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ABSTRACT

In this paper we develop a new method for geno-
typing Affymetrix single nucleotide polymorphism
(SNP) array. The method is based on (i) using
multiple arrays at the same time to determine the
genotypes and (ii) a model that relates intensities
of individual SNPs to each other. The latter point
allows us to annotate SNPs that have poor perfor-
mance, either because of poor experimental condi-
tions or because for one of the alleles the probes do
not behave in a dose–response manner. Generally,
our method agrees well with a method developed
by Affymetrix. When both methods make a call they
agree in 99.25% (using standard settings) of the
cases, using a sample of 113 Affymetrix 10k SNP
arrays. In the majority of cases where the two
methods disagree, our method makes a genotype
call, whereas the method by Affymetrix makes a no
call, i.e. the genotype of the SNP is not determined.
By visualization it is indicated that our method is
likely to be correct in majority of these cases. In
addition, we demonstrate that our method produces
more SNPs that are in concordance with Hardy–
Weinberg equilibrium than the method by
Affymetrix. Finally, we have validated our method
on HapMap data and shown that the performance of
our method is comparable to other methods.

INTRODUCTION

To date, whole-genome scans of polymorphic genetic
markers [e.g. single nucleotide polymorphisms (SNPs)] are
routinely performed with high-throughput technologies such
as Affymetrix SNP array technology. Genome scans provide
comprehensive information about the genetic background of
individuals and have been used among other things to (i)
study linkage disequilibrium in human populations and popu-
lations of other species, (ii) perform association mapping and
linkage studies of common complex diseases, and (iii) con-
duct analysis of the genetic content in tumor cells, where

the assumption of diploidy, as found in normal cells often
is violated.

Affymetrix SNP arrays have become popular and are
widely used. Originally, an array with 1500 SNPs was released,
later the 10k SNP array followed and quite recently arrays
with up to 500k SNPs have been made available. The array
technique is based on genomic hybridization to synthetic
high-density oligonucleotide microarrays [see (1) and refer-
ences therein]. Each of the two alleles of an SNP is repre-
sented by 10 or 14 oligonucleotides (together called a probe
set) and hybridization (probe) intensities are measured for all
probes in a probe set. Affymetrix has developed a software
(GDAS) for genotyping SNPs based on the intensities and,
subsequently, the derived genotypes can be used for further
analysis of the data [such as (i–iii)].

GDAS genotypes SNPs arraywise, one SNP at a time. For
the larger arrays Affymetrix has developed a new dynamic
model-based algorithm (DM) that is also based on arraywise
genotyping (2). Here we present an alternative algorithm
(PBG— pool-based genotyping) for genotyping Affymetrix
SNP arrays. If allele intensities (probe intensities combined
into one value for each allele) (Materials and Methods) are
plotted for a typical SNP, three distinct clusters are generated
that correspond well to the three possible genotypes
(Figure 1). Naturally, this suggests that the genotype of a
SNP could be derived from the distribution of allele intensi-
ties by choosing the genotype of the cloud that statistically
(in some sense) is closest to the observed allele intensities.
PBG builds on this observation.

In addition, we base PBG on a model that allows identifi-
cation and annotation of SNPs that either are difficult to
genotype correctly for experimental reasons or have probes
that are not suited for copy number analysis. Identification
of chromosomal regions with abnormal copy numbers (i.e.
deviations from two copies) is an important undertaking in
cancer research (3). Potentially, these regions harbor onco-
genes or other genomic elements that are involved in the pro-
gression of tumors. Exclusion of SNPs that are not suited for
copy number analysis is thus likely to increase the power to
infer copy numbers correctly. We return to these issues in
Results and Discussion.

At the time of writing this paper we became aware of
another method (RLMM) that takes an approach similar to
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genotyping as we do, although it is not based on a model that
relates the intensities of different SNPs to each other (4). Also
this approach will be taken up in Results and Discussion.

MATERIALS AND METHODS

10k Early Access Array

For this study we used 113 samples collected at Aarhus
University Hospital, Skejby. The GeneChip� Mapping 10k
Early Access Array was applied to all 113 samples. The
Single Primer Assay Protocol (labeling, hybridization, wash-
ing, staining and scanning) was performed according to the
manufacturer’s instructions (Affymetrix, Santa Clara, CA,
USA) (1). Of the 113 samples, 32 are from unrelated Danish
individuals, 40 from Cuban unrelated individuals and 41 from
Cuban families. The Early Access Array has 10 126 SNPs.
Of these 9600 (9430 autosomal and 170 X chromosomal)
mapped to on a unique position in the genome [using the
April 2003 genome assembly (hg15), http://www.genome.
ucsc.edu]. The remaining SNPs (526) were excluded from
further analysis. Genotypes were derived using (unnormal-
ized) probe set intensities with Genechip DNA Analysis Soft-
ware (GDAS) from Affymetrix. Subsequently, the probe set
intensities were normalized using the dChipSNP software
(6) and the allele intensities as defined in equation (1) were
calculated.

HapMap data

To evaluate PBG on an externally validated dataset, we used
a dataset where both HapMap calls and Affymetrix calls are
available. We downloaded HapMap genotype data from 30
CEPH trios (90 samples in total) from http://www.hapmap.
org/downloads/index.html.en and Affymetrix genotype data

from the same samples from http://www.affymetrix.com/
support/technical/sample_data/hapmap_trio_data.affx. There
are 15 589 SNPs for which both calls exist in the 90 samples.
All SNPs are on Affymetrix Xba array and genotyped
with DM.

Notation and definitions

Let a denote an arbitrary allele, a ¼ A or B, and let �aa denote
the complementary allele of a, i.e. if a ¼ A then �aa ¼ B, and
if a ¼ B then �aa ¼ A. Further, let g denote an arbitrary geno-
type, g ¼ AA, AB, BB, AY or BY. Genotypes AY and BY
denote male genotypes for X chromosome SNPs. Also let
aa denote the homozygote genotype for the a allele.

The probe intensities are combined into two values by
taking the logarithm of the average over all probes for the
a allele, a ¼ A or B, i.e.

IijðaÞ ¼ log
1

p

Xp
k¼1

PMijkðaÞ
 !

‚ 1

where PMijk(a) is the intensity of the k-th probe of allele a
for SNP j in array i. Here k runs over k ¼ 1, . . . , p, where
p ¼ 10 or 14, i ¼ 1, . . . , 113, j ¼ 1, . . . , 9600 and PM is
short for perfect match (1). We do not use the mismatch
probes in this approach. We use dChipSNP normalized
probe intensities because they appear to have better statistical
properties than the unnormalized probe intensities [cf. (5,6)].
The values Iij(A) and Iij(B) are referred to as allele intensities,
or the A- and B-intensity, respectively.

Further, for SNP j, let Mj(a j g) be the empirical average
of a-intensities for samples with genotype g . For example,
for a SNP on the X chromosome, Mj(A jAY) is the average
of the A-intensity in male samples with genotype AY and
for an autosomal SNP, Mj(B jAA) is the average of the
B-intensity in samples with genotype AA.

Allelic cross hybridization

The genotypes derived by GDAS were used for this part of
the study. To investigate cross hybridization we focused on
SNPs on the X chromosome (170 SNPs) and compared the
allele intensities found in the male samples to those found
in the female samples. For each SNP on the X chromosome,
the samples were divided into groups according to genotype
(excluding no calls, i.e. SNPs where a genotype call has not
been assigned). Only groups comprising at least five samples
were included in the analysis. The average of the a-intensity
was calculated in each group and a straight line was fitted to
the points (Mj(a jaY), Mj(a jAB)), a ¼ A, B, j ¼ 1, . . . , 170
(Notation and Definition). Note that each SNP contributes at
most two points. One for the A allele (a ¼ A), if there are
more than five male samples with genotype AY and five
female samples with genotype AB. Similarly, one for the B
allele (a ¼ B), if there are more than five male samples
with genotype BY and five female samples with genotype AB.

The model

We assume the following model for the 9430 autosomal
SNPs. The theoretical expectation of the intensity Iij (a j g)

Figure 1. Genotype clusters. Plotted is the allele intensities for a typical SNP.
Blue triangles denote the heterozygous genotype, red crosses and green
circles the two homozygous genotypes. In this case PBG and GDAS agree.
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is denoted mj(a j g), j ¼ 1, . . . , 9430, and the following
relations are assumed:

mjða j aaÞ ¼ c1 þ c2mjða j ABÞ‚ 2

mjða j �aa�aaÞ ¼ d1 þ d2mjða j ABÞ þ d3mjða j ABÞ2
‚ 3

where c1, c2, d1, d2 and d3 are unknown parameters.
The model is motivated by initial plotting of the empirical
means Mj (a j g) (Figure 2). Including a quadratic term in
Equation 2 does not improve the model; the term is statisti-
cally indifferent from zero (p � 0). The model postulates
that the a-intensity of the heterozygous genotype is related
to the a-intensity of the homozygous genotypes and further,
that this relation is ‘global’ in the sense that the parameters
c1, c2, d1, d2 and d3 are not SNP specific, but the same for
all SNPs.

Note that the labeling of alleles by A and B are arbitrary
such that the set of A alleles is not expected to behave differ-
ently or have different chemical properties than the set of B
alleles. Similarly, for the probe sets. The unknown parameters
in Equations 2 and 3 should therefore not depend on a. This
observation also has the consequence that the covariance

matrix of (Iij(A), Iij(B)) for samples with genotype aa does
not depend on a.

We further assume that the covariance matrices are inde-
pendent of the means, i.e. are constant—by testing this
does not appear to be strictly true; in particular, the variance
of Iijð�aaÞ for samples with genotype aa depends somewhat on
mjð�aa j aaÞ (data not shown). This provides an additional five
parameters. The covariance matrix

Shom ¼ s2
hom thom

thom �ss2
hom

� �
4

for samples with homozygous genotypes, where s2
hom is the

variance of the a-intensity and �ss2
hom the variance of the

�aa-intensity, and the covariance matrix

Shet ¼
s2

het thet

thet s2
het

� �
5

for samples with the heterozygous genotype. In total there are
10 + number of SNPs ¼ 9440 parameters in the model – five
regression parameters, five covariance parameters and 9430
mean value parameters.

Figure 2. Mean intensities. Plotted is the mean allele intensities for female samples against the mean intensities for male samples. Only cases for those at least
five samples have a given genotype are included. Intensity of the x-axis: Mj(A|AY) and Mj(B|BY). Intensity on the y-axis depends on the color. Red circles,
Mj(A|AA) and Mj(B|BB); blue triangles, Mj(A|AB) and Mj(B|AB); Green crosses, Mj(B|AA) and Mj(A|BB).
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Parameter fitting

An iterative procedure is used to estimate the model parame-
ters. Assume that an assignment of genotypes to SNPs is
given (Genotyping). For each SNP the samples were divided
into three groups according to genotype (excluding no calls).
The empirical mean Mj(a j g) was calculated for each a
and genotype with at least five sample points, all other
cases were excluded. In the following, superscript k indicates
that the estimates are the estimates after the k-th, k > 0,
iteration.

� Initialization. Define m̂m0
j ða j gÞ ¼ Mjða j gÞ and let ŜS0

hom
and ŜS0

het be the empirical covariances with mjða j gÞ
replaced by m̂m0

j ða j gÞ.
� Update 1. Use linear regression to fit a straight line to

the points ðm̂mk
j ða j ABÞ‚ m̂mk

j ða j aaÞÞ, a ¼ A, B, j ¼
1, . . . , 9430, resulting in two fitted parameters ĉck1 and ĉck2.
Note that each SNP contributes at most two points.

� Update 2. Similarly, fit a second-order polynomial to
the points ðm̂mk

j ða j ABÞ‚ m̂mk
j ða j �aa�aaÞÞ, a ¼ A, B, j ¼

1, . . . , 9430, to obtain three estimated parameters d̂dk
1, d̂dk

2

and d̂dk
3. Again each SNP contributes at most two points.

� Update 3. Use weighted least square to re-estimate
the parameters mjða j ABÞ and mjða j aaÞ assuming the
relationship (2) and weights ŜSk

hom and ŜSk
het. (Only the

relevant entries in the covariance matrices are used.) The
re-estimated parameters are denoted as m̂mkþ1

j ða j ABÞ and
m̂mkþ1
j ða j aaÞ.

� Update 4. Use least square to re-estimate the parameter
mjða j �aa�aaÞ assuming the relationship (3). The re-estimated
parameter is denoted m̂mkþ1

j ða j �aa�aaÞ.
� Update 5. Re-estimate the covariance matrices with
mj(a j g) replaced by m̂mkþ1

j ða j gÞ. Only intensities for
which mj(a j g) is estimated are included.

� Iteration step. Repeat Updates 1–5 a number of times. Here
for three times.

Updates 3 and 4 are two separate steps rather than just one
step. If all parameters are estimated in one step using least
square, Ijða j �aa�aaÞ tends to dominate the least square equation
with the consequence that the estimated values become less
accurate (data not shown).

Genotyping

The procedure for genotyping is iterative starting with an
initial clustering for each SNP of the points (Iij(A), Iij(B))
for all samples into at most four clusters corresponding to
the genotypes AA, AB, BB and NC (no call—both GDAS
and our method genotype an SNP as NC if the confidence
in all proper genotypes are low). For this study GDAS geno-
typing was used as the initial clustering; g0

ij denotes the
GDAS genotype of array i, SNP j. The procedure is continued
until no more (few) changes in genotypes occur. For the k-th
(k > 0) iteration the following is performed.

� Parameter estimation. Estimate the parameters mj(a j g) and
the two covariance matrices (as described in Parameter
Fitting) using all observations for which the estimated
genotype gk�1

ij has confidence higher than C > 0 in iteration
step k � 1. If k ¼ 1 all proper GDAS genotypes (only
excluding no calls) are used.

� Calculation of confidence. Denote the estimated densities
for genotype g by f kðx‚y j gÞ in iteration k. Calculate the
weight for genotype g using the following equation:

Wkðx‚y j gÞ¼ f kðx‚y j gÞ
f kðx‚y jAAÞþ f kðx‚y jABÞþ f kðx‚y jBBÞþe

‚

where (x,y) ¼ (Iij(A), Iij(B)) and e > 0 is a constant. If none
of the genotypes provides good support for (x,y), i.e. if
f(x,y jg) � e, then all genotypes get low confidence. Here
e ¼ 10�10 was used.

� Genotyping. If maxg W(x,y j g) > C, then genotype g ðkÞij ¼
argmaxgWðx‚y j gÞ is assigned to the SNP, otherwise NC is
assigned.

� Iteration step. Repeat the three steps a number of times.
Here for six times.

SNP performance measures

Affymetrix provides a list of SNPs that were excluded/
replaced in the commercial version of the 10k SNP array. It
comprises 998 SNPs out of the 9430 autosomal SNPs that are
used in this study. The reasons for excluding the SNPs
include low call rate, low confidence, poor reproducability
and visual criteria. The SNPs in the list were compared to
the SNPs found by the SNP performance measures described
below. The measures are designed to identify SNPs that are
difficult to genotype correctly or to flag SNPs or alleles,
where the probes of one or both alleles do not show a dose–
response behavior, as postulated by the model. The flagged
SNPs and alleles might not be suitable for copy number
analysis.

Hardy–weinberg equilibrium. For all SNPs it was tested
whether the genotype assignments complied with Hardy–
Weinberg equilibrium. To avoid issues of imbreeding and
admixture, two groups of arrays were defined. (i) A group
of unrelated Danish individuals (32 arrays) and (ii) a group
of unrelated Cuban individuals (40 arrays). For each SNP
(j), the total number of genotypes (nj; not including no
calls) and the numbers of A (aj) and B (bj) alleles were cal-
culated. SNPs where all arrays in a group are homozygous for
the same allele are excluded (they trivially comply with
Hardy–Weinberg equilibrium). Subsequently, a permutation
test was conducted where the aj and bj alleles randomly
were re-distributed among the nj individuals. It was counted
how often a value higher than the observed value of the chi-
squared statistic was obtained in the permuted samples. A
total of 1000 permutations were performed.

Distance measure. A weighted Euclidian distance was cal-
culated between the observed means Mjða j gÞ and the esti-
mated means m̂mjða j gÞ. This was performed for the A- and
the B-intensities alone and jointly for both. A probe set that
does not perform according to expectations is likely to have
a higher distance value than a probe set that does perform
according to expectations. Thus, a large distance indicates
that the observed intensities do not fit well to the model.

For the a probe, the following distance was calculated:

1

m̂mjða j ABÞ2

X
g
Dða j gÞ2ŝsða j gÞ�2

‚
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where Dða j gÞ ¼ Mjða j gÞ � m̂mjða j gÞ, if m̂mjða j gÞ lies
between Mj(A j g) and Mj(B j g); and otherwise D(a j g) ¼ 0.
Generally, SNPs can be genotyped correctly if m̂mjða j gÞ lies
outside the interval spanned by MjðA j gÞ and MjðB j gÞ.
Here ŝsða j gÞ is the average of the squared residuals
Mjða j gÞ � m̂mjða j gÞ. The factor m̂mjða j ABÞ is motivated
by the model; it roughly scales intensities for different
SNPs to the same range. Thus, distances become comparable
between SNPs.

Alleles were flagged if the distance was >0.15. SNPs were
flagged if the A and B distances both were >0.15.

RESULTS

Allelic cross hybridization

The genotypes derived by GDAS were used for this part of
the study. Figure 2 shows the relationship between the
mean of the allele intensities for the male and the female
samples for all 170 SNPs on the X chromosome.

To investigate cross hybridization we focused on SNPs
on the X chromosome (170 SNPs) and compared the allele
intensities found in the male samples to those found in the
female samples. Specifically, we compared the a-intensity
for samples with genotype AB (females) to the a-intensity
for samples with genotype aY (males). The curve of
Mjða j ABÞ � Mjða j aYÞ plotted against Mjða j ABÞ is not
statistically different from the constant line with intercept 0
(P ¼ 0.71). For definition of Mj(a j g) see Notation and
definitions. It is concluded that the presence of the B allele for
genotype AB (in females) does not affect hybridization of
the A allele and vice versa. Also, the curve Mjða j �aa�aaÞ �
Mjða j �aaYÞ plotted against Mjða j �aa�aaÞ is not statistically
different from the constant line with intercept 0 (P ¼ 0.32).
In consequence, hybridization of the A allele is not affected
by the copy number of the B allele (1 or 2) and vice versa.

Thus, it appears that the effect of allelic cross hybridization
generally is insignificant. This observation does not have
immediate consequences for our genotyping method but
will have consequences for copy number analysis. It will be
taken up in Discussion.

Genotyping

Initially, we selected all arrays for which the arraywise
residuals after iteration 1 of parameter fitting (Parameter
fitting) were <0.27 (Supplementary Figure S1). A total of
10 arrays were excluded in this way, leaving 103 arrays.
The 10 arrays were used for testing. We performed the geno-
typing method on the 103 arrays as described in Parameter
fitting and Genotyping. Subsequently, the 10 arrays were
genotyped with the parameters estimated from the 103 arrays,
and thus served as an independent test of the method.

In majority of cases PBG agrees with GDAS and only one
round of iteration is necessary for PBG to stabilize. In some
cases PBG improves with the number of iterations because
the starting point (GDAS genotypes) is inaccurate and/or
the variation in the data requires extra iterations before stabil-
ization occurs. Figure 3 shows examples of SNPs genotyped
with GDAS and PBG after five rounds of iteration and confi-
dence level C ¼ 0.90. This level of confidence gives fewer

no calls than GDAS (PBG 1%, GDAS 6.6%) (Table 1) but
we have found from studying plots of the estimated
genotypes that this level of confidence appears reasonable.
With confidence C ¼ 0.998 the same number of NCs are
made (�6.5%) but the two methods only agree on �26%
(¼1.3/5.0) of these.

Table 2 shows how often the two methods agree on
genotype when a call has been made for different levels of
confidence. A mere 392 SNPs (not listed in the table) in
113 arrays (total of 1 064 686 SNPs) were homozygous AA
(BB) with PBG and BB (AA) with GDAS when using confi-
dence 0.90. This number was reduced to 263 SNPs when
using confidence 0.998.

The examples in Figure 3 illustrate some of the differences
between PBG and GDAS. In many cases where PBG out-
performs GDAS, GDAS does not provide a call to one cluster
of points or to a group of points located within a cluster. This
is not just a question of the level of confidence. Even with a
higher level of confidence, e.g. C ¼ 0.95, PBG is able to
genotype these SNPs (data not shown).

There are also few cases where GDAS outperforms PBG—
one case is also shown in Figure 3. In other cases, there is one
cluster and PBG might also fail here. The presence of just one
cluster is either (i) because one allele has low population fre-
quency and by chance is not represented in the sample, or (ii)
because of poor experimental conditions that make it statisti-
cally impossible to distinguish the genotypes from one
another. In these cases PBG often provides an overrepresen-
tation of heterozygous genotypes. For 31 SNPs, 60% or more
(excluding NC) are heterozygous. In a panmixing population
50% is the maximum theoretical heterozygosity level, and an
overrepresentation of heterozygous genotypes is thus in con-
flict with expectations and results in strong violation of
Hardy–Weinberg equilibrium. In contrast, for the 31 SNPs,
GDAS shows a scatter of different genotypes—whether
GDAS genotyping is correct in these cases requires experi-
mental verification.

For 440 SNPs we found 4 or more differences between
PBG and GDAS, only counting cases where both methods
make a proper call (i.e. excluding case where one or both
methods assign NC). The group of 440 SNPs is referred to
as Group B, the remaining SNPs as Group A.

It is difficult to get exact numbers for when one method
performs better on a particular SNP than the other, because
we do not know the true genotypes. A manual expection indi-
cates that for �150 SNPs PBG does a better job than GDAS,
and for �40 SNPs the opposite is true. These all appear in
Group B and �90% of the cases, where we believe GDAS
is superior, are spotted by the perfomance distance measure
introduced in the following section.

Despite PBG is based on a model which assumes that the
intensity raises with the number of alleles present, PBG suc-
cessfully genotypes SNPs where one probe does not perform
according to the model. To illustrate this point we genotyped
the 170 SNPs on chromosome X using only female samples.
Subsequently, the male samples were genotyped (see Table 3).

SNP performance measures

Individual SNPs that are not in Hardy–Weinberg equilibrium
after genotyping are likely to be falsely genotyped. Thus,
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failure to pass a test for Hardy–Weinberg equilibrium is an
indication of poor SNP quality. If Hardy–Weinberg equilib-
rium generally is not fulfilled it indicates poor performance
of the method.

We performed a permutation test for Hardy–Weinberg
equilibrium for all SNPs in two populations: the samples of
unrelated Danish individuals (32 arrays) and the sample of
unrelated Cuban individuals (40 arrays). Table 4 summarizes
the findings. SNPs were excluded if all samples were

homozygous for the same genotype or were no calls. These
SNPs trivially comply with Hardy–Weinberg equilibrium.
In general, PBG provides more genotypes that are in concor-
dance with Hardy–Weinberg equilibrium and with statistical
expectations.

An overview of the results of the performance measures
are collected in Table 5. Lists of SNPs being selected by
the performance measures are provided in Supplementary
Table S1.

Figure 3. Genotyping examples—PBG versus GDAS. Shown are eight SNPs genotyped with GDAS and PBG, respectively. Red crosses: Homozygous for AA;
blue triangles, heterozygous; green circles, homozygous for BB; yellow rhombuses, no call. SNPs 1–3 show cases where PBG outperforms GDAS; SNP 4 shows
an example where the A allele does not reflect the number of A alleles in the genotype, but still GDAS and PBG genotype correctly; SNPs 5 and 8 show cases
where none of the probes apparently functions correctly; and SNPs 6–7 show cases where GDAS outperforms PBG.
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Generally, we find an overrepresentation of SNPs in the list
of rejected SNPs of the Affymetrix compared to the list of
non-rejected SNPs. The distance measure was calculated
for each allele intensity and jointly for both, as described in
Materials and Methods. Plots of all SNPs with a distance

>0.15 is shown in Supplementary Figure S2. The distance
measure is adequate to identify SNPs that are difficult to
genotype, i.e. SNPs with experimentally poor performance,
or where the probes for one or both alleles are not reacting
in a dose–reponse manner, i.e. probes that are not suitable
for copy number analysis.

Even if a combination of measures are used, the frequency
of flagged SNPs in the list of rejected SNPs of the Affymetrix
does not exceed 32% (out of 998). To achieve this, SNPs are
flagged if the number of NC exceeds 5% (NC 5% in Table 5)
or the P-value for the test for Hardy–Weinberg equilibrium is
<1% (HW 1% in Table 5). Oppositely, the frequency of
rejected SNPs out of all flagged SNPs does not exceed 36%
(combining distance with NC 5% and HW 0.1%). A table is
provided in Supplementary Table S2.

Comparison with other methods on HapMap data

In the previous sections we have evaluated PBG on a large
dataset and compared PBG to GDAS. To evaluate PBG on
an externally validated dataset, we followed the procedure
in (4) closely. This procedure also allows us to compare
PBG with DM (2) and RLMM (4).

We selected 15 589 SNPs from Affymetrix Xba array
where both HapMap and DM calls were available (Materials
and Methods). We ran PBG and DM on this dataset. Unfor-
tunately, we could not get RLMM to run on our computers
and we therefore used results from (4) to compare with
RLMM. These results are based on 15 910 SNPs selected in
the same way as our dataset. The discrepancy between the
sizes of the two datasets is unknown to us. For each SNP
(in both datasets) calls are made for 90 individuals. Table 6
summarizes the results.

Interestingly, PBG genotypes are identical to HapMap
genotypes in all 90 samples for 81.4% of the SNPs in the

Table 1. PBG versus GDAS

Conf. PBG GDAS
103 Arrays 10 Arrays 113 Arrays
Call NC Call NC Call NC

0.9 Call 93.1 6.0 88.6 8.8 92.7 6.3
NC 0.6 0.3 1.7 0.9 0.7 0.3

0.95 Call 92.8 5.9 87.9 8.5 92.4 6.2
NC 0.8 0.4 2.4 1.3 1.0 0.5

0.99 Call 91.6 5.6 85.6 7.6 91.1 5.7
NC 2.1 0.8 4.6 2.2 2.3 0.9

0.998 Call 89.0 5.0 82.5 6.5 88.4 5.1
NC 4.7 1.3 7.8 3.3 5.0 1.5

Shown is how often PBG and GDAS make a genotype call and an NC using
different confidence levels for PBG. Standard settings were applied for GDAS.
The additional 10 arrays were genotyped using the parameters fitted when
genotyping the 103 arrays. In total 970 466 SNPs in 103 samples were available
for genotyping, and 94 220 in the remaining 10 arrays.

Table 4. Test for Hardy–Weinberg equilibrium

Group A Group B
Mean Var Mean Var

PBG 0.50 0.081 0.37 0.096
GDAS 0.48 0.084 0.34 0.094

Group A is defined as SNPs where PBG and GDAS disagree on the genotype
(excluding NC) in <4 cases, and Group B (440 SNPs) is defined as those where
there are >4 disagreements. The mean and variance are expected to follow a
uniform distribution, i.e. the mean should be 0.50 and the variance 0.083. Both
methods have problems with Group B. The GDAS mean 0.48 is significantly
different from 0.50 (P < 0.001).

Table 6. Comparison with other methods on HapMap data

No. of SNPs PBG DM No.of SNPS RLMM

15 589 99.50% 99.60% 15 910 ?
14 509 99.57% 99.65% 11 446 99.86%

Shown is the percentage agreement with HapMap calls for different methods.
PBG and DM are run on the same data set, RLMM on a different, although
similar, dataset (see text). The SNPs in the second row form a subset of the
SNPs in the first row. SNPs are excluded if they fulfill the criteria that there is
at most one member in two genotype groups (based on HapMap calls). Results
are not available for RLMM on the full dataset.

Table 5. Comparison of different performance measures

Distance NC HW
One Both 5% 10% 0.1% 1% Group B

Total 485 34 408 125 57 384 440
Rejected 158 14 185 70 24 107 191

The list of rejected SNPs comprises 998 SNPs. NC 10% (5%) is the group of
SNPs with a no call rate of at least 10% (5%). If an SNP obtains a P-value <1%
(0.1%) in the test for Hardy–Weinberg equilibrium in either of the two popula-
tions it counts in HW 1% (0.1%). Generally, we find an overrepresentation of
SNPs in the list of rejected SNPs compared with the list of non-rejected SNPs.

Table 2. Percentage agreement (%-agrm) between PBG and GDAS

Conf. 103 Arrays 10 Arrays 113 Arrays
%-agrm NC %-agrm NC %-agrm NC

0.9 99.25 0.8 98.98 2.6 99.23 1.0
0.95 99.30 1.2 99.09 3.6 99.28 1.4
0.99 99.41 2.8 99.31 6.8 99.40 3.2
0.998 99.52 6.1 99.46 11.0 99.51 6.5

Shown is how often the two methods agree when both methods make a call,
and the percentage of no calls obtained with PBG.

Table 3. Genotyping of SNPs on chromosome X

Conf. Female Male All
%-agrm NC %-agrm NC %-agrm NC

0.9 99.39 0.70 98.32 1.80 98.92 1.20
0.95 99.41 1.00 98.54 2.51 99.02 1.68
0.99 99.59 2.41 99.07 3.82 99.36 3.05
0.998 99.65 4.53 99.25 4.84 99.47 4.67

Out of 113 samples, 62 are females and 51 males. For comparison, GDAS
produces 5.15% NC in females, 7.29% in males and 6.11% in total.
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full dataset and for 87.7% of the 1080 SNPs excluded by the
criteria used in (4) (see also Table 6). The criteria excludes
SNPs if there is at most one member in two genotype groups
(based on HapMap calls). This shows one strength of PBG,
because it is able to genotype accurately, even though some
genotypes are sparsely represented in the data. It is not
shown in (4) how RLMM performs on the excluded set of
SNPs.

It is also worth pointing out that RLMM used HapMap
calls to train the algorithm, whereas PBG used Affymetrix
calls (inferred by DM). Affymetrix calls are always available
for Affymetrix arrays, whereas HapMap calls naturally are
not. Thus, training with HapMap calls is not generally possi-
ble. Generally, this might lead to lower performance of
RLMM than reported in Table 6, because HapMap calls are
believed to be highly accurate.

DISCUSSION

We have developed a new method for genotyping Affymetrix
SNP arrays and compared the performance of our method
(PBG) to that of Affymetrix (GDAS). PBG is based on ana-
lyzing multiple arrays at the same time, in contrast to GDAS
that analyses SNPs arraywise, one SNP at a time. Generally,
the two methods agree, but PGB appears to be able to geno-
type correctly with a lower no call rate and also appears to
produce more genotypes than GDAS that comply with
Hardy–Weinberg equilibrium. In addition, PBG is based on
a model that relates allele intensities from different SNPs to
each other. We use this relationship to annotate SNPs and
alleles. The plots provided in Supplementary Figure S2
show that we are able to annotate poor performing SNPs
and alleles. We also compared PBG to two other recently
published methods, DM and RLMM. Overall the methods
seems to have similar performances; some of the differences
are explained below.

Our method is based on dChipSNP normalized probe inten-
sities. One array is selected as reference array and all other
arrays are normalized relatively to the reference array. This
has the advantage that new arrays (a test set) can be geno-
typed using fitted parameters obtained from a training set.
If the test set is normalized relatively to the reference array
of the training set the fitted parameters of the training set
can be used to genotype the test set. Particularly, this should
be useful when genotyping only few arrays, provided the
fitted parameters of the test set and the reference array is
publically available. We showed that this approach is feasible
by analyzing an additional 10 arrays that was not used for
fitting (Table 1).

Our model has 10+ number of SNPs ¼ 9440 parameters.
For some SNPs only one or two genotypes are observed. In
these cases, we use the model to estimate the mean intensity
of the non-observed genotypes. In contrast, the model RLMM
proposed in (4) has 15 · number of SNPs ¼ 139 450 parame-
ters (if applied to the 10k array), because their model does not
assume a relationship between parameters for different SNPs.
If a genotype is not observed or sparsely represented, the
parameters for that genotype are predicted using estimated
parameters from other SNPs. Note that it is not known how
RLMM performs on SNPs where only one genotype is
present (or some genotypes are sparsely represented). In (4)

results are not shown for these SNPs, even though they com-
prise �28.7% of the SNPs in their dataset.

Naturally, the structure of the data can be modeled more
accurately with a large dimensional parameter than a small
dimensional parameter (in the sense that 9440 is small com-
pared to 139 450). PBG is thus likely to fail in genotyping
some SNPs that might be correctly genotyped by RLMM.
However, since these SNPs do not fit the model, PBG will
flag them as ‘poor’ and they can be excluded from the anal-
ysis. Flagging or annotation of ‘poor’ performing SNPs offers
a two-sided advantage. First of all, SNPs that perform ‘poor’
because of experimental reasons can be excluded from the
analysis. Second, SNPs can be ‘poor’ performing, as illus-
trated in Figure 3 and Supplementary Figure S1, because
for one or both alleles the probes do not behave in a dose-
response manner and should therefore be excluded. These
SNPs might still be genotyped correctly, but are not suitable
for copy number analysis. Several research groups have
demonstrated that a typical SNP shows a linear relationship
between the log-copy number and the log-intensity and used
the intensity levels in diploid samples to infer copy numbers
in abnormal samples, e.g. in tumor samples for instance
see (3,6,8,9). This relationship is documented both with the
data normalization procedure introduced by Affymetrix and
with dChipSNP’s procedure, which is used in PBG.

Analysis of SNP arrays often requires correction for multi-
ple testing. To avoid too many false positives the significance
level of a single test should be chosen low. Excluding SNPs
that are poorly performing because of experimental reasons
should reduce the number of false positives and thus increase
the power.

It appears that GDAS genotypes tumor samples reliably at
the cost of an increased no call rate are compared to normal
samples. Our initial investigations show that PBG seems to
make more errors while genotyping tumor samples (data
not shown). This is expected because we explicitly apply a
model which assumes that two copies of the DNA are present
for each SNP, whereas a copy number of two is often found
violated in tumor samples. Whether, the method in (4) can
genotype samples with abnormal DNA content correctly is
presently unknown.

In (3,6,8,9), genotyping and copy number analysis are
separate issues; i.e. if genotypes are used in a copy number
analysis the genotypes are obtained before the copy number
analysis is conducted. It would be natural to combine the
two into a single analysis. We showed in Allele Cross
Hybridization that the level of the A-intensity is not affected
by the copy number of the B allele, and vice versa. This leads
us to speculate that cross hybridization can be ignored gener-
ally in the sense that the level of the A-intensity is only affec-
ted by the copy number of the A allele, not the copy number
of the B allele. Assuming a linear relationship between
log-copy number and log-intensity, the intensity levels for
higher allele copy numbers could be extrapolated from the
observations made in this paper.

A version of PBG implemented in Perl is available from
the authors upon request.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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