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Abstract

Tagging haplotypes with a small number of genetic markers is becoming an increasingly interesting and
important problem. Surprisingly little work has been done to characterize the mathematical framework of

this problem. In this paper we present a mathematical frame, based on Boolean algebras, that adequately

describe the structure of a set of genetic bi-allelic markers and the corresponding set of haplotypes. We

derive a number of results that relate the number of markers required to tag a set of haplotypes to the set of

markers themselves.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Understanding of human genetic variation will be key for unraveling the genetic factors in-
volved in many common complex diseases such as asthma, common cardiovascular diseases,
cancer and most infectious diseases [1,2]. At the molecular level human genetic variation is de-
termined by the forces of mutation and recombination, while on the level of the population
random genetic drift, selection and demographic factors influence the distribution of genetic
variants. Together they interact to determine the frequency of a genetic variant in a population.
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The most common polymorphisms in the human genome are single nucleotide polymorphisms
(SNP). These single base substitutions can either be causal for a disease phenotype (e.g., if it is in
the coding region of a gene and results in an amino acid change) or silent. If a silent SNP is
sufficiently closely linked to a causal variant then both polymorphisms will often be coinherited in
cases; thereby giving rise to linkage disequilibrium (LD). Thus knowledge of neutral markers with
increased frequencies in cases may be used to map the position of the causal variant. It has been
estimated that in order to be certain that a marker is in significant LD with a disease causing
polymorphism it will be necessary to have a known marker SNP every 3000 bases along the
human genome. With a total genome size of 3.3 billion bases this would correspond to a map of
110 000 SNPs that would be required for whole genome association studies [1].

Recently it has become apparent that the central assumption, of uniform recombination rate
along the whole genome, underlying the predictions of 50 000 SNPs being necessary is probably
too pessimistic [3–5]. Several studies now demonstrate in some detail that large stretches of DNA
tend to be coinherited without recombination or with only very little recombination. Common
variation, i.e., the variation widely believed to underly common phenotypes, along those stretches,
frequently referred to as blocks, has been shown to be most straightforwardly described in terms
of haplotypes. If we denote the states of a SNP by 1 and 0, then a haplotype is the set of states
taken by the SNPs along a stretch of DNA. There is often very little variation within these blocks
and regularly 90% of chromosomes belong to the 3–5 most common haplotypes [4,5].

Shifting the focus from individual SNPs to haplotypes will have the advantage that a subset of
SNPs can be found that captures all of the variation. These SNPs are generally referred to as
haplotype tagging SNPs (htSNP) and several approaches have been or are currently being de-
veloped. Here we will be concerned with the problem of how many htSNPs are required to tag a
given number of haplotypes. This question has been addressed by others, e.g. [6] show the problem
is NP-complete and thus hard to solve, and some results are known if the SNPs conform to a tree.
We will provide the mathematical frame in which this problem adequately is dealt with: Due to the
mathematical structure of recombination it is a combinatorial problem and we will show that the
quantities of interest are modeled straightforwardly using the apparatus of Boolean algebras.

In what follows we will first present basic properties of Boolean algebras before deriving
various results about the required number of htSNPs. All of our results revolve around what we
define to be the dimension dimension of a set of SNPs. This is the size of a set of SNPs that suffices
to identify all observed haplotypes; it is thus just the number of htSNPs required.
2. Boolean algebras

A set of elements B with two binary operations, ^ and _, is a Boolean algebra if the following
postulates hold:

(A) The operations ^ and _ are commutative
(B) Each operation is distributive over the other
(C) There exist in B distinct identity elements 0 and 1 relative to the operations ^ and _, respec-

tively
x ^ 1 ¼ x and x _ 0 ¼ x:
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(D) For every x in B there exists an element :x (the inverse of x) such that
x ^ :x ¼ 0 and x _ :x ¼ 1

(see [7] for an introduction).
Examples of Boolean algebras are many and they found their use in many different contexts, for
example in propositional logic, set theory and various branches of computer science. Often the
operations ^ and _ are related to either (i) the minimum and maximum of numbers or to (ii) the
intersection and union of sets. The basic notation outlined above is adopted from propositional
logic. Here we will be concerned with a Boolean algebra that arises from considering population
genetic data, i.e., SNPs. Both analogues (i) and (ii) play a role here.

Consider a panel of SNPs obtained from n chromosomes sampled from a population. Assume
there are at most two different alleles, 0 and 1, present in any given site and let x ¼ ðx1; . . . ; xnÞ
denote a vector of alleles for a given site in the n chromosomes. We allow x to be either all zeros or
all ones (i.e., non-polymorphic), for reasons that will become clear later. Hereafter, x is referred to
as a SNP. In general, there are 2n different SNPs, but for any SNP, x, the SNP obtained from x by
swapping 0 and 1 is practically identical to x, unless we for some reason impose a specific bio-
logical interpretation on 0 and 1. This might happen for example if the SNP is not selectively
neutral or if an outgroup is used to decide which allele is the oldest.

Let two SNPs, x and y, be given. The SNPs x and y cluster the n chromosomes into four groups,
those for which ðxi; yiÞ ¼ ð0; 0Þ, ðxi; yiÞ ¼ ð0; 1Þ, ðxi; yiÞ ¼ ð1; 0Þ, and ðxi; yiÞ ¼ ð1; 1Þ, respectively.
Two binary and one unary operation can be defined on SNPs as follows:
x ^ y ¼ ðminðx1; y1Þ; . . . ;minðxn; ynÞÞ; ð1Þ

x _ y ¼ ðmaxðx1; y1Þ; . . . ;maxðxn; ynÞÞ ð2Þ
and
:x ¼ ð1� x1; . . . ; 1� xnÞ: ð3Þ
If x and y are SNPs then x ^ y is the SNP that singles out the chromosomes for which
ðxi; yiÞ ¼ ð1; 1Þ and x _ y is the SNP that singles out all chromosomes for which ðxi; yiÞ ¼ ð0; 0Þ.
The complementary operation :x results in the SNP �identical� to x with 0 and 1 reversed.

By direct inspection it can be seen that the set, Pn, (Pn for polymorphism) of all SNPs on n
chromosomes forms a Boolean algebra with binary operations ^, _ and unary operation : as
defined in Eqs. (1)–(3). Note that the two constant SNPs 0 ¼ ð0; . . . ; 0Þ and 1 ¼ ð1; . . . ; 1Þ can be
obtained from any other SNP, x, by applying two of the three operations to x: 0 ¼ x ^ :x and
1 ¼ x _ :x. Either of the operations ^ or _ can be expressed in terms the other and :; for example
x _ y ¼ :ð:x ^ :yÞ ð4Þ

and _ (or ^) is thus redundant. If a binary operation, j, similar to Sheffer�s stroke (attributed to
Sheffer, [8], but originally due to C.S. Peirce) in propositional logic is introduced all three oper-
ations, _, ^, and :, can be explained in terms of j: xjy ¼ 0 if and only if x ¼ y ¼ 1, thus xjx ¼ :x
and ðxjyÞjðxjyÞ ¼ x ^ y. We shall stick to ^ and : here.
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In order to establish our results we first need a few definitions.

Definition 1. For any given set, S � Pn, of SNPs, denote by clðSÞ the smallest set containing
S [ f0g that is closed under the operations ^ and :, i.e., if x; y 2 clðSÞ then :x 2 clðSÞ and
x ^ y 2 clðSÞ.

Since _ can be expressed in terms of ^ and :, clðSÞ is automatically closed under _. The
constant SNPs are always included in clðSÞ and as a consequence clð;Þ ¼ f0; 1g. Clearly,
clðSÞ � Pn. In many cases strict inequality holds. For example if S ¼ f0g then clðSÞ ¼
f0; 1g � Pn, and if S ¼ fð0; 0; 1; 1Þ; ð0; 0; 0; 1Þg then clðSÞ ¼ fð0; 0; 1; 1Þ; ð0; 0; 0; 1Þ; ð0; 0; 1; 0Þ;
ð0; 0; 0; 0Þ; ð1; 1; 0; 0Þ; ð1; 1; 1; 0Þ; ð1; 1; 0; 1Þ; ð1; 1; 1; 1Þg � Pn. The set clðSÞ is also a Boolean al-
gebra, a subalgebra ofPn. Intuitively, clðSÞ consists of all partitions, that can be formed given the
information about the SNPs in S, of n chromosomes into two sets.

We write haplotypes as stretches of zeros and ones without comma separation, e.g., 0 0 1 0. A
haplotype is the allelic type of a chromosome.

Definition 2. An S-haplotype is a haplotype defined by the SNPs in S.

Example 1. If S1 ¼ fð0; 0; 1; 1Þ; ð0; 0; 0; 1Þg then the S1-haplotypes are 0 0, 1 0, and 1 1. The
clðS1Þ-haplotypes are 0 0 0 0 1 1 1 1, 1 0 1 0 0 1 0 1, and 1 1 0 0 0 0 1 1. If S2 ¼ fð0; 0; 1; 1Þ;
ð0; 0; 0; 1Þ; ð0; 0; 1; 0Þg then the S2-haplotypes are 0 0 0, 1 0 1, and 1 1 0. Here, clðS1Þ ¼ clðS2Þ.

Lemma 1. Any SNP, x, in clðSÞ defines a partition of chromosomes into two subsets such that
chromosomes with the same S-haplotype belong to the same subset. Oppositely, if x defines such a
partition then x is in clðSÞ. If S1 � S2 then the S1-haplotypes group the S2-haplotypes into
disjoint sets.

Proof. List all SNPs in S, S ¼ fxð1Þ; . . . ; xðmÞg, and consider a particular chromosome, C. Define
zðiÞ in the following way: zðiÞ ¼ xðiÞ if the entry for C in xðiÞ is 1, otherwise let zðiÞ ¼ :xðiÞ. Then
z ¼ zð1Þ^; . . . ;^zðmÞ has a 1 in the entry for C and in the entries for all other chromosomes with the
same S-haplotype as C and 0 otherwise; z ¼ ð0; . . . ; 0; 1; . . . ; 1; 0 . . . ; 0Þ for some ordering of the
chromosomes. Any partition fulfilling the requirement in Lemma 1 can now be formed using the _
operation. Note that using the operations ^, _, and : one cannot split chromosomes with the
same S-haplotype into different subsets. To prove the second part, note that all S2-haplotypes
with the same value of z ¼ zð1Þ^; . . . ;^zðm1Þ, with S1 ¼ fxð1Þ; . . . ; xðm1Þg � S2, correspond to the
same S1-haplotype. The proof is completed. h

Example 2. If S1 � S2 and clðS1Þ ¼ clðS2Þ then the S1-haplotypes and the S2-haplotypes
define the same partitions of the chromosomes, but an S2-haplotype is defined from more SNPs
than the S1-haplotype; compare Example 1. This is a direct consequence of Lemma 1.

A setS1 � S2 is said to spanS2 if all SNPs inS2 can be formed from SNPs inS1 by repeated
applications of the binary and unary operations, ^, _ and :. In the following we will discuss the
minimum number of SNPs that are required to span clðSÞ for a given set S.



C. Wiuf et al. / Mathematical Biosciences 185 (2003) 205–216 209
The concept of compatibility will play an important role. We define it here.

Definition 3. Two SNPs, x and y, are said to be (pairwise) compatible if at most three out of the
four 2-locus haplotypes (0,0), (0,1), (1,0), and (1,1) are present in x and y. If x and y are not
compatible they are said to be incompatible.

Ref. [9] shows that all SNPs are pairwise compatible if and only if the SNPs are compatible with
a tree assuming no recurrent mutations.
3. Results

Let now S � Pn be given. Define the dimension of S by
dimðSÞ ¼ minfkjclðXkÞ ¼ clðSÞ;Xk ¼ ðxð1Þ; . . . ; xðkÞÞ � Sg: ð5Þ
Note that Xk is required to be a subset of S which implies that two sets, S1 and S2, with
clðS1Þ ¼ clðS2Þ might have different dimensions. We call the set Xk a basis for S and say that Xk

explains S and the set of S-haplotypes, H. The dimension of S is the smallest number of SNPs
in S required to span all of S and as a consequence it also spans all of clðSÞ. The only exception
is if ; 6¼ S � f0; 1g. In that particular case, X ¼ ; is a basis and X does not span S. Obviously,
dimðSÞ6#S, the number of SNPs in S, and removal of any x from a basis Xk reduces the
number of explained haplotypes, thus dimðXk n fxgÞ < dimðSÞ. We define the dimension of the
closure, clðSÞ, of S by
dim�ðSÞ ¼ dimðclðSÞÞ: ð6Þ

To our knowledge the dimension of S is not a standard concept in the theory of Boolean al-
gebras. However, there is a relation to combinatorial geometry which we will take up in Section 5.

It transpires in the proof of Lemma 1 that SNPs of the form
x ¼ ð0; . . . ; 0; 1; . . . ; 1; 0; . . . ; 0Þ; ð7Þ

where x has entry 1 for all chromosomes with the same S-haplotype, span clðSÞ. SNPs of the
form in (7) are called index-SNPs. There is one for each haplotype. Index-SNPs, however, do not
necessarily form a basis of clðSÞ.

Example 3. For example, if S ¼ fð0; 0; 0; 1Þ; ð0; 0; 1; 0Þ; ð0; 1; 0; 0Þg then a basis of clðSÞ is
fð0; 0; 1; 1Þ; ð0; 1; 0; 1Þg with dim�ðSÞ ¼ 2, but dimðSÞ ¼ 3.

Corollary 1. If S1 � S2 and clðS1Þ ¼ clðS2Þ then dimðS1ÞP dimðS2Þ.

Proof. The proof follows directly from the definition of dimðSÞ. h

Example 4. It is easy to give examples with strict inequality in Corollary 1: If S2 ¼ fð0; 0; 0; 1Þ;
ð0; 0; 1; 0Þ; ð0; 1; 0; 0Þ; ð0; 0; 1; 1Þ; ð0; 1; 0; 1Þg and S1 ¼ fð0; 0; 0; 1Þ; ð0; 0; 1; 0Þ; ð0; 1; 0; 0Þg, then
dimðS2Þ ¼ 2, but dimðS1Þ ¼ 3.
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Corollary 2. If clðS1Þ � clðS2Þ then dim�ðS1Þ6 dim�ðS2Þ. If S1 � S2 and dim�ðS1Þ <
dim�ðS2Þ then clðS1Þ � clðS2Þ.

Proof. The second part is trivial (a consequence of the definition of dimension). Regarding the first
part of the corollary, Lemma 1 implies that all S1-haplotypes group one or more S2-haplotypes.
For each S1-haplotype choose a representative for the corresponding S2-haplotypes. Let now
X ¼ fxð1Þ; . . . ; xðkÞg be a basis for clðS2Þ and define Z ¼ fzð1Þ; . . . ; zðkÞg in the following way: The
entry of a particular chromosome is defined to be the value of the entry of the representative
for the group the chromosome belongs to. Then Z � clðS1Þ, clðZÞ ¼ clðS1Þ (again a conse-
quence of Lemma 1 and its proof; compare Eq. (7) and the definition of index-SNPs) and
dim�ðS1Þ6#Z6 dim�ðS2Þ as required. h

Note that the first part of Corollary 2 establishes a partial converse to Corollary 1. It is easy to
come up with examples for which equality applies: S1 ¼ fð1; 0; 0; 0Þ; ð0; 1; 0; 0Þg and
S2 ¼ fð0; 0; 1; 1Þ; ð0; 1; 0; 1Þg. In both cases, dim�ðSiÞ ¼ 2, i ¼ 1; 2.

In general, it is not possible to relate the dimension of S1 to that of S2. The only cases where
this appears to be possible are given in Corollaries 1 and 4 below. Simple examples show that even
if S1 � S2 the dimension of S1 might be smaller or larger than the dimension of S2. As an
example of the former case consider the following: S1 ¼ fð0; 0; 1Þg and S2 ¼ fð0; 0; 1Þ; ð0; 1; 0Þg;
and as an example of the latter case, consult Corollary 1 and Example 3. In contrast, the di-
mension of the closure has nice properties.

Corollary 3. Let S1 and S2 be given. Then
maxðdim�ðS1Þ; dim�ðS2ÞÞ6 dim�ðS1 [S2Þ ð8Þ

and
dim�ðS1 \S2Þ6 minðdim�ðS1Þ; dim�ðS2ÞÞ: ð9Þ
Proof. The first inequality follows from the first part of Corollary 2 because clðSiÞ � clðS1 [S2Þ,
i ¼ 1; 2. The second inequality also follows from Corollary 2 in that clðS1 \S2Þ � clðSiÞ,
i ¼ 1; 2. h

Corollary 4. For arbitrary S1 and S2,
dimðS1 [S2Þ6 dimðS1Þ þ dimðS2Þ: ð10Þ
Proof. Let Xi, i ¼ 1; 2, be a basis for Si. It follows that
dimðS1 [S2Þ6 dimðX1 [X2Þ6#ðX1 [X2Þ6 dimðS1Þ þ dimðS2Þ; ð11Þ
where the first inequality follows from Corollary 1: X1 [X2 � S1 [S2 and clðX1 [X2Þ ¼
clðS1 [S2Þ. This proves the corollary. h

Example 5. Let S1 ¼ fð0; 0; 0; 1Þ; ð0; 0; 1; 1Þg and S2 ¼ fð0; 1; 0; 0Þ; ð1; 0; 0; 0Þg. Then
dimðS1 [S2Þ ¼ 3 and dimðS1Þ þ dimðS2Þ ¼ 2þ 2P 3. If S2 ¼ fð0; 1; 0; 0Þg then
dimðS1 [S2Þ ¼ 3 and dimðS1Þ þ dimðS2Þ ¼ 2þ 1P 3.
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In particular Corollary 4 applies to S1 :¼ clðS1Þ and S2 :¼ clðS2Þ with dim replaced by dim�.
In the following we denote the number of SNPs in S by s and the number of different chro-

mosomes, the haplotypes, by h6 n. We identify x with :x, SNPs containing identical information
about the haplotypes in the sample. In addition, we assume that all other SNPs are different from
each other. The two quantities s and h are related through the two inequalities stated below.

Lemma 2. In general, h and s are related through
1þ log2ðsþ 1Þ6 h6 2s; or log2ðhÞ6 s6 2h�1 � 1: ð12Þ

Assume all SNPs are pairwise compatible. Then
1

2
ðsþ 3Þ6 h6 sþ 1; or h� 16 s6 2h� 3: ð13Þ
Proof. Inequality (13): Each new SNP can at most create one new haplotype, otherwise there
would be an incompatible pair of SNPs. That proves sþ 1P h. If all SNPs are pairwise com-
patible, then S can be represented by a tree. A tree has at most h� 3 internal branches (a bi-
furcating tree has h� 3; a multifurcating strictly less) and h external branches. In total a tree has
less than 2h� 3 branches and in consequence s6 2h� 3.

Inequality (12): h6 2s by simple combinatorics. Consider h different haplotypes. Each SNP is a
partition of the h types into two sets. The number of different partitions of h types is
seven ¼
h
1

� �
þ h

2

� �
þ � � � þ h

h=2� 1

� �
þ 1

2

h
h=2

� �
if h is even, identifying x with :x. If h is odd then
sodd ¼
h
1

� �
þ h

2

� �
þ � � � þ h

ðh� 1Þ=2

� �
:

Manipulating the terms gives
2seven þ 2 ¼ 2sodd þ 2 ¼ 2h
or seven ¼ sodd and s6 2h�1 � 1. The proof is completed. h

Theorem 1. For any S, log2ðhÞ6 dimðSÞ6 h� 1, where log2 denotes the base-2 logarithm.

Proof. If dimðSÞ < log2ðhÞ then there cannot be a set S0 � S that explains all h haplotypes
(Lemma 2). The other inequality is proved by induction. If h ¼ 2 the inequality is true. Assume
now the inequality is true for h < h0. Choose a SNP, x. The SNP divides the set of S-haplotypes,
H, into two groups,H1 andH2. Choose among all SNPs inS two subsets,S1 andS2, such that
S1 explains H1, S2 explains H2, dimðS1Þ6 h1 � 1, and dimðS2Þ6 h2 � 1, where hi ¼ #Hi,
i ¼ 1; 2. Let S0 ¼ S1 [S2 [ fxg. Surely S0 explains all haplotypes in H and
dimðS0Þ6 ðh1 � 1Þ þ ðh2 � 1Þ þ 1 ¼ h0 � 1 (from Corollary 4). h

Theorem 1 has the obvious implication that if dimðSÞ < h� 1 then there is at least one pair of
incompatible SNPs in S. However, there is no general relation between the incompatible pairs in
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S and the dimension, as will be clear later. Myers [10] argues that the quantity h� dimðSÞ � 1P
0 is a lower bound to the number of recombination events in a sample�s history assuming an
infinite-site mutation model [11]. Thus, dimðSÞ carries information about the sample�s history.
Note that h� dimðSÞ � 1 is the difference between the largest possible dimension that can be
obtained for h haplotypes and the actual dimension of S.

Theorem 2. For any S, dim�ðSÞ ¼ blog2ðhÞc, where bac denotes the smallest integer larger than or
equal to a.

Proof. We only have to show that there is a set X of size blog2ðhÞc that spans clðSÞ, because
according to Lemma 2 the dimension cannot be smaller than blog2ðhÞc. If h ¼ 2s

0
for some s0 then

a basis Xs0 of clðSÞ is (here shown for h ¼ 23) Xs0 ¼ fð0; 0; 0; 0; 1; 1; 1; 1Þ; ð0; 0; 1; 1; 0; 0; 1; 1Þ;
ð0; 1; 0; 1; 0; 1; 0; 1Þg (if n > h some rows are duplicated enlarging the length of the vectors), and
the theorem holds. If 2s

0�1 < h6 2s
0
then a basis for clðSÞ can be obtained from Xs0 by deletion of

some rows in the vectors of Xs0 (and duplication of others to obtain n in total). h

Theorem 3. All SNPs are pairwise compatible if and only if dimðSÞ ¼ h� 1. If all SNPs in
S ¼ S1 [S2 are pairwise compatible, then
dimðS1 [S2Þ þ dimðS1 \S2Þ6 dimðS1Þ þ dimðS2Þ: ð14Þ

Further if S1 \S2 ¼ ; Eq. (14) simplifies:
(I) Assume clðS1Þ \ clðS2Þ ¼ f0; 1g, then
dimðS1 [S2Þ ¼ dimðS1Þ þ dimðS2Þ; ð15Þ

(II) Assume clðS1Þ \ clðS2Þ ¼ f0; 1; x;:xg, x 6¼ 0; 1, then
dimðS1 [S2Þ þ 1 ¼ dimðS1Þ þ dimðS2Þ; ð16Þ
Proof. �Only if�: A direct consequence of Theorem 1 and Eq. (13). �If�: Assume two SNPs, x and y,
are incompatible. They divide the haplotypes into four groups, Hi, i ¼ 1; . . . ; 4, according to the
2-locus haplotypes (0,0), (0,1), (1,0), and (1,1). Choose sets of SNPs, Xi, that explain Hi. Then
dimðSÞ6#ðX1 [ � � � [X4 [ fx; ygÞ6
X4

i¼1

hi � 1þ 2 ¼ h� 2;
where #Hi ¼ hi. But this contradicts dimðSÞ ¼ h� 1.
Eq. (14) follows from the following argument: Select a basis,X12, forS ¼ S1 [S2, extend this

with SNPs, Y1, in S1 nS2 to a basis, X1, for S1, and finally extend this with SNPs, Y2, in
S nS1 � S2 to a basis, X, for S. It is possible according to Theorem 4 below. We have
dimðSÞ þ dimðS1 \S2Þ ¼ 2#X12 þ #Y1 þ #Y2 6 dimðS1Þ þ dimðS2Þ;

because #X12 þ #Y1 ¼ dimðS1Þ and #X12 þ #Y2 6 dimðS2Þ. The latter follows from the fact
that X12 [Y2 � S2 and each x 2 X12 [Y2 explains a new S2-haplotype, thus there are less than
dimðS2Þ SNPs in the set (see also Theorem 4).To prove the last part of the theorem proceed as
follows: (I) Consider the index-SNPs of clðS1 [S2Þ. Exactly one of these is neither in clðS1Þ nor
in clðS2Þ. If all were in either clðS1Þ or clðS2Þ then clðS1Þ \ clðS2Þ could not be f0; 1g (because
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then zð1Þ1 _; . . . ;_zðm1Þ
1 ¼ :ðzð1Þ2 _ � � � _ zðm2Þ

2 Þ, where zðjÞi is an index-SNP in Si), and if more than one
were not in clðS1Þ or clðS2Þ then S1 [S2 could not span clðS1 [S2Þ. Further,
dimðSiÞ ¼ hi � 1 where hi is the number of Si-haplotypes (first part of the theorem). It follows
that hi is one more than the number of index-SNPs in clðSiÞ and thus h1 þ h2 ¼ hþ 1 and
dimðS1Þ þ dimðS2Þ ¼ ðh1 � 1Þ þ ðh2 � 1Þ ¼ h� 1 ¼ dimðS1 [S2Þ. (II) Can be proved similarly
to (I). The proof is completed. h

Eq. (15) in Theorem 3 can be seen as an orthogonality relation. A similar relation does not
hold for dim�. Eqs. (15) and (16) can also be proved graphically representing the SNPs with
trees.

Example 6. Eq. (14) cannot be improved. Denote the left side of (14) by L, the right side by R. Let
S1 ¼ fð0; 0; 0; 1Þ; ð0; 0; 1; 1Þg and S2 ¼ fð0; 0; 1; 0Þ; ð0; 0; 1; 1Þg. Then L ¼ 2þ 1 and R ¼ 2þ 2, or
L < R. Let S1 ¼ fð0; 1; 0; 0Þ; ð0; 0; 1; 1Þg and S2 ¼ fð0; 0; 1; 0Þ; ð0; 0; 1; 1Þg. Then L ¼ 3þ 1 and
R ¼ 2þ 2, or L ¼ R.

Example 7. Eq. (14) is not true in general. Let S1 ¼ fð0; 0; 0; 1Þ; ð0; 0; 1; 0Þ; ð0; 1; 0; 1Þ; ð0; 1; 1; 0Þg
and S2 ¼ fð0; 0; 0; 1Þ; ð0; 0; 1; 0Þ; ð0; 1; 0; 1Þ; ð0; 0; 1; 1Þg, then S1 \S2 ¼ fð0; 0; 0; 1Þ; ð0; 0; 1; 0Þ;
ð0; 1; 0; 1Þg and dimðS1 [S2Þ þ dimðS1 \S2Þ ¼ 2þ 3 > 2þ 2 ¼ dimðS1Þ þ dimðS2Þ.

Ref. [6] shows that to find dimðSÞ and a basis X for S are NP-complete problems. Thus, in
general there cannot be a polynomial time algorithm that outputs dimðSÞ or X and some sort of
exhaustive search is necessary. Potential bases, X, must fulfill blog2ðhÞc6#X6 h� 1 (Theorem
1), which can be used to decide whether a potential basis can be a basis at all. A dynamic al-
gorithm that finds all bases can be constructed along the following lines.

a(1) List all non-constant SNPs, S ¼ fxð1Þ; . . . ; xðmÞg
a(2) Put B1 ¼ fX1; ;g with X1 ¼ fxð1Þg
a(3) Define Bk and B

0
k recursively in the following way

(3a) Let B
0
k ¼ fX0jX0 ¼ X [ fxðkÞg;X 2 Bk�1g, Remove from B

0
k all elements, X0, that do not ex-

plain more haplotypes than its counterpart, X, in Bk�1

(3b) Put Bk ¼ B
0
k [Bk�1

a(4) Define two counters on Bk: hðXÞ ¼ #haplotypes explained by X, and sðXÞ ¼ #SNPs in X.

Note that the listing (step 1) can be done stepwise while building up Bk. After the final step, the
elements in Bm for which sðXÞ ¼ minfsðX0ÞjX0 2 Bkg and hðXÞ ¼ maxfhðX0ÞjX0 2 Bkg ¼ h are
bases of S. There might be efficient heuristic algorithms, in particular if dimðSÞ is small, because
in that case only few SNPs are needed to span all of S. As soon as a set is found that spans S,
further search can be restricted to sets with at most #S SNPs.

If the widely discussed hypothesis of block structured recombination holds true then a basis for
each block can be found in polynomial time: First apply the algorithm in [12] (see [13] for further
explanation) to dissect the SNPs into apparently �non-recombining� blocks and subsequently find
a basis for each block. Alternatively, the algorithm in [10] can be used to find sets of SNPs in
smaller regions that explain many haplotypes (corresponding to regions with high evidence of
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historical recombination). His algorithm has the same time complexity as the algorithm in 1–4,
but relatively fast and reliable heuristic approximations exist [10].

The next theorem is essentially due to [14]: it is easy to find a basis if all SNPs are compatible.

Theorem 4. If all SNPs are pairwise compatible, dimðSÞ and a basis for S can be found in poly-
nomial time using the following algorithm;

(1) List all non-constant SNPs, S ¼ fxð1Þ; . . . ; xðmÞg
(2) Put X1 ¼ fxð1Þg
(3) Add xðkÞ to Xk, k ¼ 1; 2; . . . ; if an extra S-haplotype is explained by adding xðkÞ. Let Xkþ1 be the

new set of SNPs, Xkþ1 ¼ Xk or Xkþ1 ¼ Xk [ fxðkÞg, respectively
(4) Stop when #Xk ¼ h� 1. Then Xk is a basis for S.

Proof. If #Xk ¼ h� 1 then Xk must be a basis for S. Assume #Xk ¼ h� 1 is not reached, i.e.
#Xk < h� 1. If xðiÞ is not added when proposed, say at step j, then also dimðXj0 [ fxðiÞgÞ < h� 1,
for j0 > j. Thus, dimðSÞ ¼ dimðXk [ ðS nXkÞÞ < h� 1, which contradicts that the dimension of
S is h� 1. h

The algorithm in Theorem 4 can be implemented in time of OðnmÞ [14]. Also here listing of the
SNPs can be done stepwise. Since two incompatible SNPs give rise to four different haplotypes
one might expect that a group of pairwise incompatible SNPs could be useful in building up a
basis for S. However, a SNP that is incompatible with every other SNP in a group does not
necessarily create new haplotypes. As an example consider the following four chromosomes (or
haplotypes) and three SNPs: S ¼ fð0; 0; 1; 1Þ; ð0; 1; 0; 1Þ; ð0; 1; 1; 0Þg. All three SNPs are pairwise
incompatible but any two of them explain all four chromosomes, so the remaining SNP is always
redundant. In general one can form large sets of pairwise incompatible SNPs. Below we give a
lower bound on the size of the largest set of pairwise incompatible SNPs for a given number of
haplotypes.

Theorem 5. Assume h ¼ 2k, for some kP 2. Then there exists a set, Ik, of SNPs of size Ik such that
all SNPs in Ik are pairwise incompatible. The number Ik is recursively given by Ik ¼ I2k�1 þ 1 with
I2 ¼ 3, and Ik fulfills 2h�1 � 1P Ik P 3

1
4
h.

Proof. If k ¼ 2, I2 ¼ fð0; 0; 1; 1Þ; ð0; 1; 0; 1Þ; ð0; 1; 1; 0Þg is such a set. Assume now we have a set
Ik�1 of size Ik�1 of pairwise incompatible SNPs. Define
Ik ¼ fð0; . . . ; 0; 1; . . . ; 1Þg [ fðx; yÞjx; y 2 Ik�1g;
where the first SNP is of length 2k with equal numbers of ones and zeros and ðx; yÞ denotes
concatenation of the vectors x and y. Then all pairs of SNPs in Ik are incompatible and
Ik ¼ I2k�1 þ 1. The lower bound on Ik is obtained by induction and the upper bound is from
Lemma 2. h

Ik is rapidly increasing even for small k, e.g., if h ¼ 24 ¼ 16 then I4 ¼ 101, and if h ¼ 25 ¼ 32
then I5 ¼ 10202.
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4. Biogeographical Information

It is of interest to find SNPs that determine the biogeographical ancestry of a chromosome or
an individual. The biogeographical information (BGI) can be coded in the form of binary vectors,
just like SNPs, such that, e.g., African origin is coded as ð1; . . . ; 1; 0; . . . ; 0Þ where 1 indicates that
the chromosome has African ancestry, 0 that it has not. We assume BGI is defined from sources
external to genetic information, e.g., using information about the place of birth of relatives of the
individual that carries the chromosome.

Let BGI be coded in a set of vectors G. Similar to the definition of the dimension of S we can
ask for the minimum number of SNPs that uniquely place a chromosome in a biogeographical
group,
dimGðSÞ ¼ minfkjclðXkÞ � G;Xk ¼ ðxð1Þ; . . . ; xðkÞÞ � Sg; ð17Þ

with the further natural requirements that G � clðSÞ and that G itself is closed under the oper-
ations ^ and :, i.e., clðGÞ ¼ G. If G 6� clðSÞ then S cannot represent G faithfully. It follows that
dimGðclðSÞÞ ¼ dimðGÞ ¼ dim�ðGÞ; ð18Þ

thus, dimclðSÞðclðSÞÞ ¼ dim�ðSÞ, and further that
dimG1
ðclðSÞÞ6 dimG2

ðclðSÞÞ; ð19Þ

if G1 � G2.

We can go on and derive results analogous to those derived in the previous section in either two
ways: (1) For fixed G with dim replaced by dimG, or (2) for G1 � G2. For example we find
dimG1[G2
ðSÞ6 dimG1

ðSÞ þ dimG2
ðSÞ: ð20Þ
We will refrain from deriving these results in general.
5. Discussion

In this exposition we have focused on the minimum set that spans a given set S of SNPs. The
focus is naturally on describing S and S�s relation to the set of different haplotypes, H. In the
special caseS ¼ clðSÞ, clðSÞ is generated by the set of index-SNPs, but these do not form a basis
of clðSÞ.

Often combinatorial geometry is the most adequate description of the structure of finite sets.
However, it seems that H (or clðSÞ) is the natural object, rather than S, if we want to apply
concepts of combinatorial geometry to the setting in this paper, e.g., H can be seen as a com-
binatorial geometry generated by the set of index-SNPs and the dimension ofH would be defined
in terms of the number of index-SNPs (see, e.g., [15]). Unfortunately, the index-SNPs are not in
general part of S and the combinatorial geometry structure of H does not transfer to S. Only if
all SNPs in S are pairwise compatible do we have a correspondence. The set of haplotypes H
stands in relation to the set of splits in a tree representing H, and the splits are in one-to-one
relation with the SNPs. This correspondence is also clear from the equality dimðSÞ ¼ h� 1, that
directly relates the number of haplotypes to S. Eq. (14) is a general property of combinatorial
geometries.



216 C. Wiuf et al. / Mathematical Biosciences 185 (2003) 205–216
The algorithm to determine a basis of S (or H) is inefficient by nature of the problem.
However, efficient heurestic algorithms might be applied to find sets,X, that spanS and such that
#X is near the optimal possible, dim(S). One strategy could be to identify a basis for the
haplotypes,H0, defined by the most common SNPs, e.g., those with minor allele frequency above
10%. Often the haplotypes in H0 are few in number (e.g., [16]) and can easily be tagged with the
algorithm presented in the paper. In a second step, for each h in H0 the group of halotypes in H
defining h could be tagged, and so forth. This heurestic algorithm is easy to implement and fast to
run.
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