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ABSTRACT
In this article we discuss the ancestry of sequences sampled from the coalescent with recombination

with constant population size 2N. We have studied a number of variables based on simulations of sample
histories, and some analytical results are derived. Consider the leftmost nucleotide in the sequences. We
show that the number of nucleotides sharing a most recent common ancestor (MRCA) with the leftmost
nucleotide is ≈log(1 1 4N Lr)/4Nr when two sequences are compared, where L denotes sequence length
in nucleotides, and r the recombination rate between any two neighboring nucleotides per generation.
For larger samples, the number of nucleotides sharing MRCA with the leftmost nucleotide decreases and
becomes almost independent of 4N Lr. Further, we show that a segment of the sequences sharing a MRCA
consists in mean of 3/8Nr nucleotides, when two sequences are compared, and that this decreases toward
1/4Nr nucleotides when the whole population is sampled. A measure of the correlation between the
genealogies of two nucleotides on two sequences is introduced. We show analytically that even when the
nucleotides are separated by a large genetic distance, but share MRCA, the genealogies will show only
little correlation. This is surprising, because the time until the two nucleotides shared MRCA is reciprocal
to the genetic distance. Using simulations, the mean time until all positions in the sample have found a
MRCA increases logarithmically with increasing sequence length and is considerably lower than a theoreti-
cally predicted upper bound. On the basis of simulations, it turns out that important properties of the
coalescent with recombinations of the whole population are reflected in the properties of a sample of
low size.

UNDERSTANDING the genealogical relationship finite for any sample size. But, even positions sharing
the same MRCA can have very different histories.between sequences in a diploid population has

been central to recent analyses of the dynamics of se- In this article we discuss the ancestry of a sample of
k sequences subject to both coalescence and recombina-quence evolution at the population level. The stochastic

process generating the genealogical relationship be- tion. This is done mainly through simulations of sample
histories. The combinatorial complexity of the coales-tween k sampled sequences from a population with con-

stant size N and no recombination was first described cent with recombination makes exact results difficult to
derive and, in most cases, restricted to samples of sizeby Watterson (1975) and further developed into the

theory of the coalescent by Kingman (1982). The pro- 2. We measure the sequence length in expected number
of recombinations per sequence per 2N generations,cess of evolution of sequences subject to both coales-

cence and recombination in a population was first de- where N is population size. The population size is as-
sumed to be constant from generation to generation.scribed by Hudson (1983). In Hudson’s approach the

combined coalescent and recombination process is fol- Our results can be broadly divided into two parts. In
the first part, we have focused on the structure of alowed back in time until any position in the extant

sequences has found a most recent common ancestor single MRCA. Consider the MRCA at position 0 of the
sequences. Call this ancestor MRCAk (0), where k refers(MRCA). Distant positions will not necessarily share the

same history, and the ancestral positions can be located to sample size. If there is no recombination in the history
of the sample, all positions q . 0 will share the sameon different sequences. However, the genealogies of

distinct but linked positions are correlated: Positions MRCA, i.e., MRCAk (0) 5 MRCAk (q). However, if recom-
bination is present, only a subset of the positions q .far apart have ancestries almost independent of each

other, whereas positions close to each other tend to 0 will share this MRCA. In the example in Figure 1
positions 0 # q , 1⁄4 and 1⁄2 # q # 1 share MRCA spreadhave identical ancestry. Griffiths and Marjoram

(1997) proved that the set of MRCAs to a sample is on two distinct segments, while 1⁄4 # q , 1⁄2 share MRCA.
Furthermore, we are interested in the following vari-

ables: (1) length of ancestral material that shares MRCA
with position 0 [in the example in Figure 1 this amounts
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the effective population size of humans is 104. With r 5
50 we have L 5 r/(4Nr) 5 50 · 107/(2 · 104) 5 2.5 ·
104 nucleotides. Thus, our simulation results cover the
ancestry of a sample of human DNA sequences of length
up to 25,000 nucleotides.

THE COALESCENT WITH RECOMBINATION

The model of a population of sequences subject to
recombination is the following: Each sequence is L nu-
cleotides long and recombination is assumed to occur
to the right of a nucleotide. The population is of con-
stant size N and diploid, i.e., there are 2N sequences in
the population.

A new generation is obtained from the present by (1)
selecting with probability 1 2 r a single parent uni-
formly at random and (2) selecting with probability r

Figure 1.—The coalescent with recombination. The gene-
two parents uniformly at random and recombiningalogy of a sample of size 2 is shown. Sequence length is 1
these. Each sequence in the next generation chooses(5 r/2). Time starts at present (bottom) and increases going

backward in time (top). When a branch splits in two, a recom- one or two parents in this manner. The collection of
bination event happens and when two branches merge, a these offspring forms the next generation. The process
coalescent event happens. Thick lines, material ancestral to starts at the present and time increases as it goes back-
the sample; thin lines, nonancestral material. (A) The first

ward.event going backward in time is a recombination event with
This process is transformed into one of a continuousbreakpoint q 5 1⁄2, whereby the ancestral material to the sample

is located on three sequences. (B) The second event is a time and continuous sequence by letting N → ∞ and
recombination event with breakpoint q 5 1⁄4, spreading the measuring time in 2N generations and by letting L →
ancestral material on four sequences. (C) The third event is a ∞ and r → 0, such that 4rLN → r. Here 2rLN is the ex-
coalescent event creating a new sequence, say S. The ancestral

pected number of recombinations per 2N sequences permaterial on S is partitioned into two segments with nonances-
generation. Sequence length is measured in expectedtral material in between (of length 1⁄4). This nonancestral mate-

rial is trapped between the two segments of ancestral material, number of recombinations per 2N sequences per gener-
hence called trapped material. If a recombination event hap- ation; that is, the entire sequence length is r/2. Hudson
pens within the trapped material, the two segments of ances- (1983) showed that the waiting time until a sequence
tral material are spread on two different ancestors and recom-

is created by a recombination event from two sequencesbination events happening within trapped material affect the
is exponentially distributed with intensity parameter r0/genealogy of the sample. The positions 1⁄4 # q , 1⁄2 find a

MRCA at event D, and positions 0 # q , 1⁄4 and 1⁄2 # q # 1 2. For the extant sequences, r0/2 is simply the length
at event E. of the sequences, i.e., r0 5 r. For ancestral sequences,

r0/2 is the length of the interval spanned by regions
that have ancestral material. Note that this interval can

are partitioned (in the example in Figure 1 this is two include regions with nonancestral material (cf. Figure
segments). 1). The recombination breakpoint is uniformly distrib-

In the second part, we have focused on the time back to uted within this material. The waiting time going back-
MRCAs. The total branch length, Gk(q), and the height, ward in time until k sequences have only k 2 1 ancestors
Tk(q) (time until a MRCA), of the genealogy of a single in the population is exponentially distributed with in-
nucleotide are distributed according to the coalescent tensity parameter k(k 2 1)/2, and the two sequences
without recombination. In contrast, the distribution of that have a common ancestor at that time are uniformly
the time until all nucleotides have found a MRCA, Tk 5 distributed among different pairs. This was first realized
max{Tk(q)|q} and the distribution of Gk 5 max{Gk(q)|q} by Watterson (1975), and later developed into the
depend on the total genetic length r. We have investi- theory of the coalescent by Kingman (1982).
gated the expected values of these two variables. More- The coalescent with recombination has further been
over, we discuss a notion of shared sequence ancestry investigated by Hudson and Kaplan (1985), Kaplan
that relates to the correlation between genealogies. and Hudson (1985), Griffiths and Marjoram (1996,

The recombination rate r 5 4NLr has been varied 1997), and Wiuf and Hein (1997, 1999).
from 0 to 50 in the simulations. The quantity r is the The genealogy of a sample of sequences can be simu-
probability of a recombination event between any two lated by going back in time, waiting for what occurs
neighboring positions in a sequence per generation, first, a recombination or a coalescence, and then per-
and L is number of nucleotides in a sequence. Let us forming the appropriate operation on the set of ances-

tral sequences. Recombination increases the number ofassume that r is 1027 in the human genome and that
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sequences carrying ancestral material by one, but does
not increase the total amount of ancestral material. A
coalescence decreases the number of sequences with
ancestral material by one. It can increase the amount
of material where recombination can occur, because
coalescence can trap some nonancestral material (Fig-
ure 1). When any position on the extant sequences has
found a MRCA, not necessarily the same ancestor, all
segments with ancestral material spliced together consti-
tute one sequence. Above this point, coalescence cannot
reduce the amount of ancestral material and all that
occurs is redistribution of ancestral material on differ-
ent sequences by recombination and coalescence. Be-
cause the rate of coalescence is quadratic in the number
of sequences, and the rate of recombination is at most
linear, all positions eventually find a MRCA.

RESULTS

In this section we present simulated and mathemati-
cal results related to the MRCAs of a sample on k se-

Figure 2.—An illustration of the definitions of Bk(q), Ak(q),quences (sections 1–6). We used an algorithm described Rk(r), and rk. The figure shows the ancestral history of a sample
in Wiuf and Hein (1999) to simulate sample histories. of size 2 until all positions have found a MRCA. Thick lines,
For each value of k 5 2, 3, 5, 10, 25, 50, and 100 we material ancestral to the sample; thin lines, nonancestral mate-

rial. When a position has found a MRCA, it is marked with asimulated 2000 sample histories with recombination
dot. The recombination rate is r 5 4, so sequence lengthrate r 5 50.
is 2. The first two events are recombinations, spreading the

1. Definitions: We define a number of mathematical ancestral material on four sequences. The fourth event is also
quantities that relate to the coalescent with recombina- a recombination, but in nonancestral (trapped) material. The

sixth event is a coalescence whereby positions 0 # q , 1.5tion and to the results that we derive and discuss below.
find a MRCA. The seventh event is a recombination in an-Assume a sample of size k is given, with k possibly
cestral material but after the position has found a MRCA.infinite. Let MRCAk(q) denote the MRCA to position q
Finally, the positions 1.5 # q , 2 find a MRCA. In total we

in the sample of k sequences. The time until the find that the number of recombination events within ancestral
MRCAk(q) is distributed according to the coalescent pro- material, but before the positions find a MRCA, is R 2(4) 5 2,

and the positions where this happens fulfill B 2(1) 5 B 2(1.5) 5cess without recombination because one position can-
1. For all other positions B 2(q) 5 0. The length until the firstnot be subject to recombination. Further, let Ak(q) 5 1
recombination breakpoint counted from position 0 is 1, i.e.,if there is a shift from one MRCA to another MRCA in r2 5 1. In total there are three ancestral sequences where

position q, and Ak(q) 5 0 otherwise; and let Bk(q) 5 1 positions find MRCA, events five, six, and eight. The shifts
if there is a recombination breakpoint in position q from one MRCA to another MRCA happen in position 1.5

only, so that A2(1.5) 5 1 and A2(q) 5 0 for q ? 1.5. Thus, wewithin ancestral material, and Bk(q) 5 0 otherwise. Ak
have S 2(4) 5 2.stands for ancestor and Bk for breakpoint. We have Ak(q) 5

1 iff the MRCAs to the left and to the right of position
q are different, i.e., if MRCAk(q 2 ε) ? MRCAk(q 1 ε),

On the basis of the definitions of Ak(q) and Bk(q) weprovided ε is small. The definitions are illustrated in
defineFigure 2. Both quantities Ak(q) and Bk(q) depend on the

ancestral history of positions local to q only and not on Rk(r) 5 #{Bk(q) 5 1 ; 0 # q # r/2}, (1)

Sk(r) 5 #{Ak(q) 5 1 ; 0 # q # r/2} 1 1. (2)
the entire sequence history. Note that if Ak(q) 5 1 then
also Bk(q) 5 1, but not necessarily the other way around.
All recombination events do not necessarily result in a The variable Rk(r) is the number of recombination
shift from one MRCA to another MRCA. Moreover, the events within ancestral material until all positions have
distributions of the Ak(q)’s and Bk(q)’s, q $ 0 are invari- found a MRCA (cf. Figure 2). Note that this is not neces-
ant under translations along the sequences. As an exam- sarily the same MRCA for all positions. Similarly, Sk(r)
ple, (Ak(0), Ak(q)) is distributed like (Ak(p), Ak(q 1 p)); is the number of shifts from one MRCA to another
the distribution depends on the relative distance be- MRCA plus one. The material sharing a MRCA is parti-
tween positions only (q 5 q 2 0 5 q 1 p 2 p) and not tioned into disjoint and distinct segments (as illustrated
on the actual positions. This makes the two processes in Figure 3). The total number of segments equals the

variable Sk(r). Trapped material between two such seg-stationary processes (Daley and Vere-Jones 1988).
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(1997). We call Sk(r) the number of segments carrying
ancestral material in the set of MRCAs. In light of the
above discussion, this can be slightly misleading but is
kept for matters of convenience.

In what follows we denote the length of a sequence
by R ; r/2. Let

Lk(r) 5 lim
ε→0

ε o
R ε21

i51

1{MRCAk(0) 5 MRCAk(iε)},

(3)

where 1{·} denotes the indicator function of a set. This
function takes the value 1 if the condition in the bracket
is fulfilled and zero otherwise. The variable Lk(r) mea-
sures the amount of positions sharing MRCA with posi-
tion 0. This amount is (potentially) just a subset of the
entire material on MRCAk(0) ancestral to the sample:
As illustrated in Figure 3, there can be ancestral material
on MRCAk(0) that does not share MRCA with position 0.

If the coalescent process with recombination is stud-
ied on a grid of points equally spaced with distance ε
(in contrast to a continuum of points), the definition
of Lk(r) would be Lk(r) 5 ε RR ε21

i51 1{MRCAk(0) 5 MRCAk

(iε)}; that is, the number of times the MRCAk(0) is
visited moving along the sequences multiplied by the
distance between the points.Figure 3.—An illustration of the definitions of Sk(r) and

We call MRCAk(0) (or the MRCA to position 0), thesk. The figure shows the ancestral history of a sample of size
leftmost MRCA, and Lk(r) the amount of material shar-2 until all positions have found a MRCA. Thick lines, material

ancestral to the sample; thin lines, nonancestral material. ing MRCA with position 0.
When a position has found a MRCA, it is marked with a dot. 2. Segment length: Hudson and Kaplan (1985)
The recombination rate is r 5 4.6, so sequence length is 2.3. showed that the number, Rk(r), of recombination eventsThe first five events are recombination events within ancestral

within ancestral material until all positions have foundmaterial spreading the ancestral material on 7 sequences (not
a MRCA has expectationshown). Then two coalescence events happen joining parts

of the ancestral material (shown in the figure). After this,
sequence 1 and 2 coalesce whereby positions 0 # q 0.4 and E[Rk(r)] 5 ro

k21

i51

1
i
. (4)1.8 # q , 2.0 find a MRCA [the sequence marked (1,2)], and

sequence 3 and 4 coalesce whereby positions 0.9 # q , 1.6
find a MRCA [the sequence marked (3,4)]. The next event Moreover, Griffiths and Marjoram (1997) proved
joins sequence 5 with (1,2), called ((1,2),5), and finally se- that the expectation of the number, Sk(r), of segments
quences ((1,2),5) and (3,4) coalesce into (((1,2),5),(3,4)).

carrying material ancestral to the sample in the set ofThe leftmost MRCA, or the MRCA to position 0 in the sample
MRCAs isis sequence (1,2). The amount of material sharing MRCA with

position 0 is L 2(4.6) 5 (2.0 2 1.8) 1 (0.4 2 0) 5 0.6. The
leftmost MRCA consists of two segments, 0 # q , 0.4 and E[Sk(r)] 5 1 1 r 11 2

2
k(k 1 1)2 . (5)

1.8 # q , 2.0, that share MRCA with position 0. Further, there
are two trapped segments ancestral to the sample, 0.4 # q ,
0.9 and 1.6 # q , 1.8, and one trapped nonancestral segment, We are interested in the sequence length between
0.9 # q , 1.6. Sequence (3,4) is the MRCA to positions 0.9 # successive recombination breakpoints and the length
q , 1.6, sequence ((1,2),5) to 2.0 # q , 2.3, and sequence between successive shifts between MRCAs. The above
(((1,2),5),(3,4)) to 0.4 # q , 0.9 and 1.6 # q , 1.8. In total

equations give us the expected number of each kind,there are five shifts from one MRCA to another MRCA, i.e.,
recombination events/breakpoints and shifts betweenS2(4.6) 5 5 1 1 5 6, and the length until the first shift counted

from position 0 is 0.4. MRCAs, in sequences of length R ; r/2.
Denote by rk the length between q 5 0 and the first

recombination point along the sequences, and by sk the
ments on the same sequence can either be ancestral to length to the first shift from one MRCA to another
the sample or nonancestral (Figure 3). In the former MRCA measured from q 5 0 (Figures 2 and 3). We here
case, a position within the trapped material has not yet assume that sequences are potentially infinite so that
found a MRCA. there always is a first recombination event and a shift

The number Rk(r) was first studied by Hudson and between MRCAs. Because of the stationary property of
the process, it follows that the expected value of rk, givenKaplan (1985), and Sk(r) by Griffiths and Marjoram
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a recombination event happened in position q 5 0, is

E[rk|Bk(0) 5 1] 5
1

2 ok21
i51 1/i

(6)

(see appendix).
Similarly, one obtains the expected value of sk, given

that there is a shift in position q 5 0 from one MRCA
to another MRCA, by

E[sk|Ak(0) 5 1] 5
1

2 2 4/k(k 1 1)
(7)

(see appendix).
The two expressions (6) and (7) hold for k 5 ∞ as

well, yielding

E[r∞|B∞(0) 5 1] 5 0 and E[s∞|A∞(0) 5 1] 5 1⁄2
Figure 4.—The ratio of the expected number of MRCAs(8)

to the expected number of segments, Sk(r), carrying ancestral
material in the set MRCAs. One is subtracted from both num-(see appendix). Hence the length r∞ between two re-
bers before taking the ratio (see Results, 3). The ratio is acombination points in the ancestral material is 0 with
slowly decreasing function of r for fixed sample size, k. Theprobability one. Further, Equation 8 means that al- small slopes of the curves for larger values of r indicate that

most all recombination events are invisible in MRCAs the total span of positions sharing a MRCA is very narrow:
even in large samples. From the fact that E[Sk(r)] ! Increasing sequence length will not increase the amount of

positions sharing the MRCA. The curve for sample sizes 10E[Rk(r)] for large k, this is expected.
and higher is almost identical to the curve for k 5 100.In Wiuf and Hein (1999) the expected length of rk

is calculated

several segments, and these can be spread over all the
E[rk] 5

1
2 o

k22

i51

(2 1)i21 (k 2 1)!
i! (k 2 i 2 2)!

log(i 1 1) (9) sequence length. There is a chance that two positions,
q1 and q2, when very far apart share MRCA, but are lo-

for 2 , k , ∞, and E[r2] 5 ∞ and E[r∞] 5 0 (see ap- cated on different segments of ancestral material (Fig-
pendix). The expectation of rk decreases in k toward ure 3). In Figure 4 the ratio of the expectation of
0. Griffiths and Marjoram (1996) showed that the MRCAs 2 1 to the expectation of Sk(r) 2 1 is plotted
time until a MRCA in position 0 given a recombination for increasing sequence length and different values of
(Bk(0) 5 1) is k. For fixed r the ratio quickly becomes independent

of sample size. This indicates that the number of seg-
211 2

1
k2 1

2(1/k 1 Rk21
j52 (1/j 2))

Rk21
j51(1/j)

. 211 2
1
k2 . ments into which each MRCA is partitioned is almost

independent of k.
4. The leftmost MRCA: Consider now the MRCA toThe term 2 (1 2 1/k) is the time until a MRCA (uncondi-

position q 5 0, MRCAk(0). In the case k 5 2 we cantional to a recombination event). The greater the time
calculate the expected amount of positions sharinguntil a MRCA, the higher the chance of a recombination
MRCA with position 0, L 2(r) [see (3)], as a function ofnearby (Wiuf and Hein 1999). Therefore,
R ; r/2, the sequence length. We find (see appendix)

E[rk|Bk(0) 5 1] # E[rk].
E[L 2(r)] ≈ 1⁄4log(18 1 26r 1 r2) 1 0.607.

For example, E[r2|B 2(0) 5 1] 5 1⁄2, but E[r2] 5 ∞ and The exact expression can be found in the appendix.
E[r3|B 3(0) 5 1] 5 1⁄3, but E[r3] 5 log(2) ≈ 0.69. For large r’s, L 2(r) increases like log(r)/2.

3. Number of MRCAs: The number of different Further, we find the following lower bound on the
MRCAs is upward bounded by Sk(r), the number of variance of L 2(r) (see appendix):
segments carrying ancestral material in the set of

Var[L 2(r)] 5 E[L 2(r)2] 2 E[L 2(r)]2
MRCAs and hence bounded in expectation by

$ 1⁄2r 2 1⁄2log(1 1 r) 2 E[L 2(r)]2.
1 1 r11 2

2
k(k 1 1)2

Because E[L 2(r)] is of order 1⁄2log(1 1 r), the variance
is of order 1⁄2r at least.[according to (5)]. From this we find that the expecta-

tion of Sk(r) 2 1 is linear in r. In contrast, the number Combining the expression for the expectation of
L 2(r) with the lower bound on the variance, we find thatof MRCAs is not likely to be linear in r, because each

MRCA might have the ancestral material located on the normalized variable 2L 2(r)/log(1 1 r) has expected
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Figure 6.—Expected number of segments on leftmostFigure 5.—Expected length of material sharing MRCA with
MRCA. Each segment consists of positions sharing MRCA withposition 0 in the sample. The MRCA to position 0 is called
position 0 in the sample. The material in between two seg-the leftmost MRCA. The number k denotes sample size. For
ments is either nonancestral to the sample or ancestral. Ink 5 2, the curve grows like log(1 1 r)/2, whereas for larger
the latter case, the MRCA of a position q is different from thek values, the curve becomes almost constant. This indicates
MRCA to position 0. The number of segments increases asthat increasing the sequence length will not increase the
function of k, but the total length of the segments decreasesamount of positions sharing MRCA with position 0. This obser-
in k (see Figure 5).vation is in concordance with Figure 4.

material is between the segments sharing MRCA withvalue z1, but has a variance that increases without
position 0 (Figure 3). Figure 3 supports the conclusionbound for increasing sequence length. Thus, there is
that as sample size increases so does the chance of find-very large variation in the amount of positions sharing
ing trapped material on the leftmost MRCA, i.e., theMRCA with position 0 when sample size is 2.
chance that the ancestral material is located on differentFor larger sample sizes, k . 2, we have P {MRCAk
segments increases. We conclude, as we did in Figure(0) 5 MRCAk(q)} # P {MRCA2(0) 5 MRCA2(q)} (see
6, that the chance of several segments being on theappendix), and hence that
leftmost MRCA is highest for large samples.

E[Lk(r)] # E[L 2(r)] ≈ 1⁄2log(1 1 r).

This bound is very crude. We have simulated the length,
Lk(r), for samples of different sizes and found that for
large sample sizes, the expected length is a slowly grow-
ing function of r (Figure 5), and for k . 2 it almost
becomes constant. The difference in expected length be-
tween samples of size 10 and 100 is ,5% within the range
r is varied. This indicates a quick convergence of expected
length for increasing sample sizes and fixed r.

The set of positions sharing MRCA with position 0 is
(potentially) partitioned into several segments (Figure
3). Figure 6 shows the expected number of such seg-
ments on the leftmost MRCA. For small sample sizes
there are less segments than for large sample sizes.
Moreover, as shown in the previous figure, the expected
length of positions sharing MRCA with position 0,
E[Lk(r)], is smaller for large sample sizes than for small
sample sizes. This supports the conclusion that the mate- Figure 7.—Trapped material on the MRCA to position 0

in the sample (leftmost MRCA). Sample size is 2. The figurerial sharing MRCA with position 0 is chopped into more
is similar to Figure 8. The frequency of leftmost MRCAs withsegments for large sample sizes than for small sample
a given value of trapped material (x-axis) is shown. The num-sizes, and that these segments tend to be shorter for
ber of leftmost MRCAs without any trapped material is ≈0.79

large samples than for smaller samples. (not shown), by far the most common situation. Large amount
The histograms in Figures 7 and 8 show the amount of trapped material means that the leftmost MRCA consists

of several segments separated by large distances.of trapped material on the leftmost MRCA. Trapped
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Figure 8.—Trapped material on the MRCA to position 0
in the sample (leftmost MRCA). Sample size is 100. The figure
is similar to Figure 7. The frequency of leftmost MRCAs with Figure 9.—Shared sequence ancestry. The figure (identical
a given value of trapped material (x-axis) is shown. The num- to Figure 1) shows the genealogical history of two positions.
ber of leftmost MRCAs without any trapped material is ≈0.51 The arrow line indicates time, and the configurations of the
(not shown). As the sample size goes up, the chance gets ancestral samples are shown immediately after an event. After
bigger that the material sharing MRCA with position 0 is event D the two pairs of positions are located on two sequences,
spread on several segments: The number of leftmost MRCAs but the positions do not share sequence ancestry at this point:
without any trapped material is ≈0.79 for sample size 2. Both positions on both sequences are ancestral to the sample,

but the positions have been swapped. The total time the posi-
tions share sequence ancestry is from time 0 until event A
happens.

5. Shared sequence ancestry: Consider two positions.
As the distance between the positions gets larger, their
genealogical histories become less correlated. In gen-

is represented by ((1,1), (2,2)). We say that the positionseral, the correlation between genealogies might be mea-
share sequence ancestry whenever the ancestral state issured in different ways according to what aspects of the
((xi1, xi2)|i 5 1, . . . , n) 5 ((1,1), (2,2)) or 5 ((0,0)).genealogy are of interest. Kaplan and Hudson (1985)
This implies that the positions ancestral to q1 and q2 onfound that the covariance between the total branch
s1 share an ancestor, and at the same time the ancestrallengths, Gk(q1) and Gk(q2), of the genealogies in positions
positions to q1 and q2 on s2 share an ancestor, possiblyq1 and q2 is about k/(4(k 2 1)R), where R ; r/2 is the
the same.distance between q1 and q2. A similar result will hold for

If the positions are completely linked (R 5 0) thethe tree heights of the genealogies.
ancestral state is ((1,1), (2,2)) until the positions findIf the positions are completely linked, the positions
a MRCA and the state becomes ((0,0)). If the positionsancestral to q1 and q2 are on the same ancestral sequence.
are less linked, the ancestral state might be differentWhen recombination is present, the ancestral positions
from ((1,1), (2,2)). As a measure of shared sequenceto q1 and q2 will not necessarily share sequence, but
ancestry we take the expectation of the time TS spentmight be on different sequences. The time they share
in the state S 5 ((1,1), (2,2)) compared to the expecta-ancestral sequences is a measure of the correlation be-
tion of the time Tj, j 5 1, 2 until a position finds atween the two genealogies. We define and discuss a
MRCA, i.e.,notion of shared sequence ancestry in this context.

Let a sample of size 2 be given. Fix two positions,
q1 and q2, on the sequences s1 and s2 with distance R

E[TS]
E[Tj]

5 E[TS],
(recombination rate r 5 2R).

Denote an ancestral state to the sample by a list ((xi1, because E[T1] 5 E[T2] 5 1. Standard Markov chain
xi2)|i 5 1, . . . , n), where n is the number of ancestral analysis (see appendix) gives
sequences, and (xi1, xi2) denotes an ancestral sequence.
The variable xij is * if position qj on the sequence repre-

E[VS] 5
1 1 r

18 1 13r 1 r2 118 1 r 2
2r2

(3 1 r)(2 1 r)2,sented by (xi1, xi2) is nonancestral to any position in the
sample, 0 if ancestral to qj on both s1 and s2, 1 if ancestral

where VS is the number of times state S is visited (theto qj on s1 only, or 2 if ancestral to qj on s2 only. The
definition is illustrated in Figure 9. A present-day sample initial time included), and hence



1224 C. Wiuf and J. Hein

E[TS] 5 E[E[TS|VS]] 5
1

1 1 r
E[VS]

5
1

18 1 13r 1 r2 118 1 r 2
2r2

(3 1 r)(2 1 r)2,
because TS|VS z G(VS, 1 1 r). If recombination is not
present so that q1 and q2 are completely linked, then
E[TS]/E[Tj] 5 1. As r increases, E[TS]/E[Tj] decreases
toward 0. The genealogies of the two positions become
less correlated as the chance of a recombination break
between the two positions increases; for very high re-
combination rate r 5 2R the two positions ancestral to
q1 and q2 on s1 are on the same sequence with probabil-
ity ≈ 1/(1 1 R) (Wiuf and Hein 1997). Note that this
measure of correlation between the genealogies in two
distinct positions is of order 1/r.

Figure 10.—The expected time until all positions haveSimilarly, we can calculate the shared sequence ances-
found a MRCA. This expected time becomes quickly indepen-

try given that the two positions find a MRCA at the same dent of sample size: The difference between sample size 25
time, i.e., given MRCA2(q1) 5 MRCA2(q2) or T1 5 T2. and sample size 100 is ,2%. For r 5 0, the time until a MRCA

is distributed according to the coalescent process and theWe find
expectation is 2(1 21/k), k denoting sample size.

E[Tj|T1 5 T2] 5
3(6 1 r)

18 1 13r 1 r2

simulated Tk to see how good this bound is (Figure 10).
and E[Tk] 2 E[Tk(0)] seems to converge toward a logarith-

mic limit.
Similarly, the expectation of Gk(q) isE[TS|T1 5 T2]

E[Tj|T1 5 T2]
5

1
3(6 1 r) 118 1 r 2

2r2

(3 1 r)(2 1 r)2
E[Gk(q)] 5 2 o

k21

i51

1
i
.by similar analysis to that above (see appendix).

Whereas E[TS]/E[Tj] decreases from 1 toward 0 for r
Using the technique of Griffiths and Marjoramincreasing, E[TS|T1 5 T2]/E[Tj|T1 5 T2] decreases from
(1997, Theorem 3.1), it can be proved (see appendix)1 toward 1⁄3.
thatThe value of E[Tj|T1 5 T2] is z3/r for large r’s. The

time spent in S is only about 1⁄3 the total time, so that 0 # E[Gk] 2 E[Gk(0)] 5 E[ max
0#q#p/2

Gk(q)]
in general several events happen before the MRCA and
not just a single coalescent event.

2E[Gk(0)] # 4r.
6. Tree heights and branch lengths: Let Tk(q) denote

The variable Gk is the maximum of all total branchthe time until a MRCA in position q in a sample of size
lengths. On the basis of simulations presented in Figurek, and Gk(q) the total branch length of the genealogy
11 it is obvious that E[Gk] 2 E[Gk(q)] does not dependin position q. Because one position cannot be subject
linearly on r, but seems to converge toward a logarith-to recombination these two variables depend on only
mic limit.the coalescent process and not the recombination pro-

cess. The expectation of Tk(q) is

DISCUSSION
E[Tk(q)] 5 211 2

1
k2 , 2.

We have discussed properties of the ancestry of k
sequences sampled from the coalescent process withHowever, the distribution of Tk 5 max0#q#r/2 Tk(q) is
recombination. We have done so mainly by simulationshighly dependent on the recombination rate r. The
of sample histories. A number of variables derived fromvariable Tk is the time until all positions along the se-
the genealogies were observed, and the expectationsquences have found a MRCA. Griffiths and Marjoram
over 2000 simulations were calculated.(1997) found that the expectation of Tk is bounded:

Each of these variables describes an aspect of the
ancestry of a sample. One should in general be cautious

0 # E[Tk] 2 E[Tk(0)] #
r

2
. in interpreting the behavior of a process from expecta-

tions only: The variation in the process is ignored when
relying on expected values, and it is not guaranteed thatThis bound is uniform in k, and linear in r. We have
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size 10 (in a few cases 25) and larger sample sizes is
close to zero. This indicates that the structure of a MRCA
of a sample of size 10 has identical structure to a MRCA
of the whole population.

Moreover, the expectation of the waiting time until
all positions in a sample of size 10 have found a MRCA
is about the same as the expectation of the waiting time
until all positions in the whole population have found
a MRCA. This finding is very similar to a result about
the coalescent without recombination: The distribution
of the waiting time until a sample of size 10 has found
a MRCA is almost distributed like the same waiting time
until the whole population has found a MRCA.

The explanation for this seems to be the following:
Consider a large sample. The time during which there
are many ancestors to the sample is considerably smaller

Figure 11.—The expectation of the maximum of the total than the time during which there are a few ancestors
branch length over all positions in the sample. We have sub- only. The rate of recombination is kr/2 if there are k
tracted the expectation of the total branch length in a single sequences, and the rate of coalescence is k(k 2 1)/2.position, i.e., subtracted 2 Rk21

i51 (1/i), where k denotes sample
If k is much larger than r, most events will in the begin-size. This expected time becomes quickly independent of sam-
ning be coalescence events. Thus, the time from theple size: The difference between sample size 10 and sample

size 100 is ,3%. For r 5 0, the expectation is zero. present until the whole sample has been reduced to a
small number of ancestors by coalescence events will be
distributed similarly to the time until a large sample is

the expected value represents a “typical outcome” of reduced to a small sample in the coalescent without
the variable. recombination. It is, therefore, the size of the minor

However, a comparison of expected values for varying number of ancestors that determines the structure of
sample sizes, k, and varying recombination rates, r, gives the variables we have discussed.
an idea of how the variables depend on k and r and However, it is surprising that the convergence in sam-
thereby an idea of the amount of information in the ple size k seems almost uniform in r. The reason for
size of the sample. this might be that the range within which r has been

In particular we were interested in the leftmost varied is too narrow to detect the dependence on r.
MRCA, i.e., the MRCA to position 0 in the sample. The As an example, consider a large sample of human
length of material sharing MRCA with position 0 de- DNA sequences. Assume that the probability r of a re-

combination event between two nucleotides per genera-creases with increasing sample size toward a limit (sam-
tion per sequence is 1027 and that the effective popula-ple size ∞). At the same time, the number of segments
tion size of the human population is 2N 5 104. If theon the leftmost MRCA increases with increasing sample
number of nucleotides is L 5 104 (typical gene length),sizes.
then r 5 4NLr 5 2 · 104 · 104 · 1027 5 20 and sequenceFor samples of size 2, we discussed a concept of shar-
length is R 5 r/2 5 10. In this case, there are z15ing sequence ancestry between two positions (or loci).
different MRCA consisting of z21 segments in totalIt was shown that, even when the two positions share
[see (5) and Figure 4]. Each segment will on averagea MRCA, the proportion of time they share ancestral
be E[sk|Ak(0) 5 1] · L/R 5 1⁄2 · 104/10 5 500 [see (7)]sequences is short. For an increasing recombination
nucleotides long and each MRCA 700 nucleotides longrate the positions share sequence ancestry in 1⁄3 of the
(L/15 5 104/15). Focus now on nucleotide 500 in thetime until a MRCA.
sequences. The length of the sequences to the right ofFinally, simulations indicated that the expectations
the nucleotide is R/2 5 5. From Figure 5 we find thatof the variables Tk 2 Tk(q) and Gk 2 Gk(q) are bounded
the expected number of positions sharing MRCA within k (sample size) by a logarithmic function of r. The
nucleotide 500 is about 0.75 · 104/10 5 750. Similarly,variable Tk is the time until all positions in the sample
z750 nucleotides to the left of number 500 will sharehave found a MRCA, and Gk is the maximum of the
MRCA with nucleotide 500; in total, 1500 nucleotides.total branch length of the genealogy over all positions.

The expected time back until all nucleotides haveThe bounds revived theoretically are far higher than
found a MRCA is z5 · 2N 5 50,000 generations (Figurethe simulated curves.
10). Counting 1 generation as 20 years, this is about 1It is interesting that the structure of a MRCA to a
million years ago, whereas a random spot has averagesample of sequences converges very quickly toward a
time to the MRCA of 40,000 years.limit structure (in expectations). In all figures, the dif-

ference between the simulation results for samples of We thank Mikkel Nygaard Hansen for help with implementation
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of the simulation program. Bernt Guldbrandtsen is thanked for read-
E[rk|Bk(0) 5 1] 5

r

2E[Rk(r)]ing and commenting on the manuscript. J.H. was supported by Danish
Research Council grant SNF 94-0163-1.
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for p → ∞. Hence Sk(r) and Rk(r) become infinite with
APPENDIX probability one and the conditional expectations are

given by (6) and (7) for k , ∞.Numbers refer to sections in results.
Consider now the case k 5 ∞. The chance that there2. Following Daley and Vere-Jones (1988), the ex-

is at least one recombination event in the history of thepressions E[rk|Bk(0) 5 1] and E[sk|Ak(0) 5 1] are under-
sample in any interval of the sequences is one, indepen-stood in the following sense. Extend the sequences by
dent of the size of the interval considered. That is,a small interval I of length d (in units of expected num-
P(bk(d)) 5 1 for all d . 0 and P(R∞(h) $ 1) 5 1 forber of recombinations per sequence per 2N genera-
all h . 0. Thus,tions) to the left of the position 0. Let bk(d) denote the

event in which there is a least one recombination event E[r∞|bk(d)] 5 E[r∞] 5 E[r∞|R∞(h) $ 1] # h.
within the sequence interval I in the history of the sam-
ple of size k. Similarly, let ak(d) denote the event in As this holds for all h . 0, we conclude that
which there is at least one shift in MRCAs within the

E[r∞|B∞(0) 5 1] 5 0interval I. Then

as desired.E[rk|Bk(0) 5 1] 5 lim
d→0

E[rk|bk(d)]
To prove E[s∞|A∞(0) 5 1] 5 1⁄2 we show that E[S∞ ·

(r)] 5 1 1 r. Unfortunately, Sk(r) does not convergeand
toward S∞(r) in any regular way. Label all sequences in

E[sk|Ak(0) 5 1] 5 lim
d→0

E[sk|ak(d)]. an infinite sample by numbers. Let Sk*(r) be the number
of recombination breaks, q, in the history of the first k
sequences such that MRCA∞(q 2 ε) ? MRCA∞(q 1 ε)According to Daley and Vere-Jones (1988), the condi-

tional expectations are given by provided ε is small. Clearly
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1 1 S *
k (r) # Sk(r) and 1 1 S *

k (r) ↑ S∞(r).
5

1
4
log(18 1 26r 1 r2)

Because 1 1 E[S *
k (r)] # E[Sk(r)] # 1 1 r, then

E[S∞(r)] # 1 1 r, and S∞(r) is finite almost surely for
all r. This implies that 2

23

2√97
coth21 113 1 2r

√97 2 2
1
4
log(18)

S∞(r) 5 1 1 lim
ε→0

o
R ε21

i51 1
23

2√97
coth21 1 13

√972
· 1{MRCA∞(iε) ? MRCA∞((i 1 1)ε)}.

≈ 1
4
log(18 1 26r 1 r2) 1 0.607.Further, 1{MRCA∞(iε) ? MRCA∞((i 1 1)ε)} #

1{MRCA∞(iε) ? MRCA∞((2i 1 1)ε/2)} 1 1{MRCA∞ ·
Regarding the variance of L 2(r), we have((2i 1 1)ε/2) ? MRCA∞((i 1 1)ε)}, so by dominated

convergence L 2(r)2 5 2 lim
ε→0

ε2 o
i,j

E[S∞(r)] 5 1 1 lim
ε→0

o
R ε21

i51
· 1{MRCA2(0) 5 MRCA2(iε) 5 MRCA2( jε)}.

Because L 2(r)2 # r2/4, the variance is given by· P {MRCA∞(iε) ? MRCA∞((i 1 1)ε)}.

Var[L 2(r)] 5 E[L 2(r)2] 2 E[L 2(r)]2 5 2 lim
ε→0

ε2 o
i,j

Consider the positions iε and (i 1 1)ε for fixed ε. We
have

· P {MRCA2(0) 5 MRCA2(iε) 5 MRCA2( jε)}
1{MRCAk(iε) ? MRCAk((i 1 1)ε)}

2 E[L 2(r)]2.
→ 1{MRCA∞(iε) ? MRCA∞((i 1 1)ε)}

The probability P{MRCA2(0) 5 MRCA2(iε) 5 MRCA2( jε)}
for k → ∞ and all ε $ 0, and therefore is bounded from below by

P {MRCAk(iε) ? MRCAk((i 1 1)ε) 1
1 1 2iε 1 2( j 2 i)ε

5
1

1 1 2 jε
.

5 2ε 11 2
2

k(k 1 1)2 This is the probability that the first event going backward
in time is a coalescent event, whereby the three positions→ P {MRCA∞(iε) ? MRCA∞((i 1 1)ε)}.
find a MRCA at the same time. Hence,

The equality is given by Griffiths and Marjoram
Var[L 2(r)] $ 2 #

R

0
dx #

R2x

0

1
1 1 2x 1 2y

dy(1997). It follows that

E[S∞(r)] 5 1 1 lim
ε→0

o
R ε21

i51

2ε 5 1 1 r 5
1
2

r 2
1
2
log(1 1 r) 2 E[L 2(r)]2.

and hence To prove P {MRCAk(0) 5 MRCAk(q)} # P {MRCA2(0) 5
MRCA2(q)} we proceed as follows: If MRCAk(0) 5

E[s∞|A∞(0) 5 1] 5
r

2r
5

1
2 MRCAk(q), then the last event must be a coalescence

between two sequences, both carrying ancestral posi-
tions to 0 and q. Let S denote the state consisting ofas desired.
two ancestral sequences and both positions 0 and q4. By definition of L 2(r) we have L 2(r) # r/2. Thus,
ancestral to the sample. Let s denote the time until stateby dominated convergence
S is entered for the first time, and let F(·) denote the
probability distribution of s. We haveE[L 2(r)] 5 E[lim

ε→0

ε o
R ε21

i51

1{MRCA2(0) 5 MRCA2(iε)}]

P {MRCAk(0) 5 MRCAk(q)}
5 lim

ε→0

ε o
R ε21

i51

P {MRCA2(0) 5 MRCA2(iε)}. 5 #
∞

0
P {MRCAk(0) 5 MRCAk(q)|s}dF(s)

5 P {MRCA2(0) 5 MRCA2(q)} #
∞

0
dF(s)We have MRCA2(0) 5 MRCA2(q) if T2(0) 5 T2(q), where

Tk(q) denotes the time until a MRCA in position q. Using
5 P {MRCA2(0) 5 MRCA2(q)}P(s , ∞)the expression in Griffiths (1991, Equation 2.12), for

the probability of T2(0) 5 T2(q), we conclude that , P {MRCA2(0) 5 MRCA2(q)}

as desired.E[L 2(r)] 5 #
r/2

0

9 1 x
9 1 13x 1 2x 2

dx
5. The state space of the Markov chain consists of all
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possible ancestral configurations ((xi1, xi2)|i 5 1, . . . , intensity parameter of the exponential waiting time un-
til the chain leaves state S9.n) to the sample. The variables xij are defined in 5. The

6. Similar to Griffiths and Marjoram (1997, Theo-state ((0,0)) is absorbing. This is very similar to a Markov
rem 3.1), we findchain in Simonsen and Churchill (1997) describing

a two-locus model with sample size 2. The difference is E[Gk] 2 E[Gk(0)] # E[Rk(r)] E[Gl 2 Gr|Gl . Gr]that we distinguish between some states, e.g., ((1,1),
· P(Gl . Gr), (10)(2,2)) and ((1,2), (2,1)), while Simonsen and Chur-

chill (1997) do not. The transition probabilities are where P(Gl . Gr) is the probability that the total length
given by expressions similar to expressions in Simonsen of the genealogy Gl just to the left of a recombination
and Churhill (1997), and follow from the structure breakpoint p is larger than the length of the genealogy
of the two-locus model. For example, the probability of Gr just to the right of p. Assume a recombination event
going from state ((1,2), (1,2)) to state ((1,*), (*,2), happens while there are j ancestors, j 5 2, . . . , k to the
(2,1)) is sample. Just after the recombination event there will

be j 1 1 ancestors to the sample including the two
P {((1,*),(*,2),(2,1))|((1,2),(1,2))} 5

1
1 1 r

. recombined sequences, sl and sr. The sequence sl is an-
cestral to the positions just to the left of p, and sr is
ancestral to the positions just to the right of p. TheThis happens only if the first event is a recombination
probability p( j, i, h) that sl coalesces to a lineage otherevent. The expectation of the number of times state S 5
than the lineage of sr while there are i ancestors, i 5 3,((1,1), (2,2)) is visited can then easily be found using
. . . , j 1 1, and that sr coalesces while there are hstandard Markov chain techniques [see, e.g., Kemeny
ancestors, h 5 2, . . . , i 2 1, is given byand Snell (1960), theorem 3.5.4]. This gives the desired

result.
p( j,i,h) 5

4(i 2 2)(h 2 1)
( j 1 1) j 2( j 2 1)

.To obtain the expectations E[Ts|T1 5 T2] and E[Tj|T1 5
T2], first note that for states S 9 and S″ we have

By conditioning further on ( j, i, h) in (10) and noting
that E[Gl 2 Gr|Gl . Gr, j, i, h] , 4/(h 2 1), we findP(S″|S 9,T1 5 T2) 5 P(S″|S 9)

P(T1 5 T2|S″)
P(T1 5 T2|S 9) that

and that the conditional chain is Markov. The probabil- E[Gk] 2 E[Gk(0)] # E[Rk(r)]o
j,i,h

4(i 2 2)(h 2 1)
( j 1 1) j 2( j 2 1)ity P(S″|S 9) is known from the unconditional chain, and

P(T1 5 T2|S 9) and P(T1 5 T2|S″) can be found using,
·

4
h 21

1
( j 2 1) ok21

l51 1/l
,e.g., Kemeny and Snell (1960), theorem 3.3.7. Applying

Kemeny and Snell (1960), theorem 3.5.4, to the condi-
where the last term is the probability that the recombina-tional Markov chain gives us the expectations of number
tion, given that it occurs, happens while there are jof times VS 9 a state S 9 is visited. This is similar to the
ancestors (Griffiths and Marjoram 1997). Reducingcalculations above in the unconditional case. The ex-
the sum, we findpressions of the conditional expectations are now conse-

quences of the following: (1) The event {T1 5 T2} de-
E[Gk] 2 E[Gk(0)] # E[Rk(r)]

4

ok21
l51 1/l

5 4rpends on the jump chain of the process only, and not
on the time between jumps and (2) TS 9 conditional on
VS 9 is G(VS 9,lS 9) distributed. The parameter lS 9 is the as desired.


