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INTRODUCTION

This paper is concerned with modelling intralocus
gene conversion within a coalescent framework. By gene
conversion we refer to a genetic exchange where a short
tract of information is transferred from one gamete
to another without concurrent crossing-over (see, e.g.,
Andolfatto and Nordborg (1997) and references therein).

In the analysis of intralocus variability and linkage dis-
equilibrium, the mechanisms operating at the sequence
level must be properly understood. Recombination was
first incorporated into the coalescent model (Kingman,
1982, describing the genealogical process of a sample of
sequences taken from a population) by Hudson (1983)
and has subsequently been investigated by a number of
authors (Hudson and Kaplan, 1985, Griffiths and
Marjoram, 1997, and Wiuf and Hein, 1997, among
others).

The basis for Hudson's coalescent with recombination
is the following. Over small intervals it may be assumed
that crossing-over events are equally likely to occur at
any point between two markers, and the probability of
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more than one event can be neglected. The probability of
a crossing-over therefore increases linearly over small
distances.

However, in models of homologous recombination the
resolution of the Holliday junctions results either in a
gene conversion with accompanying exchange of flank-
ing regions (gene conversion with recombination) or in a
gene conversion alone (Stahl, 1994). In the latter case a
short tract of genetic information is transferred from one
gamete to another without concurrent crossing-over. We
refer to this phenomenon as gene conversion and the former
phenomenon as recombination. Over small distances
the effect of gene conversion events adds to the overall
probability of producing a recombinant, an effect that is not
accounted for in the coalescent with recombination alone.

Recently, it has been suggested that the lack of
intralocus associations in regions of low rates of re-
combination found in, e.g., Drosophila melanogaster
(Begun and Aquadro, 1995) is due to gene conversion
(Andolfatto and Nordborg, 1997). Thus, there is a need
to model gene conversion and study to what extent
models with gene conversion and recombination can
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FIG. 1. Recombination. If the resolution of the Holliday junction res
bination event. In the left part of the figure, two of the four strands invo
starts at the present (the second generation) and goes backwards. Starting
of the recombination event is to create two ancestors to the sequence; th
the right of S share another ancestor.

explain observed patterns of variability that recombina-
tion models apparently fail to explain.

In this paper we develop a gene conversion model
within the coalescent framework. The model is very
general in that it allows the distribution of the tract
length to take an arbitrary form. The results are dis-
cussed relatively to the question raised by Andolfatto and
Nordborg (1997).

The effect of recombination in the coalescent model is
to break the material ancestral to a sequence up into two
parts and distribute the parts onto two different
ancestors, one carrying the ancestral material to the left
of the recombination break point, S, the other carrying
the material to the right of S (Fig. 1). In contrast, gene
conversion as defined here breaks the material ancestral
to a sequence at two points, S and T, and distribute the
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FIG. 2. Gene conversion. If the Holliday junction is resolved without an
recombination). In the left part of the figure, two of the four strands involve
starts at the present (the second generation) and goes backwards. Starting wi
of the gene conversion event is to create two ancestors to the sequence; the p
position in between S and T share another ancestor.
in an exchange of flanking regions we have (what here is called) a recom-
in the Holliday junction are shown. In the right part of the figure time

th either of the two strands�sequences in the second generation, the effect
ositions to the left of position S share one ancestor and the positions to

material to the left of S and that to the right of T onto one
ancestor, the part in between S and T onto another
ancestor (Fig. 2).

From the point of view of the ancestral graph (the graph
describing the history of the sequences), the effect of a gene
conversion event can be obtained by two recombination
events and one coalescent event (Fig. 3).

Similarly, the effect of a recombination event can be
obtained by one gene conversion event, where one end
point falls outside the observed sequence.

More differences arise when we take a probabilistic
view of the two processes. The probability of a gene con-
version event might be very different from that of two
recombination events followed by a coalescent event.
Further, the latter (given that the first event occurs) will
depend strongly on the current sample size; the higher
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exchange of flanking regions we have a gene conversion event (without
d in the Holliday junction is shown. In the right part of the figure time
th either of the two strands�sequences in the second generation, the effect
ositions to the right of T and to the left of S share one ancestor and the
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FIG. 3. Gene conversion versus recombination. The topological effec
with recombination only by two recombination events accompanied by
same as the rate of recombination events, we find that the chance of tw
that of a gene conversion event. The former also strongly depends on
coalescence event occurs, only one out of three possible mergings will re

the sample size, the lower the chance that the two recom-
bined sequences will coalesce before coalescing with any
other sequence in the sample.

As sequence length increases, gene conversion events
where only one end point falls within the observed
sequence length become rare, in contrast to recombina-
tion models where this is the only type of event. Further,
for an event of this type the gene conversion end point
will be distributed just around the end points of the
sequence, again in contrast to recombination models
where the break point is uniform on sequence length
(standard assumption; see, e.g., Griffiths and Marjoram,
1997).

The distribution of the gene conversion end points, S
and T, is determined by the distribution of the length of
the transferred chunk between S and T. Thus, we should
not expect S and T to be uniformly distributed, even in
the case where only one end point is within the observed
sequence length.

In the eighties, models of gene conversion within mul-
tigene families were developed (see, e.g., Ohta, 1986).
These models do not apply to intralocus gene conver-
sion, and the model scheme differs in several ways from
the one proposed here. Hudson (1994) discusses models
with various genetic transformations similar to gene con-
version. In these models blocks of genes are transferred
and, further, the model scheme is different in a number of
places from the one proposed here.

Gene Conversion
A specific example of the model developed here was
investigated in a previous paper (Wiuf and Hein, 2000)
and we refer to that paper for further discussion and
implications of gene conversion.
one gene conversion event (shown to the left) can be obtained in a model
alescence event. Assuming that the rate of gene conversion events is the
combination events followed by a coalescence event is far smaller than
number ancestral sequences present. Here, for example, given that a

in the desired distribution of ancestral material.

THE MODEL

The model within the coalescent framework of a pop-
ulation subject to gene conversion is the following. The
population is constantly of size N and diploid; i.e., the
effective population size is 2N. A new generation is
obtained from the present generation by sampling 2N
sequences with replacement forming random pairs
of sequences, and letting one of them transfer a short
tract of nucleotides to the other sequence. The mode of
transfer is described below.

Sequences are of length L+1 nucleotides, so there are
L gaps between nucleotides. Consider one such sequence.
Assume that in any generation the probability of gene
conversion initiating between any two positions in the
sequence is g, independent of whether gene conversions
initiate elsewhere along the sequence. The probability
distribution of the number of conversions is binomial
with parameters g and L, i.e., Bin(g, L), so that the prob-
ability of more than one gene conversion in one genera-
tion is negligible for small g. Put G=4gNL; G is defined
similarly to the rate of recombination in the coalescent
model with recombination. If N is large and gL small, the
number of sequences undergoing a gene conversion in
one generation is Poisson with intensity G�2. Where
along the sequence a gene conversion initiates is uni-
formly distributed among all sites.

The transferred chunk of nucleotides originates from a
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randomly chosen sequence in the population. Let the
length, Z, of the converted chunk have distribution
P(Z=i | conversion), i�1; i.e., at least one nucleotide is
transferred. It is assumed that the insertion happens to



the right of the gap where the conversion initiates. If the
conversion initiates at gap S, S=1, 2, ..., L (S for start),
then the end point of the conversion is T=S+Z (T for
terminate). If S+Z is greater than L, the conversion falls
partly outside the L+1 observed nucleotides.

Alternatively, we could consider a model where the
insertion happens to the right of the gap with probability
p, 0�p�1, and to the left with probability 1& p, inde-
pendent of the position where it happens. In this case the
gene conversion will be partly outside the L+1 observed
nucleotides if S&Z is smaller than 1 or if S+Z is greater
than L. It turns out that this model can be considered
equivalent to that mentioned above (corresponds to
p=1), and as we go along, we will make this point clear.

If g is not sufficiently small so that more than one con-
version can happen in one sequence in one generation,
overlapping gene conversions could result. However, our
interest is small values of g and the diffusion limit con-
sidered ensures that only one conversion event can
happen at a time. For larger values of g, one can circumvent
the problem by truncating the variable Z, so that no
overlaps occur.

The genealogical process of a sample of n present-day
sequences will be studied; time will start at the present
and increase going backwards in time. Under the above
assumptions we find that the waiting time, WC ,
measured in units of 2N generations until a sequence has
been created by a gene conversion event that initiates
within the sequence is exponentially distributed with
parameter G�2; i.e., WC tExp(G�2), if N is large and gL
small. The rate of gene conversions initiating outside the
sequence but ending within the observed sequence must
also be taken into account. This rate turns out to depend
on the distribution of Z. The rate of coalescence is
n(n&1)�2 if there are n sequences in a sample (Kingman,
1982).

We will now explore the structure of the gene conver-
sion in more detail. Consider a sequence in a certain
generation. Let C denote the event that a gene conversion
happens in a given sequence and in a given generation.
Further, let C1 denote the event that the gene conversion
falls partly outside the L+1 observed nucleotides, that
is, S+Z>L, and let C2 denote the event that both end
points are within the sequence length (lower index i
indicates that i, i=1, 2, of the two end points of the con-
verted chunk are within the L nucleotides).

Denote by `, _, and {, respectively, the variables Z�L,
S�L, and T�L, respectively. Though _ and { depend on L,
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e.g., they both take values in [1�L, 2, ..., 1&1�L], we
suppress L in the notation. The probability measure wrt
to the model with sequences of length L+1 is denoted
PL . In terms of `, _, and {, the sequences are considered
as part of the interval (0, 1), and as L increases the
nucleotides become more densely spaced in (0, 1).

Assume that as L tends to infinity the distribution of
`=Z�L, PL(`� } | C), converges weakly;

PL(`�z | C) � P(`�z | C) (1)

for all points z>0 where P(`� } | C) is continuous. In
the following, whenever the limit as L � � is considered,
we assume that z is a continuity point of P(`� } | C). All
results will be given in terms of P(`� } | C) and
P(`> } | C), which both are right continuous, and the
limit expressions are valid for all 0�z<1 irrespective of
whether z is a continuity point or not.

A few examples are appropriate:

(1) All gene conversions have the same length,
Z=Z0 ; PL(Z�i | C)=1[Z0 , �)(i), where 1A( } ) is the
indicator function of a set, and PL(`�z | C) � 1[`0 , �)(z),
z{`0 , if Z0 �L � `0 as L � �. The limit distribution of `
is the Dirac measure at `0 , the measure with all mass
in `0 .

(2) Z follows a negative binomial distribution with
parameters 1>q>0 and }>0;

PL(Z=i | C)=\i+}&1
i + (1&q) i q}, i�0

and

PL(`�z | C) � |
z

0

Q}

1(})
x}&1 exp(&Qx) dx, z>0,

if qL � Q for L � �. The limit distribution of `
is 1(}, Q). This example includes the geometric distri-
bution (}=1) as a special case with exponential
limit, 1(1, Q)=Exp(Q). Hilliker et al. (1994) find that
the geometric distribution fits well to Drosophila
melanogaster data and Betra� n et al. (1997) support this
conclusion in Drosophila subobscura.

The two examples represent two opposite cases, one in
which the variance of ` is zero (Example 1) whereas in
Example 2 the variance of ` is }�Q2 and thus can be
arbitrary large. The ratio of the mean to the variance of
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the negative binomial variable, Z, is always larger than
one, whereas for the limit variable, `, the ratio can take
all values. This is due to the fact that ` is Z divided by L
which can take large values.



We find

PL(C2 | C)=
1
L

:
L

i=1

PL(Z�L&i | C)

� |
1

0
P(`�x | C) dx=1&EC[` 7 1], (2)

using (1) and where EA[ } ] denotes expectation wrt P
given the event A. The variable x 7y denotes the mini-
mum of x and y.

From (2), C1 _ C2=C, and C1 & C2=< we have

PL(C1 | C)=1&PL(C2 | C) � EC[` 7 1].

Denote by WCi
the time until one sequence is created by

an event of type Ci , i=1, 2. We have WC1
tExp(GEC

[` 7 1]�2) and WC2
tExp(G(1&EC[` 7 1])�2), such

that WC=min(WC1
, WC2

)tExp(G�2).
For an event in C2 , the distributions of _, {, and (_, {)

and that of `=_&{ are of importance, and similarly for
an event in C1 , the distribution of _ is of importance (the
end point { of the gene conversion falls outside the
sequence considered).

The distribution of _, conditional on C2 , can be found
as follows.

L } PL(_=s | C2)=
L } PL(_=s, C2 | C)

PL(C2 | C)

=
PL(Z�L&sL | C)

PL(C2 | C)

�
P(`�1&s | C)
1&EC[`7 1]

= f_(s | C2), (3)

0<s<1, because S+Z�L on C2 . The function
f_(s | C2) is the density of _ wrt the Lebesgue measure on
(0, 1).

Similarly, we find

L } PL({=t | C2)=
PL(Z�tL&1 | C)

PL(C2 | C)

�
P(`�t | C)

1&EC[` 71]
= f{(t | C2), (4)

Gene Conversion
0<t<1, and f{(t | C2) is the density of { wrt the
Lebesgue measure on (0, 1).

We note that f_(s | C2)= f{(1&s | C2) and hence
_t1&{ (where t denotes ``is distributed like''). The
reason _ and { both are continuous variables is essen-
tially that the initiation point of a gene conversion is
uniform along (0, 1).

Next, consider the distribution of `={&_. In general
` conditional on C2 will not be continuous (cf.
Example 2). Proceeding as above, we find

PL(`�z | C2)

=
PL(`�z, C2 | C)

PL(C2 | C)

=
1
L

:
zL

j=1

:
L& j

i=1

PL(Z= j | C)
PL(C2 | C)

� {1&|
z

0
P(`>x | C) dx&(1&z) P(`>z | C)=

_(1&EC[`7 1])&1, (5)

0<z<1, by interchanging the order of summation and
performing calculations similar to those of Eq. (2).

If the limit distribution of `, conditioned on C2 , has
density f` (z | C2) wrt the Lebesgue measure it can be
found by differentiation of (5). In that case we find a
simpler expression for (5),

f` (z | C2)=
(1&z) f` (z | C)
1&EC[` 7 1]

,

with 0<z<1. However, as Example 1 showed, there are
cases of interest that do not allow such a simplification.

Finally, we derive the joint distribution of (_, {). The
distribution relates to (5) and (6) because `={&_, and
therefore (_, {) might not have a density wrt the
Lebesgue measure on (0, 1)2. In general we have with
0<s�t<1

PL(_�s, {�t | C2)

= :
sL

j=1

:
tL

i= j+1

PL(S= j, T=i | C)
PL(C2 | C)

� {s&|
s

0
P(`>t&x | C) dx] (1&EC[` 7 1])&1.

(7)
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The calculations are similar to those of Eq. (2). This dis-
tribution is invariant under reflection in x=1�2; i.e., the
distribution of (1&{, 1&_) is also given by (7). This is



easily seen in the special case where (_, {), conditioned
on C2 , has density

f_, {(s, t | C2)=
f` (t&s | C)

1&EC[` 7 1]
(8)

by differentiation of (7) wrt s and t. Otherwise, the distribu-
tion of (1&{, 1&_) can be found from Eq. (7), using that
the right hand side of (7) is continuous in both s and t.

Consider the alternative model, where a gene conver-
sion could happen to the right of the initiation point with
probability p and to the left of the initiation point with
probability 1& p. If we let s and t, s<t, denote the end
points of the inserted chunk, we will find the same dis-
tributions as above. In this case, s will then be the starting
point with probability p and the termination point with
probability 1& p. Similarly for the point t.

Let us now turn to the distribution of _ conditional
on C1 , that only the starting point is within the L
nucleotides. Since the distribution of _ conditional on C
is uniform on (0, 1) we have 1= f_(s | C2) P(C2 | C)+
f_(s | C1) P(C1 | C) or

f_(s | C1)=
P(`>1&s | C)

EC[` 7 1]
(9)

for 0<s<1, and where f_(s | C1) is the density of _ wrt
the Lebesgue measure on (0, 1).

In the alternative model, the distribution of s would be
pf_(s | C1)+(1& p) f_(1&s | C1), because with prob-
ability p the conversion would go to the right and with
probability 1& p to the left. However, this difference
between the two models vanishes due to the below.

Gene conversions initiating outside the L+1 nucleo-
tides will have a chance of terminating within the L+1
observed nucleotides. Assume that the entire chromosome
potentially consists of an infinite array of sequences of
length L plus the observed one of length L+1, and that
the gene conversion model described above is valid for
the entire chromosome.

Number the sequences to the left of the observed L+1
nucleotides, S1 , S2 , ..., such that Sn is the nth sequence to
the left of the observed L+1 nucleotides, here called S0 .
Besides the L nucleotides, we let Sn , n=1, 2, ..., consist of
the L&1 gaps between the L nucleotides and the gap just
to the right of nucleotide L, i.e., the gap between sequences
Sn and Sn&1 , n=1, 2, ..., in total L gaps. First note
that a gene conversion initiating in Sn+1 , n=0, 1, ..., has

362
probability

QL, n=
1
L

:
L

i=1

PL(nL+i�Z<(n+1) L+i | C) (10)
of terminating within S0 . The waiting time until a gene
conversion event initiating within Sn+1 and ending
within S0 is approximately exponential with inten-
sity QL, nG�2, so that the process is well defined iff
limL �n QL, n<�, i.e., the gene conversions affecting S0

do not arrive instantaneously, but are spread out in time.
Let Co (o for outside) denote the event that a gene con-
version initiates outside S0 and terminates within S0 .
Clearly,

PL(Co)= :
�

n=0

QL, n=
1
L

:
L

i=1

PL(Z�i | C) � EC[` 71],

(11)

where we have used (10). We find that both PL(Co) and
PL(C1 | C) converge to EC[` 71], and that the waiting
time, WCo

, until a gene conversion initiating outside S0

ends within S0 is properly defined. The distribution of
WCo

is exponential with intensity GEC[` 71]�2, that is,
distributed like the waiting time, WC1

, until an event of
type C1 ; WCo

tWC1
.

Similarly to the previous proofs, we find the distribu-
tion of the terminating point, {, conditional on Co ,

L } PL({=t | Co) �
P(`>t | C)
EC[` 71]

= f{(t | Co), (12)

0<t<1, and f{(t | Co) is the density of { wrt the
Lebesgue measure on (0, 1).

The events Co and C1 are independent. Thus, the
waiting time WC1 _ Co

=min(WC1
, WCo

) until an event of
either type C1 or type Co is exponentially distributed
with parameter GEC[` 7 1], and where the initiation�
termination point, _, happens is distributed with density

L } P(s | C1 _ Co) �
1
2

[ f_(s | C1)+ f{(s | Co)]

=
P(`>1&s | C)+P(`>s | C)

2EC[` 7 1]
; (13)

cf. Eqs. (9) and (12).
In the alternative model, we could derive the same

result, and the two models discussed here are identical
wrt the distributions of waiting times affecting the history
of a sequence of length L+1, and where along the

Carsten Wiuf
sequence breaks occur. Note that in the alternative
model, we would also have to consider the infinite array
of sequences to the right of S0 .

We recapitulate these results in the following theorem.



Theorem. The waiting time, W, until a sequence of
length L+1 nucleotides is created by a gene conversion is
exponentially distributed

WtExp \G
2

[1+EC[`7 1]]+ , (14)

where G=4NLg, and g is the probability of a gene conver-
sion initiating between any two nucleotides. The variable `
is the normed length of the transferred nucleotide, Z; i.e.,
`=Z�L. The waiting time W is the minimum of three inde-
pendent waiting times: the time until a gene conversion
event with both end points within the sequence, the time
until an event that starts within the sequence and ends out-
side, and the time until an event that starts outside and
terminates inside the sequence.

Given that a gene conversion occurs, the probability that
both, end points of the inserted chunk are within the
sequence is

p2=
1&EC[` 7 1]
1+EC[` 7 1]

,

and the probability that only one end point is within the
sequence is

p1=
2EC[` 7 1]

1+EC[` 7 1]
.

Given that the gene conversion is entirely within the
sequence, the end points, _ and { with _<{, have distribu-
tions given by (3), (4), and (7).

Given that only one end point is within the sequence, this
end point, _, has distribution given by (13). The end point
can both be an initiation point as well as a termination
point of the gene conversion.

If the length of the sequence, i.e., the number of
nucleotides, is multiplied by a factor, *, G becomes multi-
plied by * because G=4gNL. Consider the model with
parameter G$=*G relatively to that of G. Quantities
marked with a prime refer to the model with parameter
G$=4gNL$=*G, and unmarked quantities refer to the
model with parameter G. We have `$=`�* and thus the
waiting time until a sequence is created by a gene conver-
sion event is distributed

*G 1

Gene Conversion
WtExp \ 2 {1+
*

EC[` 7 *])=+
tExp \*G

2
+

G
2

EC[` 7 *])+ . (15)
Assume 0<EC[`]<�. If * � �, then EC[` 7 *]�*
� 0 and *GEC[` 7 *]�2* � GEC[`]. Also p2 � 1. This
is expected because the term *GEC[` 7*]�2* is the rate
of gene conversion initiating outside the L$+1 nucleo-
tides and as L$=*L increases this type of gene conver-
sions will affect the two ends of the sequence only. Thus,
this type becomes more rare compared to type C2 events.
Similarly, if * � 0, then EC[` 7*]�* � 1, *GEC[`7 *]�
2* � 0, and p2 � 0. So most events are of type C1 _ Co .
Again this is expected.

This parameterization has the advantage that we easily
can study and compare effects of gene conversion in
samples of different nucleotide lengths but with similar
value of g. The parameter * can be considered the length
of the sequences as it increases linearly with the number
of nucleotides in the sequences. It is convenient to let
G=1 but G=1�2 is also advantageous. In the latter case
sequence length is measured in expected number of gene
conversions per sequence per 2N generations.

RESULTS

Throughout the section the results are stated in terms
of *G so that easy comparisons between samples of
different sequence length can be made.

Define Gn, 1 as the number of gene conversions affect-
ing the history of a sample of size n, and Gn, 2 as the
number of end points of gene conversions affecting the
history of the sample. Clearly, Gn, 1�Gn, 2 . Both variables
are of interest; Gn, 2 is the number of positions where the
history of the sequences potentially changes. We write
``potentially'' because the next event following a gene
conversion event might be a coalescence involving the
two sequences created by the gene conversion event,
thereby erasing the possibility that the gene conversion
affects the history of the sequences. In the coalescent
with recombination the two numbers Gn, 1 and Gn, 2 are
identical.

The variable Gn, 2 is an additive function in the number
of nucleotides, whereas Gn, 1 is not. Divide a sample of
sequences into two samples of length L�2 and let Gn, 1(i),
i=1, 2, denote the number Gn, 1 in each half. If a gene
conversion initiates in the first half and terminates in the
second half, it will add to both Gn, 1(1) and Gn, 1(2), but
only be counted once in Gn, 1 . Thus, Gn, 1 is not additive.
In contrast, both points will add to Gn, 2 and in fact Gn, 2

fulfills Gn, 2=Gn, 2(1)+Gn, 2(2).

363
The expected value of Gn, 2 is

E[Gn, 2]=2*G :
n&1

i=1

1
i
. (16)



and a lower bound to the expected value of Gn, 1 is

E[Gn, 1]>G(*+EC[` 7*]) :
n&1

i=1

1
i
. (17)

These results can be obtained by considering the rate at
which different events happens in a given position s. For
example, the rate, r, by which gene conversions of type
C2 initiates in a small region of size ds around position s
is r= G

2P(`�1&s | C) ds (see the Theorem and (3)). The
expected number of such events within the region s+ds
is then given by rE[B]=2r �i 1�i, where B is the total
branch length of the genealogy in position s. Finally,
integration over s gives the expected number along the
sequences. The bound for the expectation of Gn, 1 is
obtained by counting all events of type C1 and Co plus all
type C2 initiation points within ancestral material. Left
out are type C2 termination points within ancestral
material for which the initiation point is outside the
ancestral material.

Also of interest is the probability that no gene conver-
sions occur before the most recent common ancestor
(MRCA) of the sample. We find

P(Gn, 1=0)=P(Gn, 2=0)= `
n&1

i=1

i
i+G(*+EC[` 7 *])

.

(18)

Other quantities of interest can be found from similar
results obtained for the coalescent with recombination.
We will mention a few of these. Consider two positions,
/1 and /2 , in a sample of n sequences. Let the distance
between the two positions be *. We are interested in the
trees, Tn(/1) and Tn(/2), that describe the sequences at /1

and /2 . Only events of types C1 and Co in between posi-
tions /1 and /2 affect the relation between the two trees.
Events of type C2 in between the positions cannot be
traced. The rate, r* �2, by which events of type C1 and Co

happens is, per sequence (see the Theorem),

r*=2*G
1
*

EC[` 7 *]=2GEC[`7 *]. (19)

Let Bn(/) be the total branch length of Tn(/). Applying
results in Griffiths (1991) we find, for n=2,

Cov(B2(/1), B2(/2))=
4(18+r*)

2 , (20)
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18+13r*+r*

where Cov denotes the covariance between variables. We
note that the expression in (20) obtains its minimum
when *=�, in which case r�=2GEC[`]. Thus the
covariance is strictly positive for all values of * and con-
verges towards a non-zero constant as * � � (unless
EC[`]=�, which is not realistic biologically).

Hudson (1983) gives an approximate formula for the
covariance for a general n. He finds (with r* inserted)

Cov(Bn(/1), Bn(/2))r
4(18+r*)

18+13r*+r2
*

:
n&1

i=1

1
i2 . (21)

The approximation is exact for n=2 and as believed to
be fairly good for small and moderate values of r* for all
n (Kaplan and Hudson, 1985).

Let Hn(/) be the height of Tn(/). A lower bound to
P(Hn(/1)=Hn(/2)) can be found:

P(Hn(/1)=Hn(/2))>P(Gn, 2=0)

= `
n&1

i=1

i
i+G(*+EC[` 7 *])

. (22)

For n=2 we have P(H2(/1)=H2(/2))=Cov(B2(/1),
B2(/2))�4 (Griffiths, 1991).

AN EXAMPLE

In most applications a gene conversion model will
have limited use on its own. What is needed is a combina-
tion of the coalescent with gene conversion and that of
recombination. In the following we discuss a few aspects
of such a combined model and relate the results to data
from Drosophila melanogaster.

Let the recombination rate be given by *R, where
R=4rNL, with r being the probability of a recombina-
tion between any two sites per generation, and let the
corresponding gene conversion rate be *G, G=4gNL.
Consider two positions /1 and /2 at distance *. Recom-
binants are produced at a rate \* �2, where

\*=r*+R*=2GEC[` 7 *]+R* (23)

(see (19)). For small *, r*=2G*+o(*), where o(*)
denotes a function such that o(*)�* � 0 for * � 0. We
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find

\*r(2G+R) *. (24)
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For large * the gene conversion effect tends to disappear,

\*rr�+R*=2GEC[`]+R*, (25)

which is of order R*.
Andolfatto and Nordborg (1997) (and references

therein) give the following estimates of g and r in
Drosophila melanogaster,

gr3_10&8 and rr1_10&8, (26)

and Hilliker et al. (1994) provide an estimate of the
expected tract length, EC[Z]r10+3�3 nucleotides.
Further, put 2N=106 and G=3 so that R=1 and length
is measured in expected number of recombinations per
sequence per 4N generations.

FIG. 4. Covariance between branch lengths. Sequence length is in e
The figure shows the normed covariance, Cov(B2(/1), B2(/2))�4, betw

Gene Conversion
distance * in a sample of size 2. According to Hudson (1983) this is an
factor (dependent on the sample size, n). Note that for n=2, Cov(B2(/1), B
position /i , i=1, 2. The values of the rates of gene conversion and recombi
Nordborg, 1997, and references therein). The estimated length of a gene co
references therein). The distance *=15 corresponds to a sequence 2.25 times
cted number of recombination events per sequence per 4N generations.
the branch lengths, B2(/i), i=1, 2, in two positions, /1 and /2 , at

Equations (24) and (25) apply immediately but to find
\* for all * we must adopt a model of the tract length, Z.
Here Example 1 is chosen for convenience: Z is constant,
Z=Z0=350 nucleotides. A different choice of distribu-
tion does not alter the results significantly. The rate \*

becomes (see (23))

\*=2(4gNZ0 7 6*)+R*=407 G*+* (27)

because G`=4gNLZ0 �L=4gNZ0=20. The rate \* for
small * is considerably larger than the rate * in a pure
recombination model. When *=40 the contribution
from recombination equals that from gene conversion
and in that case the length of the sequence is
40�(4rN)=2.000 nucleotides. This might very well
explain the lack of intralocus associations reported in
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accurate approximation to the covariance for n>2 up to a scaling

2(/2))�4=Cov(H2(/1), H2(/2)), where H2(/i) is the height of the tree in
nation are those estimated in Drosophila melanogaster (Andolfatto and
nversion tract is 350 nucleotides (Andolfatto and Nordborg, 1997, and
the expected length of the tract.
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FIG. 5. The variance of the number of segregating sites, Sn . Shown i
in a pure recombination model as well as in a model combining recombin
binations per sequence per 4N generations. The variance depends on I th

Drosophila melanogaster (see, e.g., Langley et al. (1999))
for an overview). In Fig. 4, the covariance between
branch lengths, B(/1) and B(/2), in two positions, /1 and
/2 , is plotted as a function of the distance, *, between the
positions.

Hudson (1983) discusses the variance of the number of
segregating sites, Sn , in a sample taken from the infinite-
site coalescent model with recombination only. His result
applies also to the infinite-site coalescent model with
gene conversion and recombination,

Var(Sn)=*% :
n&1

i=1

1
i
+

%2

2 |
*

0
fn(x)(*&x) dx, (28)
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where %=4uNL is the mutation rate per sequence of
length *=1 and fn(x) is the covariance between the total
branch lengths of two trees x units away. The proof by
Hudson (1983) carries over identically in this example. If
e integral part, I(*), of (28) as a function of sequence length * with n=2
n and gene conversion. Sequence length is in expected number of recom-
gh %2I�2, where % is the rate of mutation in a sequence of length 1.

n=2, fn(x) is given by (20) with r* replaced by \x and for
n>2 an approximation to fn(x) is given by (21) with r*

replaced by \x . In Fig. 5 the integral in (28) is plotted for
n=2 both in a pure recombination model and in a com-
bined model with the parameters obtained from the
Drosophila melanogaster data.

DISCUSSION

We have developed and discussed a gene conversion
model within the coalescent framework. General proper-
ties of the model have been worked out in terms of the
distribution of the length of a gene conversion only.

Some implications of the model are proven, showing
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that results from the coalescent with recombination can
be applied with minor modifications in several situations.

Further, it is shown that in Drosophila melanogaster
the correlation between trees relating nearby positions is



significantly lower in a model that takes both gene con-
version and recombination into account compared to a
pure recombination model. This might account for the
lack of associations between markers observed in
Drosophila melanogaster, and it is in accordance with the
prediction by Andolfatto and Nordborg (1997).

It is of interest to model gene conversion in a
framework of various forms of selection. As discussed in
Langley et al. (1999), both background selection and
``hitchhiking'' have been proposed as explanatory factors
in Drosophila data. In the case of weak selection the gene
conversion and recombination model developed here can
easily be combined with the coalescent model with selec-
tion (Krone and Neuhauser, 1997).

The model can easily be extended to cover cases with
variable populations sizes (see, e.g., Griffiths and Tavare� ,
1994). Sample schemes and recursion formulas analo-
gous to those found in Griffiths and Tavare� (1994) and
Griffiths and Marjoram (1996) could be developed.
Thus, a sample of observed sequences might be analyzed
and inferences drawn as to G and parameters describing
the distribution of the tract length.
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