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Abstract

Importance sampling or Markov Chain Monte Carlo sampling is required for state-of-the-art
statistical analysis of population genetics data. The applicability of these sampling-based infer-
ence techniques depends crucially on the proposal distribution. In this paper, we discuss impor-
tance sampling for the infinite sites model. The infinite sites assumption is attractive because it
constraints the number of possible genealogies, thereby allowing for the analysis of larger data
sets. We recall the Griffiths-Tavaré and Stephens-Donnelly proposals and emphasize the relation
between the latter proposal and exact sampling from the infinite alleles model. We also introduce a
new proposal that takes knowledge of the ancestral state into account. The new proposal is derived
from a new result on exact sampling from a single site. The methods are illustrated on simulated
data sets and the data considered in Griffiths and Tavaré (1994).
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1 Introduction

A crucial aspect of importance sampling and Markov Chain Monte Carlo
(MCMC) sampling is the choice of proposal distribution. In principle, both
methods can approximate a desired integral (e.g., the likelihood function) to
any level of accuracy, but in practice it is important to choose a proposal
distribution that promotes efficient search of the state space.

In this paper, we discuss proposal distributions for the infinite sites model
(ISM), which is used for analysis of DNA sequence data sampled from a pop-
ulation of organisms. We introduce the ISM in terms of Ethier and Griffiths’s
(1987) algorithm for simulating samples of genes. The algorithm builds up
a sample forward in time by duplicating an existing gene or by replacing an
existing gene with a mutated gene. Based on Ethier and Griffiths’s algorithm,
a recursion can be constructed to calculate the likelihood of a data set. Un-
fortunately, it is not feasible to solve the recursion for data sets of useful size,
and sampling-based techniques are required to calculate the likelihood.

Griffiths and Tavaré (1994) described a method for approximating the
likelihood under the ISM, and Felsenstein et al. (1999) recognized that the
Griffiths-Tavaré (GT) procedure is in essence importance sampling. Proceed-
ing backward in time, a proposal distribution suggests histories of the sample
by stepwise reduction of the data set, either by coalescence of two identical
genes (the time-reversal of duplication) or by removal of a mutation unique to
a single gene. Stephens and Donnelly (2000, Theorem 1) characterized the op-
timal proposal distribution for a large class of models, including the ISM, and
constructed reasonable approximations to the optimal proposal. Their approx-
imation for the ISM is based on the optimal proposal for parent-independent
mutation models, first derived by Hoppe (1987) for the Infinite Alleles Model
(IAM). We recall Hoppe’s work and its relation to the Stephens and Donnelly
(SD) proposal distribution for the ISM.

Although neither the GT nor the SD proposal takes into account the num-
ber of mutations carried by genetic lineages, one expects that those lineages
that have experienced more evolutionary events within a given time period
(the time since the most recent common ancestor of the sample) have a higher
likelihood of having experienced the most recent evolutionary event. Here,
we derive explicit expressions for the probability that the most recent event
occurred in a given allele in a sample containing a single segregating site or in
a sample of size two. We use these results to develop a new proposal distri-
bution. Our comparison of the importance weights of histories sampled under
the GT, SD, and new proposal schemes applied to actual and simulated data
sets indicates that the new proposal generally shows greater efficiency.
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2 Models of genetic evolution

Our objective is to use the pattern of genetic variation observed in the sample
as a basis for inferring characteristics of the evolutionary process that produced
it. Our sample comprises n nucleotide (DNA) sequences, all derived from
a particular genomic region (locus). Mutation causes the replacement of a
nucleotide base (A, C, G, or T) by a base of a different kind, and allelic classes
correspond to distinct sequences. We refer to a unit of transmission from
parent to offspring as a gene, and an allele as a particular sequence of bases.

To illustrate the use of sampling-based methods to infer characteristics of
the evolutionary process, we address the estimation of the scaled mutation
rate,

θ = 2Nu, (1)

for N the effective number of genes in the entire population of organisms
(rather than in the sample) and u the probability that any offspring gene
bears a newly-arisen mutation. We assume the absence of crossing-over within
the sampled genomic region and that all mutational events in the history of
the sample are observed in the DNA sequences.

2.1 The standard neutral model

Random transmission to offspring of one gene from each parent causes fluc-
tuations in allele frequencies between generations (genetic drift). Selective
neutrality of the segregating mutations implies that for all genes, irrespec-
tive of allelic class, the numbers transmitted to the offspring generation have
independent identical distributions.

Each nucleotide site in a sampled haplotype has a genealogical history, re-
flecting a direct line of descent from the most recent common ancestor (MRCA)
of the sample. In the absence of genetic recombination, all sites share a sin-
gle genealogy. We impose the large-population assumption that two offspring
genes descend from a common parent gene at rate 1/N per generation and that
the rate of common descent of more than two in a given generation (O(1/N2))
is negligible. As a consequence, the sample genealogy corresponds to a binary
tree.

We assume that the waiting time to the next evolutionary event (common
descent or mutation) has an exponential distribution. On level l of the geneal-
ogy of the sample (the segment of the gene tree in which l lineages ancestral
to the sample exist), common descent occurs at a per-generation rate of

(
l
2

)
/N

and mutation lu. It is natural to scale time in units of N generations, so that
common descent happens at rate

(
l
2

)
and mutation lNu = lθ/2.

2

Statistical Applications in Genetics and Molecular Biology, Vol. 7 [2008], Iss. 1, Art. 32

http://www.bepress.com/sagmb/vol7/iss1/art32



2.2 An algorithm for evolutionary change

Ethier and Griffiths (1987) have described an algorithm for generating a sample
of size n under mutation and genetic drift in an unstructured population:

Algorithm 1

(1) Start with one gene, which immediately duplicates.

(2) When there are l genes, the time until the next event is exponentially
distributed with parameter l − 1 + θ. Upon an event, choose a gene at
random from the l genes. With probability (l− 1)/(l− 1 + θ), duplicate
the gene; otherwise, with probability θ/(l − 1 + θ), add a mutation to
the gene.

(3) If the number of genes is less than n+ 1, return to (2); otherwise, delete
the last gene and stop.

Figure 1 (left) shows an example of a genealogy generated under this algorithm,
together with mutations (labeled dots). In the infinite sites model, multiple
mutational events never occur at any nucleotide position within the locus.
Distinct labels for the tips (leaves) of the tree indicate distinct nucleotide
sequences, each of which arises through the accumulation of mutations along
its line of descent from the root (MRCA): for example, haplotype b carries
mutations 2 and 3, but not mutations 1, 4, or 5.

A convenient description of a data set lists the distinct nucleotide sequences
(alleles) together with their multiplicities. We assume the ancestral state (0)
is known, perhaps from information from an outgroup. Element skm of matrix
S is 1 if allele k (k = 1, . . . , K) carries mutation m (m = 1, . . .M) and is 0
otherwise, and vector n gives the multiplicities of each allele in the sample.
Figure 2 presents S and n for the genealogical history in Fig. 1.

Algorithm 1 proceeds forward in time, sampling a descendant state (D)
given the parental state (A) from P (D|A). Given any particular history (e.g.,
Fig. 1), the likelihood of any value of θ can easily be determined at each
successive level from

P (D) =
∑
A

P (D|A)P (A),

with the transition P (D|A) proceeding forward in time. Because the number
of histories grows rapidly as sample size increases (see Song, Lyngsø, and Hein
2006), consideration of only a subset of histories is practicable. Furthermore,
because only a very small fraction of histories (an enormous number, nev-
ertheless) are compatible with the observed pattern of nucleotide variation,
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of each allele (see Figure 1 for an example). Only sites segregating in the sample is shown in S. Denote
by sk the kth row (allele) in S and note that each mutation creates a new allele.

If we only record whether genes are identical or not, Algorithm 1 produces samples according to the
IAM (Ewens, 2004). Gusfield’s algorithm (Gusfield, 1991) can determine whether a data is consistent
with the infinite sites assumption (i.e. can be imposed onto a tree), and Gusfield also provides an efficient
way of constructing the perfect phylogeny. The perfect phylogeny for the above data set is shown in
Figure 2. There is a one-to-one correspondence between the perfect phylogeny and the segregating sites
matrix S.
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Figure 2: Left: Simulation of data set. Right: Perfect phylogeny reconstructed from data at the tip
nodes.

For the purpose of calculating the likelihood we need to trace the history of the sample backward in
time, i.e. in the opposite direction of how it is generated. The data set (S,n) in Figure 2 can only arise
from 3 previous events: coalescence of two a alleles (a duplication of an a allele when going forward
in time), a mutation in site 3 or a mutation in site 5. Hence, there are three cases to consider when
updating the data (S,n) after an event backward in time. If the event is a duplication of an a allele,
the matrix S remains unchanged, while the entry in n corresponding to allele a decreases by 1. If allele
b is involved in the last event, the column in S corresponding to mutation 3 is removed and n remains
unchanged. Finally, if allele d is involved in the last event, the column in S corresponding to mutation
5 is removed. Because allele c and d are the same when mutation 5 is removed, the row corresponding
to allele d is also removed in both S and n, and the multiplicity of c is increased by one. Note that
only alleles a, b and d can be involved in the last event. Allele c cannot be involved in the last event
because it could not have arisen from a duplication (it is of multiplicity one) or from a mutation.

Formally, call a site m a singlet site if there is exactly one allele with a 1 at that site, i.e.
∑

k skm = 1.
In Figure 2, sites 1, 2, 3 and 5 are singlet sites, while 4 is not. There is a uniquely defined allele k
associated with a singlet site m; namely the allele that has skm = 1. Let sm

k be the same as sk, except
that skm = 0. If the ancestor of sk is in the sample after a mutation we have sm

k = sj for some j 6= k.
If the ancestor of sk is not in the sample, the gene sk is still unique after the mutation. In Figure 2 we
have s3

b = (0, 1, 0, 0, 0), which is still unique and we conclude that b does not have an ancestor in the
sample. Furthermore, we have s5

d = (0, 0, 0, 1, 0) = sc, so the ancestor of d is c.
Let M be the set of alleles that correspond to at least one singlet site. In Figure 2, M = {a, b, d}.

Algorithm 1 provides the probability of the last event being the desired event, coalescence or mutation.
Using this information, we can write a recursion for the probability of a data set (Griffiths and Tavaré,

3

Figure 1: Left: Genealogical history of six randomly-sampled haplotypes, with
numbered dots representing mutations and letters alleles (distinct nucleotide
sequences). Right: Perfect phylogeny constructed from the sequence informa-
tion.

many procedures sample histories by constructing them backward in time, be-
ginning with the observed sample. Proceeding from descendant to ancestral
states (a time-reversal of the evolutionary process) requires efficient proposals
of P (A|D). We address the backward-in-time construction of genealogical his-
tory under two classical forward-in-time descriptions of evolution: the infinite
alleles model (IAM) and the infinite sites model (ISM).

2.3 A perfect sampler for the IAM

Under the infinite alleles model, any nucleotide substitution defines a new
allele. Our description of the sample includes only the number of alleles and
their multiplicities. From n, we can represent the sample by a = (a1, . . . , an),
for aj the number of alleles represented j times in the sample and n the total
number of genes in the sample (see Karlin and McGregor 1972; Kingman
1978). For the data set in Fig. 1, for example, we have a = (3, 0, 1, 0, 0, 0).
For K the number of alleles (distinct nucleotide sequences) in the sample,

n∑
j=1

jaj = n and
n∑
j=1

aj = K.
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S =

site
allele 1 2 3 4 5
a 1 0 0 0 0
b 0 1 1 0 0
c 0 0 0 1 0
d 0 0 0 1 1

n =

allele multiplicity
a 3
b 1
c 1
d 1

Figure 2: Description of the data set with the genealogical history shown in
Fig. 1. Matrix S presents the DNA sequences of the alleles, with 0 denoting
the original (ancestral) state and 1 the mutant state. Vector n gives the mul-
tiplicity of each allele. Only segregating sites, those at which two bases exist
in the sample, are shown.

The Ewens sampling formula (ESF; Ewens 1972) gives the probability of the
sample:

Pn(a) =
n!

θ(n)

n∏
j=1

(
θ

j

)aj 1

aj!
(2)

for
θ(n) = θ(θ + 1) . . . (θ + n− 1).

This expression represents the marginal probability of all complete histories
consistent with the observed number of alleles and their multiplicities.

Ewens’s derivation proceeded from the “remarkable intuitive insight” (Kar-
lin and McGregor 1972) that the probability, for a sample of size l, that the
next gene sampled represents an allelic type not yet observed is θ/(θ + l).
Coalescence arguments making explicit reference to the genealogy of the sam-
ple have yielded elegant combinatorial derivations of the ESF (Kingman 1978;
Donnelly 1986; Fu 1995; Griffiths and Lessard 2005). Of particular relevance
to the present investigation is the recursion of Karlin and McGregor (1972):

Pn(a) =
θ

(n− 1 + θ)

a1

n
Pn(a)

+
n−1∑
j=1

θ

(n− 1 + θ)

(j + 1)(aj+1 + 1)

n
Pn(a− e1 − ej + ej+1) (3)

+
n−1∑
j=1

(n− 1)

(n− 1 + θ)

j(aj + 1)

(n− 1)
Pn−1(a− ej+1 + ej),
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for ej the n-dimensional vector with 1 in position j and 0 elsewhere. The
first term on the right of (3) represents a history in which the most recent
event occurred in a singleton allele, with probability a1/n, and was a muta-
tion, with probability θ/(n− 1 + θ). This event (E1) creates a new singleton
allele from an existing singleton allele, preserving the allele spectrum a. The
second term includes cases in which an allele with multiplicity (j + 1) in the
parental generation receives a mutation. This event (E2) creates a new single-
ton allele, decrements the number of alleles with multiplicity (j + 1) by one,
and increments the number of alleles with multiplicity j by one. With proba-
bility (n− 1)/(n− 1 + θ), the most recent event corresponds to a duplication
(E3), causing the number of lineages to increase from (n− 1) in the previous
generation to n in the present generation. With probability j(aj + 1)/(n− 1),
the duplication occurred in an allelic class comprising j replicates, resulting
in a decrement of the number of alleles with multiplicity j and an increment
in the number of alleles with multiplicity (j + 1). Substitution of (2) into (3)
confirms the ESF.

Knowledge of the full solution (2) permits explicit specification of the dis-
tribution of the ancestral state (A) given the descendant state (D = a). Only
the ancestral configurations shown on the right side of (3) can have given rise
to D. Bayes formula produces the exact transition probabilities:

P (A|D) =


Pn(a|a) = θ

n−1+θ
a1

n
(E1)

Pn(a− 2e1 + e2|a) = a1−1
n−1+θ

a1

n
(E2, j = 1)

Pn(a− e1 − ej + ej+1|a) =
jaj

n−1+θ
a1

n
, for j ≥ 2 (E2)

Pn(a− ej+1 + ej|a) =
(j+1)aj+1

n
, for j ≥ 1 (E3).

(4)

These expressions also follow from Theorem 1 of Stephens and Donnelly (2000).
The probability that the next event backward in time corresponds to a mu-
tation is a1/n, the sum of the first three cases (all but E3). This probability
and its complement, corresponding to a coalescence event (E3), agree with
expressions given by Hoppe (1987).

One implementation of a perfect backward sampler using (4) begins with
choosing a gene in D uniformly at random. If it belongs to an allelic class
represented more than once (one of aj+1 genes, with j ≥ 1), assign the most
recent event as a duplication (E3). Otherwise, with probability a1/n, assign
the ancestral state A as identical to the descendant state D = a (E1) with
probability θ/(n−1 + θ), as a−2e1 +e2 with probability (a1−1)/(n−1 + θ),
and as a− e1 − ej + ej+1 with probability jaj/(n− 1 + θ).

6
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2.4 The ISM

We now consider the infinite sites model, under which we base the estimation
of θ (1) on the sequences S in addition to the allele frequency spectrum n
(recall Fig. 2), with D = (S,n).

Each mutation partitions the sample into genes that carry and those that
do not carry the mutation. The four-gamete test of Hudson and Kaplan (1985)
for the detection of crossing-over uses that sets A and B, associated with two
distinct mutations, can only be either disjoint (A ∩ B = ∅) or nested (A ⊆
B). Gusfield (1991) provided an efficient algorithm for constructing a perfect
phylogeny, a summary of binary trees compatible with the observed pattern of
mutations in the absence of recombination. A one-to-one correspondence exists
between the segregating sites matrix S and the perfect phylogeny. Figure 1
(right) shows the perfect phylogeny for the data set in Fig. 2. It differs from the
complete genealogical history tree (Fig. 1 left) in not specifying the relative
order of all mutation and coalescence events and collapsing some branches.
Further, the relative order of mutations on a given branch (e.g., 2 and 3) is not
identifiable. A great many number of fully resolved trees may be compatible
with the perfect phylogeny, especially for data sets in which the sample size
exceeds the number of segregating mutations.

In reconstructing the history of the sample backward in time, we note
that just as in the IAM, the descendant configuration D = (S,n) can have
derived from only three ancestral configurations. If the most recent event is a
duplication, with probability (n−1)/(n−1+θ), the S matrix of the ancestral
configuration (A) is identical to that of the descendant (D), while the entry
in n corresponding to the duplicated allele decreases by one. Alternatively,
if the most recent event is a mutation, S of A reflects the removal of the
corresponding column from S of D. This mutation can have arisen either in
an allele present in D or in an allele not in D. In the latter case, n of A and
D are identical. In the former case, the number of distinct haplotypes in A
declines by one, entailing the removal of the row corresponding to the allele
in D that bears the new mutation, and the multiplicity of the allele in which
the mutation arose is increased by one. Note that in the example shown in
Fig. 1, allele c cannot have been involved in the most recent event because it
is a singleton allele, which precludes duplication, and does not carry a unique
mutation.

These considerations imply a recursion in the probability of a data set (see
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Griffiths and Tavaré, 1994):

P (S,n) =
∑
k:nk≥2

(n− 1)

(n− 1 + θ)

(nk − 1)

(n− 1)
P (S,n− ek)

+
∑

k:nk=1,k∈M,∀j:sm
k 6=sj

θ

(n− 1 + θ)

1

n
P (CmS,n) (5)

+
∑

k:nk=1,k∈M,∃j:sm
k =sj

θ

(n− 1 + θ)

(nj + 1)

n
P (RkCmS,Rk(n + ej)),

(compare (3)), in which the first summation represents cases in which the most
recent event is a duplication of allele k, the second a new mutation in an allele
not present in D, and the third a new mutation in an allele present in D.

This recursion uses the notation of Song et al. (2006), in whichM denotes
the set of row indices that correspond to alleles bearing at least one singleton
mutation, a mutation borne by exactly one allele. For k ∈ M, smk denotes
the sequence associated with allele k with the singleton mutation m removed:
smk represents the ancestral allele from which allele k was generated through
the acquisition of mutation m. If ancestral allele smk does not occur in the
sample (smk 6= sj for all j), then the state of the sample immediately ancestral
to the new mutation has the same number of alleles and the same vector of
multiplicities n and a sequence matrix S without the column representing the
new mutation. Accordingly, Cm in (5) is an operator that removes the column
with the mutation corresponding to the last event being a mutation in allele k.
Alternatively, the occurrence of the ancestral sequence in the sample (smk = sj
for some j) implies changes in both S and n.

Proceeding backward in time, application of the recursion eventually re-
duces the configuration to a single ancestral lineage bearing no mutations.
Song et al. (2006) provide a way of counting all possible ancestral configura-
tions, of which an extremely large number exist even for moderately sized data
sets (e.g., 50 alleles and 20 segregating sites). Monte Carlo methods offer a
feasible alternative to a full recursive determination of the probabilities of all
distinguishable ancestral configurations.

Markov Chain Monte Carlo (MCMC) sampling and importance sampling
(IS) represent two major strategies for Monte Carlo methods for the analysis
of genetic data. Kuhner, Yamato, and Felsenstein (1995) applied MCMC to
estimate θ (1). Felsenstein et al. (1999) recognized the method of Griffiths and
Tavaré (1994) as a form of importance sampling, and Stephens and Donnelly
(2000) addressed the construction of optimal and more efficient proposal dis-
tributions. Here, we introduce a new IS proposal distribution, suitable for the
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infinite sites model.

3 Importance sampling

Importance sampling is based on the approximation

L(θ) = Pθ(Data) =
∑
H

Pθ(Data,H) =
∑
H

Pθ(Data,H)Q(H)/Q(H)

= EQ[Pθ(Data,H)/Q(H)] ≈ 1

R

R∑
r=1

wr,

forH a genealogical history, Q a proposal distribution for histories, and impor-
tance weight wr = Pθ(Data,Hr)/Q(Hr) for the rth history (r = 1, 2, . . . , R).
Because all three schemes considered here propose genealogical histories back-
ward in time, beginning with the observed sample, all histories are necessarily
compatible with the sample (Pθ(Data,H) > 0; see Felsenstein et al. 1999).
Backward reconstruction entails choosing two identical genes to coalesce or
one to mutate, with corresponding updates to S and n. Histories simulated
under Q can be used to estimate the likelihood of any value of θ.

The optimal proposal distribution Q(H) is the posterior distribution
P (H|Data):

P (Data,H)

Q(H)
= P (Data|H)

P (H)

Q(H)
= P (Data|H)

P (H)

P (H|Data)
= P (Data).

Because all weights are the same in this case, we need sample only one his-
tory to obtain an exact estimate of P (Data). Unfortunately, P (H|Data) is
in general unknown. In fact, these expressions illustrate that knowledge of
P (H|Data) is equivalent to knowledge of P (Data). Section 2.3 provides the
optimal proposal distribution (4) for the IAM, under which P (Data) corre-
sponds to the ESF (2).

3.1 The GT and SD proposals

Griffiths and Tavaré (1994) and Stephens and Donnelly (2000) developed their
proposal distributions by considering all possible events that could have oc-
curred in the immediately preceding generation.

9
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Using recursion (5), the GT proposal chooses allele k to be involved in the
most recent evolutionary event (coalescence or mutation) with probability

QGT
θ0

(k|S,n) ∝


(nk − 1) nk ≥ 2
θ0/n nk = 1, k ∈M,∀j : smk 6= sj
θ0(nj + 1)/n nk = 1, k ∈M,∃j : smk = sj
0 nk = 1, k /∈M,

(6)

for θ0 the so-called driving value of θ. Here, we have chosen to assign θ0 as
the Watterson estimator

θW =
M∑n−1
j=1 1/j

, (7)

for M the number of segregating sites in the data set (number of columns in
S). The GT proposal (6) gives more weight to states that comprise higher
numbers of ancestral alleles (larger nj).

Under the SD proposal, the form of the exact sampler of ancestral states
conditional on descendant states under the IAM (4) suggests a proposal mech-
anism: choose an allele uniformly at random and perform the unique update
implied by the choice of allele. Thus, the SD proposal chooses an allele k with
probability

QSD(k|S,n) ∝


nk nk ≥ 2
1 nk = 1, k ∈M,∀j : smk 6= sj
1 nk = 1, k ∈M,∃j : smk = sj
0 nk = 1, k /∈M

=

{
nk if nk ≥ 2 or k ∈M
0 if nk = 1 and k /∈M.

(8)

The SD proposal is computationally simpler than the GT proposal (6) and
does not require a driving θ0 value.

3.2 A proposal distribution for the ISM

Under both the infinite alleles model and the infinite sites model, each muta-
tion generates a novel allele. While the IAM records only the number of alleles
and their multiplicities (n or a), the ISM specifies in addition the sequences
(S), which contains information about evolutionary relationships among the
alleles. Our new proposal distribution for the ISM draws upon both S and n.

10
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3.2.1 New proposal

Allele k carries the mutation associated with column m in S only if Skm = 1.
This mutation occurs in a total of dm =

∑
k Skmnk alleles. Let pθ(dm) denote

the probability that an allele that bears this mutation is involved in the most
recent evolutionary event (duplication or mutation). For a given mutation, we
choose allele k to be involved in this event with probability

ukm(θ) =

{
pθ(dm)nk/dm if Skm = 1(
1− pθ(dm)

)
nk/(n− dm) if Skm = 0.

(9)

Considering all mutations by summing over all columns of S, our new proposal
distribution chooses allele k with probability

Qnew
θ0

(k|S,n) ∝
{ ∑

m ukm(θ0) if nk ≥ 2 or k ∈M
0 if nk = 1 and k /∈M.

(10)

As for the GT proposal, we assign the driving value θ0 as the Watterson
estimator (7).

To motivate this distribution and obtain an expression for pθ(dm), we start
by recapitulating and extending some known results for backward probabilities.

3.2.2 Derivation

A single segregating site: We consider a data set containing a single segre-
gating mutation and describe how exact sampling from the infinite sites model
can be performed under arbitrary θ.

Theorem 1. Consider the data set S = (1, 0) and n = (d, n− d), which we
denote byMn

d . The conditional probability that the most recent event increases
the number of mutant genes in the sample by one is

pθ(d) = P
(Mn−1

d−1 |Mn
d

)
=

∑n−d+1
k=2

d−1
n−k

1
k−1+θ

(
n−d−1
k−2

)(
n−1
k−1

)−1∑n−d+1
k0=2

1
k0−1+θ

(
n−d−1
k0−2

)(
n−1
k0−1

)−1 . (11)

A proof appears in Appendix 1.

Corollary 1. In the limit θ → 0,

pθ(d)→ d

n− 1
, (12)
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and in the limit θ →∞,

pθ(d)→ d+ 1

n
. (13)

A proof appears in Appendix 2.

Remark 1. Theorem 1 and Corollary 1 also hold for d = 1, with pθ(1) being
the probability that the most recent event is the origin of the mutation (see
Appendix 1). Equation (11) becomes

pθ(1) = P (Mn−1
0 |Mn

1 ) =
1

n−1+θ∑n
k0=2

1
k0−1+θ

k0−1
n−1

(14)

(see Appendix 1).
This expression converges to 1/(n−1) for θ → 0 and to 2/n for θ →∞. As

in the general case (Corollary 1), the probability that the allele that carries the
mutation is involved in the most recent event exceeds d/n, the value expected
under a uniform random choice of alleles.

Remark 2. The case θ → 0 was also studied in Wiuf and Donnelly (1999),
and our equation (12) agrees with Wiuf and Donnelly’s Lemma 1. It is worth
pointing out, that equation (13) for the case θ → ∞ appears similar to Wiuf
and Donnelly’s Lemma 4. However, we condition on the presence of a mutation
in the sample, whereas Lemma 4 is about the genealogy of a subsample of size
d ≤ n without a mutation.

Two genes: We now consider a data set containing two genes (n = 2)
and arbitrarily many segregating sites.

Theorem 2. Consider a data set with n = (1, 1), for which m1 muta-
tions occur only in one allele and m2 only in the other. Because both alleles
are singletons, the existence of any mutation (m1 + m2 > 0) entails that the
most recent event must have been the origin of a mutation. The conditional
probability that this event occurred in the gene that carries m1 mutations is

P (S = (m1 − 1,m2)|S = (m1,m2)) =
m1

m1 +m2

. (15)

This theorem can be found, for example, in Ethier and Griffiths (1987); for
completeness, we recall the proof in Appendix 3.

Although the distribution of the number of mutations in the sample de-
pends on θ, the identity of the allelic class that is involved in the most recent
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event is independent of θ, given m1 and m2. It is the allele that carries more
mutations that is more likely to be involved in the most recent event.

Remark 3. For the case specified in Theorem 2 (n = 2 and nk = dm = 1
for every mutation and allele), the proposal function Qnew

θ0
(k|S,n) (10) gives

the exact ancestral probability. For each mutation, nk/dm = pθ(1) = 1 in
(9), implying a proposal probability of an allele proportional to the number of
segregating mutations it carries, in agreement with (15).

In contrast, both the GT and SD methods propose the two alleles with
equal probability, provided that neither allele is the ancestor of the other
(m1,m2 > 0; for both alleles, k ∈M,∀j : smk 6= sj). All three schemes propose
the derived allele with probability 1 in the remaining case (m1 +m2 = 1).

3.3 Example

For θ → 0, we have that an allele which bears the derived type at site m is
involved in the most recent event with probability dm/(n − 1). For allele k,
which either carries (Skm = 1) or does not carry (Skm = 0) this mutation, we
obtain from (9) the weights

ukm(0) =

{
nk

n−1
if Skm = 1(

n−1−dm

n−1

) (
nk

n−dm

)
if Skm = 0.

For allele a in Figure 1, for example,

Qnew
0 (k|S,n) ∝ 3/5+(4/5)(3/5)+(4/5)(3/5)+(3/5)(3/4)+(4/5)(3/5) = 2.49.

Table 1 presents the proposal probabilities under the various schemes for the
data set shown in Fig. 1, with the driving value for θ under the GT and new
schemes assigned as the Watterson estimator (θ0 = 5/(1 + 1/2 + 1/3 + 1/4 +
1/5) = 2.19; see (7)).

Table 1: Proposal probabilities

Allele (k)
Site (m)

nk QGT
θ0

QSD Qnew
0 Qnew

θ0
Qnew
∞1 2 3 4 5

a 1 0 0 0 0 3 0.646 0.6 0.595 0.567 0.529
b 0 1 1 0 0 1 0.118 0.2 0.201 0.219 0.244
c 0 0 0 1 0 1 0 0 0 0 0
d 0 0 0 1 1 1 0.236 0.2 0.204 0.214 0.227
dm 3 1 1 2 1 n = 6
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GT tends to favor alleles for which the ancestral state immediately preced-
ing the most recent event has higher multiplicity (larger nj in (6)). Proposal
of allele d implies an ancestral state comprising two copies of allele c while
proposal of allele b implies descent from a single ancestor that bears one mu-
tation.

In this example, the new proposal closely resembles SD, but unlike both GT
and SD, the proposal probability of an allelic class increases with the number
of mutations it carries. Alleles b and d, which carry two mutations, have higher
proposal probabilities under the new scheme than under SD and allele a, which
carries only one mutation, has a correspondingly lower probability. This trend
appears more pronounced under higher driving θ0 values. Compared to allele
d, proposal of allele b appears to increase faster with θ, reflecting that allele b
possesses more unique mutations (2 and 3), which promote the proposal of b
alone, while the higher weighting of mutation (4) is shared by c and d.

4 Performance on actual and simulated data

4.1 The Griffiths and Tavaré (1994) data set

Griffiths and Tavaré (1994) examined a data set comprising 18 single nucleotide
polymorphism (SNP) sites in a 360 base pair segment within the control region
observed in a sample of 55 human mitochondrial genomes. For this data set,
the alleles and their multiplicities (n) correspond to

allele a b c d e f g h i j k l m n
∑

multiplicity 2 2 1 3 19 1 1 1 4 8 5 4 3 1 55

Figure 3 shows the perfect phylogeny associated with this data set, with mu-
tations 1 through 5 representing A/G SNPs and the remaining mutations C/T
SNPs.

4.1.1 Likelihood curves

For this data set, Figure 4 presents the likelihood surfaces (full line) and
standard errors (dashed line) estimated under the three sampling schemes
(compare Figure 7 of Stephens and Donnelly 2000). Comparison of the left
and middle plots indicates that SD has a smaller variance than GT, and the
right plot indicates that our new proposal scheme in turn has a smaller variance
than SD.
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Figure 3: Perfect phylogeny of Griffiths and Tavaré (1994) data set.

This data set was analysed in Griffiths and Tavaré (1995) and consists of 55 genes and 18 segregating
sites.

Stephens and Donnelly (2000, Figure 7) compared the GT and SD sampling schemes and found that
SD performs better. Their result is recalled in the two left-most plots in Figure 4. In this paper we
consider a new alternative proposal function (see Section 5.3). The result of applying the new proposal
is shown in the right-most plot, and we see that the new proposal has a smaller variances than the SD
proposal.

One measure of proposal efficiency is the effective sample size (Liu, 2001, Section 2.5), defined as

ESS = R/(1 + Var(w)),

where R is the number of samples and w = (w1, . . . , wR) are the weights for each sample. We obtain
ESSGT = 40, ESSSD = 215, ESSnew = 548 for the three proposals when the weights are calculated at
θ = 5.
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Figure 4: Comparison of estimated likelihood surfaces (full line) and standard errors (dashed line) for the
Griffiths and Tavaré (1995) data set using 100,000 samples from three different proposal distributions.
The proposal distributions are (from left to right) the GT proposal, the SD proposal, and a new proposal
obtained from a single site analysis.

Now consider the data set with S summarized in Figure 5 and with multiplicity n given by

allele a b c d e f g h i j k l m n o
∑

multiplicity 31 7 6 5 9 22 1 3 7 1 1 1 2 3 1 100

The data was simulated using θ = 5 and such that n = 100 genes are obtained.
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This data set was analysed in Griffiths and Tavaré (1995) and consists of 55 genes and 18 segregating
sites.

Stephens and Donnelly (2000, Figure 7) compared the GT and SD sampling schemes and found that
SD performs better. Their result is recalled in the two left-most plots in Figure 4. In this paper we
consider a new alternative proposal function (see Section 5.3). The result of applying the new proposal
is shown in the right-most plot, and we see that the new proposal has a smaller variances than the SD
proposal.

One measure of proposal efficiency is the effective sample size (Liu, 2001, Section 2.5), defined as

ESS = R/(1 + Var(w)),

where R is the number of samples and w = (w1, . . . , wR) are the weights for each sample. We obtain
ESSGT = 40, ESSSD = 215, ESSnew = 548 for the three proposals when the weights are calculated at
θ = 5.
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Now consider the data set with S summarized in Figure 5 and with multiplicity n given by

allele a b c d e f g h i j k l m n o
∑

multiplicity 31 7 6 5 9 22 1 3 7 1 1 1 2 3 1 100

The data was simulated using θ = 5 and such that n = 100 genes are obtained.

7

Figure 4: Comparison of estimated likelihood surfaces (full line) and standard
errors (dashed line) for the Griffiths and Tavare (1994) data set, based on
100,000 samples from the GT (left), SD (middle), and new (right) proposal
distributions.

4.1.2 Effective sample size

Effective sample size, defined by

ESS =
R

1 + Var(w)
(16)

(Liu, 2001, Section 2.5), for R the number of samples and w = (w1, . . . , wR)
their importance weights, provides a measure of proposal efficiency. To explore
the relative efficiencies of the methods in proposing genealogical histories under
a known θ, we computed ESSs for θ = θ0 = 5. From 100,000 samples, we
obtained ESSGT = 40, ESSSD = 215, and ESSnew = 548, suggesting a 5-fold
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increase in efficiency of SD relative to GT and a greater than 2-fold increase
of the new proposal relative to SD.

4.1.3 Posterior distribution of the level of origin of a mutation

As the perfect phylogeny (e.g., Fig. 3) determines only the order of nested
events, proposal of a full genealogical history entails specifying an order of
coalescence and mutational events in disjunct clades. To explore the differences
in efficiency among the methods, we compared the level of the genealogy on
which particular mutations were proposed to have originated.

We borrow concepts from adaptive importance sampling techniques (e.g.,
Givens and Raftery 1996) to assess bias in the level of the gene genealogy on
which particular mutations arise. Comparison of the proposal distribution of
genealogical history to the posterior distribution is the main idea behind adap-
tive importance sampling techniques, under which the proposal mechanism is
adjusted according to the samples and their corresponding weights.

Let A be the event that the mutation at site m occurs on one of the l
branches on level l. The probability of this event is given by

P (A|Data) ∝
∑
H

P (H)1A(H)

=
∑
H

P (H)1A(H)

Q(H)
Q(H)

= EQ

[
P (H)1A(H)

Q(H)

]
,

for 1A(H) equal to unity for any historyH containingA and zero otherwise. We
can easily obtain both a Monte Carlo estimate of the last term, the posterior
distribution of the level of origin of any given mutation, and compare it to the
proposal distribution Q(H).

For the Griffiths and Tavaré (1994) data set (Fig. 3), Fig. 5 compares the
posterior densities (solid red lines) of the levels of origin of mutations 5, 8, and
11 to the proposal probabilities under the GT (dotted), SD (dashed), and new
(solid black) schemes. GT expresses a stronger preference than the posterior
and the other two schemes for a more recent (higher level number) origin of
the mutation at site 5 (the only A/G SNP shown). As observed for Table 1, GT
(6) favors events for which the ancestral state occurs in higher multiplicity:
the mutation at site 5 arose on allele e, of which 19 copies occur in the sample,
while the other mutations arose on an ancestral allele with low multiplicity.

Figure 5 illustrates that while the SD and the new proposals resemble the
posterior, the GT scheme tends to give a more peaked proposal distribution,
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expressing more intense preferences, which can lead to underproposal of levels
both too ancient (site 5) and too recent (site 8). The flatter proposal distri-
butions of the SD and new schemes may promote more efficient exploration of
the space of genealogical histories.
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Figure 5: Smoothed histograms for the level of the mutation at sites 5, 8, and
11 for 10,000 samples for the Griffiths and Tavaré (1994) data set under the
GT (dotted), SD (dashed), and new (solid black) proposal schemes. Solid red
lines represent the posterior distribution of the level of origin of the indicated
mutation.

4.2 Simulation study

We present ESS values (16) for the GT, SD, and new proposals applied to
simulated data sets. Twenty-seven data sets were simulated using Hudson’s
(2002) ms program, which generates samples under the ISM. We generated
three data sets under each combination of three sample sizes (n = 50, 75, 100)
and three levels of mutation (θ = 1, 3, 5). Watterson’s estimator of θ (7) uses
that the expected number of segregating sites in a sample (M , or number of
columns in S) is given by θ

∑n−1
i=1 1/i. The sum is 4.48 for n = 50, 4.89 for

n = 75 and 5.18 for n = 100, and in the simulated data sets, the number of
segregating sites varied from around 2–10 for θ = 1 to around 15–35 for θ = 5.

For the GT and the new proposal, we assigned the driving value θ as
the Watterson estimator (7). Figure 6 shows that the new proposal generally
outperforms the other two proposals, but that sampling efficiency varies among
data sets generated under the same evolutionary parameters. The new sampler
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can be 5 times more efficient, but the typical increase in efficiency is around
1.2 for θ = 1 and 2.0 for θ = 5.

We also applied the new proposal scheme under driving values θ0 = 0 and
θ0 →∞. Generally, we found that for data sets generated under θ = 1, using
a driving value of θ0 = 0 yields results about as good as those obtained under
the Watterson estimator (7). Similarly, we found that for data sets generated
under θ = 5, the method performs similarly under driving values θ0 →∞ and
(7).

5 Discussion

We have addressed the likelihood-based estimation of a population parameter
(1) through marginalization over possible genealogical histories of an observed
sample of genes. Within the importance sampling framework of Griffiths and
Tavaré (1994), a genealogical history corresponds to an ordered list of two
kinds of evolutionary events: mutation and splitting of lineages (coalescence
under time-reversal). For a sample of n genes, a history comprises n− 1 +M
evolutionary events, including n−1 coalescence events and M mutation events.
Under the infinite sites model, all mutations are distinguishable, implying that
M corresponds to the number of nucleotide sites at which more than one
nucleotide segregates in the sample. We have here introduced a new method
(10) for proposing genealogical histories and compared it to those of Griffiths
and Tavaré (1994) and of Stephens and Donnelly (2000).

All three methods considered construct genealogical histories backward in
time, beginning with the observed sample, and assume the absence of recom-
bination. At any point in the history, only those genes that represent alleles
present in more than one copy or that carry a singleton mutation (borne by
exactly one gene) can have been involved in the most recent evolutionary event.

Recently, De Iorio and Griffiths (2004) showed that the SD proposal can be
derived from arguments relating to the generating diffusion equation underly-
ing the ISM. This diffusion equation is equivalent to recursion (5), in which
the terms on the right correspond to a coalescence event or a removal of a
singleton mutation. The SD proposal (8) is obtained by equating each term
on the right with a term that is derived from a decomposition of the term on
the left side.

In choosing a gene to be involved in the most recent evolutionary event, the
new proposal (10) differs from both GT (6) and SD (8) by taking into account
all mutations, not only singletons. Accordingly, it does not derive from the
diffusion equation or (5).
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Figure 6: Effective sample size (ESS) estimates for three data sets simulated
under each combination of three mutation rates (θ=1, 3, 5) and three sample
sizes (n=50, 75, 100). All values are scaled to the ESS of the SD proposal,
which corresponds uniformly to 1. The upward trend indicates that the new
proposal generally performs better than the SD proposal, which in turn performs
better than the GT proposal. Differences among lines within each plot illustrate
a large variation in ESS among data sets, independently generated under the
same sample size and mutation rate.
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Our proposal generally shows comparable or greater efficiency than do
the GT and SD proposals. Applied to the data set of Griffiths and Tavare
(1994), for example, Fig. 4 shows that the new proposal (right plot) has a
smaller variance than the GT proposal (left plot) and SD proposal (middle
plot), based on 100.000 samples from each proposal. With respect to effective
sample size (ESS), another measure of proposal efficiency, we obtained ESS
values of 40, 215, and 548 for the GT, SD and new proposals, respectively.

In general, the performance of all proposals fluctuates substantially among
data sets representing independent realizations of the same evolutionary pro-
cess. We expect that further improvement can be achieved through considera-
tion of other schemes for weighting mutations or otherwise taking into account
information implicit in the total pattern of genetic variation.

Appendices

Appendix 1 Proof of Theorem 1

We first find the probability that the most recent event increased the number
of genes with the mutation by one, given the level k on which the mutation
arose. Second, we use Stephens (2000, Theorem 3.1) to give the full probability
of this most recent event.

Let Ink be the event that a single mutation occurred at level k, with no
mutations on any other level of the genealogy. Let Jk (Ink ⊆ Jk) denote the
event that a single mutation occurred at level k and no mutations occurred on
any level more ancient. From Algorithm 1,

P (Ink |Jk) =
k

k + θ
. . .

n− 1

n− 1 + θ
.

LetMn
d be the event that d of n individuals in the sample have the derived

allele: Mn
d corresponds to the data set S = (0, 1) and n = (d, n − d). The

probability that d of the n genes in the sample have the mutation, given that
it occurred at level k, is

P (Mn
d |Ink ) =

(
n− d− 1

k − 2

)(
n− 1

k − 1

)−1

(Fu 1995; Stephens 2000), and we get

P (Mn
d |Jk) = P (Ind |Jk)P (Mn

k |Ink )

=
k

k + θ
. . .

n− 1

n− 1 + θ

(
n− d− 1

k − 2

)(
n− 1

k − 1

)−1

.
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Conditional on the sample (Mn
d) and the mutation having occurred on level

k (Jk), we can now find the probability that the most recent event added one
more gene with the mutation:

P (Mn−1
d−1 |Mn

d ,Jk) = P (Mn
d |Mn−1

d−1 ,Jk)
P (Mn−1

d−1 |Jk)
P (Mn

d |Jk)
(A.1a)

=
(n− 1)

(n− 1 + θ)

(d− 1)

(n− 1)

∏n−2
l=k

l
l+θ

(
(n−1)−(d−1)−1

k−2

)(
(n−1)−1
k−1

)−1∏n−1
l=k

l
l+θ

(
n−d−1
k−2

)(
n−1
k−1

)−1

=
d− 1

n− k . (A.1b)

This probability increases as the level of k increases (a more recent origin of
the mutation). Also note that the conditional probability does not depend on
θ.

Stephens (2000, Theorem 3.1) shows that the probability of the mutation
occurring at level k (k = 2, 3, . . . , n− d+ 1) is given by

P (Jk|Mn
d) = P (Ink |Mn

d) =
1

k−1+θ

(
n−d−1
k−2

)(
n−1
k−1

)−1∑n−d+1
k0=2

1
k0−1+θ

(
n−d−1
k0−2

)(
n−1
k0−1

)−1 . (A.2)

We now get the desired backward probability (11) from

P (Mn−1
d−1 |Mn

d) =
n−d+1∑
k=2

P (Mn−1
d−1 ,Jk|Mn

d)

=
n−d+1∑
k=2

P (Mn−1
d−1 |Mn

d ,Jk)P (Jk|Mn
d), (A.3)

by using (A.1b) and (A.2).
For d = 1, P (Mn−1

d−1 |Mn
d) = P (Mn−1

0 |Mn
1 ) represents the case in which the

origin of the mutation corresponds to the most recent event in the full sample.
That the mutation arose on level n implies

P (Mn
1 |Mn−1

0 ,Jk) =

{
0 if k 6= n

1 if k = n

and P (Mn
1 |Jn) = P (Mn−1

0 |Jn) = 1 in (A.1a). Substitution of these expres-
sions into (A.3) produces (14).
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Appendix 2 Proof of Corollary 1

We can rewrite (11) as

(d− 1)
∑n−d+1

k=2
1

k−1+θ
(k − 1) (n−k−1)!

(n−d+1−k)!∑n−d+1
k0=2

1
k0−1+θ

(k0 − 1) (n−k)!
(n−d+1−k)!

. (A.4)

In the limit θ → 0, the numerator becomes

(d− 1)
n−d+1∑
k=2

(n− k − 1)!

(n− d+ 1− k)!
= (n− d)(n− d+ 1) · · · (n− 2),

and the denominator becomes
n−d+1∑
k0=2

(n− k)!

(n− d+ 1− k)!
=

1

d
(n− d)(n− d+ 1) · · · (n− 1),

and we obtain (12).
When θ →∞, (A.4) converges to

(d− 1)
∑n−d+1

k=2 (k − 1) (n−k−1)!
(n−d+1−k)!∑n−d+1

k0=2 (k0 − 1) (n−k)!
(n−d+1−k)!

.

The numerator reduces to (n − 1)(n − 2) · · · (n − d)/d and the denominator
reduces to n(n− 1) · · · (n− d)/(d(d+ 1)), and we obtain (13).

Appendix 3 Proof of Theorem 2

For a sample of two genes (n = 2), the probability of having a total of (m1 +
m2) mutations in the two lineages is geometrically distributed with parameter
θ/(1 + θ): (m1 + m2) ∼ Geo(θ/(1 + θ)). Each mutation appears in the left
lineage with probability 1/2, so the probability of having m1 mutations in the
left lineage conditional on (m1 +m2) lineages in total is binomially distributed
with parameter 1/2: m1|(m1 + m2) ∼ Bin(1/2,m1 + m2). The probability of
observing m1 mutations in one gene and m2 in the other is therefore

P (m1,m2) =
1

θ

( θ

1 + θ

)(m1+m2)
(
m1 +m2

m1

)
(1/2)m1+m2 . (A.5)

We now find the backward probability from

P ((m1 − 1,m2)|(m1,m2)) =
P ((m1,m2)|(m1 − 1,m2))P (m1 − 1,m2)

P (m1,m2)

=
m1

m1 +m2

,
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in which we have inserted (A.5) twice and used

P ((m1,m2)|(m1 − 1,m2)) =
θ

(1 + θ)2
.
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