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Abstract. Inference about population history from DNA sequence data has become in-
creasingly popular. For human populations, questions about whether a population has been
expanding and when expansion began are often the focus of attention. For viral populations,
questions about the epidemiological history of a virus, e.g., HIV-1 and Hepatitis C, are of-
ten of interest. In this paper I address the following question: Can population history be
accurately inferred from single locus DNA data? An idealised world is considered in which
the tree relating a sample of n non-recombining and selectively neutral DNA sequences
is observed, rather than just the sequences themselves. This approach provides an upper
limit to the information that possibly can be extracted from a sample. It is shown, based
on Kingman’s (1982a) coalescent process, that consistent estimation of parameters describ-
ing population history (e.g., a growth rate) cannot be achieved for increasing sample size,
n. This is worse than often found for estimators of genetic parameters, e.g., the mutation
rate typically converges at rate

√
log(n) under the assumption that all historical mutations

can be observed in the sample. In addition, various results for the distribution of maximum
likelihood estimators are presented.

1. Introduction

Methods and software for the statistical analysis of DNA sequences sampled from
a population are today fairly well developed. Many such methods rely on novel
advances in computational statistics and require many iterations of a procedure to,
e.g., evaluate an estimate of a parameter or a density (Stephens and Donnelly 2000).
The reason for this is to be found in the underlying stochastic structure of the data:
DNA sequences sampled from a population are not independent observations, but
highly correlated observations due to common ancestry. The complicated stochastic
structure represents not just an obstacle in the analysis of data but also in assessing
statistical properties of estimators and test statistics, e.g., asymptotic properties for
increasing sample size or for increasing length of the DNA sequences.

The probability of obtaining an observed sample configuration, s = (s1, s2,

. . . , sn), can be written in the form

P(S = s) =
∫

g

P (S = s |Gn = x)P (Gn ∈ dx), (1)
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where x denotes the genealogy (or tree) relating the sampled sequences, s, and
Gn and S = (S1, S2, . . . , Sn) denote the corresponding random variables (Figure
1). The probability P(S = s |Gn = x) depends on the rate of mutation, whereas
P(Gn ∈ dx) depends on the population size and the demographic history of the
population. Here and elsewhere it is assumed that sequences are non-recombining
and all sequence types are selectively neutral. Because the common ancestry (the, in
general, unknown outcome of the random treeGn) induces correlations among the
observed variables (the variables S1, . . . , Sn are in general exchangeable), standard
or classical statistical theory cannot be applied to evaluate procedures for inference.

One way to deal with this problem has been to assume that more information
is available than actually is: For example, in a discussion of various estimators of
the mutation rate, Felsenstein (1992) assumed that the random variableGn was ob-
served, rather than the variables S1, . . . , Sn, and thatGn was scaled in the expected
number of substitutions per generation (rather than in generations or in real time,
Figure 1). The genealogy, x, of the observed sample can be estimated consistently
for increasing sequence length (Chang 1996), and Felsenstein’s (1992) approach
corresponds as such to an ideal world in which DNA sequences are of infinite
length. The genealogy x is often called the true genealogy or tree of the sampled
sequences to indicate that a genealogical relationship estimated from the sample,
s, is at best an estimate and not likely to equal x precisely. (Some authors prefer
‘reconstruction of the true genealogy’ instead of ‘estimation of the true genealogy’,
as is used here. I find the latter more correct than the former.) The issue of inferring
mutation rate has in general been widely discussed in the literature (Felsenstein
1992; Fu and Li 1993; Klein et al. 1999, among others). Felsenstein (1992) showed

ATG ATC AAG AAG

1 2 3 4

�

�

G→C

T→A

ATG ATC AAG AAG

1 2 3 4

�

�

�

C→G

A→T

C→G

Fig. 1. Given an outcome (genealogy), x, of Gn, the sample configuration s = (s1, . . . , sn)

can be obtained by mutations in many ways. Here, n = 4 and each sequence, labeled 1, 2, 3,
and 4, has length three. In the first tree, the most recent common ancestor of the sample is of
type ATG, in the second, of type AAC. Mutations are marked • and y → z means that z is
substituted for y. Long sequences allow for accurate estimation of the genealogy x. Times
between coalescence events are naturally measured in expected number of substitutions per
generation.
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that information about the tree allows a consistent estimator of the mutation rate
that converges at rate

√
n for increasing sample size. In contrast, sequence infor-

mation alone allows a consistent estimator that converges at rate
√

log(n) (under
an infinite-site assumption).

Demographic parameters are broadly of two kinds: 1) Parameters that describe
variations in population size over time, and 2) Migration parameters that describe
movements between populations. In equation (1), P(S = s) depends on the muta-
tion rate through the conditional probabilityP(S = s |Gn = x), whereasP(S = s)

depends on demographic parameters only throughP(Gn ∈ dx). Thus, the accuracy
in estimation of demographic parameters is not expected to exceed the accuracy in
estimation of the mutation rate. In this paper, I focus on parameters that describe
variations in population size of a large panmictic population. My approach is sim-
ilar to Felsenstein’s in that I assume the tree relating the sequences is observed,
rather than the sequences. To be specific, I consider an observation of the random
variable, G∗

n = ψ0Gn, where Gn follows Kingman’s (1982a) coalescent and ψ0 is
a scaling factor that converts time in the coalescent to time in expected number of
substitutions (ψ0 is the mutation rate in Felsenstein 1992). The coalescent process
is a robust approximation to the distribution of a genealogy sampled from a large
panmictic population (Kingman 1982a, b, Donnelly and Tavaré 1995).

General asymptotic results for the convergence of the maximum likelihood
estimators (mle) of ψ0 and of demographic parameters are derived. In particular,
a special case of the coalescent process, the coalescent with exponential growth
(Slatkin and Hudson 1991), is studied in detail. This process has been of recent
interest in the study of human genomic DNA sequences and of viral sequences.

2. Setting

The coalescent (Kingman 1982a, b) is adopted as a description of the genealogy
of the population (or equivalently of samples from it) with time running from the
present-day into the past. In the coalescent, time is measured such that one unit of
time accounts for N generations in the real population of present effective popu-
lation size N . The simplest case is a population of constant effective size. In this
case, the distribution of the genealogy of a sample of size n ≥ 2, is given by n− 1
independent exponential variables,

Wj ∼ Exp

(
j (j − 1)

2

)
, (2)

2 ≤ j ≤ n, where Wj denotes the time while there are j ancestral lineages.
If the population size is not constant but varies over time, Griffiths and Tavaré

(1994) showed that the distribution of the genealogy could be obtained by a trans-
formation of Wj , 2 ≤ j ≤ n. Define the population intensity, λ(t), t ≥ 0, by

λ(t) = lim
N(0)→∞

N(	Nt
)
N

, (3)

(assuming the limit exists) where N(τ) denotes the population size at generation
τ , N(0) = N and 	x
 denotes the integer part of x. Let Tjn be the time while
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there are at least j ancestral lineages of the sample and let Ujn denote the similar
variable under the assumption of constant population size, Ujn =∑n

i=j Wi . Then
Tn = (T2n, T3n, . . . , Tnn) defined by

Ujn =
∫ Tjn

0
ν(t) dt, (4)

2 ≤ j ≤ n, describes the genealogy of a sample of size n. The function ν(t) is the
reciprocal of the population intensity, λ(t) = ν(t)−1. Note that, in general, the time
between two coalescence events, Vjn = Tjn−Tj+1,n, depends on n; unlikeWj that
is independent of n. The process Tn is a pure death process with time-dependent
death rates, j (j − 1)ν(t)/2. The notation is briefly shown in Figure 2.

A number of regularity condition on ν is required. First, that ν is continuous
and strictly positive for all t > 0. Second, that

∫∞
0 ν(t)dt = ∞. These assumptions

together with Equation (2) assure that multiple coalescence events cannot happen
at the same time and that the entire population finds a most recent common ancestor
(MRCA) in finite time. By definition of Wj , the variables Uj∞ = ∑∞

i=j Wi and
Tj∞, defined by Equation (4) with n = ∞, are finite almost surely. (Here and
elsewhere ‘almost surely’ is with respect to (wrt) the process Un or U∞.) Thus, the
process Un (and Tn) has a well-defined entrance boundary at n = ∞.

In the set-up of Felsenstein’s (1992) Xn = (X2n, . . . , Xnn) is observed, rather
than Tn, where Xjn = ψ0Tjn and ψ0 is an unknown scaling constant. Typically,
ψ0 is of the form ψ0 = N(0)u, where u is the rate of mutation per generation.

In the following I consider the problem of estimating ν from an observation of
Tn or of estimating ν and ψ0 from an observation of Xn. All proofs are given in
appendices.

1 2 3 4 1 2 3 4

V44 = T44

V34 = T34 − T44

V24 = T24 − T34

Fig. 2. Two examples of trees relating n = 4 sequences. A tree, Gn, is given by a topology
(branching order) and a collection of n− 1 variables, Vjn, j = 2, . . . , n, denoting time be-
tween coalescence events. Vjn is the time while there are j ancestral lineages. Alternatively,
the cumulative times, Tjn =∑n

i=j Vin, can be specified. All possible topologies are equally
likely. In the examples, the two topologies have the same probability of occurring.
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3. General results

The density (wrt Lebesgue measure) of Tn = (T2n, T3n, . . . , Tnn) is given by

fn(t, ν) = n! (n− 1)!

2n−1

n∏

j=2

ν(tj ) exp





−

n∑

j=2

j (j − 1)

2

∫ tj

tj+1

ν(t)dt






= n! (n− 1)!

2n−1

n∏

j=2

ν(tj ) exp





−

n∑

j=2

(j − 1)
∫ tj

0
ν(t)dt





, (5)

for n ≥ 2, t = (t2, t3, . . . , tn), t2 > t3 > . . . > tn > tn+1 = 0. For convenience,
the density is indexed by ν. In practice, ν will be a function depending on a vector of
unknown parameters, α = (α1, . . . , αd), with α ∈ A. Let fn(t, 1) denote the den-
sity of the standard coalescent process, Un = (U2n, . . . , Unn), given by Equation
(5) with ν(t) ≡ 1.

Sampling increases the number of branches in the genealogy and eventually
only branches near the present time are included (Figure 3). The latter follows
readily from Equations (3) and (4) as Ujn ≈ 0 implies Tjn ≈ 0. As a consequence
dense observations are only obtained in the vicinity of t = 0 and there cannot exist
a consistent non-parametric estimate of ν(t), t ≥ 0. If ν belongs to a parameterized
family, ν(t) = ν(t;α), α ∈ A, the existence of a consistent estimator of α depends
on the behaviour of the process near zero. This is unfortunate as recent ‘trends’ in
variation of the population size might not be related to variations in the past. As an
example consider the case of logistic growth,

ν(t;β, c) = 1 + c eβt

1 + c
, (6)

(see Pybus et al. 2000 for further explanation and an application to viral data). The
parameter β is a growth rate, whereas c determines the onset of growth in the past.

1 2 3 1 2 3 4 1 2

Fig. 3. The genealogy is built up by adding branches to the tree. As soon as the MRCA of the
entire population is sampled one cannot hope to obtain sample points further back in time
than the MRCA. Eventually only branches near the tips are included.
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If t is small so that ν(t;β, c) ≈ 1, then it is likely that observations nearer zero
than t do not improve an estimate of β considerably.

Below, it will be shown that this is the rule rather than the exception: Consistent
estimation of α fails under very mild assumptions about the population history. To
prove this, let O(t) denote a function that is bounded by Ct for all 0 ≤ t < D and
some finite constants C and D.

Theorem 3.1. Assume ν(t) = 1 + at + O(t2) for some finite constant a. Let
gn(t, ν) = fn(t, ν)/fn(t, 1) be the density of Tn wrt Un. Then

lim
n→∞ gn(Un, ν)

= lim
n→∞

n∏

j=2

ν(Ujn) exp





−

n∑

j=2

(j − 1)
∫ Ujn

0
ν(t)dt +

n∑

j=2

(j − 1)Ujn





,

with Ujn = ∑n
i=j Wi , exists almost surely and 0 < limn gn(Un, ν) < ∞ almost

surely.

Theorem 3.1 has the immediate consequence that there cannot be a consistent
estimator forα asn → ∞. It also implies that a test for a hypothesis,H1 : α ∈ A1 ⊂
A, against the alternative, H2 : α ∈ A\A1, cannot obtain power one as n → ∞.
In practice, however, these consequences might not be serious, e.g., the power of a
test might practically be one. The assumption, ν(t) = 1 + at +O(t2), is fulfilled
for the logistic growth model, the model of exponential growth (to be introduced
in the next section), as well as other models proposed by Pybus et al. (2000). It
mainly rules out models where the population size ‘explodes’ at the present time.
For instance consider ν(t) = 1 + √

t , that has λ′(0) = −∞.
Next, considerXn = ψ0Tn for a fixed ν. Let P(·, ψ0, ν) be the probability dis-

tribution of Xn. The family P = {P(·, ψ0, ν) |ψ0 > 0} constitutes a scale model
or a transformation model in the sense of Barndorff-Nielsen et al. (1989). This is
to say, P is generated from P(·, 1, ν) by the group of transformations x �→ ψ0x,
ψ0 > 0. If ν is parameterized by α ∈ A then {P(·, ψ0, ν(· ;α)) |ψ0 > 0, α ∈ A}
constitutes a composite transformation model, i.e., for each α ∈ A, the family
{P(·, ψ0, ν(· ;α)) |ψ0 > 0, } is a transformation model. This implies that the dis-
tribution of the mles of ψ0 and α have certain nice properties. Before turning to
these matters another estimator, φ̂n, of ψ0 is introduced. Define φ̂n by

φ̂n = 1

n− 1

n∑

j=2

(j − 1)Xjn. (7)

If the population has constant size (i.e., ν(t) ≡ 1), Felsenstein (1992) showed
that φ̂n is an unbiased estimator of ψ0 and established convergence to a normal
distribution. In the general setting a very similar result holds.

Theorem 3.2. Assume as in Theorem 3.1. The distribution of φ̂n/ψ0 does not de-
pend on ψ0. Further, under the assumptions of Theorem 3.1, φ̂n converges almost
surely to ψ0 for n → ∞, and
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√
n ( φ̂n − ψ0 ) → N(0, ψ2

0 ) (8)

in distribution.

Thus, it is always possible to estimate ψ0 consistently as n → ∞. In equation
(8), N(µ, σ 2) denotes a normal distributed variable with mean µ and variance σ 2.
The next theorem is a consequence of general properties of composite transforma-
tion models.

Theorem 3.3. Let (ψ̂n, α̂n) denote the mle of (ψ0, α), if it exists, and otherwise let
(ψ̂n, α̂n) = (0, 0). Then the distribution of (α̂n, ψ̂n/ψ0) does not depend on ψ0,
ψ̂n is invariant, i.e., ψ̂n(cXn) = cψ̂n(Xn) for all c > 0, and α̂n is equivariant, i.e.,
α̂n(cXn) = α̂n(Xn).

The results about ψ̂n in Theorem 3.3 are also true if α is known and ψ̂n is
the profile mle of ψ0. Whereas φ̂n is always defined, ψ̂n might not exist and if it
exists, it might not be unique. When ψ̂n, n ≥ 2, exists the asymptotic difference
between ψ̂n and φ̂n can in special cases be established; e.g., the difference is of
order log(n)/n in the example given in Theorem 5.3.

The fact that α̂n has distribution independent of ψ0 is of importance: Assume
Xn is estimated from DNA sequence data. IfXn is estimated without error, the accu-
racy of the mle of α does not depend on the true scale ψ0. In practice, however, the
accuracy in the estimation ofXn depends onψ0.A smallψ0 indicates little variation
in the sample, and many sites are required to ensure reliable estimation of the tree.
On the other hand, also very high variation reduces the accuracy in the estimation
of Xn. With a high mutation rate all branches tend to be statistically identical.

As an example, consider a two-state Jukes-Cantor model (Jukes and Cantor
1969) and a sample of size two. Let the mutation rate per site per time unit be ψ0
and let the two sequences be separated by an ancestor time T2 ago. The chance that
the two sequences differ in a particular site is p = 1/2 − 1/2 exp(−4ψ0T2) (Jukes
and Cantor 1969). Further, let p be estimated by p̂ = min{∑j Yj /k, 1/2}, where
Yj is one if the two sequences differ in site j , zero otherwise, and k is the number of
sites. Then the expectation and the variance of S2 = − log(1 − 2p̂) = 4 ̂(ψ0T2) are
approximately given byE(S2) ≈ − log(1−2p) andV ar(S2) ≈ 4p(1−p)/[k (1−
2p)2] for large k. The variable S2 is an approximation ofX2 = ψ0T2; in particular,
S2 = T2 for k = ∞. Figure 4 shows the ratio of the approximative expectation to
the approximative standard deviation (sd) of S2, assuming k = 1, for p between 0
and 1/2. The ratio obtains it maximum for p ≈ 0.28 in which case 4ψ0T2 is about
0.40. If p is close to 1/2, p̂ is often 1/2 and S2 = ∞.

4. Exponential growth with known scale

The coalescent with exponential growth was introduced by Slatkin and Hudson
in 1991 and subsequently discussed by Griffiths and Tavaré (1994). Prior to these
papers, both Chakraborty (1977) and Kingman (1982b) had discussed similar mod-
els. Assume the population size has been increasing exponentially at a constant
rate, β ≥ 0, for a long time up till its present size. The population intensity is
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Fig. 4. The figure shows the ratio of the expectation to the sd of S2 as a function of p, the
probability that two sequences differ in a site. Ifp = 1/2 the two sequences are independent.
If p = 0, the two sequences are identical.

λ(t) = exp(−βt). Note that ν(t) = 1 + βt + O(t2) so that the results from the
preceding section applies. Since time is measured in units of N(0) generations, β
has the form β = N(0)b, where b denotes the growth rate per generation. The
relation between Tn and Un (β = 0) is given by

Tjn = 1

β
log(1 + βUjn), (9)

so that Ujn ≥ Tjn almost surely. In this section, the scale ψ0 is assumed known
(ψ0 = 1 without loss of generality). The density of Tn is,

fn(t, β) = n! (n− 1)!

2n−1 exp





β

n∑

j=2

tj − 1

β

n∑

j=2

(j − 1)
[
eβtj − 1

]




(10)

for t2 > . . . > tn > 0. Define δn(Tn) by

δn(Tn) =
n∑

j=2

Tjn − 1

2

n∑

j=2

(j − 1)T 2
jn, (11)

and assume the true value of β is β0 ≥ 0. Let ‘iff’ be short for ‘if and only if’.

Theorem 4.1. The mle β̂n of β0 exists and is unique almost surely for all n. It fulfills
the relations

β̂n = 0 iff δn(Tn) ≤ 0, (12)

and
β̂n > 0 iff δn(Tn) > 0. (13)

Both P(β̂n > 0) and P(β̂n = 0) are positive for all n and β0, and P(β̂n > 0) → 1
as β0 → ∞.
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Equation (11) and Theorem 4.1 can be used to construct an alternative to the
log-likelihood test for testing β0 = 0 against β0 > 0. Define 
n(Tn) by


n(Tn) = 2
∑n
j=2 Tjn∑n

j=2(j − 1)T 2
jn

. (14)

The mean of
n(Tn) is close to one for β0 = 0 (in fact, the ratio of the mean of the
numerator to that of the denominator is one), the mean increases towards infinity for
β0 → ∞, and large deviations from one are therefore indicative of expansion. The
test will not be further pursued here, but discussed in the next section in connection
with a similar test for the case where the scale is unknown.

The asymptotic behaviour of β̂n for n → ∞ is captured in the next theorem.

Theorem 4.2. The variables β̂n, n ≥ 2, converge in distribution to a non-degener-
ate variable β̂∞,

β̂n → β̂∞ (15)

for n → ∞. Both P(β̂∞ > 0) and P(β̂∞ = 0) are positive for all β0.

For large β0 the following result is true. Let ρ̂n = β̂n/β0.

Theorem 4.3. For β0 → ∞,

log(β0) (ρ̂n − 1) → − log(Yn−1) (16)

in distribution, where Yn denotes a Gamma distributed variable, Yn ∼ �(n, n). In
consequence, ρ̂n → 1 in distribution and lim infβ0→∞ E(ρ̂n) ≥ 1.

Simulation results (not shown) suggest that the convergence in β0 is very slow,
as might be anticipated by the scaling of order log(β0). Therefore it is not practically
feasible to approximate the distribution of ρ̂n with (16). In contrast, the conver-
gence of ρ̂n towards one is fast, indicating that β̂n provides a reliable estimate of
β0 for large β0, say β0 > 100 for n > 50. In addition, Theorem 4.3 establishes that
β̂n is positively biased for large β0. This is also true for β0 = 0 because β̂n ≥ 0
and P(β̂n > 0) > 0 for all n (according to Theorem 4.1). Simulation results (not
shown) indicate a positive bias for all β0.

5. Exponential growth with unknown scale

Consider the variables Xn = ψTn. The relation between Zn = ψUn and Xn is
found from (9),

Xjn = 1

ξ
log(1 + ξZjn), (17)

with ξ = β/ψ . If β = N(0)b and ψ = N(0)u, ξ is independent of N(0) and
equals b/u. The density of Xn is given by

fn(x, ξ, ψ) = n! (n− 1)!

2n−1 ψn−1 exp





ξ

n∑

j=2

xj − 1

ψξ

n∑

j=2

(j − 1)
[
eξxj − 1

]





(18)
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for x2 > . . . > xn > 0, ξ ≥ 0, and ψ > 0. Assume the true value of (ξ, ψ) is
(ξ0, ψ0) and let

γn(Xn) =
n∑

j=2

Xjn −
(n− 1)

∑n
j=2(j − 1)X2

jn

2
∑n
j=2(j − 1)Xjn

. (19)

Note the analogy between δn(Tn) in Equation (11) and γn(Xn): The last term in
(11) is divided by φ̂n to compensate the difference in scaling in Xjn and X2

jn.

Theorem 5.1. The mle (ξ̂n, ψ̂n) of (ξ0, ψ0) exists and is unique almost surely for
all n. It fulfills the relations

ξ̂n = 0 iff ψ̂n = 1

n− 1

n∑

j=2

(j − 1)Xjn iff γn(Xn) ≤ 0, (20)

and

ξ̂n > 0 iff ψ̂n >
1

n− 1

n∑

j=2

(j − 1)Xjn iff γn(Xn) > 0. (21)

If γn(Xn) > 0, then ξ̂n is the unique solution to gn(ξ) = 0, where

gn(ξ) =
n∑

j=2

Xjn + 1

ψ̂ξ ξ2

n∑

j=2

(j − 1)
{
1 − ξXjn

}
eξXjn − n(n− 1)

2ψ̂ξ ξ2
,

and

ψ̂ξ = 1

n− 1

n∑

j=2

(j − 1)(eξXjn − 1)
1

ξ
.

If the tree is perfectly star-shaped, ξ̂n = ∞ and ψ̂n = ∞, and otherwise both
estimators are finite. Further, ψ̂n(cXn) = c ψ̂n(Xn) and ξ̂n(cXn) = ξ̂n(Xn)/c for
all c > 0.

It is worth remarking that (ξ̂n, ψ̂n) exists wheneverX2n ≥ X3n ≥ . . . ≥ Xnn ≥
0 andX2n > 0. This assures that (ξ̂n, ψ̂n) is well-defined even if some branches have
length zero. This might be the case ifXn is estimated from sequence data. Another
interesting fact is that γ3(X3) = 3X23X33/(X23 + 2X33) > 0, implying that ξ̂3 is
always positive (compare this to Theorem 4.1). Similarly, γ2(X2) = X22/2 > 0
and ξ̂2 = ∞, because a tree based on two sequences is necessarily star-shaped.

Corollary 5.1. The distribution of (ψ0ξ̂n, ψ̂n/ψ0)depends on (ξ0, ψ0)only through
β0 = ξ0ψ0.

Note that the mle of β0 is ξ̂nψ̂n. Its distribution depends on β0 only (this also
follows directly from Theorem 3.3).
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Theorem 5.2. The variables ξ̂n and ψ̂n, n ≥ 2, converge in distribution, in fact

ξ̂n → ξ̂∞, and
√
n (ψ̂n − ψ0) → N(0, ψ2

0 ) (22)

for n → ∞, with ξ̂∞ = β̂∞/ψ0 and β̂∞ defined as in Theorem 4.2.

There is not an analogue of Theorem 4.3 whenψ0 is unknown because ψ̂n does
not converge toψ0 for β0 → ∞. The next theorem establishes the asymptotic order
of convergence of the difference between ψ̂n and φ̂n.

Theorem 5.3. The variables ψ̂n − φ̂n, n ≥ 2, converge in distribution

n

log(n)
(ψ̂n − φ̂n) → ψ2

0 ξ̂∞ = ψ0 β̂∞. (23)

for n → ∞.

The variable, φ̂n, seems to be biased downwards at least for n < 100 and
β0 > 10 (simulation results not shown). In contrast, ψ̂n is biased upwards (simu-
lation results not shown). Pybus et al. (2000) provide extensive simulation results
for ψ̂n and ξ̂n for various parameter values.

Equation (19) and Theorem 5.1 can be used to construct an alternative to the
log-likelihood test for testing ξ0 = 0 against ξ0 > 0. Define �n(Xn) by

�n(Xn) =
2
(∑n

j=2Xjn

) (∑n
j=2(j − 1)Xjn

)

(n− 1)
∑n
j=2(j − 1)X2

jn

. (24)

The mean of �n(Xn) is close to one for ξ0 = 0 and increases towards two as
ξ0 → ∞ for ψ0 fixed. Table 1 shows the power of �n(Xn) compared to the power
of the log-likelihood test for various values of β0 and n (assuming ψ0 = 1). Note
that the distribution of �n(Xn) as well as the distribution of the log-likelihood test
depend on (ξ0, ψ0) only through β0.

Table 1. Shown is the power (in percentage) of
n(Tn), �(Xn), and the log-likelihood ratio,
Ln(Xn) = −2 log(Qn) for small values of β0 = ξ0ψ0 and various values of the sample
size, n. The null hypothesis is HT : β0 = 0 for 
n(Tn), and HX : β0 = 0 (ξ0 = 0) and
ψ0 > 0 for the two other statistics. The loss in power can be substantial when ψ0 is not
known, but estimated from data; compare 
n(Tn) with �(Xn). For small n, the difference
in power between �(Xn) and Ln(Xn) is noteworthy. This difference disappears for large n.
106 simulations were performed to obtain the null distribution (β0 = 0) for each n and 105

simulations for each combination of β0 > 0 and n.
The Power of �n(Tn), �n(Xn), and −2 log(Qn)

n = 10 n = 20 n = 100
β0 
n(Tn) �n(Xn) Ln(Xn) 
n(Tn) �n(Xn) Ln(Xn) 
n(Tn) �n(Xn) Ln(Xn)

1 13 12 31 19 14 30 31 27 39
5 89 41 74 98 62 88 100 97 99
10 100 61 90 100 85 98 100 100 100
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Table 2. Shown is the power (in percentage) of �(Xn) for two models, the logistic growth
model, ν(t) = (1 + ceβt )/(1 + c), and a model of periodic varying population size, ν(t) =
1+c sin(dt), |c| < 1. Sample size is n = 10. The power of the logistic growth model is very
similar to the power of the exponential growth model, whereas the power of the other model
is extremely poor. It shows that �n(Xn) should only be used if recent growth is anticipated.
A similar conclusion holds for the log-likelihood test. 105 simulations were performed for
each combination of parameters.

The Power of �n(Xn) for Various Models

Logistic Growth Periodic Variation
β, c 1 10 100 c, d 1 3 10

1 9 11 13 −0.5 3 2 10
10 55 60 61 0.5 7 9 3

The statistics �n(Xn)might in general be used as a testor of the hypothesisH1 :
The population has been of constant size against the alternativeH2 : The population
size has varied over time. Table 2 shows the power of �n(Xn) for two models, the
logistic growth model discussed in Section 3, and a model with periodic varying
population size. As in the exponential growth model, the distribution of �n(Xn)
depends on α only, not ψ0.

6. Discussion

In this paper, I have discussed inference about population history based on an ob-
servation of a tree, relating n individuals and drawn from Kingman’s coalescent.
As mentioned in the introduction, the setting I have adopted corresponds to an ideal
situation in which sequences of infinite length are available. However, in practice
this is not the case. The variation in nuclear sequences are in general so low that not
even the topology can accurately be estimated, let alone the length of individual
branches. If this is so, it is natural to estimate demographic parameters based on
data from unlinked loci, because all loci share the same demographic history and
each locus represents an independent draw from the underlying genealogical pro-
cess. This approach, however, runs into other difficulties. Different loci are likely
to have different mutation rates and it can be hard to argue that all sampled loci
evolve under neutrality. One way to circumvent such problems could be to adopt a
fully Bayesian approach, assuming prior probabilities on mutation rates, selection
coefficients and demographic parameters. Polanski et al. (1998) take a different
approach and develop a non-parametric method for inferring past population sizes
using a Laplace transform idea.

Other DNA sequence types, e.g., virus sequences, show much higher variation
and allow in principle for better estimation of the underlying tree than do nuclear
sequences. In principle only, because the mutation mechanism in viruses is often
extremely complex and difficult to model, selection is an active player, and only
few viruses are known to be non-recombining. Schierup and Hein (2000) showed
that if recombination is ignored in analysis of recombining sequences growth is
likely to be inferred when in fact there has been no growth at all. In contrast to
nuclear sequences one cannot sample unlinked viral loci, because viral genomes
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are relatively short. If the virus does not recombine (e.g., Hepatitis C) there is only
one locus, if it does, there might be a few, highly correlated loci.

It was argued that no consistent estimator for the growth rate exists (or, indeed,
for most other parameter describing population history). This disappointing result
reiterates what has been stressed by other authors: In the coalescent model infor-
mation accumulates slowly for increasing sample size, often at rate log(n), and in
the present case at rate 1. Joyce (1994) found a similar result: He studied the infi-
nite-allele model with selection and showed that consistent estimation of selection
coefficients cannot be obtained from population frequencies of alleles.

7. Appendices

Moments of variables that are used in proofs are listed in Appendix 7.4. Let Wj ,
j ≥ 2, be a series of independent exponential variables, Wj ∼ Exp(j (j − 1)/2).
Define Ujn by Ujn =∑n

i=j Wi and Tjn by

Ujn =
∫ Tjn

0
ν(t) dt. (25)

Then Un = (U2n, . . . , Unn) and Tn = (T2n, . . . , Tnn) are defined on the same
probability space, and Ujn, 2 ≤ j ≤ n, and Tjn, 2 ≤ j ≤ n, fulfill useful in-
equalities: In particular, Uj+1,n < Ujn < Uj,n+1 < Uj∞ almost surely, and
Tj+1,n < Tjn < Tj,n+1 < Tj∞ almost surely. Here Uj∞ =∑∞

i=j Wi and Tj∞ is
given by Equation (25) with n = ∞. The variables Uj∞, j ≥ 2, and Tj∞, j ≥ 2,
are finite almost surely according to Appendix 7.4 and Equation (25). Further,
Ujn → Uj∞ and Tjn → Tj∞ almost surely for n → ∞.

This way of defining Un (and Tn) is convenient for proving the results in the
previous sections, but it does not reflect the way sequences are sampled from a
population (compare Figure 3).

7.1. Appendix: General results

In this section proofs of the theorems given in Section 3 are derived.

Proof of Theorem 3.1. The form of the density gn(t, ν) follows readily from Equa-
tion (5). Definehn(t, ν)bygn(t, ν) = exp(hn(t, ν)). Ifhn(Un, ν),n ≥ 2, converges
almost surely, then so does gn(Un, ν). Using ν(t) = 1+at+O(t2), hn(Un, ν) can
be rewritten

hn(Un, ν) =
n∑

j=2

log(ν(Ujn)) −
n∑

j=2

(j − 1)
∫ Ujn

0
ν(t)dt +

n∑

j=2

(j − 1)Ujn

= a

n∑

j=2

Ujn − a

2

n∑

j=2

(j − 1) U2
jn +

n∑

j=2

O[U2
jn + (j − 1)U3

jn ],

for some functionO(y). For each possible outcome ofUjn,O[U2
jn+ (j −1)U3

jn ]
is eventually dominated by

Rjn = C (U2
jn + (j − 1)U3

jn ) ≤ C (U2
j∞ + (j − 1)U3

j∞ ) = Rj
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for n ≥ j > J and some J and C. Summed over j the right side is finite,∑∞
j=2 Rj < ∞ (Appendix 7.4). Thus, further using that ν is continuous,

n∑

j=2

O[U2
jn + (j − 1)U3

jn ] =
J∑

j=2

O[U2
jn + (j − 1)U3

jn ] +
n∑

j=J+1

Rjn

is convergent almost surely as n → ∞. The convergence of hn(Un, ν) follows now
from Corollary A1 and Lemma A1. ��
Lemma A1. Define δn(Un) and Kn by

δn(Un) =
n∑

j=2

Ujn − 1

2

n∑

j=2

(j − 1)U2
jn, (26)

and

Kn = 2

n

n∑

j=2

(j − 1)Ujn − 2

n
(n− 1) = 2

n

n∑

j=2

{
j (j − 1)

2
Wj − 1

}
. (27)

The series δn(Un)−Kn, n ≥ 2, is a martingale with expectationE(δn(Un)−Kn) =
E(δn(Un)) = 0 and filter Fn = σ(W2, . . . ,Wn). Further,

sup
n≥2

E{ (δn(Un)−Kn)
2 } < ∞. (28)

Proof of Lemma A1. Note that

δn(Un) = Mn −Nn, (29)

where

Mn =
n∑

j=2

Ujn − 2
n∑

j=2

1

j
=

n∑

j=2

(j − 1)Wj − 2
n∑

j=2

1

j
, (30)

and

Nn = 1

2

n∑

j=2

(j − 1)U2
jn − 2

n∑

j=2

1

j
= Sn − 2

n∑

j=2

1

j
. (31)

BothMn, n ≥ 2, andNn+Kn, n ≥ 2, are martingales with filter Fn = σ(W2, . . . ,

Wn) and E(Mn) = E(Nn) = E(Kn) = 0, because E(Nn+1|Fn) = Nn+Kn/(n+
1) and E(Kn+1|Fn) = nKn/(n + 1). Thus, δn(Un) − Kn, n ≥ 2, is a martingale
with the desired expectation and filter. To prove (28) note that

E(M2
n) = V ar(Mn) =

n∑

j=2

(j − 1)2V ar(Wj ) = 4
n∑

j=2

1

j2 <
2

3
π2 < ∞,

(32)
and

E(K2
n) = V ar(Kn) = 4(n− 1)

n2 ≤ 2 < ∞. (33)
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If also

E(N2
n ) = V ar(Nn) < c1 < ∞, (34)

for some constant c1 then (28) holds by combining (32), (33), and (34), and the
proof will be completed. Using Uin = Ui,j−1 +Ujn for 2 ≤ i < j ≤ n, it follows
that

4S2
n =



n∑

j=2

(j − 1)U2
jn





2

=
n∑

j=2

(j − 1)3U4
jn

+
∑

2≤i<j≤n
4 (i − 1)(j − 1)U3

jnUi,j−1

+
∑

2≤i<j≤n
2 (i − 1)(j − 1)U2

jnU
2
i,j−1. (35)

Taking the expectation of N2
n using (35), Appendix 7.4, and the independence of

Ui,j−1 and Ujn it is found that

E(N2
n ) = E(S2

n) − ( E(Sn) )
2 < 4

n∑

j=2

1

j
+ E






n∑

j=2

(j − 1)(j − 2)U3
jn






+ 2E






n∑

j=2

(j − 1)U2
jn ·



j−1∑

k=2

1

k









− 4




n∑

j=2

1

j





2

+ c2

< 8
n∑

j=2

1

j

j∑

k=2

1

k
− 4




n∑

j=2

1

j





2

+ c3 < c1 < ∞, (36)

where c1, c2, and c3 are constants that apply for all n. The proof is completed. ��

Corollary A1. The variables δn(Un), n ≥ 2, converge almost surely and in L1 for
n → ∞ to a non-degenerate variable δ(U) with mean zero.

Proof of Corollary A1. Equation (28) in Lemma A1 implies that δn(Un) − Kn,
n ≥ 2, is a uniformly integrable martingale. According to the martingale conver-
gence theorem and Lévy’s theorem (e.g., Hoffmann-Jørgensen 1994) this implies
that δn(Un)−Kn, n ≥ 2, converge almost surely and in L1 to a variable, say δ(U),
with expectation zero. But Kn → 0, n ≥ 2, almost surely and in L1 (according
to the law of large numbers, e.g. Hoffmann-Jørgensen 1994) and, thus, δn(Un),
n ≥ 2, converge to δ(U). If δ(U) is constant, it is zero and in turn δn(Un) = Kn
for all n (because δn(Un)−Kn = E(δ(U)|Fn) according to Lévy’s theorem). This
contradicts the definition of δn(Un), and the corollary is proved. ��
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Proof of Theorem 3.2. First note that u = ∫ t0 ν(z)dz implies t = u− a
2u

2 +O(u3)

(after some manipulations). Hence,

√
n (φ̂n − ψ0) =

√
n

n− 1

n∑

j=2

[
(j − 1)Xjn − ψ0

]

= ψ0
√
n

n− 1

n∑

j=2

[
j (j − 1)

2
Wj − 1

]

− ψ0
√
n

n− 1

n∑

j=2

(j − 1)
[a

2
U2
jn − O(U3

jn)
]
.

According to Appendix 7.4, the last term converges to 0 in probability, and the first
term converges to a standard normal distribution with variance ψ2

0 ; hence
√
n (φ̂n − ψ0) → N(0, ψ2

0 )

in distribution, as required. ��
Proof of Theorem 3.3. The theorem follows readily from properties of (composite)
transformation models (see Barndorff-Nielsen et al. 1989). ��

7.2. Appendix: Known scale

In this section proofs of the theorems given in Section 4 are derived.
The first derivative of the log-likelihood can be written, using the series expan-

sion of the exponential, as

∂ln(Tn, β)

∂β
=

n∑

j=2

Tjn + 1

β2

n∑

j=2

(j − 1) (eβTjn − 1)− 1

β

n∑

j=2

(j − 1)Tjn e
βTjn

= δn(Tn) − 1

β2

n∑

j=2

(j − 1)
∞∑

i=3

(βTjn)
i

i!
(i − 1)

= δn(Tn) − Rn(β, Tn), (37)

where Rn(β, Tn) denotes the power series. Note that the derivative is strictly de-
creasing in β.

Proof of Theorem 4.1. Existence and uniqueness as well as relations (12) and (13)
follow easily from (37). Consider β̂n > 0. It follows that

{ β̂n > 0 } ⊇
n⋂

j=2

{
Tjn − 1

2
(j − 1)T 2

jn > 0

}
=

n⋂

j=2

{
2

j − 1
> Tjn

}
= An.

(38)
But P(An) > 0 and hence P(β̂n > 0) > 0. Similarly,

{ β̂n = 0 } ⊇
n⋂

j=2

{
2

j − 1
≤ Tjn

}
= Bn, (39)
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and P(β̂n = 0) ≥ P(Bn) > 0. Finally, Tjn = log(1 + β0Ujn)/β0 → 0 for
β0 → ∞, hence P(An) → 1. This completes the proof. ��

The following lemma is needed in the proof of Theorem 4.2.

Lemma A2. Assume β0 > 0. The variables, δn(Tn), n ≥ 2, converge almost surely
and in L1 for n → ∞ to a variable δ(T ) with positive expectation.

Proof of Lemma A2. Rewrite δn(Tn) as

δn(Tn) =
n∑

j=2

Tjn − 1

2

n∑

j=2

(j − 1)T 2
jn = 1

β0

n∑

j=2

log(1 + β0Ujn)

− 1

2β2
0

n∑

j=2

(j − 1){ log(1 + β0Ujn) }2. (40)

Note that f1(x) = x − log(1 + x) and f2(x) = x2 − {log(1 + x)}2 are increasing
functions in x for x ≥ 0 and further that x2/2 ≥ f1(x) ≥ 0 and x3 ≥ f2(x) ≥ 0.
It follows that the variables

D1n = 1

β0

n∑

j=2

f1(β0Ujn) and D2n = 1

2β2
0

n∑

j=2

f2(β0Ujn) (41)

are positive and increasing in n and bounded in L1; in fact

0 ≤ E(D1n) ≤ β0

2
lim
n→∞

n∑

j=2

E(U2
jn) = 4β0, (42)

and

0 ≤ E(D2n) ≤ β0

2
lim
n→∞

n∑

j=2

(j − 1)E(U3
jn) = 12β0 (43)

(see Appendix 7.4). Combining the above with Corollary A1 it is found that

δn(Tn) = −D1n + D2n + δn(Un) (44)

converges almost surely and in L1 for n → ∞ to a variable, say δ(T ). This com-
pletes the first part of the lemma, and it will now be shown that δ(T ) has positive
mean.

Note that forβ0/2 < β < 2β0, ∂fn(t, β)/∂β = fn(t, β) ∂ln(t, β)/∂β is bound-
ed in β;
∣∣∣∣
∂fn(t, β)

∂β

∣∣∣∣

≤ n! (n− 1)!

2n−1 exp





2β0

n∑

j=2

tj − 2

β0

n∑

j=2

(j − 1)eβ0tj /2 + n(n− 1)

β0





·
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×





n∑

j=2

tj + 1

2

n∑

j=2

(j − 1)t2j + 2

β0

n∑

j=2

(j − 1)tj e
2β0tj





= kn(t, β0),

(45)
and that kn is L1-integrable (wrt Lebesgue measure). This can be seen applying the
transform vj = 2(eβ0tj /2 − 1)/β0 to the integral of kn. As a consequence

0 = ∂

∂β

∫
fn(t, β)dt =

∫
∂fn(t, β)

∂β
dt = E

(
∂ln(Tn, β)

∂β

)
, (46)

evaluated in β = β0. From (46) and (37),

0 < E(δn(Tn)) = E(Rn(β0, Tn)) ≤ E(Rn+1(β0, Tn+1)) = E(δn+1(Tn+1)),

and thus,
E(δ(T )) = lim

n→∞E(δn(Tn)) ≥ E(δn(Tn)) > 0,

because δn(Tn) → δ(T ) in L1. The proof is completed. ��

One can prove that δn(Tn) converges almost surely under the assumption of
Theorem 3.1 and not just under the assumption of an exponentially growing pop-
ulation. However, the proof of Lemma A2 needs convergence in L1 which cannot
be guaranteed under the assumptions of Theorem 3.1.

Proof of Theorem 4.2. Consider the second term, Rn(β, Tn), in equation (37). For
arbitrary β ≥ 0,

Rn(β, Tn) = 1

β2

n∑

j=2

(j − 1)
∞∑

i=3

(βTjn)
i

i!
(i − 1)

= β

∞∑

i=0

βi

i!(i + 1)(i + 3)
Ain → β

∞∑

i=0

βi

i!(i + 1)(i + 3)
Ai∞ (47)

for n → ∞, where Ain = ∑n
j=2(j − 1)T i+3

jn . R∞(β, T∞) = limn→∞ Rn(β, Tn)

is bounded by

β

∞∑

i=0

βi

i!
Ai∞ = β

∞∑

i=0

∞∑

j=2

(j − 1)T 3
j∞
(βTj∞)i

i!

= β

∞∑

j=2

(j − 1)T 3
j∞ exp(βTj∞) ≤ β exp(βT2∞)

∞∑

j=2

(j − 1)T 3
j∞,

which is finite almost surely according to Appendix 7.4 and Tj∞ ≤ Uj∞. From
Lemma A2 and above

lim
n→∞

∂ln(Tn, β)

∂β
= δ(T ) − R∞(β, T∞) (48)
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exists and is finite. Further, for δ(T ) > 0 there exists a unique solution, β̂∞,
to δ(T ) − R∞(β, T∞) = 0; for δ(T ) ≤ 0 let β̂∞ = 0. Because of (48) and that
∂ln(Tn, β)/∂β is decreasing inβ, it follows that β̂n → β̂∞ almost surely asn → ∞.
This implies that β̂n, n ≥ 2, converge in distribution to β̂∞. This proves the first
part of the theorem.

According to Lemma A2,E(δ(T )) > 0 which implies P(β̂∞ > 0) > 0. Define
δ3 such that δ(T ) = δ3 + T2∞ − T 2

2∞/2. Then

P( β̂∞ = 0 ) =
∫
P( δ(T ) ≤ 0 | T3∞ = t, δ3 = d ) dPT3∞,δ3(t, d)

=
∫
P( 2(1 + t)V2∞ − V 2

2∞ ≤ a | T3∞ = t, δ3 = d ) dPT3∞,δ3(t, d) > 0,

where a = −2(d + t)+ t2 and V2∞ = T2∞ − T3∞. This completes the proof. ��

Proof of Theorem 4.3. Putρ = β/β0. Consider ∂ln(Tn, ρ)/∂ρ = β0∂ln(Tn, β)/∂β

with Tjn replaced by log(1 + β0Ujn)/β0;

∂ln(Tn, ρ)

∂ρ
=

n∑

j=2

log(1 + β0Ujn) − n(n− 1)

2ρ2β0

+ 1

ρ2β0

n∑

j=2

(j − 1){ 1 − ρ log(1 + β0Ujn) }(1 + β0Ujn)
ρ. (49)

Further, apply the transform ρ = 1 + r/ log(β0) to (49). Then,

∂ln(Tn, r)

∂r
= 1

log(β0)

∂ln(Tn, ρ)

∂ρ
→ ( n − 1 ) − exp(r)

n∑

j=2

(j − 1)Ujn (50)

almost surely as β0 → ∞. The derivative ∂ln(Tn, r)/∂r is decreasing in r for all
β0 because ∂ln(Tn, β)/∂β is decreasing, and it is concluded that the mle, r̂n(β0),
of r fulfills

r̂n(β0) → − log

{∑n
j=2(j − 1)Ujn

n− 1

}

almost surely as β0 → ∞ (relying on an argument used in the proof of Theorem
4.2). But

r̂n(β0) = log(β0) (ρ̂n − 1) and Yn−1 :=
∑n
j=2(j − 1)Ujn

n− 1
∼ �(n−1, n−1),

hence r̂n(β0) → − log(Yn−1) in distribution and β̂n/β0 → 1 in probability. By
Fatou’s Lemma, lim infn→∞ E(ρ̂n) ≥ 1. The proof is completed. ��
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7.3. Appendix: Unknown scale

In this section proofs of the theorems given in Section 5 are derived.
By differentiation of the log-likelihood,

∂ln(Xn, ξ, ψ)

∂ξ
=

n∑

j=2

Xjn + 1

ψξ2

n∑

j=2

(j − 1) (eξXjn − 1)

− 1

ψξ

n∑

j=2

(j − 1)Xjne
ξXjn, (51)

and
∂ln(Xn, ξ, ψ)

∂ψ
= − n− 1

ψ
+ 1

ψ2ξ

n∑

j=2

(j − 1) (eξXjn − 1). (52)

Proof of Theorem 5.1. Let

ψ̂ξ = 1

n− 1

n∑

j=2

(j − 1) (eξXjn − 1)
1

ξ
(53)

be the solution to ∂ln(Xn,ξ,ψ)
∂ψ

= 0 for fixed ξ ≥ 0. If ξ = 0, ψ̂ξ = 1
n−1

∑n
j=2(j−1)

Xjn. By insertion of (53) into (51) one obtains,

gn(ξ) =
n∑

j=2

Xjn + 1

ψ̂ξ ξ2

n∑

j=2

(j − 1)
{
1 − ξXjn

}
eξXjn − n(n− 1)

2ψ̂ξ ξ2
.

In particular,

gn(0) =
n∑

j=2

Xjn −
(n− 1)

∑n
j=2(j − 1)X2

jn

2
∑n
j=2(j − 1)Xjn

= γn(Xn),

and

gn(∞) =
n∑

j=2

Xjn − (n− 1)X2n ≤ 0,

with equality if and only if Xjn = X2n for all j . Define Gn(ξ) by

Gn(ξ) = ξ

n∑

j=2

Xjn − (n− 1) log(ψ̂ξ ).

Then d
dξ
Gn(ξ) = gn(ξ) and it will be shown that −Gn(ξ) is convex (in which case

gn(ξ) is decreasing). It is sufficient to prove that log(ψ̂ξ ) is convex. Rewrite ψ̂ξ as

ψ̂ξ = n

2ξ



 2

n(n− 1)

n∑

j=2

(j − 1)eξXjn − 1



 = n

2ξ
[L(ξ)− 1] = K(ξ),



Inferring Population History 261

where L(ξ) is the Laplace transform of

P(X = xj ) = 2(j − 1)

n(n− 1)
, (54)

2 ≤ j ≤ n (in that a fixed outcome of Xjn = xj is considered). If c K(ξ) is a
Laplace transform for some c > 0 then log(K(ξ)) is convex (Widder 1946). Ac-
cording to Widder (1946) this is so with c = 2/[nE(X)]. It follows that log(ψ̂ξ ) is
convex.

Equations (20) and (21) follow from the fact that −Gn(ξ) is convex. If the tree
is perfectly star-shaped (Xjn = X2n for all j ) then ξ̂n = ∞ (because gn(∞) = 0)
and hence ψ̂n = ∞. The functional relations for ψ̂n and ξ̂n follow from Theorem
3.3. ��
Proof of Corollary 5.1. Follows from Theorem 3.3. ��
Proof of Theorem 5.2. Consider gn(ξ) from Theorem 5.1. Rewrite as,

gn(ξ) =
n∑

j=2

Xjn − 1

2ψ̂ξ

n∑

j=2

(j − 1)X2
jn − 1

ψ̂ξ
Rn(ξ,Xn) =

n∑

j=2

Xjn

− 1

2ψ0

n∑

j=2

(j − 1)X2
jn +
(
ψ̂ξ − ψ0

2ψ0ψ̂ξ

)
n∑

j=2

(j − 1)X2
jn − 1

ψ̂ξ
Rn(ξ,Xn),

similar to Equation (37). From the proof of Theorem 4.2,Rn(ξ,Xn) is almost surely
convergent for n → ∞. Further,

φ̂n < ψ̂ξ < φ̂n + ξ

n− 1
exp(ξX2n)

n∑

j=2

(j − 1)X2
jn = φ̂n + R∗

n(ξ,Xn),

where R∗
n(ξ,Xn) denotes the sum (this is obtained similarly to the bound on

Rn(β, Tjn) in the proof of Theorem 4.2). The term,
√
nR∗

n(ξ,Xn), converges almost
surely to zero (Appendix 7.4); thus ψ̂ξ → ψ0 almost surely and in distribution, and√
n(ψ̂ξ − ψ0) → N(0, ψ2

0 ) in distribution (as in Theorem 3.2). It follows that

gn(ξ) → ψ0 lim
n→∞ δn(Xn/ψ0) − 1

ψ0
R∞(ξ,X∞) (55)

almost surely for n → ∞. Reasoning similar to reasoning in the proof of Theorem
4.2 gives ξ̂n → ξ̂∞ almost surely (because gn(ξ) is strictly decreasing for all n).
This in turn gives,

φ̂n < ψ̂n = ψ̂
ξ̂n
< φ̂n + R∗

n(ξ̂n, Xn) < φ̂n + R∗
n(ξ̂∞ + ε,Xn)

for ε > 0 and sufficiently large n. Further,

√
nR∗

n(ξ̂∞ + ε,Xn) → 0
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in probability for n → ∞ (similar to
√
nR∗

n(ξ,Xn) → 0 ), hence
√
n (ψ̂n − ψ0) → N(0, ψ2

0 )

in distribution, as required. Finally, it follows that β̂∞ = ξ̂∞ψ0 because ψ̂n → ψ0
almost surely, and from (55) that β̂∞ is as defined in Theorem 4.2. ��
Proof of Theorem 5.3. The proof of this theorem uses the same techniques as in
Theorems 4.2 and 5.2 and will not be given here. ��

7.4. Appendix: Moments

The following formulas hold for moments of Ujn:

E(Ujn) = 2

j − 1
− 2

n
, (56)

E(U2
jn) = 8

n∑

i=j−1

1

i2
− 8

(
1

j − 1
− 1

n
+ 1

(j − 1)n

)
, (57)

E(U3
jn) = 48

(
1

j − 1
− 1

n
− 2

) n∑

i=j−1

1

i2
+ 96

(
1

j − 1
− 1

n
+ 1

(j − 1)n

)
,

(58)

16

(
1

j − 1
− 1

n

)4

− k1

(j − 1)5
< E(U4

jn) < 16

(
1

j − 1
− 1

n

)4

+ k1

(j − 1)5
,

(59)

n∑

j=2

E(Ujn) = 2
n∑

j=2

1

j
, (60)

n∑

j=2

E(U2
jn) = 8



 1 − 1

n

n∑

j=1

1

j



 , (61)

n∑

j=2

E{ (j − 1)Ujn } = n− 1, (62)

n∑

j=2

E{ (j − 1)U2
jn } = 4

n∑

j=2

1

j
, (63)

n∑

j=2

E{ (j − 1)U3
jn } = 24



 1 − 1

n

n∑

j=1

1

j



 , (64)

n∑

j=2

E{ (j − 1)3U4
jn } < 16

n∑

j=2

1

j
+ k2, (65)
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n∑

j=2

E{ (j − 1)(j − 2)U3
jn } < 8

n∑

j=2

1

j
+ k3, (66)

and

n∑

j=2

E





(j − 1)U2

jn ·



j−1∑

k=2

1

k









< −6

n∑

j=2

1

j
+ 4

n∑

j=2

1

j

j∑

k=2

1

k
+ k4. (67)

The number k1 is a constant, independent of j andn, and k2, k3, and k4 are constants,
independent of n.
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