core & and of e-weight w is k(e,w). The number of possibilities
for k is c(e,n — pw). Thus

P(n) =" k(e,w)c(e,n — pw)

w>0

which transforms into P(z) = P(2°)®F,(z) for the generating functions. This is (ii), and
(iii) is proved in an analogous way.
Using the results of section 6 we deduce:
Proposition (9.15). The generating function for the number of irreducible characters
in A, is )

P(z) = 5P (@) (1+3P(a*)/P(z?)?).
(Indeed, P(z) = 2P(z) + 1P"(z).)

Proposition (9.16). * Let p be an odd prime, ¢ = (p — 1)/2. The generating function for
the number of irreducible characters in A, of p-defect 0 is

%\ 1P(z)P(z*) 3 ,
O e e

(Indeed F,(z) = 2F3(z) + 3 FM(z).)

Remark (9.17). We have of course that for any prime p F,(z) is the generating function
for the number of blocks of defect 0 in S,,, i.e.

Fy(z) = P(z)/P(z”).

This is the generating function mentioned in (3.16).

66




ITI. Characters in Blocks

In this chapter we study the distribution of irreducible characters into p-blocks for some of
the classes of groups described in chapter II. Basically the ”cores” of the combinatorial ob-
jects determine the block containing the corresponding character whereas the ”quotients”
yield information about the height of the corresponding character in the block containing
it. We will describe how to compute the block invariants and how to verify several general
conjectures for blocks of the groups in question. We start by giving an overview of some of
the interesting conjectures on block invariants. We assume knowledge of some basic facts
from block theory ([19], [41]).

10 Some conjectures involving block invariants

When G is a finite group, Irr (G) denotes the set of ordinary irreducible characters in G
and IBr ,(G) the set of irreducible Brauer characters of G in characteristic p, p > 0. When
p is given we often write IBr (@) for IBr ,(G).

For x € Irr(G), p a prime, hy(x) = v,(x(1)) is the p-height of x (in G) and dy(x) =
vp| G| = vp(x(1)) = |G| — hp(x) is the p-defect of x (in G). These numbers were computed
in many cases in chapter II.

It is a basic fact that given p, the sets Irr (@) and IBr,(G) are distributed into disjoint
sets called the p-blocks of G' (see [19], [41], ...). Let Bl,(G) be the set of p-blocks of G .

For B € Bl,(G) we let Irr (B) and IBr ,(B) denote the set of ordinary (modular) irreducible
characters in B and put

d(B) = max{d,(x) | x € Irr(B)},
the defect of B. If x € Irr (B), we put
h(x) = d(B) — dy(x),
the height of x in B which is a non-negative integer. We have
ho(x) — he(x) = 1,|G| — d(B).
The following block invariants will be studied for B € Bl,(G).

k(B): the number of ordinary irreducible characters in B (= |Irr (B)|)
ki(B): the number of ordinary irreducible characters of height i in B
I(B):  the number of modular irreducible characters in B (= [IBr (B)|)

We also need

k(G):  the number of irreducible characters of G (= |Irr (@)|)
I(G):  the number of modular irreducible characters in G (= |IBr (G)|)
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We have the trivial relations

KG) = X kB) WG)= > UB)
BEBL(G) BEBL(G)
k(B) = Y _ ki(B) for B € Bl,(G).
i>0

To B € Bl,(G) there is also associated a defect group A(B), determined to G-conjugacy,
such that |A(B)| = p%B). The defect group has many important properties, as is well-
known.

If H is a subgroup of G and b is a block of H it is under certain circumstances possible to
define the "induced block” 5% which is a block of G. We put

Bl(H,B) = {b€Bl,(H) | b° is defined and ® = B}.

For instance, if H is the centralizer or the normalizer of a p-subgroup in G then 4% is

defined for all b € Bl ,(H).

In the particular case where B € Bl,(B) and H = Ng(A(B)) there is a unique block
b € Bl(H) with ¢ = B. This block b is called the Brauer correspondent of B.

Here are some conjectures: B is a p-block of G.

Conjecture (10.1). k(B) < |A(B)|.

Conjecture (10.2). k(B) = ko(B) <= A(B) is abelian.

Conjecture (10.3). ko(B) ‘S |A(B) : A(B)'| (A(B) is the commutator subgroup of
A(B)).

Conjecture (10.4). ko(B) = ko(b) where b is the Brauer correspondent of B.

The conjectures (10.1) and (10.2) are based on observations by R. Brauer, (10.3) is due to
the author and (10.4) is known as the Alperin-McKay conjecture.

To state more conjectures we need some additional notation. It is wellknown that if
B € Bl,(G), then d(B) = 0 if and only if k(B) = 1. The set of p-blocks of defect 0 in G
is denoted Bl )(G). Note that the irreducible characters x € Irr (G) with dy(x) = 0 (i.e.
of defect 0) are exactly the characters in the p-blocks of defect 0. A (p)-modular weight in
G is a pair (P, 8) where P is a p-subgroup of G and 3 € B1J(Ng(P)/P). Each modular
weight in G is associated to a unique block B of G. Indeed if (P, 3) is as above, then the
unique character ¢ of § may be considered as a character of H = Ng(P) and as such it is
contained in a block b of H. We let B = b and call (P, ) a modular B-weight or simply
a B-weight. Alperin’s weight conjecture [1] is the following:

Conjecture (10.5). Let B € Bl,(G). Then [(B) equals the number of G-conjugacy
classes of B-weights.

If @ is a normal p-subgroup of G, then @ < A(B) for all B € Bl,(G). In particular, if
(P, B) is a modular weight, then Op(Ng(P)/P) = 1,i.e. P = O,(Ng(P)). A p-subgroup P
of G satisfying P = O,(Ng(P)) is called a radical subgroup of G.
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Conjecture (10.5) has inspired a lot of subsequent work in form of reformulations and
generalizations. We proceed to give a short survey of some of these. In [28] chains of
p-subgroups were introduced into the subject. Consider a chain C of subgroups

C:Qoz{l}c...CQn,

where Q; # ;41 for all 2. Write

C € P ifall Qs are p-subgroups in G

C €& ifall Qs are elementary abelian p-subgroups in G
C €N ifall Qs are p-subgroups in G and Q; <1 Q,, for all i
C €U if all Q;'s are radical p-subgroups in G

The normalizer Ng(C) is defined as

No(C) = () Ne(@5).

1=0

If C is as above we let C; be the chain Qo C Q1 C...C Q;for 0 < i< n. We write
CeR if Qi=0y(Ne(C;)) for 0 <i < n. Moreover, if C is as above we let |C| = n.

We have defined five classes of chains of subgroups in G. Obviously G acts on these classes
by conjugation. If f is a function from the set of subgroups of G into Z, which is invariant
under G-conjugation, and if A is any of the above classes, put

S(f, A= Y (-1)°f(Ng(0)).

CeA/G

It has been shown (see [28], [14]): Let A, .4’ be any of the classes above and f as above.
Then S(f, A) = S(f, A’) except possibly when 0,(G) # 1 and A or A’ equals R. If
O,(G) # 1 then S(f,R) = 0, since R = .

If C € A, where A is any of the above classes and if b € Bl (Ne(C)), then it can be shown
that b% is defined. For B € Bl (@) put

B(Ne(C) = > b

bEBI(Ng(C),B)

and for d > 0

BNe(C)= 3 k(@)

beBI(NG(C),B)
where 4(b) = [{ € Trr(8) | dy(s) = d}].
In [28] it was shown that (10.5) is equivalent to
Conjecture (10.6). Let B € Bl,(G) and d(B) > 0. Then S(lg,N)=0
and in [14] it was conjectured that

Conjecture (10.7). Let B € Bl,(G), d(B) >0, 0,(@) =1, d > 0. Then S(kE,R) = 0.
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As may be seen from the above remarks we may in both conjectures choose to replace N/
and R by any A as before and get equivalent conjectures.

Several of the above conjectures may be seen as an attempt to determine the block invari-
ants of a block B € Bl ,(G) ”locally”, i.e. in terms of invariants of proper subgroups. Since
this is the case one may hope to prove the conjectures by induction, e.g. by reducing them
to (almost) simple groups and then use the classification of finite simple groups. However
this seems to be extremely difficult. E. Dade [14] announces (10.7) to be the first in a
series of increasingly delicate conjectures of which the last one will have the property that
it holds for all finite groups if it holds for the simple groups. This final conjecture implies
the previous ones in the series. Its proof will imply the validity of (10.4) and (10.5). In
[55] and [54] other generalizations of (10.5) are presented. The paper [55] exhibits an ”e-
quivariant” form of Alperin’s conjecture predicting compatibility with the action of groups
of automorphisms.

It has been proved in [29] that the conjectures (10.2) and (10.4) imply (10.3). Moreover
for abelian defect groups it was shown in [28] that any two of (10.4) and (10.5) and the
<-part of (10.2) imply the third.

Attempts in another direction to understand some of the phanomenae in block theory (for
instance the "reduction theorems” for blocks of symmetric and other groups as well as some
local-global observations) have been made by M. Broué. Some of his ideas are exhibited
in the survey article [11]. The main idea is to formulate various concepts of ”equivalence”
of blocks, where of course the blocks are considered as algebras. The block invariants
described above as well as the decomposition and Cartan matrices are expressed using
the block algebra. Broué describes the wellknown Morita equivalence as well as ”Rickard
equivalence” and ”stable equivalence”. Morita equivalence preserves all the relevant block
invariants. The weaker Rickard equivalence preserves the k;(B)’s, I[(B) and the defect as
well as invariant factors of the decomposition and Cartan matrices. Rickard equivalence
seems to be very difficult to verify or check in concrete cases. It is conjectured that the
- principal blocks of G and Ng(P) are Rickard equivalent if P is an abelian p-Sylow subgroup
in G. A weaker form of Rickard equivalence on the level of characters is ”perfect isometric”.
A lot of interesting perfect isometries between blocks have been constructed. The stable
equivalence is weaker than Rickard equivalence and preserves differences between some of
the block invariants.

11 Blocks of S,

In section 3 we studied cores and quotients of partitions and in section 6 the degrees of
irreducible characters in S, and A,. This will be relevant for the study of p-blocks of
characters in these groups.

As mentioned in section 6 the irreducible characters [\] of S, are labelled canonically by
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the partitions A € P(n). Let p be any prime. Then a famous result (still referred to as the
”Nakayama conjecture”) states:

Theorem (11.1). Let A,z € P(n). Then [)\] and [4] are in the same p-block if and only
if A(p) = f(p), i.e. they have the same p-core. '

Many proofs have been given for this result, see [25]. In section 3 we denoted the set of
partitions of n with p-weight w and p-core « by B(w,&). If X € B(w, &) is a partition of n
then w p-hooks have to be removed to go from A to k = A(p)> S0 that £ € P(n — wp). Then
the characters of S, in the same p-block as [)\] are exactly the characters (1], 1 € B(w, k).

" Obviously the integer w is an invariant of the p-block B containing [A]. This invariant is
denoted w(B) and is called the weight of the block B. (Of course this concept has nothing
to do with the modular weights of general blocks described in the previous section.)

Let us assume that B is a p-block of S, of weight w = w(B), and that the irreducible
characters of B are labelled by the partitions in B(w, x) (we call & the core of B). The
defect d(B) of B is the minimum of d,()), A € B(w, k) (see section 10). Using the p-adic
decomposition of w the formulae (1) (applied to n = wp) and (4) of section 6 shows that

Lemma (11.2). I w(B) = w, then d(B) = v,((wp)!) = w + vp(w!).
In fact we have for the defect group:

Proposition (11.3). If w(B) = zb, then A(B) is conjugate in S, to a p-Sylow subgroup
of Spw € Sh.

There is a very nice proof of (11.3), due essentially to R. Brauer. Variations of this proof
are applicable in other connections and we include it here.

Proof of (11.3). If w(B) = 0, then d(B) = 0 and then of course A(B) = 1. Assume

w(B) = w > 0. Let D = A(B) a defect group of B. Choose an element € D subject to
the following conditions:

(i) 7 is a central element of order p in D

(i) If =’ is another central element of order pin D then it has at least as many fixpoints
as w

We assume that 7 is a product of wq cycles of length p (and thus has n — pw, fixpoints).
Thus Cg,(7) = C°%x) x C*(x) where C%x) is a wreath product C(r) & Z,wr S, and
CHm) & Snpuy- Let b € Bl(Cs, (), B) and write b = 5° x b! where & € B1(Ci(n)),
¢ = 0,1. The group C°x) has a selfcentralizing normal p-subgroup, generated by the wq
p-cycles occurring in 7 (i.e. the base subgroup of the wreath product). Therefore C(r)
has only block, the principal block, e.g. by [19], V.3.11,, i.e. &° is the principal block of
C%x). Let Do be a p-Sylow subgroup of C%(). Since v,(|C%7)]) = vp(|Spus]) (e.g. by
(1) of section 6), Do is a p-Sylow subgroup of Spws- Since DCs, (D) C Cs, (7) trivially, we
get by the transitivity of block induction that D is conjugate to A(b). From (11.2) we get
wo < w since |Do| < |D|. Moreover, b has defect 0. Otherwise choose m; € Z(A(Y)) of
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order p. Then #7; is central of order p in A(b) and has fewer fixpoints than =, contrary
to assumption. Thus A(b) = Do and we get [Do| = |D|. This forces w = wo and (11.3)
follows.

Since the ordinary irreducible characters in a p-block B with weight w and core & are
labelled by the partitions in B(w, k) we get k(B) = |B(w, x)|. Using (3.10) we get

Proposition (11.4). Let B be a p-block of weight w. Then k(B) = k(p, w) where k(p, w)
is given by (3.11). In particular, k(B) is independent of the core of B.

We proceed to compute the height of a character of S, in the block containing it. To do
so we need again the p-core tower of a partition A introduced in section 6. As was the case
there Bi(p, A) is the sum of the cardinalities of the partitions in the i¢-th row of the p-core
tower of A\. From the definitions we get:

Proposition (11.5). If X € P(n), [A] € B, w(B) = w, then

w = Z ﬁi(p) ’\)pi‘l

i>1
and if 3,50 a;p' = w is the p-adic decomposition of w then
100 = (£809 - o) /1.
i>1 i>0

In particular, since the first summation is only on ¢ > 0, hp([A]) does not depend on the
p-core of A (i.e. the core of B).

Proof. Since fo(p, ) is the cardinality of the p-core of A and

n= Z ﬂi(p3 ’\)pi

i>0

by (6.3) we get the formula for w from the equation n = fo(p,A) + wp. By definition
hp([A]) = d(B) — d,()). By (1) of section 6 applied to n = wp

(1) d(B) = vp((wp)! = (wp - ;ai) /(p—1)
Moreover by (4) of section 6

(2) dp(A) = (n - Bip, )\)) [(p—1)

i>0

= (wp - Bilp, /\)) [(p—1).

i>1

Subtracting (2) from (1) yields the formula for hs([A]).
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Remark (11.6) (On Reduction theorems, equivalences etc.) As we have seen, if B is a
block of weight w and core & then the ordinary irreducible characters in B are labelled by
the partitions in B(w, ). Therefore, the map ©¥ described in (3.9) induces a map between
the set of irreducible characters in B and the corresponding set of the principal block By
of S,u. (Clearly, this principal block has empty core, since it contains the trivial character
[pw].) Moreover, this map is height-preserving by (11.5). The blocks B and By have more
in common than the numbers k;(B) = k;(Bp). As we shall see in (11.14) also I(B) = I(By).
Moreover the Cartan matrices of B and By have the same elementary divisors. This is
a special case of the fact that B and By have the same lower defect group multiplicities
(subpair multiplicities) ([47], [12]). The question arises whether there is some ”equivalence”
between B and B,. Enguehard [16] has shown that the blocks are ”perfectly isometric”
(see also section 10). As consequence there is also an equivalence of the decomposition
matrices. On the level of characters the perfect isometry is a ”bijection with signs”. The
bijection is indeed the one described above and the signs are as follows: If ©¥()) = o then
[A] is mapped onto 8,(A)é,(Ao)[Ae] Where as in section 3 6, is the (relative) p- sign map.
It is still an open question whether B and -By are ”Rickard equivalent” (see section 10 or
[12]). They are in general not Morita-equivalent, since their decomposition matrices may
be different. However, there is a very interesting result of J. Scopes [59] stating that there
is only a finite number of blocks of symmetric groups of a given weight w up to Morita
equivalence. In fact, the number of such Morita equivalence classes of blocks of weight w

is at most »

110G - 1)(w—-1)+1].

i=1
On the local level the situation is different. It was shown in [34] that the Brauer corre-
spondents b and by of B and By are indeed Morita-equivalent (see (11.12)).

Using Proposition (11.5) we may derive formulas for k;(B). If w(B) = w we may write
ki(B) = ki(p,w) since the k;’s are independent of the cores of B. The formula for the
ki(p,w) has a striking similarity to the McKay number formula of (6.6) and we use the
notation introduced there.

Proposition (11.7). Notation as above. Let i,w > 0. Then
ki(pyw) = Y c(py a0)ep(p?, 1) - .

where the summation is over all a € E;(p, w).

Proof. Analogous to that of (6.6).

Since Fy(p, w) has only one element we get

Corollary (11.8). Let w > 0 have p-adic decomposition w = ;50 a;p’. Then
ko(pw) = [le (P a)

i>0
= k(p, a0)k(p?, a1)k(p’,a2). ...
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We also have

Corollary (11.9). Let w(B) = w have p-adic decomposition w = Yisoaip'. Then the
mazimal possible height of character in B is

h=(w—-a—a;—...)/(p~1).
Moreover, ki(p,w) = ¢,(p, w).

Proof. Trivially E,(p,w) = p if a > h, h as above, and Ex(p,w) = {(w,0,0,...)}.

Note. There are no characters of height 2 = 7 in a 2-block of weight 8, since czi(Z, 8)=0.
In fact, cz(2,w) = 0 for infinitely many values of w. Presumably c,(p,w) > 0 for p > 3,
w 2> 0. This is a question about p-cores and related to (and easier than) (3.15) and (3.16).

Note. The formulas of (11.7) and (11.3) may easily be used to prove the following. Let
B be a block of S,, of weight w. Then the following statements are equivalent:

(i) A(B) non abelian
(i) wzp
(iii) ki (B) # 0.

In particular Conjecture (10.2) is verified for all blocks of symmetric groups.

If B'is a block of weight w, then by (11.2) d(B) = w + vp(w!). Since A(B) is a p-Sylow
group of S, it is a direct product of wreath products of cyclic groups or order p. Indeed
if

Xi = (ZpwrZy)wrZ,... (i times)
and w = Y ;59 a;p' p-adically, then A(B) & ;>0 XY, whence

vp|A(B): ABY| =Y ai(i +1).

i>0
Therefore the proofs of the Conjectures (10.1) and (10.3) for blocks of S,, are equivalent to
Proposition (11.10). Let w > 0 be written w = ¥ a;p* p-adically. Then
() K(p,w) < o)
(ii) ko(p,w) < pPit+Y)
Proof. This is an easy consequence of (11.4), (11.8) and the following:

Lemma (11.11). Ifs>3ors=2and ¢ # 2,3,4,5,6, then k(s,t) < s.

Proof. Generally, as is easily seen
p(n) <p(n—1)+p(n—2) for n>2.
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Therefore it is easy to prove by induction that p(n) < p™ where p = 1v5 satisfies p? = p+1.

2
Consider the statement for s € N
T(s): k(s,t) < s forall t>0.

If T(s1) and T'(s2) are true then

k(si+ s2,t) = > k(s1,1)k(ss,t —1)

=0
t
< Y osisht < (s + s2)
=0

so that T(si + s2) holds. If we prove T(3), T'(4) and T'(5) then it follows that T'(s) is true
for s > 3. Now for s > 1

M= 3 plto)p(ta)...p(ta)

(tl 8240 1t5)

where the summation is over s-tuples of non-negative integers adding up to ¢. Thus, as is
wellknown, the number of summands is

s+t—-11)\ _ s+t—1
t - s—1 ’

a binomial coefficient. Moreover each summand is less than p* where p is as above. Thus

fors>1,t>20
s+1—1 :
< .
k(S,t)_( S—l )p

s+t—1
N s—1
large. In these cases k(s,t) < (£)'p* = ' as desired. For the remaining few values of ¢ the
result is checked directly. '

Consider the case 2 < s < 5. Since -’; > 1 we have that ( < (%)* for t sufficiently

Let as above X; = (Z,wr Z,)wr ...wrZ, (¢ times), so that X; may be considered as a p-
Sylow subgroup of S,:. Moreover, if w = 37,50 a;p' p-adically, then for a block B of weight
win S,

A(B) = ;50 X,

Considering A(B) as a p-Sylow subgroup of S,,, contained in the Young subgroup Sp, X
Sp—pw Of Sy, we get '
Ns, (A(B)) = Ns,, (A(B)) X Sn—pu

If b is the Brauer correspondent of B in this normalizer, then arguing as in the proof of
(11.3) we get that b = ° x b', where 8° is the principal block of Ng,,(A(B)) and b' has
defect 0. Therefore the blocks b and b° have the same invariants k(b) = k(8°), k:(b) = k:(8°),
I(b) = (8°). We have shown:
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Lemma (11.12). Let B be a block of weight w(B) = w. Then the invariants k(b), k;(b),
I(b) of its Brauer correspondent depend only on w and not on the core of B. (It can be
seen that b and by are Morita-equivalent blocks.)

We are in the position to describe why the Alperin-McKay conjecture (10.4) is true for S,:

Proposition (11.13). Let b be the Brauer correspondent of the block B of weight w in
S . Then ko(B) = ko(b)

Proof. By (11 5) and (11.12) we may assume that B is the principal block of Sp,. If
W= Y50 aip p~ad1ca11y, then A(B) is a p-Sylow subgroup in S, and it is wellknown that

Nspw (A(B)) = H:’ZON,‘WI‘ Sa,.

where N; is the normalizer of a p-Sylow subgroup in S,:. Since Ns,.,(A(B)) has only one
block we get

ko(b) = mo (p, Ns,., (A(B)))

(the 0-th McKay number). Now (11.13) follows from (11.8) and the representation theory
of wreath products (see e.g. [25], chapter 4).

We now explain why [(B), B a block of S, only depends on w(B) and not on the core.
Proposition (11.14). Let B be a block of weight w in S,,. Then I(B) = k(p — 1, w).
- Proof (Sketch). We use Brauer’s formula

KB =Y ¥ i)

T beBI(C(x),B)

where 7 runs through a set of representatives for the conjugacy classes of p-elements in S,,.
We define the Weight w(w) of w to be w' if w has exactly n—pw’ fixpoints. If Bl(C(r), B) # §
then obviously w’ < w since 7 has to be conjugate to an element of A(B). Now if w(r) = w’
write C(7) = Cs,,(7) X Sn—pur. Then b, € BI(C(r), B) may be written b, = b° x b! where
B0 is the pr1nc1pal block of Cs_,(7) and ¥ is a block of S,_,, of weight w — w’. Moreover,
b° is the unique block in Cs, (7r) Therefore, it is easily seen that for a given 7 the set
Bl(C(r), B) contains a unique block if w(7) < w and is empty otherwise. The statement
of (11.14) is proved by induction on w. For w = 0 the result is trivially true. Suppose
it has been proved for blocks of weight 0,1,... ,w — 1. We get from the above and the
induction hypothesis that

w

EB)—UB)=>. Y Cpu(m)k(p—1,w—w")

w'=1 {r|wlr)=w'}

where the 7’s again are conjugacy class representatives. Since k(B) and the right hand
side of this equation are independent of the core of B, so is I(B). An easy combinatorial
argument shows that

> HCouw(m)) = p(w')
frlu(m)=w'}
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for any w' (see e.g. [47], section 2). Thus

KB)—1(B) = 3 p(uk(p 1, — )

w!=1

and then (11.4) shows that {(B) = k(p — 1, w), since

k(p,w) = i p(wk(p — 1,w — ).

w'=0

Note. Alperin and Fong [2] have verified Alperin’s weight conjecture (10.5) for blocks
of S, using of course the formula of (11.14). Very recently, Olsson and Uno [52] verified
Dade’s conjecture (10.7) for blocks of S, using the formula of (11.7). We have to refer to
the papers quoted for further details.

Remark (11.15) (On the Mullineux conjecture). As mentioned earlier, multiplying the
ordinary irreducible character [A] of S, by the sign character yields the irreducible character
[A°] where A° is the partition conjugate to A. This is fairly easy to show.

Let p be a prime number and consider the modular representations of S, in characteristic
P

The modular irreducible characters [[A]] of S, are labelled by p-regular partitons A of n, a

partition being p- regular if no part is repeated p (or more) times (see [25], chapter 6).

Multiplying the modular character [[A]] of S, by the sign character of S, gives another
modular irreducible character, labelled by a p-regular partition A¥. We are then faced
with the following problem.

Describe the involutory map A — AF on the set of p-regular partitions.

A conjectured answer to this problem is the Mullineux map. We describe this map A — \M
on the set Py(n) of p-regular partitions of n.

Let A € Py(n). The p-rim of X is a part of the rim of A (i.e. the (1,1)-rim of ), see section
1) which is composed of p-segments. Each p-segment except possibly the last contains p
points. The first p-segment consists of the first p points of the rim of A, starting with the
longest row. (If the rim contains at most p points it is the entire rim.) The next segment
is obtained by starting in the row next below the previous p-segment. This process is
continued until the final row is reached. We let a; be the number of nodes in the p-rim of
A =A@ and let r; be the number of rows in A. Removing the p-rim of A = A() we get a
new p-regular partition A € P,(n — a;). We let ay, 7, be the length of the p-rim and the
number of parts of A(?) respectively. Continuing this way we get a sequence of partitions
A= 20 XA AE) where A®) £ 0 and A*+1) = 0, and a corresponding Mullineus symbol

of A
G()\)__(al asg ... ak)
p S— 3

TN Ty ... Tk
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It is easy to recover A from its Mullineux symbol G,()). (Start with A*), given by a, i
and work backwards. In placing each p-rim it is convenient to start from below.) Moreover,
it can be shown that the entries of G,()) satisfy

() e<ri—riq1<p+e, 1<i<k—-1;1<r,<p

() rm-riptean<ai—ap<pt+ri—riptep; 1<i<k—-1 n<ar<pt+r
(lil) Zi a; = n, _

where ¢, =1if pta;, ¢, =0if p | a.

If Gp()\) is as above then AM € P,(n) is by definition the partition satisfying

a, ay; ... a
Gp()\M) = T2 k where s; = a; — r; + €.
8 82 ... 8k

Example. p=25, A = (8,6,5%)

44322111
433211 10 6 53
33221 GS(’\)“(4432)
21111

4433322111

43322211 -

2 1 my _ (10 6 5 3

11 Gs(’\)"(e)szz)

1

1

(In both cases the nodes of the successive 5-rims are numbered 1,2,3,4). Thus (8,6,5*)M =
(10,8,2%,1%).

The Mullineux conjecture is that the maps P and M above coincide (see [39]). This
conjecture seems inaccessible at the present moment, but there is evidence that it is a
very reasonable conjecture. In [40] it was shown that the conjecture is compatible with
the block distribution of the modular characters. The conjecture has been verified in some
”small” cases [32]. In [4] it was shown that the maps P and M have the same number of
fixpoints. This demanded the proof of a rather involved partition identity. There is also
compatibility between the map M and another conjecture about the restriction of modular
characters [7].

12 Blocks of A,,

In section 6 (see (6.7) and the remarks following it) the following was stated:

Lemma (12.1). Let A € P(n).
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(i) If A = X° then [N]]a, = {A} + {1}, where {A} and {A} are different irreducible

characters of A, (which are conjugate in S,).

(ii) If A # A° then [A]]4, = [A\%]|a, = {A} is an irreducible character of A,.

If A € P(n) we let {\} denote an irreducible character of A,, such that ([A]a,,{A}) # 0.
In this section we consider p-blocks of S, and A, for arbitrary primes p.

Proposition (12.2). Let B be a block of S, of positive defect (weight). Then B covers
a unique block (called B) of A,.

Proof. Since B has positive deféct, the weight w of B is nonzero. Suppose that B covers
two blocks B and B of A,. Then each character [\] € B has to be reducible when restricted

to A,, since [\]|4, must have one constinutent in B and one in B. By (12.1), A = \° for
all [A\] € B. This forces A(P) to be self-conjugate for all [A\] € B (by (3.5)). However, each
p-quotient of weight w occurs as a p-quotient of some A, [A\] € B and ((w),0,...,0) is a
non-self-conjugate p-quotient of weight w. This is a contradiction.

If B is a block of S, of positive Weight‘ w we also associate the same weight w to the block
B of A, covered by B. Similarly, if p is the core of B (i.e. p = A for some [)] € B) we
also call p the core of B. Then 4° is also a p-core and the corresponding block of 3, is

denoted B°. Thus
B°={[\] | [\| € B} =[1"]B

It is clear by the above that B = B° and that if B, and B, are different blocks of positive
defect with By = B, then B, = BY. If B = B° we call B (and B) sself-conjugate. Otherwise
the blocks are called non-self-conjugate. If p = 2 all blocks of S, are self-conjugate (e.g,.,
since all 2-cores are self-conjugate, see for example (3.15)).

As in section 9 k*(p,w) and k™(p,w) denote the number of self-conjugate and non-self-
conjugate p-quotients of weight w.

Proposition (12.3). Let p be odd and B a block of A, of positive weight covered by the
block B of §,. :

(i) If B is self-conjugate, then
K(B) = (p,w) = 26'(p, w) + 5K (p, w).
If [\] € B then {A} € B and ht 5([A]) —ht s({AD).
(ii) If B is non-self-conjugate, then
k(B) = k(B) = k(p,w)

and restriction gives a height-preserving bijection between the characters of B and
the characters of B.
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Proof. Follows from the above and the fact that B and B have a common defect group

[19], V.3.

It is of course possible to decompose k(é) according to the heights and our approach allows
us to give explicit formulas for k;(B). These numbers are again independent of the core of
B. The principle is the same as in the previous section, so we omit the details. (The height
of [A] and thus of {A} depend on the p-core tower of A only.) If B is non-self-conjugate
then ki(B) = ki(B) = ki(p,w), where ki(p,w) is computed in the previous section. We
state here only the formulas for ko(B).

Proposﬁ:lon (12.4). Let p be odd and let w > 0 have the p-adic decomposition w =
Yoo a:p’. Then let

~ 3, 1
k‘g(p, w) = §k0(p, w) + §ko(p, w)7
where .
ki (p,w) = IIT_k° (p‘“, aﬁ)
and .
ko(P, w) = II?:Ok (pt_H’ a:) .
If B has weight w, then ko(B) = k&(p,w) if B is self-conjugate and kg(.é) = ko(p, w)
otherwise.
Next we consider the case p = 2.

Proposition (12.5). Let p =2 and let B be block of A, of weight w > 0 covered by the
block B of S,.

(i) If w = 2w’ is even then
L 3 ., 1
Let {A\} € B. If ) is self-conjugate then ht 5({A\}) = ht B([A]) — 1. If X is non-self-
conjugate then ht 5({A}) = ht g([A]).
(11) If w is odd then
k(B) = F(2,w) = %k(z,w) = -;-k(B)

and restriction gives a height-preserving surjective map from the set of characters of
B to the set of characters of B.

Proof. The 2-cores of partitions are all self-conjugate. Moreover, a self-conjugate 2-
quotient has the form (u, u°) for some partition x and this is only possible when the weight
is 2w’, where p F w’. Hence there are p(w’) symmetric 2- -quotients of weight w = 2w’ and
none When w is odd. For the defects of the blocks we have d(B) = d(B) — 1. From this
the result follows easily.
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Again explicit formulae may be given for k;(B) for all i 2 0. For i = 0 we have the following
result whose proof is omitted:

Proposition (12.6). Let B be a 2-block of weight w = S a!2'in A,. Then

2T e ) ko(2,w) =271 if w =27 is a power of 2
ko(B) = ko(2,w) = { Tko(2,w) if w is not a power of 2.

From the above results the following may be proved fairly easily. It verifies Conjecture
(10.2) for blocks of A,.

Proposition (12.7). Let B be a block of weight w in A,. The following conditions are
equivalent:

(i) The defect group of B is nonabelian
(i) k(B) # ko(B)

(iii) ki(B)#0

. w>p ifpisodd
(W){wzfi if p=2.

Note. The verification of the conjectures (10.1) and (10.3) for blocks of A, is (for p odd)
somewhat similar to the verification for blocks of S,. For p = 2 there are complications
as may be expected from (12.6). We refer to [49] for further details. The Alperin-McKay
conjecture (10.4) for A, was verified in [35], also for p = 2.

We next describe the number of modular characters in blocks of A,, which was unknown
until recently.

Proposition (12.8). Let p be odd and B a block of A, of weight w > 0 covered by the
block B of S,.

(i) If Bis non-self-conjugate then I(B) = I(B) =k(p—1,w).
(ii) If B is self-conjugate, I(B) = 3(k(p — 1,w) + 3k (p — 1, w)).

Proof. See [50]. The non-self-conjugate case is obvious. In the self-conjugate case a
refined version of Brauer’s formula (see the proof of (11.14)) has to be applied.

For the prime p = 2 we have

Proposition (12.9). Let B be a 2-block of A, of weight w > 0 covered by the block B
of S,.

(i) If w is odd then I(B) = I(B) = p(w).
(ii) If w = 2w’ is even, then I(B) = I(B) + p(w') = p(w) + p(w’).
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Proof. In the case of w odd, restriction to A, yields a bijection between the modular
characters of B and B. The w even case the proof involves again Brauer’s formula, a
reduction result and a calculation with some of the generating functions of section 9. See
[50] for details.

Remark (12.10) (A combinatorial question). As in section 3 let K(r,s) be the set of r-
quotients of s, i.e. the set of r-tuples (A4,... , \,) of partitions such that [Ay|+---+|\,| = s.
Then k(r,s) = |K(r,s)|. In particular, if B is a p-block of S, of weight w, then (B) =
|K(p—1,w)|. If the core of B is x then the modular characters in B are labelled by the set
Bi(w, k) of p-regular partitions of n with core &. (n = |&|+pw.) On K(p—1, w) we have a
conjugation map (say C) (see also section 6) mapping (A, ... ,A,—_1) onto (A1 5 AD),
and the Mullineux map M described in (11.15) induces a bijection :

M : By(w, k) — By(w, £°).

The number of fixpoints for C is k)(p — 1,w). Therefore, (12.8) suggests the following
question: Does there exist for each p-core £ and each w > 0 and (explicit describable) map

My K(p — 1, w) = By(w, k)

so that the following diagram of maps is commutative?

Note. To the knowledge of the author no work has been done on the conjectures (10.5)
to (10.7) in the case of alternating groups.

13 Blocks of S’n and /in

In section 4 we studied cores and quotients of bar partitions and in section 7 the degrees
of spin characters in S, and A,. This will be relevant for the study of p-blocks of spin
characters in these groups for p odd.

As mentioned in section 7 the associate classes of spin characters in S, are labelled canon-
ically by the bar partitions of n.

When p is an odd prime then a p-block of S, cannot contain ordinary and spin characters
at the same time, as is easily seen (evaluate the central characters on the central element
z). It was conjectured by Morris how the spin characters should distribute into p-blocks,
p odd. Morris’ conjecture was proved in [24], [13]:

Theorem (13.1). Let \,u € P(n).
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1) If A = A, then (A) has p-defect 0.
(%)

(i) If XA # A), then (A) and (u) are in the same p-block if and only if A = pp), ie.
they have the same p-core.

(Another proof of this result, partly inspired by the original proof of Nakayama conjecture,
is available from the author.)

In section 4 we denoted the set of bar partitions of p-weight w with p-core & by B(w, ).
If A € B(w, k) is a partition of n, then £ € P(n — wp). If w > 0 then the spin characters
of 5, in the same block as () are exactly the characters (i) (and their associates) with
p € B(w, k). Thus the integer w is an invariant of the p-block B containing (A) and is
called the weight w(B) of B. If A = )\ then ()) is the unique character in a block B of
defect 0 (see formula (3) of section 7) and in this case we of course put @w(B) = 0. We call
a block consisting of spin characters a spin block.

Analogous to the results (11.2) and (11.3) we have

Lemma (13.2). (p odd) Let B be a spin block and @(B) = w. Then d(B) = v,((wp)!) =
w + vp(w!).

Proposition (13.3). (p odd) Let B be a spin block and @(B) = w. Then A(B) is
conjugate in S, to a p-Sylow subgroup of S,, C S,,.

The proof of (13.2) is based on the formula (3) of section 7 and a variation of the proof of
(11.3) yields (13.3). We omit the details.

The above may lead the reader to expect that the number k(B) of characters in a spin
block B depends only on ﬂ)(f? ). However, this is not quite correct. For positive weights
there are two possibilities for k(B) and k;(B), depending also on a sign. If the characterss
in B are labelled by the bar partitions in B(w, k), then « is called the core of B and the
sign o(k) of k (see section 7) is called the sign o(B) of B.

Proposition (13.4) (p odd). Let B be a spin block of sign o and weight w > 0. Then
k(B) depend only on ¢ and w and we have

K(B) = k(p,w) = ¢ (B, w) + 247 (P, w),
where ¢?(p, w) is defined in section 7 (see also section 9).
Proof. Let & be the core of B. In section 7 the sign of a p-quotient was defined such that
generally o(A) = o(AP)o(\(z). Therefore the set B(w, k) contains ¢°(p, w) bar partitions
with sign 1 and ¢~7(p, w) bar partitions with sign -1. Since the bar partitions with sign -1

label pairs of associate spin characters, the result follows from (13.1).

If w(B)=w>0we thus have two possibilities for k(ABe) We discuss briefly the relation
between the two values k%(p,w) and k™ (p,w) of k(B). As in sections 2, 7 and 9 t =
(p—15)/2. We have
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Proposition (13.5) (p odd). Forall w>1
KD (5, w) — KV (5, w) = k(t — 1, w).
Proof. Using (13.4) and the notation of section 9 we have k(-1"* (5, w) — ECD*(5,w) =

§*(p,w) — §~(p,w). The generating function for §°(p,w) is denoted Qg(x) in section 9 and
by (9.6) (v) we have Qf(z) — Q;(m) = P(z)'"!, proving our result.

Corollary (13.6). Forall w>1
kt(3,w) = k~(3,w).

This corollary shows that the two possibilities for k(B) coincide for p=3. Forp>5 this
never happens. Since k(t — 1,w) > 0 when ¢t — 1 > 1 we have

Corollary (13.7). Forp>5and w >0

E™ (3,w) > BD(5,w).
Spectal cases.

(1) V(5 w) — kDY (5, w) = p(w).
(i) k*(5,0) =1,k (5,0) = 2.

(iii) ¥*(p,1) = p, k= (p,1) = 2+ (p — 1)/2 (corresponding to blocks with a cyclic defect
group of order p).

(iv) k*(5,2) = 2p+ (1), k~(5,2) =2p — 1 + 12,

Next we describe the heights hyz((\)) of a character (A\) € B, B a spin block. This involves
the p-core tower of a bar partition ) defined in section 7. Then B;(p, w) is defined as the
sum of the cardinalities of the partitions in the i-th row of the p-core tower of . A proof
completely analogous to the proof of (11.5) (the relevant facts are all in section 7) yields:

Proposition (13.8). If A € P(n), (\) € B, ®(B) = w then

w=>_ Bi(p,w)p"

i>1

and if 35 a;p’ is the p-adic decomposition of w then

hg((A) = (Z ZRVEDS) aj) /(P —1).

i>1 i>0

In particular, h5({))) does not depend on the core of B.
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In order to give a formula for k,(B) we decompose
¢ (P, w) = Y _ q; (5, w)
a>0

such that X

ka(B) = ka(ﬁ7 w) = qg(ﬁ’ w) + 2q;a(ﬁ, w)‘
if B has sign 0. Moreover q(p,w) will enumerate p-core towers with special properties.
As in section 6, E,(p,w) is the set of sequences (ag, a1,... ,ax,. .. ) satisfying

a; € N, Ea,-p" = w, (Ea;—Zaj) /(p—1)=a.

i>0 i>0 >0

We need the integers ¢ (gr + 1, w) defined after (7.3). Their generating functions may be
expressed as follows:

(13.9) ﬁ"-’(a:)F(:c)r = Z;O & (2r+1,w)z"

where F”(:v) and F,(z) are given by (9.9) (1v) and (9.14) (2). Then if

eEw)= 3> JIg0, )
a=(ag,ay,...) 1>O
o=(o=(0g,01,...)

where o runs through E,(p, w) and o runs through all sequences of signs satisfying [] 0; = o,
we get

Proposition (13.10) (p odd). In the above notation, if B is a spin block of sign o and
weight w then for a > 0

ka(B) = £ (5, w) = (P, w) + 24, (5, w).

Proof. Analogous to previous proofs (see (7.4), (11.7)).
Corollary (13.11) (p odd). In the above notation

ko(B) = ¢3 (B, w) + 2¢5° (p, w)
where

@g@mw)= Y Tl w),

(7-—-(0'0,0'1, )t>0
(o as above).

Remark (13.12) (p odd).
(i) If a(p, w) := ¢ (P, w) + ¢; (P, w) then
k(p,w) # 0 & gu(p,w) # 0.
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Moreover, if ¢5(p',n) = cf(p',n) + ¢5(p‘, n) is defined by the equation

Fy(2)Fp(2)" V2 = 3 ey(p', m)e”
n>0

then

2.(p,w) = > Hizocﬁ(piﬂ, a;).
(C!j)EEa(p,w)

(i) We have c3(p',n) = ¢°(p',n) for: > 1,0 <n < p—1, o asign.

This is because all (bar) partitions of cardinality < p—1 are p- (bar) cores. This fact also
implies that _ '
¢(pn) #0 if n<(p—1)(1+(p'—1)/2).

Lemma (13.13) (p odd). If w > p then k°(p,w) # 0.

Proof. Ifw = Y {,ap' isthe p-adic decomposition of w (where a, # 0) then (ao, ay, . .  yGs1t

p,a,—1,0,...) € Ey(p,w). Using (13.12) we see that it suffices to show cz(p®, as—1+p) # 0,

because then ¢;(p,w) # 0 forcing fcf (p,w) # 0. Suppose ¢,(p°,as—1 + p) = 0. Then by

(13.12) (ii) we get 4
(p—-1(A+(p°—1)/2) <1 +p<2p-1

(since as—1 < p—1). Thus

[2;’_' 11] =2>(1+(' - 1)/2)

forcing p* = 3. We get a,_1 +p = 5. But ¢3(3,5) # 0, since (1) and (3,1) is a pair
consisting of a 3-core and a 3-core whose cardinalities add to 5. This is a contradiction.

Note. Using (13.13) and (13.3) we get the following. Let B be a spin block of 3, of weight
w. Then the following statements are equivalent:

(i) A(B) is non-abelian.
(ii) w > p.
(iii) ki (B) # 0.

‘Thus Conjecture (10.2) is verified for all spin blocks of 8., and thus for all blocks of S,
when p is odd (see a note following (11.9)).

It turns out that the conjectures (10.1) and (10.3) for spin blocks are weaker than the
corresponding conjectures for ordinary blocks. In fact the following holds:
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Proposition (13.14) (p odd). Let k(p,w) and ko(p,w) be defined as in section 11 (i.e.
they are block invariants in S,,). Then if ¢ is a sign and w > 1 then

ko-(p’w) < k(p,w)
kg(ﬁaw) < ko(p,w).

We omit the proof of this which is not very difficult (see [49], section 3). Now a spin block
of weight w and a block of ordinary characters in S,, of weight w have isomorphic defect
groups (by (11.3) and (13.3)). Since the conjectures (10.1) and (10.3) have been verified
for all blocks of Sy, (13.14) shows that they are also valid for all spin blocks.

Remark (13.15). (On possible equivalences) In Remark (11.6) a discussion was given of
various equivalences between blocks of symmetric groups. Since there are also reduction
results for spin blocks (including also the numbers {(B) as we shall see) it seems reasonable
to ask:

Let p be odd and B be a spin block of 5, of weight w and sign 0. Is B perfectly isometric (or
even Rickard equivalent) to the principal spin block of Spyu41-0 (i-e. the block containing
the basic spin character (pw + 1 — 0))?

The answer to this question is still unknown, but at least the prospective ingredients in
a perfect isometry (as in [16]) are available. The map (:)f;’(l_a) (where £ is the core of B)
described in (4.7) yields a bijection of characters and the sign may be obtained using the
p-sign of bar partitions described towards the end of section 4.

Another intriguing question is whether a result like Scopes’ [59] is valid for spin blocks,
i.e.: Are there only finitely many spin blocks of a given weight up to Morita equivalence?

This may be quite difficult to answer. At least analogues of the ingredients in Scopes’
proof for S, are not available (see below).

Remark (13.16). (Labels of modular spin characters?) As mentioned in (11.15) the
modular irreducible characters of S, are labelled canonically by the set of p-regular parti-
tions of n. Using this labelling it is possible to describe generally the arrangement of rows
and columns in the decomposition matrices, so that these matrices are lower unitriangular
([25], 6.3.60). This fact is an important ingredient in the proof of the main result of [59)
(see (11.6) and (13.15)). Examples seem to indicate that decomposition matrices of spin
blocks may be arranged in an ”almost”lower unitriangular form (up to the appearance of
pairs of associate characters in the diagonal). However, it is not known what a reasonable
labelling of the modular spin characters should be. It is clear that new and difficult com-
binatorial problems involving partition identities would need to be solved to deal with the
case of arbitrary (odd) p. In [6] a class of label partitions for the modular spin charac-
ters when p = 3 was determined leading to a proof for an almost triangular shape of the
decomposition matrices. The proof of the fact that the number of labels was correct in-
volved (surprisingly) a partition identity proved by Schur [58] in 1926. The corresponding
question about the number of labels for p = 5 turned out to be equivalent to a conjecture
of Andrews from 1976. This conjecture was then proved in [3]. It seems that for p > 7 the
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method suggested in [6] does not even produce the right number of labels! However it is
possible for arbitrary p to determine the number I(B) of modular spin characters in a spin

block.

In [50] the principle of proof presented in (11. 14) was modified to give a formula for
Z(B) when B is a spin block. The details were much more involved then in (11.14), |
but the following was proved: Let 1*()(I*(B)) denote the number of selfassociate (the
number of associate pairs of) modular irreducible characters in a spin block B, so that

I(B) = I*(B) + 2I"(B).

Proposition (13.17) (p odd). Let B be a spin block of S, with w = @(B) > 0. Let
t = (p —1)/2 (as above). Let o = o(B) be the sign of B.

If 0 =1 then
) = { ) o
PB) = { M) G ot
If o = —1 then
"B = { Y oot

ne BN k(t,w) for w even,
r(B) = { 0 for w odd.

In any case I(B) = I°(B) + 2I"(B).

Note. The above shows that in a spin block of S(n) either all modular characters are
self-associate or all modular characters are non self-associate. (This is not the case for
ordinary blocks, as we have seen in section 12.)

Note. In [35] the Alperin-McKay conjecture (10.4) and in [36] Alperin’s weight conjecture
(10.5) were verified for spin blocks of S, (and A,), using (13.17). The papers involve
complicated analysis both on the local and the global level and it is not possible to discuss
the details here. An outline is given in [33], section 6. ‘

Remark (13.18). There is a remarkable ” duality” between the spin characters of S, and
the spin characters of A, which is reflected naturally in the blocks for odd primes.

Let A € P(n). If ) is odd there are two spin characters of S, indexed by A. These characters
have the same restriction to A,. If A is even then (\) | 4, is a sum of two irreducible

characters in A, which are conjugate in S,.. Thus the irreducible spin characters of A, are
indexed canonically by the bar partitions A of n, such that A indexes one spin character
when ) is odd and two spin characters when X is even.

Let B be a p-block of spin characters in S,. If the weight of B is nonzero then it is easy
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to see that there exists a A € P(n), (\) € B, and A odd. Then (A) |4, is irreducible so B
covers only one block of A,. Thus we have:

Let B be a spin block of S, of positive defect. Then B covers a unique block (called B )
of A,. In the notation above we had the same core and sign to B and B’. Note that B
and B’ have the same defect. As an immediate consequence of (13.4), (13.9) and (13.17)
we get the following:

Proposition (13.19) (p odd). Let B’ be a spin block of weight w > 0 and sign o in A,
(covered by the spin block B of S »). Then for a > 0

KB) = k7 (pw)
kao(B) = k7°(5,w)
(B = k"(B)—}—Qk“’(B)

The above shows that the proofs of the conjectures (10.1) - (10.5) for spin blocks of A,
are virtually identical to the proofs for spin blocks of S, and thus (10. 1) - (10.5) are also
verified for A, for p odd.

Until now we considered only the case p odd and exploited the fact that a p-block of S,
cannot contain ordinary and spin characters at the same time (so the concept ”spin block”
made sense). In the case p = 2, the characters in a 2-block B of S, may be considered as
the ordinary characters in a unique 2-block B of 5, (see [19], V, 4.5). Then B also contains
some spin characters. But neither the 2-core nor the 2-core (which may indeed be defined)
of a A € P(n) tells you in which block ()) is contained. In fact the spin character (7) is
not in the principal 2-block of ;. More generally, (4n + 3) is not in the principal 2-block
of Sunys ([5])- A conjecture about how the spin characters should distribute into 2-blocks
due to R. Knérr and the author was stated in [48] and proved recently in 8]

Given a partition A = (Iy,...,l) € P(n) we may replace each part ; of by the parts
[1—*5211], [l] where [...] denotes "integral part of”. Thus [; = 2t + 1 is replaced by ¢ + 1,

and [; = 2t replaced by t,t. The resulting partition is called the doubling of A and denoted
by dbl(A). Thus

o= ([ G [ ] [5]):

(For A = (13,11,8,5,2) we obtain dbl(\) = (7,62,5,42,3,2,12).)

We have seen in section 3 that the 2-cores were exactly the partitions «; = (k k —
1,...,2,1), k > 0. By section 11 the 2-blocks of S, (and thus the 2-blocks of S, n) are
labelled canonically by the 2-cores of partitions of n. The distribution of spin characters
into 2-blocks is as follows:

Theorem (13.20). Let A € P(n). Then ()) is in the 2-block of S, labelled by the 2-core
of dbl(A). This means that for A, u € P(n), (\) and (u) are in the same 2-block if and
only if dbl(A)(z) = dbl (1))
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Although the statement of Theorem (13.20) thus bears resemblance to the Nakayama
conjecture (11.1) and the analogous statements for spin characters in odd characteristic
or for unipotent characters of certain classes of finite linear groups in the non-defining
characteristic [20], [21], the methods applied to prove it were essentially different. Indeed
the principles of proof applied in the other cases cannot possibly work here. They involve in
an essential way iterated versions of the (analogues of the) Murnaghan-Nakayama, formuia.
These are used to evaluate character values on special p-singular elements, whose p-part
has a large "weight”. However, spin characters vanish on almost all 2-singular elements
except those whose 2-part is 2. The only other exception is one more 2-singular class
where a given non self-associate spin character does not vanish. This fact was indeed quite
important in the proof in [8] of (13.20).

The first step in the proof was to use Brauer’s formula (see (11.14)) to determine the
number of ordinary characters in a 2- block B of 5, using that if B is the 2-block of S
contained in B, then I(B) = I(B) (!). Let

4
ot _ J pt(n) neven
? "(n) { pr~(n) nodd
. v _ Jp(n) neven
pn) = { pt(n) nodd
where p*(n) (p=(n)) is the number of conjugacy classes of S, of even {odd) elements. Then

Propomtlon (13.21). Let B be a 2-block of §,, of weight w and let B be the 2-block of

S, containing B. Then B contains BT{w) self-associate spin characters and 5~ (w) pairs of
non self-associate spin characters. Thus

K(B) ~ K(B) = p(w) + 5™ (w).

As & corollary to the proof of (13.21) a result relating an invariant of a given A € P~(n) to
the weight of the 2-block containing may be proved. Then the proof of (13.20) is obtained
by combining this surprisingly strong corollary with some branching techniques in a very
delicate way. We refer to [8] for further details.

In qpn;e of (18.20) it does not seem to be easy to compute the numbers k,(B) for 2-blocks
of 5, and none of the conJectures (10.1) — (10.4) have been verified for these 2-blacks.
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