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Abstract. Inference about population history from DNA sequence data has become in-
creasingly popular. For human populations, questions about whether a population has been
expanding and when expansion began are often the focus of attention. For viral populations,
questions about the epidemiological history of a virus, e.g., HIV-1 and Hepatitis C, are of-
ten of interest. In this paper I address the following question: Can population history be
accurately inferred from single locus DNA data? An idealised world is considered in which
the tree relating a sample of n non-recombining and selectively neutral DNA sequences
is observed, rather than just the sequences themselves. This approach provides an upper
limit to the information that possibly can be extracted from a sample. It is shown, based
on Kingman’s (1982a) coalescent process, that consistent estimation of parameters describ-
ing population history (e.g., a growth rate) cannot be achieved for increasing sample size,
n. This is worse than often found for estimators of genetic parameters, e.g., the mutation
rate typically converges at rate \/log(n) under the assumption that all historical mutations
can be observed in the sample. In addition, various results for the distribution of maximum
likelihood estimators are presented.

1. Introduction

Methods and software for the statistical analysis of DNA sequences sampled from
a population are today fairly well developed. Many such methods rely on novel
advances in computational statistics and require many iterations of a procedure to,
e.g., evaluate an estimate of a parameter or a density (Stephens and Donnelly 2000).
The reason for this is to be found in the underlying stochastic structure of the data:
DNA sequences sampled from a population are not independent observations, but
highly correlated observations due to common ancestry. The complicated stochastic
structure represents not just an obstacle in the analysis of data but also in assessing
statistical properties of estimators and test statistics, e.g., asymptotic properties for
increasing sample size or for increasing length of the DNA sequences.

The probability of obtaining an observed sample configuration, s = (s1, 2,
..., Sp), can be written in the form

P(S=s) = /P(S =s5|G, =x)P(G, €dx), (1)
g
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where x denotes the genealogy (or tree) relating the sampled sequences, s, and
G, and S = (51, S2, ..., Sy) denote the corresponding random variables (Figure
1). The probability P(S = s | G, = x) depends on the rate of mutation, whereas
P (G, € dx) depends on the population size and the demographic history of the
population. Here and elsewhere it is assumed that sequences are non-recombining
and all sequence types are selectively neutral. Because the common ancestry (the, in
general, unknown outcome of the random tree G,) induces correlations among the
observed variables (the variables Sy, . .., S, are in general exchangeable), standard
or classical statistical theory cannot be applied to evaluate procedures for inference.

One way to deal with this problem has been to assume that more information
is available than actually is: For example, in a discussion of various estimators of
the mutation rate, Felsenstein (1992) assumed that the random variable G,, was ob-
served, rather than the variables S, ..., S,, and that G,, was scaled in the expected
number of substitutions per generation (rather than in generations or in real time,
Figure 1). The genealogy, x, of the observed sample can be estimated consistently
for increasing sequence length (Chang 1996), and Felsenstein’s (1992) approach
corresponds as such to an ideal world in which DNA sequences are of infinite
length. The genealogy x is often called the true genealogy or tree of the sampled
sequences to indicate that a genealogical relationship estimated from the sample,
s, is at best an estimate and not likely to equal x precisely. (Some authors prefer
‘reconstruction of the true genealogy’ instead of ‘estimation of the true genealogy’,
as is used here. I find the latter more correct than the former.) The issue of inferring
mutation rate has in general been widely discussed in the literature (Felsenstein
1992; Fu and Li 1993; Klein et al. 1999, among others). Felsenstein (1992) showed

A>T
eT—A
¢ C—>G
¢ C—>G
¢ G—~C
ATG ATC AAG AAG ATG ATC AAG AAG
1 2 3 4 1 2 3 4
Fig. 1. Given an outcome (genealogy), x, of G,, the sample configuration s = (s, ..., s,)

can be obtained by mutations in many ways. Here, n = 4 and each sequence, labeled 1, 2, 3,
and 4, has length three. In the first tree, the most recent common ancestor of the sample is of
type ATG, in the second, of type AAC. Mutations are marked e and y — z means that z is
substituted for y. Long sequences allow for accurate estimation of the genealogy x. Times
between coalescence events are naturally measured in expected number of substitutions per
generation.
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that information about the tree allows a consistent estimator of the mutation rate
that converges at rate /n for increasing sample size. In contrast, sequence infor-
mation alone allows a consistent estimator that converges at rate /log(n) (under
an infinite-site assumption).

Demographic parameters are broadly of two kinds: 1) Parameters that describe
variations in population size over time, and 2) Migration parameters that describe
movements between populations. In equation (1), P(S = s) depends on the muta-
tion rate through the conditional probability P (S = s | G, = x), whereas P (S = s)
depends on demographic parameters only through P (G,, € dx). Thus, the accuracy
in estimation of demographic parameters is not expected to exceed the accuracy in
estimation of the mutation rate. In this paper, I focus on parameters that describe
variations in population size of a large panmictic population. My approach is sim-
ilar to Felsenstein’s in that I assume the tree relating the sequences is observed,
rather than the sequences. To be specific, I consider an observation of the random
variable, G = ¥0G,, where G, follows Kingman’s (1982a) coalescent and v is
a scaling factor that converts time in the coalescent to time in expected number of
substitutions (g is the mutation rate in Felsenstein 1992). The coalescent process
is a robust approximation to the distribution of a genealogy sampled from a large
panmictic population (Kingman 1982a, b, Donnelly and Tavaré 1995).

General asymptotic results for the convergence of the maximum likelihood
estimators (mle) of ¥y and of demographic parameters are derived. In particular,
a special case of the coalescent process, the coalescent with exponential growth
(Slatkin and Hudson 1991), is studied in detail. This process has been of recent
interest in the study of human genomic DNA sequences and of viral sequences.

2. Setting

The coalescent (Kingman 1982a, b) is adopted as a description of the genealogy
of the population (or equivalently of samples from it) with time running from the
present-day into the past. In the coalescent, time is measured such that one unit of
time accounts for N generations in the real population of present effective popu-
lation size N. The simplest case is a population of constant effective size. In this
case, the distribution of the genealogy of a sample of size n > 2, is givenby n — 1
independent exponential variables,

W; ~ Exp (](1—2—1)>’ 2

2 < j < n, where W; denotes the time while there are j ancestral lineages.

If the population size is not constant but varies over time, Griffiths and Tavaré
(1994) showed that the distribution of the genealogy could be obtained by a trans-
formation of W;, 2 < j < n. Define the population intensity, A(¢), ¢ > 0, by

. N(N1)
Ar) = 1 _, 3
® N(Ol)n—l>oo N ©)
(assuming the limit exists) where N (t) denotes the population size at generation
7, N(O) = N and |x] denotes the integer part of x. Let T, be the time while
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there are at least j ancestral lineages of the sample and let U, denote the similar
variable under the assumption of constant population size, Uj, = Y 7_ ; Wi. Then
T, = (Ton, Taps .o Typ) defined by

T/n
Upn = / V(1) dt, 4
0

2 < j < n, describes the genealogy of a sample of size n. The function v(7) is the
reciprocal of the population intensity, A(f) = v(r)~". Note that, in general, the time
between two coalescence events, Vj, = Tj, —Tj41,,, depends on n; unlike W; that
is independent of n. The process T, is a pure death process with time-dependent
death rates, j(j — 1)v(¢)/2. The notation is briefly shown in Figure 2.

A number of regularity condition on v is required. First, that v is continuous
and strictly positive for all # > 0. Second, that fooo v(t)dt = oo. These assumptions
together with Equation (2) assure that multiple coalescence events cannot happen
at the same time and that the entire population finds a most recent common ancestor
(MRCA) in finite time. By definition of W}, the variables U = Z?i i W; and
Tjoo, defined by Equation (4) with n = oo, are finite almost surely. (Here and
elsewhere ‘almost surely’ is with respect to (wrt) the process U,, or Us.) Thus, the

process U, (and T,,) has a well-defined entrance boundary at n = oo.

In the set-up of Felsenstein’s (1992) X, = (X2, - .., Xun) is observed, rather
than 7, where X, = ¥0Tj, and v is an unknown scaling constant. Typically,
Yo is of the form 9 = N (0)u, where u is the rate of mutation per generation.

In the following I consider the problem of estimating v from an observation of
T,, or of estimating v and Yy from an observation of X,,. All proofs are given in
appendices.

Vos =Toy — Ty
Vg =Tay — Ty
Vs =Ty

Fig. 2. Two examples of trees relating n = 4 sequences. A tree, G,, is given by a topology
(branching order) and a collection of n — 1 variables, V;,, j = 2, ..., n, denoting time be-
tween coalescence events. V;, is the time while there are j ancestral lineages. Alternatively,
the cumulative times, 7, = Z?:_; V.., can be specified. All possible topologies are equally
likely. In the examples, the two topologies have the same probability of occurring.
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3. General results
The density (wrt Lebesgue measure) of T, = (T2, T3n, - - -, Tun) is given by

Lin— 1) " noai 4
e B R e SRy Y
=2

j=2 lit

n

L(n—1)! ‘ t
- ”(2’1—71)]_[1)(;,) exp{ =Y (j— 1)/0 vydt ¢, (5)
j=2

j=2

forn >2,t =(t2,13,...,1y), 0 > 13 > ... > t, > t,41 = 0. For convenience,
the density is indexed by v. In practice, v will be a function depending on a vector of
unknown parameters, o = («, ..., &q), with ¢ € A. Let f,(¢, 1) denote the den-
sity of the standard coalescent process, U, = (Uay, ..., Uny), given by Equation
(5) withv(z) = 1.

Sampling increases the number of branches in the genealogy and eventually
only branches near the present time are included (Figure 3). The latter follows
readily from Equations (3) and (4) as U, ~ 0 implies T, ~ 0. As a consequence
dense observations are only obtained in the vicinity of # = 0 and there cannot exist
a consistent non-parametric estimate of v(¢), t > 0. If v belongs to a parameterized
family, v(t) = v(t; o), @ € A, the existence of a consistent estimator of o depends
on the behaviour of the process near zero. This is unfortunate as recent ‘trends’ in
variation of the population size might not be related to variations in the past. As an
example consider the case of logistic growth,

(o = e ©)
v(ZL; , C = T

1+c¢
(see Pybus et al. 2000 for further explanation and an application to viral data). The

parameter S is a growth rate, whereas c determines the onset of growth in the past.

1 2 3 1 2 3 4 1 2

Fig. 3. The genealogy is built up by adding branches to the tree. As soon as the MRCA of the
entire population is sampled one cannot hope to obtain sample points further back in time
than the MRCA. Eventually only branches near the tips are included.
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If ¢ is small so that v(z; B, c¢) =~ 1, then it is likely that observations nearer zero
than 7 do not improve an estimate of 8 considerably.

Below, it will be shown that this is the rule rather than the exception: Consistent
estimation of ¢ fails under very mild assumptions about the population history. To
prove this, let O (¢) denote a function that is bounded by Ct forall 0 <t < D and
some finite constants C and D.

Theorem 3.1. Assume v(t) = 1 4+ at + 0% for some finite constant a. Let
gn(t,v) = fu(t,v)/fu(t, 1) be the density of T, wrt U,,. Then

hm gn(U)'h ]))
n—oQ
n n U/n n
= lim_ szw,-n) exp —Z;u - 1)/0 v()dr + .2;(’ ~ DU ¢+
Jj= Jj= Jj=

with Uj, = Z?:j Wi, exists almost surely and 0 < lim, g,(U,, v) < oo almost
surely.

Theorem 3.1 has the immediate consequence that there cannot be a consistent
estimator for @ asn — oo. It also implies that a test for a hypothesis, H : @ € A} C
A, against the alternative, H> : @ € A\ A1, cannot obtain power one as n — 00.
In practice, however, these consequences might not be serious, e.g., the power of a
test might practically be one. The assumption, v(r) = 1 + at + O(r?), is fulfilled
for the logistic growth model, the model of exponential growth (to be introduced
in the next section), as well as other models proposed by Pybus et al. (2000). It
mainly rules out models where the population size ‘explodes’ at the present time.
For instance consider v(z) = 1 + +/7, that has 1/(0) = —oo.

Next, consider X, = YT, for a fixed v. Let P(-, ¥, v) be the probability dis-
tribution of X,,. The family P = {P(-, Yo, v) | Yo > 0} constitutes a scale model
or a transformation model in the sense of Barndorff-Nielsen et al. (1989). This is
to say, P is generated from P (-, 1, v) by the group of transformations x — Vx,
Yo > 0.If v is parameterized by @ € A then {P (-, Yo, v(-; @) | Yo > 0, € A}
constitutes a composite transformation model, i.e., for each ¢ € A, the family
{P(, Yo, v(-; )| Yo > 0, } is a transformation model. This implies that the dis-
tribution of the mles of ¥y and « have certain nice properties. Before turning to
these matters another estimator, ¢A>,,, of g is introduced. Define ¢A>,, by

. R
bn=—"7D (= DXjn. (7)
j=2

If the population has constant size (i.e., v(t) = 1), Felsenstein (1992) showed
that ¢, is an unbiased estimator of 1y and established convergence to a normal
distribution. In the general setting a very similar result holds.

Theorem 3.2. Assume as in Theorem 3.1. The distribution of dA)n /o does not de-
pend on ry. Further, under the assumptions of Theorem 3.1, ¢, converges almost
surely to VYo for n — 0o, and
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Vi (o — Vo) — N@O,v¥3) (8)
in distribution.

Thus, it is always possible to estimate o consistently as n — oo. In equation
8), N(u, 02) denotes a normal distributed variable with mean yu and variance o2
The next theorem is a consequence of general properties of composite transforma-

tion models.

Theorem 3.3. Let (g@n, a,,) denote the mle of (Yo, @), if it exists, and otherwise let
(1/},,, a,) = (0,0). Then the distribution of (&,, 1/7,1 /o) does not depend on r,
1&,, is invariant, i.e., 1@,1 (cXp) = cg@n (X,) forall ¢ > 0, and &,, is equivariant, i.e.,
Qn (CXn) = Qn (Xn)~

The results about 1},, in Theorem 3.3 are also true if « is known and I/A/n is
the profile mle of . Whereas an is always defined, I/Afn might not exist and if it
exists, it might not be unique. When @n n > 2, exists the asymptotic difference
between 1/},, and qAﬁ,, can in special cases be established; e.g., the difference is of
order log(n)/n in the example given in Theorem 5.3.

The fact that &, has distribution independent of v is of importance: Assume
X, is estimated from DNA sequence data. If X, is estimated without error, the accu-
racy of the mle of & does not depend on the true scale yg. In practice, however, the
accuracy in the estimation of X, depends on ¥/g. A small ¥ indicates little variation
in the sample, and many sites are required to ensure reliable estimation of the tree.
On the other hand, also very high variation reduces the accuracy in the estimation
of X,,. With a high mutation rate all branches tend to be statistically identical.

As an example, consider a two-state Jukes-Cantor model (Jukes and Cantor
1969) and a sample of size two. Let the mutation rate per site per time unit be v
and let the two sequences be separated by an ancestor time 7> ago. The chance that
the two sequences differ in a particular site is p = 1/2 — 1/2 exp(—49T>) (Jukes
and Cantor 1969). Further, let p be estimated by p = min{>_ Y /k, 1/2}, where
Y; is one if the two sequences differ in site j, zero otherwise, and k is the nmber of
sites. Then the expectation and the variance of S = —log(1 —2p) = 4(YT») are
approximately givenby E(S2) ~ —log(1—2p) and Var(S2) =~ 4p(1—p)/[k (1—
2 p)z] for large k. The variable S5 is an approximation of X» = ¥7>; in particular,
S» = T for k = oo. Figure 4 shows the ratio of the approximative expectation to
the approximative standard deviation (sd) of S,, assuming k = 1, for p between 0
and 1/2. The ratio obtains it maximum for p & 0.28 in which case 417> is about
0.40. If p is close to 1/2, p is often 1/2 and S, = oo.

4. Exponential growth with known scale

The coalescent with exponential growth was introduced by Slatkin and Hudson
in 1991 and subsequently discussed by Griffiths and Tavaré (1994). Prior to these
papers, both Chakraborty (1977) and Kingman (1982b) had discussed similar mod-
els. Assume the population size has been increasing exponentially at a constant
rate, B > 0, for a long time up till its present size. The population intensity is
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0.45

0.4

0.35 -

03

0.25 -

02

0.15 -

Ratio of the expectation to the sd

0.1

0.05 -

0

. . . . . . . . .
0O 005 01 015 02 025 03 035 04 045 0.5

Probability, p, that two sequences differ in a site

Fig. 4. The figure shows the ratio of the expectation to the sd of S, as a function of p, the
probability that two sequences differ in a site. If p = 1/2 the two sequences are independent.
If p = 0, the two sequences are identical.

A(t) = exp(—pt). Note that v(r) = 1 + Bt + 0(t2) so that the results from the
preceding section applies. Since time is measured in units of N (0) generations,
has the form 8 = N(0)b, where b denotes the growth rate per generation. The
relation between T,, and U,, (8 = 0) is given by

1
Tin = 3 log(1 + BUj»), 9

so that Uj, > T}, almost surely. In this section, the scale /g is assumed known
(Yo = 1 without loss of generality). The density of 7}, is,

ft.p) = " (; exp ﬂZr, - - ZU—D [#7 —1] ¢ (10)

fort, > ... > t, > 0. Define §,(T,) by

o(T) =Y Tjn— 5 Z(; T, (1)

j=2
and assume the true value of 8 is By > 0. Let ‘iff” be short for ‘if and only if”.

Theorem 4.1. The mle B,, of Bo exists and is unique almost surely for all n. It fulfills
the relations

Ba=0 iff 8,(T,) <0, (12)
and
B >0 iff 8,(T,) > 0. (13)

Both P(B, > 0) and P(B, = 0) are positive for all n and By, and P(B, > 0) — 1
as By — oo.
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Equation (11) and Theorem 4.1 can be used to construct an alternative to the
log-likelihood test for testing Bg = 0 against 8o > 0. Define A, (T;,) by

23", T
Y= DT},

The mean of A, (T,,) is close to one for By = 0 (in fact, the ratio of the mean of the
numerator to that of the denominator is one), the mean increases towards infinity for
Bo — o0, and large deviations from one are therefore indicative of expansion. The
test will not be further pursued here, but discussed in the next section in connection
with a similar test for the case where the scale is unknown.

The asymptotic behaviour of ,3,, for n — oo is captured in the next theorem.

Ap(Ty) = (14)

Theorem 4.2. The variables ,én n > 2, converge in distribution to a non-degener-
ate variable B,

Bn — Poo (15)
forn — oo. Both P(,éoo > 0) and P(,BAOo = 0) are positive for all Bo.

For large By the following result is true. Let p, = ﬁn /Bo-

Theorem 4.3. For By — 00,

log(Bo) (pn — 1) — —log(¥y—1) (16)

in distribution, where Y,, denotes a Gamma distributed variable, Y, ~ T"(n, n). In
consequence, p, — 1 in distribution and liminf g, E(pp) > 1.

Simulation results (not shown) suggest that the convergence in f is very slow,
as might be anticipated by the scaling of order log(8p). Therefore it is not practically
feasible to approximate the distribution of p, with (16). In contrast, the conver-
gence of p, towards one is fast, indicating that Bn provides a reliable estimate of
Bo for large Bo, say fo > 100 for n > 50. In addition, Theorem 4.3 establishes that
,Bn is positively biased for large fo. This is also true for o = 0 because ﬂn >0
and P(ﬁ,, > 0) > 0 for all n (according to Theorem 4.1). Simulation results (not
shown) indicate a positive bias for all By.

5. Exponential growth with unknown scale

Consider the variables X, = 1 T,. The relation between Z,, = U, and X, is
found from (9),

1
Xjn = glog(l +&Zjn), a7

with &€ = B/y. If B = N()b and v = N(0)u, & is independent of N(0) and
equals b/u. The density of X, is given by

1!
fn(i’Sa W) = ;n(rllwn )1 exXp SZ Xj — — Z(J_l) ng _ 1]
j=2

(18)
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forx; > ... > x, >0,& > 0,and ¥ > 0. Assume the true value of (£, 1) is
(&0, ¥o) and let

n—1 Y, - DX,

19
251 ,G = DXn (19)

" (
Ya(Xn) =Y Xjn —
=2

Note the analogy between 6, (7;) in Equation (11) and y,,(X,): The last term in
(11) is divided by ¢, to compensate the difference in scaling in X j, and X 3n

Theorem 5.1. The mle (én, 1,@,,) of (&o, Vo) exists and is unique almost surely for
all n. It fulfills the relations

; s L. :
=0 iff fu=-—"7D G=DXp iff %X)=0. (0
j=2

and

§>0zﬁ$>#iu—l>x iff va(Xn) >0 @1
n n n_1j=2 jn n n .

If yo (X)) > 0, then én is the unique solution to g, (&) = 0, where

_ n(n— 1)
gn) = Xjn + —— (- 1) 1 — &Xjn Xjn ;
jz; ! 1#& Z e 2082

and

. | , 1
Ve = — ;u — 1N — Dg-

If the tree is perfectly star-shaped, £, = 00 and xpn = 09, and otherwise both
estimators are finite. Further, 1/fn (cX,) =c Wn (X,) and Sn (cX,) = “g‘n (Xn)/c for
all ¢ > 0.

It is worth remarking that (én, 1&,1) exists whenever Xp, > X3, > ... > X, >
Oand X5, > 0.This assures that (én, @n) is well-defined even if some branches have
length zero. This might be the case if X, is estimated from sequence data. Another
interesting fact is that y3(X3) = 3X23X33/(X23 + 2X33) > 0, implying that é3 is
always positive (compare this to Theorem 4.1). Similarly, y»(X3) = X22/2 > 0
and éz = 00, because a tree based on two sequences is necessarily star-shaped.

Corollary 5.1. The distribution of (Iﬂoén, 1/7,, /o) depends on (&y, Vo) only through
Bo = Sovo.

Note that the mle of By is é,, 1@”. Its distribution depends on Sy only (this also
follows directly from Theorem 3.3).



Inferring Population History 251

Theorem 5.2. The variables é,, and Izn, n > 2, converge in distribution, in fact
£, — Eo, and Vn(n —¥0) = N(O,¥5) (22)
forn — oo, with éoo = 500/1//0 and ,300 defined as in Theorem 4.2.

There is not an analogue of Theorem 4.3 when /¢ is unknown because @n does
not converge to Yo for fo — 00. The next theorem establishes the asymptotic order
of convergence of the difference between v, and ¢,,.

Theorem 5.3. The variables @n — én n > 2, converge in distribution
n
log(n)

Wn — Pn) = Voo = Y0 Poo- (23)
forn — oo.

The variable, ¢A$,,, seems to be biased downwards at least for n < 100 and
Bo > 10 (simulation results not shown). In contrast, 1},1 is biased upwards (simu-
lation results not shown). Pybus et al. (2000) provide extensive simulation results
for 1@,, and én for various parameter values.

Equation (19) and Theorem 5.1 can be used to construct an alternative to the
log-likelihood test for testing £y = 0 against &y > 0. Define I',(X,,) by

2 (s (St )
-1 Y ,G-Dx3,

The mean of I',,(X,) is close to one for & = 0 and increases towards two as
& — oo for Y fixed. Table 1 shows the power of I';,(X,,) compared to the power
of the log-likelihood test for various values of Sy and n (assuming o = 1). Note
that the distribution of I';,, (X,,) as well as the distribution of the log-likelihood test
depend on (&g, ¥o) only through By.

Ty (Xn) = (24)

Table 1. Shown is the power (in percentage) of A, (7,), I'(X,), and the log-likelihood ratio,
L,(X,) = —2log(Q,) for small values of By = &y, and various values of the sample
size, n. The null hypothesis is Hy : By = 0 for A,(T,), and Hy : Bo = 0(& = 0) and
Yo > O for the two other statistics. The loss in power can be substantial when v is not
known, but estimated from data; compare A, (7,) with I'(X,,). For small n, the difference
in power between ' (X,,) and L, (X,) is noteworthy. This difference disappears for large n.
10° simulations were performed to obtain the null distribution (8, = 0) for each n and 10°
simulations for each combination of 8y > 0 and n.
The Power of A, (T,), I'n(X,), and —2 log(Q,,)

n=10 n=20 n = 100
Bo AT Tu(X,) LX) AT Tu(X,) LX) AT, Tu(X,) L.(X,)
1 13 12 31 19 14 30 31 27 39
5 89 41 74 98 62 88 100 97 99

10 100 61 90 100 85 98 100 100 100
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Table 2. Shown is the power (in percentage) of I'(X,,) for two models, the logistic growth
model, v(t) = (1 + ce?’)/(1 + ¢), and a model of periodic varying population size, v(t) =
1+csin(dt), |c| < 1. Sample size is n = 10. The power of the logistic growth model is very
similar to the power of the exponential growth model, whereas the power of the other model
is extremely poor. It shows that I, (X,) should only be used if recent growth is anticipated.
A similar conclusion holds for the log-likelihood test. 10° simulations were performed for
each combination of parameters.
The Power of I';,(X,,) for Various Models

Logistic Growth Periodic Variation
B,c 1 10 100 cd 1 3 10
1 9 11 13 -05 3 2 10
10 55 60 61 05 7 9 3

The statistics I'; (X,;) might in general be used as a testor of the hypothesis H :
The population has been of constant size against the alternative H; : The population
size has varied over time. Table 2 shows the power of I';,(X,,) for two models, the
logistic growth model discussed in Section 3, and a model with periodic varying
population size. As in