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Reply to Robert et al.: Model criticism
informs model choice and
model comparison

Robert, Mengersen, and Chan (RMC) represent our approach to
model criticism in situations when the likelihood cannot be com-
puted (1) as away to “contrast severalmodelswith eachother” (2, 3).
Moreover, RMC argue that model assessment with Approximate
Bayesian Computation under model uncertainty (ABCμ) is unduly
challenging andquestion itsBayesian foundations.Wedisagree, and
clarify that ABCμ is a probabilistically sound and powerful tool for
criticizing a model against aspects of the observed data x0.

Coherence and Power of ABCμ in Model Assessment
ABCμ (1) probes a sampling model M by summarizing the data
similar to ABC and introducing error terms, each associated to
one summary, to quantify the frequency of observed error
magnitude under θ,

ε1:K→ξθ;x0ðε1:K Þ

¼ lim
h→0

Z
δh
�
ðρkðSkðxÞ; Skðx0ÞÞ− εkÞ1:K

�
f ðxjθ;MÞdx:

Because we shift only the observed summaries (without further
adjustments, as in ref. 2),

θ; ε1:K→fρ;τðx0jθ; ε1:K ;MÞ ¼ ξθ;x0 ðε1:K Þ

is proportional to a density in x0. Furthermore, transformations
of ξx0 ;θðε1:K Þπε1:K ðε1:K Þ must also change the scale τ of πε1:K when
the Jacobian is not constant (see ref. 4 for details). It is well
known that ABC and ABCμ are not invariant to changes in
x→ρkðSkðxÞ; Skðx0ÞÞ and τ. This leaves ABCμ probabilistically
sound, but calls for sensitivity analyses.
In contrast to ABC, the error ε1:K is no longer understood as a

latent random variable, and we termed fρ, τ(x0|θ, ε1:K,M) “aug-
mented likelihood” (1) simply to indicate that the state space was
extended. Labeling fρ, τ(x0|θ, ε1:K,M) a “shifted likelihood” seems
more appropriate (4).
Using multiple error terms ε1:K is integral to our method.

ABCμ is powerful in revealing model mismatch whenever all
discrepancies are simultaneously away from zero for any θ. To
escape unidentifiability, the crux is to use errors associated to
codependent summaries that may reveal model inconsistencies
(see ref. 4 and Figs. 1 and 2). These summaries need not
be sufficient. Finally, the smaller τ can be chosen, the more we
are able to criticize a fitted model, and the influence of πθ is
attenuated (4).
Because ABCμ makes only fuller use of the data already

generated in ABC [e.g., Std-ABCμ (1), mcmcABCμ (4)], no
extra computational cost is incurred (see Fig. 2). The second
algorithm in ref. 1 may help when the data-generating process
is volatile.

Model Criticism and Model Comparison
Model criticism and model comparison are complementary;
methods for model comparison attempt to choose between
candidate models, even if all of them do not match the data.

Approximate Bayes’ factors can address both model comparison
and model criticism when the likelihood cannot be readily
evaluated, and may provide different answers (4). Credibility
intervals (1) are informal diagnostics to indicate directions into
which a faulty model could be modified.
In biology, we now often face quantities of data that are

hard to analyze under current computer resources (e.g.,
molecular genetic data) and/or are intricate (e.g., interaction
networks), or we cross boundaries of biological organization
(e.g., systems biology). In such challenging circumstances,
ABCμ offers statistical rigor during the initial stages of model
design to identify one or a suite of models that are in agree-
ment with many aspects of the data at the same time. This
clearly informs model choice.

Fig. 1. To illustrate the power of ABCμ in revealing existing model mismatch,
consider 100 independent samples that are exponentially distributed with rate
0.2, suppose that each sample is generated according to a Gaussian likelihood
model with unknown mean μ ∈ ℝ and σ2 ≥ 0 (denoted byM2) and summarize
the datawith the samplemean andmedian.We consider ρk(Sk(x), Sk(x0)) = Sk(x)
– Sk(x0), a normal-inverse gamma prior πθðθjM2Þ ¼ πðμjσ2;M2Þπðσ2jM2Þ ¼
N ðμ; μ0; σ2ÞIGðσ2;α0; β0Þwith μ0 = 5,α0 = 4, and β0 = 75. Thehyperparameters are
chosen such that it is possible to employ a simple ABCμ algorithm, and results
are insensitive to the choice of μ0, α0, β0, but may require more advanced nu-
merical algorithms. Crucially, we set πε1:K ðε1:K jM2Þ ¼∏2

k¼11=τk1fjεkj≤τk=2gwith
τk = 1.6 sufficiently small, as is standard practice in ABC. We ran Std-ABCμ (1)
and show in A and B the accepted samples (black, only μ) together with the
computed discrepancies as well as the accepting region of Std-ABCμ (gray). The
heat plot in C reconstructs the density fρ;τðε�x; εmedianjx0;M2Þ. ABCμ clearly sug-
gestsmodelmismatch even though the two summaries are not sufficient for θ =
(μ, σ2) underM2.With larger τ and/or unbalanced choicesof τ, it ismoredifficult
to identify model mismatch, indicating the importance of choosing τ in such a
way that the conflict between both summaries (K > 1) propagates into
fρ;τðε�x; εmedianjx0;M2Þ.
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Fig. 2. To illustrate the computational tractability of ABCμ in real-world
applications, we analyzed two large protein–protein interaction data sets
[Campylobacter jenuni (5) and Saccharomyces cerevisiae (6)]. As before, in-
teraction networks were summarized with a set of seven codependent
topological statistics to quantify the adequacy of the duplication-divergence
model DDA+PA and the preferential attachment model PAH under the
sampling scheme RS2 (1). The prior density πθ(θ|DDA + PA) was uniform, πθ(θ|
PAH) was very broad, πε1:K was set in both cases to ∏K

k¼11=τkexpð− 2jεkj=τkÞ,
and τk were chosen small. We used the Metropolis–Hastings algorithm
mcmcABC\μ to obtain samples from fρ, τ(θ, ε1:K|x0, M) (4). Because we record
only the discrepancies that are computed in any case, ABCμ has exactly the
same computational complexity than ABC with the approximation kernel
πε1:K . The heat plots show a two-dimensional slice of our seven-dimensional
posterior error density for PAH (A, B) and DDA+PA (C, D) across both data
sets, indicating that preferential attachment fails to account for the degree
correlations and the neighborhood structure in the topology of the data
sets. On average, it took 2 min to evaluate all summaries for one S. cerevisiae
simulation, and hence it would require an extra 2 × 500/60 ≥ 16 h to obtain
500 samples from the approximate posterior predictive error density pro-
posed by RMC (4). Assuming a generously large acceptance probability of
10%, the extra time required to obtain 500 samples from the weighted
posterior predictive error (see ref. 4) is more than 6 days.
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