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ABSTRACT

Biological Networks have received much attention in re-
cent years, but statistical tools for network analysis are
still in their infancy. In this paper we focus on Protein
Interaction Networks (PINs) that typically comprise thou-
sands of proteins and interactions. PINs are the result of
long evolutionary histories. Here we adopt simple mathe-
matical models that capture essentials of protein evolution
and develop statistical methods to estimate evolutionary
PIN parameters. Our initial approach is based on a re-
cursion for the likelihood, but it becomes computationally
intractable for reasonably sized networks. Our second ap-
proach is based on summary statistics and likelihood-free
inference. We discuss problems with selection of sum-
maries, convergence, and credibility and apply the meth-
ods onHelicobacter pylori andPlasmodium falciparum
data.

1. INTRODUCTION

Today it is possible to obtain massive amounts of data re-
lating to the molecular complexity, organization and struc-
ture of a single cell or organism. These data can be ob-
tained in a single experiment and have thus geared the
biosciences towards system-level science or systems bi-
ology, where the attempt is to understand the system and
its organization in broader and overall terms, rather than
understanding the system’s individual components one by
one.

One system-level data type that is becoming available
is PIN data. A PIN data set is a collection of experimen-
tally determined interactions ( physical binding between
proteins). As such, a PIN data set is an incomplete ob-
servation of the interactome, the entire collection of all
proteins in a cell or organism together with their interac-
tions.

Evolution has shaped the form of an organism’s inter-
actome. In principle, we should therefore be able to learn
about the processes responsible for this evolution by ana-
lyzing PIN data sets from the organism. The idea is that
different evolutionary processes leave different traces in
the PIN data but also that parameters describing the pro-
cesses may differ between organisms. For example the
authors of [1] investigate which type of model best ex-
plains aD. melonagaster PIN data set. However, they do

not attempt to estimate the parameters in the models, but
base their conclusions on how well the models (evaluated
over a range of parameters) account for the motifs seen in
the PIN data.

In [2] (and references therein) different distributions
are fitted to the degree sequence observed in various PIN
data sets. While this provides insight into the differences
between organisms, it does not provide insight into the
processes generating the differences – simply because the
distributions are not based on evolutionary models. The
approach taken in [1] has the strength that it utilizes more
information in the data than just the degree sequence and
thus has a higher chance of uncovering relevant features.

In this paper we present statistical analysis of PIN data
sets based on mathematical model of network evolution.
We focus on two data sets, aH. pylori data set [3] and a
P. falciparum data set [4]. Statistical analysis of network
data is far from straightforward and we discuss different
approaches to inference [5, 6]. We first develop a scheme
for maximum likelihood inference using a full data set (i.e.
an entire network), but find that it is limited in several
respects. Subsequently, we develop a likelihood-free in-
ference (LFI) approach, based on Approximate Bayesian
Computation (ABC) and summary statistics [7], and show
that it is much more flexible than the likelihood approach.
Importantly, we find that reliable inference requires con-
sideration of many, carefully chosen network summaries
simultaneously.

Having settled on a statistical method we apply the
method to the two data sets and discuss the results in rela-
tion to biological knowledge and mathematical properties
of the underlying model.

2. EVOLUTION OF THE INTERACTOME

Various processes contribute to the evolution of the inter-
actome [8, 9]. The importance of gene duplication to bi-
ological evolution has long been recognized and substan-
tial evidence that elucidate the importance and the mech-
anisms of this process in higher organisms has been col-
lected from genomic sequence data, either in the form of
whole genome duplication (WGD) or as single gene du-
plication (SGD) [10, 9]. In the two species we use here,
H. pylori andP. facliparum there is no recorded evidence
of WGD and we will simply ignore it in the following dis-



cussion, though we note that for other species such asS.
cerevisiea WGDs have played an important role [11].

2.1. Single gene duplication

In most SGDs, a gene is tandemly duplicated. Just after
a successful duplication, the child and the parental genes
have exactly the same functions, but over a relatively short
evolutionary time [10, 9], the two genes may diverge, re-
sulting in different fates of the duplicates: i) one gene may
be silenced (non-functionalization), ii) both genes are pre-
served such that one is redundant to the other, iii) one gene
may acquire a new function while the function of the other
is retained (neo-functionalization), and iv) both genes are
changed through mutations and partly acquire new func-
tions (sub-functionalization). The latter is very attractive
[10] as it does not rely on sparse occurrences of bene-
fial mutations, but on loss-of-function mutations in regu-
latory regions. Further, sub-functionalization is a natural
mechanism for specialization of gene products to different
tissues and cells. In contrast, for iii) to occur the acqui-
sition of novel interactions through benefial mutations is
required.

2.2. Attachment processes

Besides SGD (and WGD) a number of other processes
contribute to the evolution of the interactome, which we
collectively refer to asattachment processes. These in-
clude various forms of horizontal transfer of genetic ma-
terial between organisms (typically bacteria), integration
of viral DNA into the host genome and translocation of
genetic material within an organism. All of these may
lead to the formation of novel genes.

2.3. The model

We adopt a model that emphasises iv) as the most impor-
tant consequence of SGD and distinguish two processes,
SGD andpreferential attachment (PA). The model is a
Randomly Grown Graph (RGG) and has four parameters
θ = (α, p, q, r). A RGG is a Markov chain in the sense
that the graph (network)Gt+1 = (Vt+1, Et+1) at stept+1
only depends on the graphGt = (Vt, Et) at stept, wheret
denotes the size of the network. At stept+ 1 do:

[SGD] With probabilityα choose a node,vold, at ran-
dom inGt and introduce a new nodevnew. For each neigh-
bour, v, of vold, create a link betweenvnew andv with
probabilityp; otherwise with probabilityr erase the link
(vold, v) and create the link(vnew, v). Create a link be-
tweenvold andvnew with probabilityq.

[PA] With probability1−α choose a node,vold, with
probability proportional to its degree inGt and introduce
a new nodevnew. Create a link betweenvold andvnew.

The model is symmetric inr in the sense thatr and
1 − r produce statistically indistinguishable networks. In
our analysis we fixr to 0.5 to reduce the number of param-
eters. PIN data sets are incomplete and noisy in several
respects; e.g. they only contain a fraction of all proteins

in the interactome (incomplete sampling) and also contain
both false positive and false negative links (noise). Here
we only consider incomplete sampling and assume that
the sampling fraction is known (estimated from the num-
ber of open reading frames in the genome).

3. STATISTICAL METHODS

We first discuss the likelihood of an entire network, and
then move on to LFI.

3.1. The likelihood of a full network

Ideally, we would compute the likelihood of an oberserved
PIN data set,

L(θ,Data) = P (Data|θ).

This would allow us to perform a likelihood analysis or
engage in a Bayesian analysis of the posterior distribution

P (θ|Data) ∝ P (Data|θ)p(θ),

wherep(θ) is a prior onθ. However, calculatingP (Data|θ)
is computationally very demanding even for small net-
works.

In [5] the likelihood is calculated recursively. Denote
by δ(Gt, v) the graphGt with the nodev removed. If it is
possible to go fromδ(Gt, v) to Gt by SGD or PA then we
say thatv is removable and denote the set of removable
nodes byR(Gt). Armed with this notation, the likelihood
of an entire network,Gt, takes the form

L(θ,Gt) =
1

t

∑

v∈R(Gt)

ω(θ,Gt, v)L(θ, δ(Gt, v)), (1)

where
ω(θ,Gt, v) = P (Gt|δ(Gt, v), θ)

is the conditional probability of generatingGt fromδ(Gt, v).
The factor1/t is the probability thatv is the last added
node and the quantityω is a sum over all nodes that could
have given rise tov by SGD or PA.

We note that the likelihood is written in a form that
may facilitate approximate procedures such as Importance
Sampling (IS) or MCMC [12, 13]. However, only in the
casesα = 0 and/orr = 0, 1 is the set of removable
nodes fairly small; in all other cases the set consists of all
nodes in the network [5] and it becomes computationally
untractable.

Furthermore, as an additional complication, sampling
is not taken into account in the recursion above, because
sampling cannot be considered at each step in the recur-
sion, and is best implemented after the network has achieved
the desired size. Other approaches are therefore required.

3.2. Likelihood-free inference

To circumvent the problems with calculating the likeli-
hood we turn to methods of ABC and LFI [7].

The basic idea in ABC is to combine Bayesian ap-
proaches with summary approaches. Rather than target-
ing the posterior distribution given the full data we aim at



calculating the posterior distribution given a summary of
the data. This approach in addition requires to choose a
reasonable set of summaries.

For a given set of summary statisticsS = (S1, . . . , Sk)
we adopt a MCMC scheme to simulate the posterior distri-
butionP (θ|S) – now conditional on the set of summaries
and not on the full PIN data. Denote byS0 the set of ob-
served summary statistics. We proceed in the following
way:

[A] If now atθ, propose a move toθ′ according to the
proposal densityq(θ → θ′)

[B] Generate a network according toθ′, sample the
required number of nodes and calculate the summariesS′

[C] DefineC =
∏k

i=1 1(di(S
′
i, Si0) < ǫi) and calcu-

late

h(θ, θ′) = min

(

1,
p(θ′)q(θ′ → θ)

p(θ)q(θ → θ′)
C

)

,

whereǫi > 0 is a threshold anddi a distance measure

[D] Acceptθ′ with probabilityh(θ, θ′) and otherwise
stay atθ; go to [A].

Besides the summaries, we need to chooseǫi anddi.
For the thresholds we choose a tempering scheme such
that the thresholds decrease during the burn-in period. The
final thresholds are decided upon based on MCMC diag-
nostics (see e.g. [12]). Thedis are taken to be Euclidian.

4. STATISTICAL ANALYSIS OF PIN DATA

In this section we present results from the analyses of the
H. pylori and theP. falciparum PIN data sets. Due to space
limitations we are unable to present these results in full,
but refer the reader to [6].

4.1. Summary statistics

Table 1 shows the effect of varying the summary statistics.
In earlier papers only the degree sequence is used (see e.g.
[14, 2]) and Table 1 clearly demonstrates that inference is
unreliable when judged solely from the degree sequence.
Interestingly, the estimate ofp is much lower when based
on the degree sequence only. However, as soon as several
summary statistics are applied, the exact number and the
particular choice of summaries become less important.

Choosing a distance measure and a precision threshold
ǫ further influences the inference. As expected, credibil-
ity intervals become more narrow when smaller thresholds
are applied; however this is at the cost a lower acceptance
probability in the MCMC (h is lower) and additionally,
burn-in occurs later in the MCMC.

4.2. H. pylori and P. falciparum

The H. pylori PIN data set comprises 675 proteins and
1,096 links [3]. The sampling fraction is estimated to 45%
[6]. In contrast, theP. falciparum PIN data set is larger,
comprising 1,271 proteins and 2,642 links [4]. The sam-
pling fraction is 24% [6]. Table 2 shows the estimates of
the three parameters.

p q α
I 0.32 (0.09,0.69) 0.55 (0.19,0.87) 0.57 (0.24,0.87)
II 0.57 (0.44,0.75) 0.05 (0.01,0.10) 0.78 (0.64,0.92)
III 0.56 (0.44,0.79) 0.05 (0.00,0.09) 0.79 (0.64,0.93)

Table 1. Shown are the maximum posterior estimates ofp,
q andα, together with 80% credibility intervals for three
sets of summary statistics. I) Degree Sequence (ND); II)
Distribution of distances between nodes (’within reach’,
WR), Diameter (DIA), Cluster coefficient (CC), Average
degree (AD), and size of largest connected component;
III) WR, ND, CC and FRAG. TheH. pylori data set is
used.

p q α
Hp 0.57 (0.44,0.75) 0.05 (0.01,0.10) 0.78 (0.64,0.92)
Pf 0.52 (0.46,0.59) 0.05 (0.00,0.09) 0.93 (0.87,0.98)

Table 2. Shown are the maximum posterior estimates of
p, q andα, together with 80% credibility intervals for Hp)
H. pylori and Pf)P. falciparum. Summary statistics: WR,
DIA, CC, AD and FRAG.

The estimates are very similar forp andq. However,
the 80% credibility intervals are wider forH. pylori than
for P. falciparum which we attribute to the difference in
network order – theP. falciparum PIN data set is almost
twice as big. Intuitively, the difference in the estimates
of α are biologically reasonable:H. pylori is a small bac-
terium, and bacteria are often subject to horizontal transfer
of genetic material. In contrast,P. falciparum is a unicel-
lular eukaryote, and attachment processes are believed to
occur rarely in eukaryotes [9].

5. MATHEMATICAL INSIGHT

The Markov property of the model allow us to deduce
a number of statements about the model. The expected
number,nt(k), of nodes of degreek fulfills the relation

nt+1(k) =

(

1 −
1 + kp

t

)

nt(k)+
1 + (k − 1)p

t
nt(k−1)

+2
∑

j≥k−1

(

j

k − 1

)

ψk(1 − ψ)j−k+1 nt(j)

t
,

whereψ = (1 + p)/2, r = 1/2 andq = α = 1 (for
convenience). A similar recursion can be obtained for an
arbitrary set of parameters, but is more complicated. An
argument for the correctness of the recursion can be found
in [15, 16].

Here we are concerned with the existence of a limit-
ing degree distribution as the network becomes large. We
distinguish several different scenarios:

• If αp < 0.5 then there exists an equilibrium distri-
bution (ergodic recurrent solution)

• If α = 1 andp < 0.533... then an infinitely large
network has infinitely many nodes of arbitrary degree, but



an equilibrium distribution is not guarenteed to exist (re-
current solution)

• If α = 1 andp > 0.562... then an infinitely large
network has finitely many nodes of arbitrary degree, but
potentially an infinite number of degree 0 (transient solu-
tion)

• If α < 1 then an infinitely large network has in-
finitely many nodes of arbitrary degree, but an equilibrium
distribution is not guarenteed to exist (recurrent solution).

Note that forα = 1, there is a small window between
0.533 and 0.562 where we do not know what happens.
The first bullet point is closely related to the average de-
gree in the (infinitely large) network,

2 − 2(1 − q)α

1 − 2αp
,

if αp < 0.5 and otherwise infinity. Assuming the esti-
mates in Table 2, both networks have a stable or an equi-
librium distribution over time: ForH. pylori, αp = 0.44
and forP. falciparum, αp = 0.48. However, in both cases
αp is close to the point where we do not know whether the
network stabilizes or not.

6. CONCLUSION

We have demonstated that using advanced statistical tools
such as ABC or LFI it is possible to achieve inference on
parameters describing the evolution of the interactomes of
H. pylori and P. falsiparum. However, the matahemati-
cal models we apply are very basic and only mimic true
evolution in an approximate sense. Nonetheless, the pa-
rameter estimates we find are in accordance with intuition
and biological knowledge achieved by other means.
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