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ABSTRACT 
If homologous sequences in  a  population are not subject  to  recombination,  they  can  all be traced 

back to one ancestral sequence. However,  the  rest of our genome is  subject  to recombination  and will 
be spread out on a  series of individuals.  The  distribution of ancestral  material to an  extant  chromosome 
is here  investigated by the coalescent with recombination,  and  the  results are  discussed  relative  to 
humans. In an  ancestral  population of actual  size 1.3 million  a  minority of <6.4% will  carry  material 
ancestral  to  any  present  human.  The  estimated  actual  population  size  can  be  even  higher, 5 million, 
reducing  the  percentage  to 1.7%. 

T HE process  of  evolution  of sequences  subject  to 
both  coalescence and recombination in a popula- 

tion was first  described by HUDSON (1983). In Hudson's 
setup a combined coalescence and recombination  pro- 
cess  is  followed  back in time until any nucleotide posi- 
tion in the extant sequences  has  only one ancestral 
nucleotide. The ancestral  nucleotides  can  be  located 
on different sequences. The process further back in 
time than this point has  usually been of no interest, 
as it does not influence the relationship  between the 
sequences in the sample. 

However, it does determine the distribution of  ances- 
tral  material  to extant chromosomes on individuals, and 
raises  some  questions: (1) How  many ancestors are 
there to a present human chromosome? An ancestor 
to an extent sequence is defined as a sequence  carrying 
material  ancestral  to the extant sequence. The number 
of ancestors will thus vary with  time and grow in mean 
until a steady state is reached. If the ancestral  material 
to an extant chromosome are spread out on different 
individuals due to  recombinations there will be more 
than one ancestor, but does this number of ancestors 
constitute a large or small part of humans that lived, 
say 300,000 years  ago? (2) How  many different se- 
quences in an ancestral population can one sample by 
sequencing extant sequences?  This is  of importance 
when  making  assertions about species  trees. A species 
tree can  be inferred from a collection of gene trees of 
different genes. The number of ancestral  chromosomes 
can be less than the number of genes,  because  ancestors 
to  genes  can  be on the same  ancestral  chromosome. 

The combined coalescence and recombination pro- 
cess  is here studied beyond the point of most recent 
ancestral  nucleotides by simulation and some  analytical 
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results are derived. The distribution of the process is 
determined only by the product Ner, where Ne is the 
effective population size and ris the expected number 
of recombinations experienced by a sequence  in one 
generation. 

Main mathematical  results for the process  being in a 
steady  state are ( R  denotes sequence length measured 
in expected number of recombinations per Ne genera- 
tions) as follows: 

1. 

2. 
3. 

The mean and variance of number of ancestral seg- 
ments is 1 + R and approximately 2R, respectively. 
The mean length of a segment is 1. 
The mean amount of ancestral  material on the an- 
cestor  to the leftmost  base on an extant sequence is 
log(1 + R ) .  

A segment is a maximal  interval  of  ancestral  material 
on an ancestral sequence. Based on simulations it is 
conjectured that 

4. The mean number of ancestor  sequences is  of the 
order  R/log( 1 + R).  

The human  chromosome 1 is -263 Mb and 293 cM 
long (SCIENCE WEB PAGE 1997), and assuming the effec- 
tive population of humans is Ne = 20,000, the mean 
segment length is -5000 (=263  Mb/(2.93* 20,000)) 
bases long, and the length of ancestral  material on the 
ancestor  to the leftmost  base  is =50,000 [=263 
Mb log( 1 + 2.93 20,000) / (2.93 * 20,000) ] bases long. 

If statement 4 holds true, the mean number of ances- 
tors  to the human chromosome 1 is -6800 individuals. 

This  article is divided into  four sections apart from 
the Introduction. The first  section introduces the coa- 
lescent  process  with  recombination and sequence eve 
lution subject  to  recombination. In the second  section 
mathematical  results are derived  from the point of  view 
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intensity parameters of discrete processes and results obtained by simulation 

.f coalescence 

.f recombination 

f coalescence 

" 

studies are  presented. The third section discusses the 
program used in  the simulation studies, and finally the 
fourth section is a discussion. Here  the results obtained 
in previous sections are  applied to humans, and prob- 

cluded in the  model  are discussed  relative to this appli- 
cation. 

We estimate that  the  number of ancestors to the  hu- 
man genome is <86,000 chromosomes, which is <3.3% 
of the estimated entire ancestral chromosomes. This 

813 1 lems concerning  the choice of model and factors in- 
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percentage is based on an actual ancestral population 
size  of 1.3 million individuals 300,000 years ago (WEISS 
1984). 

EVOLUTION OF SEQUENCES  SUBJECT 
TO RECOMBINATION 

The model of a population of sequences subject  to  recombi- 
nation is the following.  Each sequence is L nucleotides long 
and recombination is assumed  to occur to the right of a nucle- 
otide. The population is constantly of  size Nand diploid, i.e., 
there are  2N sequences. A new generation is obtained from 
the present by sampling 2Nsequences in the previous  genera- 
tion with replacement, and forming random pairs of  se- 
quences and letting the pairs recombine between any two 
nucleotides with probability r. Time will start at the present 
and increase going backward in time. 

This  process is transformed to a continuous time and con- 
tinuous sequence process by letting N "* 00 and measuring 
time in 2N generations; letting L "* 00 and r --t 0, such that 
2rU--t  and measuring length in expected number of re- 
combinations per 2N generations. HUDSON (1983) showed 
that the waiting  time  to a sequence having been created by 
a recombination from two sequences is exponentially distrib 
uted with intensity parameter &, where & is the rescaled 
length of the sequence. For the extant sequences, & is  simply 
the length of the sequences, i e . ,  & = R For  ancestral se- 
quences, & is the length of the interval spanned by regions 
that have ancestral  material. These sequences  can include 
regions with nonancestral material. The recombination point 
will be  uniformly distributed within  this  material. The waiting 
time going backward in time until k sequences had only (k - 
1) ancestors in the population is exponentially distributed 
with intensity parameter k(k - 1)/2, and the two sequences 
having a common ancestor at that time are uniformly distrib 
uted among all different pairs.  This was first  realized by WAT- 

FIGURE 1.-Reshuffling of ancestral  material. At time 0 one 
sequence is sampled. After the first recombination event, the 
sequences wait for either a recombination or a coalescent  to 
occur. Each  is  associated an exponential waiting  time and are 
independent of each other.  The first  coalescent traps some 
nonancestral material. The rate of recombination is the sum 
of the length of regions spanned by segments (including 
trapped material), and the rate of coalescence is k(k - 1)/2, 
where k denotes the number of sequences carrying  ancestral 
material. For example, the rate of recombination after the 
second coalescent  event is the length of segments  plus the 
length of trapped material: 2/3 + 2/s + + (segments) 
+ l/g + 2/3 (trapped material) = 3. Since the rate of coales 
cence is quadratic in k and rate of recombination is at most 
linear (less than 2k in this example), the process will reach a 
steady state and the number of segments and sequences will 
not increase  indefinitely. 
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TERSON (1975) and later developed into the theory of the 
coalescent by KINCMAN (1982). 

The coalescent with recombination has further been inves- 
tigated by HUDSON and KAPLAN ( 1985), KAPLAN and HUDSON 
(1985), GRIFFITHS and MARJORAM (1996, 1997). 

This  process  has  some  nice properties. First, the process 
is invariant under translations along the sequence, i e . ,  the 
marginal distribution of a subsequence depends on the length 
of the subsequence only, not the position. Second, the process 
is symmetric, ie., the distribution is the same seen from either 
end points. Third,  the distribution of m fixed points on the 
sequence is identical to the distribution of m loci in an m 
locus model with recombination rates  between  loci  given by 
the distances  between  points. 

The history of a sequence can be  simulated by going back 
in time, waiting for what  occurs  first, a recombination or a 
coalescence, and then performing the appropriate operation 
on the set of ancestral  sequences.  Recombination will increase 
the number of sequences carrying  ancestral  material by one, 
but will not increase the total amount of ancestral  material. 
A coalescence will decrease the number of sequences with 
ancestral  material by one. It can increase the amount of mate- 
rial,  where recombination can occur, because  coalescence  can 
trap some nonancestral material.  When  any  position on the 
extant sequences has found one ancestor, all  segments with 
ancestral material  spliced together will constitute one se- 
quence. Above this point coalescence cannot reduce the 
amount of ancestral material and all that will occur is redistri- 
butions of ancestral  material on different sequences by recom- 
binations and coalescences.  Since the rate of coalescences is 
quadratic in the number of sequences and the rate of recom- 
binations is at most linear, the process will reach a steady state 
and  not increase indefinitely.  This is illustrated in Figure  1. 

The distribution of ancestral  material on different se- 
quences can  be  classified and counted as follows. Figure 2 
illustrates a simple situation. Start leftmost on the sequences. 
The sequence with the leftmost segment of ancestral  material 
is labeled 1; the sequence with the second  leftmost segment 
is labeled 2. If the third segment is not  on the same segment 
as the first segment, it will be  labeled 3. If it is on the same 
sequence as the first, it will be  labeled 1. As the sequences 
carrying  ancestral  material are traversed and a segment on a 
new sequence is encountered, this sequence will be  labeled 
by an integer one higher than any  previously  used. These 
numbers will in the sequel  be referred to as sequence num- 
bers. 

The number of  ways to distribute n segments on k se- 
quences in this way  will be  called C( n, k ) .  This number is a 
reminiscent of the Stirling numbers of the second kind, S(n, 
k ) ,  which  is the number of  ways to partition 11, . . . , n] into k 
subsets. The difference between configurations and partitions 
is that in a configuration two consecutive numbers cannot be 
in the same set, while partitions are not subject to this  restric- 
tion. If a configuration did not obey  this restriction, then two 
consecutive  segments could be on  the same sequence and 
then they  would be one segment, not two. S(n, k )  and C(n, 
k )  obey  very similar  recursions: 

S(n, k )  = KT(n - 1, k )  + S(n - 1, k - l ) ,  

S(n, n) = S(n, 1) = 1, 

C(n, k )  = ( k  - 1)C(n - 1, k )  + C(n - 1, k - l) ,  

From these recursions it is seen that C(n + 1, k + 1) = 
S( n, k ) ,  ie., the number of  ways to distribute (n + 1) segments 

sequence numbering of 
segments  from left to right: 

1 2  

-f coalescence 

1 2  3 2 

-f recombination 

1 2  1 

1 coalescence 
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1 2  
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1 

FIGURE P.”Sequence numbering of segments. An example 
of the evolution of the distribution of material  ancestral to a 
sequence. The first  event (going back in time) is a recombina- 
tion  implying that just before this  event  material  ancestral 
to the present sequence was located on two sequences, one 
sequence having trapped material. The amount of ancestral 
material  remains constant. 

on ( k  + 1) sequences is the same as the number of ways to 
partition n labeled elements into k sets. 

RESULTS 

In  this  section  both  results  derived  analytically as well 
as  results obtained by simulations will be presented. 
These  fall  in two groups. The first group consists  of 
results  related  to the sample of ancestor  sequences, e.g., 
the number of segments of ancestral  material and num- 
ber of ancestor  sequences. The second group of results 
is related  to the structure of a single  ancestor, e.&, 
length of ancestral  material and number of segments 
on a single  ancestor. 

The coalescent  process with recombination is a Mar- 
kov process  with  state  space  given by all  possible  con- 
figurations of ancestral  material and the multiplicity of 
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sequences of each configuration. A strict  mathematical 
formulation of the state  space  can  be found in GRIF- 
FITHS and MARJORAM (1996). Only  results concerning 
the equilibrium  distribution of the Markov chain will 
be presented and henceforth Pwill  refer  to  this  distribu- 
tion. 

No closed  expression for the equilibrium  distribution 
has been found and hence other approaches are re- 
quired. The coalescent  process with recombination  can 
be embedded in  a birth and death process  with  rates 
p k  = k(k - 1)/2 and kR, k = 1, 2, . . . , stressing once 
again that a  steady  state will be reached. The birth and 
death process  ignores the fact that recombination 
events  outside  ancestral and trapped material will  have 
no effect on the history of the sample. Trapped material 
is a  segment  located  between two segments of ancestral 
material on a  sequence  (Figure 2). 

The approach used here is  to  study the process 
through the distributional  behavior of  two, three and 
four points in the ancestral  material.  This  limits the 
results  to  results on moments. 

Define by A, t 2 0, the sequence number at the point 
t (Figure 2) ,  and  let N, be defined by N, = 1 iff 
lim,+,(A,, - A,,,) f 0 and Nf = 0 otherwise, i.e., N, = 
1 iff t is a  recombination point. Since the distribution 
of ancestral  material in any  interval  of  finite length is 
translation  invariant, the process {N'I t 2 O ]  is a  station- 
ary point process,  whereas {A,I t 2 01 is neither station- 
ary nor a point process,  since the value  of A, depends 
on all A,, 0 I s I t. 

Let [0 ,  R] denote a  sequence of length R, and let tl 
and 4 be two points in [0, R] with a  distance r = I tl - 
4 I between  them.  Write Ai short for A,. The two points 
will be on the same  sequence with  probability 1/ (1 + 
r) and on different sequences with  probability r/(l  + 
r),  i.e., 

1 
l + r  

P(A1 = A2) = 1 - P(A1 * A2) = - . (1) 

Similarly one obtains for the case  of three points tl < 
4 < ts in [ O ,  R] and distances rl = 4 - tl and r2 = ts 
- 4 (Figure 3): 

B1 o--"--o B4 

B2 o---"---- 
__I__o B5 

U 

B3 o"-------- - 
FIGURE 3.-The five different locations of three  points. B1, 

A1 = Ap = A,; B2, A1 = A2 f AS; B3, A1 # A2 = As; B4, AI = 
As f A2; B5, Ai # A,, i f j .  

where 

K ( q ,  r2) = (1 + q)(l + r2)(1 + r1 + r2)(3 + r1 + r2). 

Both (1) and (2) can  be obtained from two- and 
three-locus  theory.  For more than three points  closed 
expressions are long and hard to  derive  even  in  special 
cases  using  programs  like Mupb V (CHAR et ul. 1991). 
In the case  of four points  a  single  expression is required. 
Assume tl < 4 < ts < & and that the distance rl between 
tl and t equals the distance  between ts and &. Let r2 be 
the distance  between 4 and ts. For small  values  of rl 

In the sequel (1) , (2) and (3) will be used  several 
times  to  derive  quantities related to the coalescent  with 
recombination. 

Put E,,  = 2-", n E N, and define X,,, and Z,, i E N by 

The distributions of X,, and 5, are found using (1). 
The number of segments SR in [0 ,  R] can  be  defined 
through the Xn)s: 

Rn 

Ir" i=l 
SR = 1 + lim X,,,, 

with R, = 2"R, and similarly the length LR of all  ancestral 
material  in [0, R] located on the sequence containing 
the point t = 0 can  be defined through the Z,,)s: 

Rn 

LR = lim E ,  Zin. 
n- 

The above expression of S, (1) and (3) fairly  easily 
lead  to the following  proposition: 



Ancestors  to a DNA Sequence 1463 

P I 

0 ‘  + I 
0 2 4 6 8 10  12  14  16  18 20 
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FIGURE 4.-Moments  of the  number of ancestor sequences 
CR. The sequence length varies from 1000 to 20,000, and the 
number of simulations performed was 100. 0 denotes the 
mean  value, and +, the value of the variance. There is no 
theoretical justification for the choice of curve;  this is only 
meant to show the  order of magnitude. The curve fitted to 
the mean  values isflx) = 1.28x/log(l + x) [1.28 is the third 
term in the expression of K (Proposition I ) ] .  

Proposition 1: The mean and the variance of the number 
of segrnats SR in [0, R] are given by 

J??(SR) = 1 + R 

with K defined by 

Prooj see APPENDIX A. 0 
The linear  bound on V(SR) in R implies by the Mar- 

kov inequality that  the  number of segments will tend 
to infinity with probability one as R becomes large. 

In  contrast  to  the above it is difficult to evaluate the 
number of sequences CR carrying ancestral material. 
This number is given by CR = max%R At, hence it de- 
pends possibly on all  values  of A, which  makes it impos- 
sible to  come up with an expression of E( CR) based on 
quantities related to two, three  and four points. Thus 
the  mean and variance of CR was simulated for different 
values  of R (Figure 4), and  in Figure 5 the  number CR 
is compared to the actual observed sequence  number 
in the  sequence end  point t = R 

From Figure 4 it is seen  that  the increase in number 
of sequences as the  length of the  sequence increases 
one  unit is of order  l/log(R),  hence the  number of 
sequences grows slowly  with length. 

The variance of CR is  less than  the  mean. Intuitively, 
the  difference in dispersion between the  number of 
segments and  the  number of sequences can be ex- 
plained with reference  to possible fluctuations in these 
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sequence  length  (in  units of thousands) 

FIGURE 5.-Actual sequence number AR vs. the total num- 
ber of sequences C,. The actual sequence number is the se- 
quence number at the endpoint of the sequence, ie., the 
value  of A, in the point t = R One  hundred simulations  were 
performed with sequence length varying from 1000 to 20,000. 
+ denotes the mean number of sequences, and 0 denotes 
the mean of the actual sequence number. The actual number 
is between  10-15% less than the total, which  shows that a 
return to sequences with  small sequence numbers rarely OC- 

curs. 

numbers. The  number of segments is subject to  higher 
fluctuations than  the  number of sequences, since a sin- 
gle coalescent event can reduce  the  number of seg- 
ments by any number, even zero (Figure l),  whereas a 
recombination event will create one new segment, if 
the recombination happens with ancestral material, 
and zero new segments, if it  happens within trapped 
material. The  number of sequences will either be de- 
creased by one (coalescent event), or increased by one 
(recombination  event), and thus subject to less fluctua- 
tions. 

Proposition 2: The mean and the variance of the length LR 
of all ancestral material in [0 ,  R] located on the  sequence 
containing the point t = 0 are given 4 

E(LR) = lOg(1 + R), 

V(LR) = (log(1 + R))‘ + O(lOg(1 + R)). 

ProoJ See APPENDIX A. 0 
The mean value of LR suggests that  the  number of 

ancestral sequences CR is not less than  R/log(l + R) 
(length of ancestral material divided by mean length of 
L R  that probably is larger than  mean  length of ancestral 
material on  other ancestor sequences) and this order 
of magnitude is in fact confirmed in Figure 4. 

Note that  doubling  the  sequence  length only in- 
creases the  mean  length by = log(2), which is < 1. Since 
mean  segment  length is 1 (Proposition 5 below), the 
chance is  low  of a segment on sequence 1 in the interval 
[ R ,  2Rl. Moreover Proposition 3 can be interpreted in 
the following sense. If there is a segment  there will be 
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a whole battery of segments adjacent  to it, similar to 
the battery of segments adjacent  to  the first segment 
labeled one. 

Proposition 3: The conditional mean length LR of all ances- 
tral material in [0,  R] on the  sequence containing t = 0 given 
A R  = 1 (i.e., given t = 0 and t = R are on the  same  sequence) 
is 

l + R  = 2 -  
3 + R  

R 
3 + R  

log(1 + R) + - = 2 log(1 + R), 

and for all E > 0 

lim - = O in ,!,'-norm. LR 
f+mH 

ProoJ See APPENDIX A. 0 
The second result in Proposition 3 gives an  upper 

bound on how  fast the  sequence  length LR can grow. 
It will grow  less rapidly than any root of R, and  hence 
segments cannot be uniformly spread with increasing 
sequence  length. Simulation results (not shown) indi- 
cate that  the distribution of lR = Ldlog( 1 + R) fulfilling 
E( 1R) = 1 and V( 1R) M 1 tends  to an exponential distribu- 
tion with parameter 1. If that is so, LR grows like log(1 
+ R). 

Denote by 8 the  number of segments ending in [0 ,  
R] on the  sequence  containing t = 0,  i.e., 

Rn 

8 = 1 + lim x xnzi,,. - i=l  

Then 
Proposition 4: The following are  true for 8: 

P ( q R  - = 0 )  > 1 - log(2) M 0.307 for all R, 

P(lim sup - 8 = 01) > 1 - log(2), 
Ita0 

and 

P(1im 8 = a) > 0. 
R-ao 

PrOOJ See APPENDIX A. 0 
Despite that  the  mean  sequence  length LR presum- 

ably  is  growing logarithmically in R, there is a positive 
chance (> -0.307) that  sequence 1 is not represented 
in  an arbitrary large region of the ancestral material 
and that  there will be infinitely many such regions (Prop 
osition 4) .  The last statement gives a converse to  the 
second statement: there is a positive chance  that  there 
will be an infinite number of segments labeled one. 

If the  chance of returning  to  the first sequence is 
significant, it  should  be reflected in  the distribution of 
trapped material: the  higher this chance, the higher is 
the probability of long pieces of trapped material. Fig- 
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0 , ~ Q , * Q ~ ~ , ~ o ~ ~ , * ~ * ~ , ~ ~ ~ ~ ~ ~ ^ B * , . ^ ~ o  

0 2 4 6 8 10  12 14 16 18 20 

amount of trapped  material  (in  units of hundreds) 

FIGURE 6.-Trapped  material.  The  empirical  distribution 
of trapped  material located on the  sequence  containing  the 
point t = 0. Rwas chosen to 2000, and 500 simulations  were 
performed. Seventy-five of these  simulated  sequences con- 
sisted of only one segment, and -50% (including the 75) 
had very little  amount of trapped  material, i.e., the segments 
were  very close  to  each other. The  distribution  has  a long 
tail, and  four  sequences  had  trapped  material of size  1975  or 
more. 

ure 6 shows the simulated distribution of trapped mate- 
rial in the  sequence labeled one. 

Proposition 5: Let A be the h g t h  of a segment  measured 
from t = 0. Conditional on the  event (No = 11, the mean 
value of A is 

E ( h ( N o  = 1) = 1. 

ProoJ See APPENDIX A. 0 
Figure 7 sums up the  structure of a single ancestor 

as described in Propositions 2-5 and Figure 6 simply by 
showing an ancestor to an  extant sequence. Segments 
tend to be placed in small batteries. 

SIMULATIONS 

A program was written in the  computer language 
C that simulated the evolution of a sequence going 
backward in time. It tabulates the empirical distribution 
function of selected statistics  of the process, and takes 
three input parameters: 

1. the  length of the  sequence, R in  expected  number 

2. the  amount of time of evolution, T in units of N 

3. the  number of simulations to  perform. 

of recombinations per N generations, 

generations, 

A few criteria were chosen to measure the divergence 
from equilibrium: 

1. The mean  number of segments. Since waiting 
times until recombination events in ancestral material 
(not  trapped) occur are  independent  and  exponen- 
tially distributed with intensity R, the waiting time until 
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the nth  recombination  event is distributed as T(R n). 
Moreover the waiting  time until neighbor segments co- 
alesce is exponential with intensity 1, hence the mean 
number of segments SR( t) present t time  units  back is 

= E(&) - Rexp(-t), 

i e . ,  the convergence  to the equilibrium  mean  value is 
negative exponential. 
2. The distribution at time t of three points. There 

are five  possible  configurations  of three points  (Figure 
3), and if the process  starts  in the configuration with 
all  points on the same sequence, the equilibrium  distri- 
bution is approached with an error of order exp( -t( 1 
+ r) ), where r = min(q, r2), and q and r2 are distances 
between neighboring points  (see e.g., KEILSON 1979). 

DISCUSSION 

The questions  addressed  in  this  article are relevant 
for at least two reasons.  First, it addresses on how  many 
sequences  ancestral  material  to present chromosomes 
were  located.  Obviously, there was not one ancestral 
sequence (Figure 4), but a series  of  ancestral  sequences, 
carrying different amounts of  ancestral  material in dif- 
ferent sized  segments and with different number of 
segments.  Second,  it is  of interest to know  how  many 
sequences one could  sample  in an ancestral population 
by sequencing extant sequences.  This is  of importance 
when  making  assertions about the dynamics  of ancestral 
populations. 

3. group 

[8346.23,8348.15] 

[8349.42,8350.67] 

[8350.73,8351.46] 

FIGURE 7.-Example of 
a  sequence of length 
20,000 with  ancestral  ma- 
terial.  The sequence is di- 
vided into three  groups of 
four, two and  three  seg- 
ments,  respectively.  The 
groups  are  spread in  the 
entire ancestral  material 
with a  distance  between 
the two first  groups of size 
-1400. There are both 
uery  small segments (0.04 
in  the  first group) and 
larger segments (1.92 in 
the  third group). Com- 
pared  to log(1 + R) - 
9.90, this is a  normal  se- 
quence of length 7.34 of 
ancestral  material,  and 
the  amount of nonances 
tral  material  is 1449.94. 

The model of the coalescent  with  recombination as 
discussed in this  article is based on a number of assump 
tions, not all  of  which are realistic for natural popula- 
tions  including  humans. Major  assumptions are as  fol- 
lows: (1)  constant population size, N, (2) no geographi- 
cal  subdivisions, (3) no selection. All results are derived 
under the further assumption of (4) the process  being 
in  steady  state.  In natural populations the violation  of 
one  or more of the above  assumptions will often invali- 
date the coalescent  with  recombination as a reasonable 
description of a sample’s  history and genealogy. How- 
ever,  it is predictable  what  qualitative  effects  violations 
of the assumptions will  have. 

To answer the questions  raised  in the beginning of 
this  section a discussion  of the human  ancestral  popula- 
tion is required. Recently a debate of the origin and 
history  of modern humans  has flourished, initiated by 
the question of the homeland of mitochondrial  com- 
mon  ancestor (CANN et al. 1987). A consensus  seems 
to be reached that the species Homo sapiens originated 
somewhere  in  Africa and spread from there to the rest 
of the world (ROGERS 1995). It is here assumed the 
spread happened 100,000  years  ago. 

Before  this date it is assumed that the effective  popu- 
lation size  was approximately  constant for such a long 
time that the premodern human population  can be 
assumed to have been in  equilibrium. TAKAHATA et al. 
(1995) and ROGERS (1995) argue in  favor  of  this and 
estimate the effective population size.  Effective popula- 
tion sizes are in the range of  1500-7000 breeding fe- 
males. 

Based on the above  it is assumed that assumptions 1, 
2 and 4 are sufficiently  fulfilled for the human popula- 
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TABLE 1 

Percentage of ancestors in the ancestral population 

All chromosomes 
Size of 

Chromosome 20 

ancestral  Percentage of Percentage of Individuals  carrying 
population ancestral ancestral two ancestral 
(in  millions) chromosomes individuals chromosomes P 

0.5 8.3 15.9  3.4  0.03 
1.3 3.3 6.4 1.3 0.27 
5.0 0.9 1.7 0.3  0.71 

The  second  and  third  columns show the numbers  in  percent of ancestral  chromosomes  and  ancestral 
individuals,  respectively,  carrying  material  ancestral  to  one  or  more  chromosome 1-22 of  an extant  individual. 
Column three shows  the  mean  number  of  ancestral  individuals  with two chromosomes  carrying  material 
ancestral to an extant  chromosome 20. Column  four  shows  the  probability (0 that  no  ancestral  individual 
carries  more  than  one  chromosome  with  ancestral  material  to  an  extant  chromosome 20. Algebraic  expressions 
of the mean and  the  probability  can be found in APPENDIX B. 

tion for a sufficiently long  period. Assumption 2 is possi- 
bly violated due to a rather small population density 
and a large populated  area (WEISS 1984). Finally  as- 
sumption 3 cannot be completely true,  but this will be 
neglected here. 

The ancestral material of an  extant  sequence was in 
previous generations distributed on a series of different 
sequences. One  hundred thousand years ago this num- 
ber is unknown and  cannot  be  predicted by the coales- 
cent with recombination due to violations of one  or 
more of the assumptions 1-4, e.g., the  population is 
increasing. Since the  population before 100,000 years 
ago fulfills assumption 1-4, the coalescent with recom- 
bination applies to  the  further history  back in time to 
the ancestor sequences. 

Using the  information from SCIENCE WEB  PAGE 
(1997) on chromosomal length measured in cross- 
overs, the first question raised can be answered. Count- 
ing  the  number of females as 5000, the effective  se- 
quence size in the diploid population is 20,000, and 
hence  the rate of recombination of the  human chromo- 
some 20 is approximately R = 2rLN = 20,000 (length 
of chromosome 20 is 100 cM). Figure 4 supports  the 
conclusion that  the  mean  number of ancestor se- 
quences is -2600. This means that material ancestral 
to an extant  human chromosome 20 was spread out 
on 2600 chromosomes, or the  number of ancestors to 
chromosome 20 is -2600. 

The  number of ancestors for  human chromosomes 
will  vary with the  length of the chromosome. These 
range from -58 to -293 cM (SCIENCE WEB  PAGE 1997), 
and  hence  the  number of ancestors varies from 1600 
to 6800 chromosomes in the ancestral population. 

Summing up, all ancestors on different chromosomes 
yield an  upper  bound of  size 86,000, with the lower 
bound  and far less probable being 6800. These num- 
bers should  be  compared  to  the actual physical popula- 
tion size, say -300,000 years ago, which is estimated to 
be - 1.3 million individuals (WEISS 1984). This number 
could both  be  too  high  and too low, but should  be 

contrasted  to  the relatively  low  effective population size. 
The percentage of ancestors is -3.3% of the chromo- 
somes in ancestral physical population. Even 5 millions 
individuals could be a realistic population size,  which 
reduces the  percentage of chromosomal ancestors to 
-0.9% of the ancestral chromosomes. 

Some ancestral individuals will carry material ances- 
tral to an  extant chromosome on both chromosomes 
and some on  one chromosome only. If the ancestral 
population size  is large, the  chance will be low that 
an individual carries two chromosomes with ancestral 
material. Table 1 shows the percentage of chromo- 
somes and individuals carrying material ancestral to  an 
extant  chromosome, and  the mean  number of individu- 
als with two chromosomes with ancestral material. 

Second, it is  of interest to know  how  many different 
sequences one could sample in an ancestral population 
by sequencing extant sequences.  This is  of relevance 
when attempting to reconstruct a species  phylogeny. The 
time  of  speciation can be determined more accurately if 
more extant loci are available and the loci are not linked. 
In  the situation with  totally unlinked loci there will be as 
many ancestral sequences as loci, and in the situation 
with linked loci, there will be one ancestral sequence 
only.  But in between  these extremes the number of ances- 
tral sequences to extant sequences are not that easily 
deduced. The  number of extant sequences sequenced is 
of little importance, since  most  loci will find a common 
ancestor long before the time  of  speciation. 

A sequence of length R = 100 has "30 ancestors in 
the ancestral population, and this is certainly sufficient 
in examples with  only three species, e .6 ,  humans, chim- 
panzees and gorillas. The  long time span involved (in 
the  mentioned example several million years) make the 
assumptions less trustworthy and should  be  kept  in 
mind. 

The assumptions 1-4 were taken for granted in the 
discussion. These assumptions could partly be  justified, 
but  it is  of interest to know the answer to questions like 
the above under less restricted models. 



Ancestors  to a DNA Sequence 1467 

In most  cases it will be difficult  to  choose a model 
that describes extant sequences  appropriately. Often it 
is possible to describe the variation  in extant sequences 
by several  models,  without there being  reasonable  crite- 
ria  to  choose among the different models. The effect 
of introducing more factors  can in some  cases  easily  be 
predicted: a bottleneck will decrease the number of 
ancestral  sequences,  since the effective population size 
in the bottleneck period will be  drastically  lowered. Sub 
division  with  migration will  have the opposite  effect, 
because the size  of the effective population will be 
larger than in a population without  geographical  struc- 
ture. 

However,  in  all  cases the population structure needs 
to be modeled. The choice of model in this paper is 
from the point of  simplicity.  In the application to hu- 
man  chromosomes the assumptions  made  seem  to be 
approximately  fulfilled, so that the results  derived about 
the number of ancestors gives the order of magnitude 
of the  “true” value. 

We thank OLE CAPRANI and MORTEN LAUIUTZEN for help with  im- 
plementation of the simulation program and BERNT  GULDBRANDTSEN 
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APPENDIX A 

This appendix contains  proofs of propositions given 
in  “Ancestors  to an extant sequence.” 

Roof of Proposition 1: Note that s X(Si-l)(n+l) + 
XZi(,,+l), hence XEY X ,  is increasing  in n. Consider E ( & ) ,  

where the second  equality  follows  from the monotone 
convergence theorem. Using (1) and the definition of 
En, 

E(SR) = 1 + lim - = 1 + R RE, 
n ” 1 + E ,  

The proof of the expression for V(Sd is quite similar 
to the above. It follows  easily that 

V( SR) = R - # + 2 lim x E( &XJ, - ;<j 
and using (3) 

R” - k = l  

V(SJ = R - # + 2 lim x ( R  - x b )  

x (1 + 2& + lOXk, + 9 
(2&n + 13xkn + 9)(3 + xkn)(1  + x b )  

where xkn is short for k,. Taking the limit  of the sum 

v(!&) = R + 2 s ( R  - .4 (22  + lox + 9) 
o ( 2 2  + 1 3 ~  + 9)(3 + X) (1 + X) 

dx. 

This integral can  be solved  by standard decomposition 
methods (but is  very cumbersome) and results in 

This  completes the proof. 0 
Proof of Proposition 2: Note that E ,  Z f n  Z, s E,,& = 

R, and hence by Lebesgue’s dominated convergence 
theorem (LDCT) 

Inserting (1) results  in 
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Concerning V(LR) note that 

L: = 2 lim E: ~ , ~ q ~  5 P, - i<j 

and applying LDCT and (2) Equation 1 
R 

E ( G )  = 2 $, d x [ -  (1 + x)(l + ))) 4 
1 

+ O(log(1 + R)) = 2 log(1 + R) log(2 + R) 

+ O(log(1 + R)) .  

There is no exact  solution  to the integral.  Subtracting 
E(&)' fiom E(Li) yields 

V(Ld = (log(1 + R))2 + O(log(1 + R)) ,  

and the proof is complete. 0 
Proof  of Proposition 3: The proof of the first statement 

is similar  to the proof of Proposition 2. 
Note that for E > 0, 

by Proposition 2, and hence L J R  converges in L2 - 
n m .  This  completes the proof, 0 

Proof  of Froposition 4: Similar  to the first statement in 
Proposition 1 it can  be  proved that 

E(%) 

= log(1 + R) + log - 3 + R  1 2 + R  
1 + R  2 1 + R  

+"- % log@). 

but 

E ( q R  - a) ZZ p(%R a) = 1 - p(%R = a), 
and hence the first statement is proved. The second 
follows from the first by Fatou's  lemma. 

Assume  P(1im- = m) = 0,  i e . ,  a < CQ a s .  From 
the remark below Proposition 1: SR = 03 a s . ,  and hence 
if a < a s .  then 1R = LJlog(1 + R) + 0 a s .  (if SR 

< m, then a could  be  finite with lR = m). Both E(ZR) 

and V( ZR) are bounded in R therefore uniformly  integ- 
rable and hence: lime E( lR) = E(1im- ZR) = 0, which 
contradicts E( Zd = 1, and P(1im- = 03) > 0 must 
be true. 0 

Proof of Proposition 5: The number of segments tends 
to  infinity  almost  surely as R becomes  large ( the remark 
below Fropositim 1) and the result follows from DALEY 
and VERE-JONES (1988), theorem 3.4.11. 0 

APPENDIX B 

Let M denote the size  of the ancestral population, 
and K the number of chromosomes  carrying  material 
ancestral  to an extant chromosome. The probability p 
that no ancestral  individual  carry two chromosomes 
with ancestral  material is 

p=-  2K(M)K 
(2M)K ' 

Divide the 2M chromosomes into M "first" chrome 
somes and M "second"  chromosomes,  such that each 
individual  has  exactly one first  chromosome and one 
second. The probabilityp(Kl, x) to pick Kchromosomes 
of  2M, such that Kl are first  chromosomes, Kz are sec- 
ond, Kl + K2 = K, and such that in x cases the first and 
the second  chromosome  belong  to the same  individual 
is 

x 5 K1, x 5 K2. The distribution of x, x s K is 
2K-2"~ 

P ( 4  = 
( 2 a x l ( K  - 2x)!(N- K + x)! * 

The variable x has  mean  value 

E ( x )  = - 1 K ( K -  I )  
2 2 M - 1  * 

This number is  less than one if K = < 2 h .  0 


