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Abstract

In this article I derive an alternative algorithm to Hudson and Kaplan’s (Genetics 111, 147-165) algorithm that gives a lower
bound to the number of recombination events in a sample’s history. It is shown that the number, 7, found by the algorithm is the
least number of topologies required to explain a set of DNA sequences sampled under the infinite-site assumption. Let I =
(T, ..., T,) be a list of topologies compatible with the sequences, i.e., T} is compatible with an interval, I, of sites in the alignment.
A characterization of all lists having T, topologies is given and it is shown that T, relates to specific patterns in the alignment, here
called chain series. Further, a number of theorems relating general lists of topologies to the number T, is presented. The results are
discussed in relation to the true minimum number of recombination events required to explain an alignment.
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1. Introduction

Currently, there is a lot of interest in estimating
recombination rates from population samples of DNA
sequences or haplotyped SNP data. Recombination
events can be inferred with certainty from data if specific
patterns of mutation occur. For example, with binary
sequences, an instance of all four gamete types 00, 01, 10,
and 11 in two columns in the alignment is indicative of at
least one recombination event in the sample’s history.
Here and later the possibility of recurrent mutations is
ignored. The pattern provides a simple way of testing for
the presence of recombination and was termed the four-
gamete test by Hudson and Kaplan (1985). They went
further and derived, based on the four-gamete test, a
lower bound T, (their number Rj,) on the number of
recombination events in a sample’s history.

Hudson and Kaplan’s (1985) T, does not give the
true minimum in most cases and other statistics than 7,
can be shown to perform better. For example, the
haplotype statistic explored by Myers (2002) always
gives a number not less than T),,. However, one big
advantage of T, is that it is easy to implement and
compute, even for large sample sizes and many
segregating sites. The true minimum, on the other hand,
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is hard to find. The trivial way to find the true minimum
is by exhaustive trial and error. This is truly inefficient,
but no efficient algorithm is known. Other very similar,
though not entirely equivalent, problems in graph theory
are known to be NP-hard and thus not solvable by any
efficient means (see for example Allen and Steel, 2001).

In this paper I consider a set of binary sequences and
derive an alternative algorithm to that of Hudson and
Kaplan. To do so I consider a related problem, namely
the problem of finding a minimal set of trees that explain
the sequences, such that any two neighbor trees are
incompatible with each other. If this is so, there is at
least one recombination event between two neighbor
trees. As an example consider a sample with n =6
sequences and m = 7 sites,
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The sequences can be explained by three trees, namely
one tree explaining sites 1 and 2, one tree explaining 3, 4,
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and 5, and one explaining 6 and 7. For each tree only
one substitution event is required in each column and we
say that the sites are compatible with the tree. As we
shall see the minimum number of trees is one larger than
Ty, that is Ty, = 2. The haplotype bound is 4, because
there are six distinct haplotypes derived from the sites
1-3 and similarly 6 for the sites 4-6 (Myers, 2002). Each
requires at least 6 —3 — 1 =2 recombination events,
where 3 is the number of sites. I will characterize the set
of all possible solutions to the problem of finding the
minimum number of trees and show how this number
relates to certain patterns in the alignment, called chain
series. In addition, the number T, is related to general
lists of topologies that explain the sequences. In the
discussion I will comment in more detail on T),’s
relation to the true minimum number of recombination
events.

2. Results

Consider a sample of n sequences with m segregating
sites. Assume we have no information about the root,
branch lengths or about which of the two sites is
ancestral. In that case a tree is just a topology.
Throughout the paper topologies are thought of as
bifurcating, consistent with standard stochastic models
of sequence evolution. However, this assumption is not
at all crucial to the results. Each site i in the sample
induces a bipartition (By, B;), where By, k =0, 1, is the
set of sequences with k in site i. Let S;, i =1, ...,m, be
the class of bifurcating topologies, or topologies for
short, compatible with site i. Further, assume an infinite-
site model, that is each site has mutated at most once.

The only prerequisite we need is the Compatibility
Theorem (Estabrook et al., 1975, see also Gusfield,
1991). Say two sites or columns in the alignment, i/; and
i», are incompatible if all four gamete types, 00, 01, 10,
and 11 are present in the two columns. Otherwise, the
two sites are said to be compatible. In the previous
example, sites 1 and 2 are compatible, whereas 2 and 3
are not. Note that this second concept of compatibility
compares sites with sites, whereas the first relates sites to
trees. The Compatibility Theorem provides the relation
between the two concepts.

The compatibility theorem. The whole sample is compa-
tible with a single topology if and only if all pairs of sites
i1 and iy, iy,ie{l,...,m}, are compatible.

This theorem is very strong because it allows us to
check for compatibility with a tree by checking for
pairwise compatibility of sites, which is a lot easier to
do. In the following, it will be demonstrated how useful
this is. The next lemma is a consequence of the
Compatibility Theorem.

Lemma 1. Let G| and G, be two non-empty classes of
topologies such that Gy = ﬂie[k S, Ir<[l,....m], k=
1,2. Then Gy and G, are incompatible, i.e., Gy G, = 0,
if and only if there exist ixely, k=1,2 such that
Si1 M Siz = @

Proof. Only the ‘only if’ needs to be proved. Assume the
statement is not true, then S;NS,#0 for all
(ii,ir)el; x I,. This implies that S;nS;#0 for all
(i,/)e(Iy ub)?, and further according to the Compat-
ibility Theorem that all sites in 7} U I can be related by a
tree. This contradicts that G; and G, are incompati-
ble. O

Definition 1. A list of topology classes, 7 =
(T, T, ..., T)) is said to be compatible with the sample
if T, = mielk S;#0 for k=1,....r, I = [ix,ixp1 —
1], ix<igr1, iy = 1,and i,,; = m+ 1. The list 7 is said
to be disjoint if TynTysy =0 for k=1,....,r — 1, and
J is said to be minimal if r is as small as possible. The
smallest r is denoted by Ty,.

Obviously, Z cannot be minimal without being
disjoint. Also note that in the definition of disjointness
it is only required that 7;n7; = 0 for neighbor classes
j=i+1. In the following 7 is assumed to be
compatible with the sample. Further, the notation I~
and .# = (Iy, ..., I,) are used interchangeably.

Definition 2. Let 7 be a disjoint list with r elements.
A series o <fp<okr1, ox€ly, Prelir, for
k=1,...,r—1, with the property that S, NSz =0,
i.e., sites o and f3, are incompatible, is called a chain
series.

Theorem 1. Let J be a disjoint list with r elements.
Then J is minimal if and only if I admits a chain
series.

Proof. If 7 admits a chain series then there cannot be
another compatible list with fewer elements than r, i.e.,
Ty=r, and further because J is compatible by
assumption, r>=T),. That is Tj; = r and J is minimal.
Assume now 7 is minimal. Induction will be used to
prove that 7 admits a chain series. If r = 2, then, there
exists a chain series (Lemma 1). For the induction step
assume 7 admits a chain series if there are at most r — 1
elements in 7. If .7 has r elements construct a new list
T* =(T¥, ..., T¥) such that T} = T for k<r—1 and
T, and T} are defined in the following way. Let i* be
the largest element in I,_; = [i,_1, i, — 1] such that Six is
incompatible with 7,. Such an element exists. Define
T* , and T* by TF |, = ﬂ;*:im S;and T} = (Lps g Sic
Note that 7% is compatible with the sample and that
(TF, ..., TF ) is minimal for the sample restricted to the
sites 1, ..., 7* (see illustration). Otherwise .7 could not be
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minimal either.

Tr—l Tr

By the induction hypothesis there exists a chain series,
C, for (T7,...,T}F ) and further there exists a site
B,_,€l, such that /* and f,_, are incompatible (by
definition of i*). Extending C with o,_; =* and f,_,
gives a chain series for 7. O

Example 1. A list can be disjoint without being minimal
and hence not admit a chain series. For example con-
sider the following five sequences with four segregating
sites, 0000, 0001, 0111, 1100, and 1111. The pairs of
sites (1,3), (2,4) and (1,4) are all incompatible, and one
can construct a disjoint list of three classes, T} =
S1, Tr = S>nS5, and T5; = S4. However, there is no
chain because 1 is only incompatible with 3 in 75, and 4
only with 2. A minimal list is .7 = (S1n S5, 531 Sy)
which has three chains, (2!, f}) = (1,3), (&3, 1) = (2,4),
and (oc%,ﬁf) = (1,4). It is clear that four is the least
possible number of sites for which an example of this
kind can be found. Neither can an example be found
with four sequences because this would force sites 2
and 3 to have the same mutation pattern. Thus, an
example with fewer sites or fewer sequences cannot be
constructed.

Algorithms that find the minimum number of
topology classes, T, or produce a minimal list are of
interest. Two such algorithms are given here.

Algorithm 1. Define 7; = (T{, T5, ..., T}), i =1,2,...,m,
recursively by

1) Z1=TH=(S1)andr =1,
(2) If Sis1 is compatible with T} then ri ) = r; and

¥

— i+1 i+1 i+1
egvllkl*(]ﬂ] 5T2 9‘”>T )

Tit1

=(T\, T3, ..., T, 0 Sis1),

(3) If Siy1 is incompatible with T,fi thenriyy =r;+ 1 and

<9—'1‘-%-1 = (T{+17 T£+1; (RRE] Ti“rl) = (Tll: Té) LRRX] T‘;i.)Sl‘-‘rl)'

Fit1

Then 7 ; is minimal for the sample restricted to the
Isites 1,2, ...,1 and the minimal number of classes is r;,
in particular, 7, is minimal for the sample and
TM = TI'ny.

Note that 7, has the property that a new topology
class is only postulated for site i if S; is incompatible
with the previous class.

Proof. 7, is obviously disjoint. Define f;, = ix41, k =
1, ....,rm — 1, that is f; is the left most site in topology
class Tyy1. Choose axe Ty such that of and fj are
incompatible. This is possible because 3, and T} are
incompatible (by construction). Clearly, f; <oy be-
cause f is the left-most site in Tj; and oy <pf; by
construction. In conclusion, .7, admits a chain series
and is thus minimal. [J

Hudson and Kaplan (1985) provide a different
algorithm. The following algorithm is due to them.

Algorithm 2. Define D;; to be one if sites i and j are
incompatible, and zero otherwise. Order all intervals
[i,71, i<J, for which Dy =1 into a list, A, alphabetically.
With a slight abuse of language, [i1,j1] and [i2, 2] are said
to be disjoint if ji <i». Do the following:

(1) If [iv, 1], [i2,j2]€ 4 and iy <iy <jr»<ji, then remove
[i1,j1] from the list, i.e., A = A\][i1,/1]. Continue
until it is not possible to remove any more intervals.

(2) Let [i,]] be the first interval in A not disjoint from all
the other intervals. Remove all intervals, [i, 1], such
that i<iy<j. Continue in the same fashion with the
next interval that is not disjoint from all the other
intervals in the updated list, and so forth.

(3) Stop when all intervals in A are disjoint.

Let A* = (i1, j1], ..., [ir-1.jr—1]) be the final disjoint
list ordered alphabetically. Let jo=1, j,=m+ 1 and
define Ty = i":;:il S, k=12, ....,r. Then I =

(Ty, T, ..., T) is minimal and Ty = |A*|+1 =r.

Comments. Two comments are appropriate: (i) The first
step creates a unique list with the property that either
J1<ip or i} <ip<j;<j, for any two intervals [i,/;] and
[£2, /2] in A with i} <i,. If this was not the case one could
continue to remove intervals. (ii) If an interval [i,/] is
removed from the list, then there is an interval in the
final list, 4%, that is not disjoint from [i,j]. The
comments are used in the proof below.

Proof. First, it will be shown that T, #0 fork =1, ...,r.
Put I = [jk—1,jx — 1]. According to the Compatibility
Theorem it suffices to prove that all sites in [ are
pairwise compatible. Assume oppositely that there exists
a pair of sites i,jel, i<j, such that i and j are
incompatible. Note that iy el;. Then there are three
possibilities: Either (1) i <i, (ii) i <ix <j, or (iil) j<i. If
(1), then (i, jx) should be removed from 4, according to
rule (1). If (i1), then again (i, ji) should be removed from
A because (i, ) occurs before (i, jx) in application of rule
(2). If iii) then (i,j) should appear in the final list, 4%,
because (i, /) is disjoint from all the pairs listed in A4*. In
all cases a contradiction is reached and it is concluded
that the sites in [; are compatible with a tree.
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Next, it will be shown that 7 is disjoint and admits a
chain series. If this is so, 7 is minimal and Ty, =r =
|A4*| + 1. Define o = iy and B, = ji fork=1,...,r — 1.
Then, oy < f <oxy1 (according to the Comments) and
(otk, B) is an incompatible pair of sites, because Dy, 5, =
1. Further, note that ogzel; and f;e€l;+. Then,
ok, Py, k=1,...,r — 1, form a chain series and T)s =
|4*| + 1 = r. The proof is completed. I

It transpires by inspection of the rules in Algorithm 2
that the list 7 as defined in Algorithm 2 is identical to
the list defined in Algorithm 1. This provides an
alternative proof of the fact that Algorithm 2 produces
a minimal list.

Algorithm 1 runs linearly in the number of segregat-
ing sites, m. There are at most 2n — 3 non-empty splits
for a given topology with n leaves (n — 3 if singletons are
not counted) and it takes at most O(n) operations to
compare two splits. So, Algorithm 1 runs in time
O(mnmin{m,n}) (min{m,n} because there are at most
m different splits). Algorithm 2 runs quadratic in m,
because there are m(m — 1)/2 pairs of sites, and for each
pair it takes at most O(n) operations to check whether
the pair is incompatible or not. The list can be sorted at
the same time, in total in O(nm?). Reducing the list can
be done in O(m?), going through the list twice, once for
each of the steps 1 and 2. Thus, Algorithm 2 runs in time
O(nm?). If m>n, Algorithm 1 results in a substantial
reduction in computer time compared to Algorithm 2.

Gusfield (1991) founds an O(nm) algorithm that
decides whether the sample conforms to a single
topology and if it does constructs this. It does not seem
that his technique can improve the running time of the
two algorithms discussed here.

Theorem 2. Assume 7\ = (T}, ...,T}) is minimal with
chain series oy, fy, k=1,...,1—r, and let T,=
(T2, ..., T?), s=r, be another compatible list, not neces-

sarily disjoint. Then oy, fy, B, ..., B, fall in r different
classes of T 5. If T, is minimal, i.e., s =r, then f;, and

o1, K=1,...,r =2, fall in the same class and
Ok, P, k=1,...,r — 1, is a chain series of T 5.
Proof. Since oy, f;, k=1,...,r — 1, is a chain then

o <pi<m<fr,< <o 1 <Py

The two sites, a; and f, fall in different classes because
they are incompatible. Also f; and ;. , k=1,...,r =2,
fall in different classes. Otherwise ox,; would also fall in
the same class as f;, and f,,; because f; <opi1 <Piiq-
But this is impossible because ozi; and S, ; are
incompatible. Hence, oy, f8;, 5, ..., f,_; fall in r different
classes. If .7, is minimal, then there are exactly r classes
in 7 ,, implying that oy, falls in the same class as f.
Hence, ax, fi, k=1, ..., — 1, is a chain series of 7 ;.
The proof is completed. [

Assume that Ty =r. Define o™ and B, k =

1,...,r—1, by
o™ = max{oy |, B, j=1,...,r =1, is a chain} (1)
and

P = min{By oy, B, j=1,...,r — 1, is a chain}. (2)

Because the number of sites, 7, is finite, o™* and ﬂfcni“ both
belong to a chain series (though not necessarily the same
chain series, Example 1). Put " = 1 and «"* = m, and
let IM =B, 0] and JM = [odm® + 1, B — 1] (JM
can be empty), k = 1, ...,r. An illustration of the relation
between a minimal list 7~ (or .#) and I} and JM is useful.
Below r = 4, thick lines represent 7}, thin lines J}, and
the boundary between I; and ;| is marked with a vertical
thin line. Note that Theorem 2 implies that / ,ﬁ” c I forall k.
The next lemma relates o™ and ;™ to the minimal list
constructed as in Algorithm 1.

MM M gy M
A
" ~— N~
Il IQ I3 I4
Lemma 2. Let 7 = (T, ..., T,) be the list constructed as

in Algorithm 1 and let T = (T}, ..., T¥) be the list
constructed as in Algorithm 1, when applied to the
reversed set of sequences (numbering of topologies is
from left to right, ie., not reversed). Define B, k=
1,...,r— 1, to be the first element in Ty and, similarly,
define oy, k=1,...,r — 1, to be the last element in T}’
(the first element when going from right to left). Then
B = B and ay = o,

Proof. According to Theorem 2, ﬁg‘ineT “+1, because
B is at least in one chain series. But f; is the first
element in Ty, and thus f,<p"™". However, by
definition of B and construction of f, B <py,
hence B = B. Obviously, 7™ is also a minimal list
with respect to the original left-to-right direction and a
chain series can be constructed with o being the first
element in an incompatible pair. Then, o <o,
because o** €T} according to Theorem 2. But also
™ <oy because oy is the last element in 7;°. Hence
equality, o = of®*. [

Corollary 1. The sets IMUJY and JYOIM,, k=
1, ...,r — 1, are both compatible with a tree. In particular,
JM is compatible with a tree.

Proof. According to Lemma 2, IM UJM = [gMn, prin —
1], which equals 7 in the list constructed as in Algorithm
1. Similarly, JY OIM = [0 + 1,0"®], which equals

I}, in the list constructed as in Algorithm 1 when
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applied to the reversed set of sequences. Both I and [f
are compatible with a tree by construction and the
corollary is proved. [

Example 2. Consider the following n = 5 sequences with
m =5 sites: 00000, 00011, 01110, 11000, 11111. It can
easily be seen that IM =[1], IM =[3], I¥ =[5], JM =
[2] and J¥ = [4]. A minimal list can either have (i) I, =
[1,2] or (i1) I; = [1]. If (i), then one can choose to put site
4 in either I, or 3. If (ii), then I, =[2,3] and 5 = [4, 5]
because the sites 2 and 4 are incompatible. Thus,
whether the sites in J/?/[ are allocated to I or Iy
potentially affects the allocation of the sites in J} |, and
so forth. There cannot be an example of this kind with
less than five sites, neither can there be one with four
sequences.

In the next two lemmas general disjoint lists are
related to the number T),.

Theorem 3. Let I = (T}, ...,Ts) be any disjoint list.
Then Ty <s<2Ty — 1.

Proof. That T, <s follows from the definition of T,.
To prove s<2Ty —1, let T*=(T},...,T¥) be a
minimal list with intervals I}, ...,I*, and let I, ...,
be the intervals of 7. The interval I can at most be
overlapping with /; and I, otherwise /; and I, would be
compatible with each other. Each interval I}, 1<k<r,
can at most be overlapping with two intervals, /;, and
I;; for some j, that are not also overlapping with any of
If, ..., I} . Finally, I can at most be overlapping with
the interval, I, that is not also overlapping with any of
If, ..., I* . Inconclusion, s<2(r — 1)+ 1 = 2Ty, — 1, as
desired. O

If equality holds in Theorem 3 the list is called
maximal. A maximal list always consists of an odd
number of topology classes.

Example 3. The bound in Theorem 3 is as good as
possible. Consider Example 1. Denote the sites patterns
by a, b, ¢, and d, in the order they occur in Example 1,
and define five sequences by the following series of site
patterns: a,b,c,d,d,c,b,a,a,b,... (for as long as we
want). A minimal list is obtained by grouping sites in the
following way: I} =[1,2] (with patterns a,b), I, =
[3,6] (¢,d,d,c), I =[7,10] (b,a,a,b), etc. If m is odd
then a maximal list is I} = [1] (a), L, =[2,3] (b,¢), I3 =
[4,5] (d,d), I, =[6,7] (c,b), Is =8,9] (a,a), etc., be-
cause a and ¢ are incompatible, and b and d are
incompatible.

Example 4. A maximal list does not always exist.
Consider the following two site patterns or columns
in the alignment for four sequences: a = 0011 and
b =0101 (here, one string represents a column,

not a sequence). Define four sequences by
a,b,a,b,a,b,a,b,a, ... (for as long as we want). Then
there is only one disjoint (and minimal) list because a
and b are incompatible.

Lemma 3. For any disjoint list 7 = (T4, ..., T;) there
exists ox €l and B elir1, k=1,...,8 — 1, such that oux
and By are incompatible, oy <oyi1, Br<Pri1, ok <P
and B <oy

Proof. Since 7 is disjoint, there exist orel; and
Pr€lr41 such that o4 and f;, are incompatible. The
inequalities follow from how oy and f, are chosen. [

Theorem 4. Let 7 = (T4, ..., Ty) be a disjoint list and let
o, B, k=1,...,5 =1, be a series fulfilling Lemma 3.
Then there is at least s — Ty instances of oy <py, for
somek=1,..,5—2.

Proof. Let 7% = (T}, ...,T¥), r = Ty, be a minimal
list with intervals /% = (I}, ..., I¥), constructed as in
Algorithm 1. The proof is by induction on s. If s = 1 the
result is obviously true since s — Ty = 1 — 1 >0 (alter-
natively, s = 2 can be taken as the basis of induction:
s — Ty =2—220). Assume now the theorem is true
for any disjoint list of length less than or equal to s — 1.
There are two cases, I and 1II, illustrated below:

Is—l Is

—M~—"

The disjoint list

The minimal list, Case I

The minimal list, Case II

In case I, I | ends after or at the same site as /,_;. In
case II, I* | ends before I,_; and I*, before I,
(endpoints of intervals are marked with small vertical
lines). That these are the only two cases follows from the
construction of .7 *. Put T ;= (T1,...,T;) and let Ty(j)
be the minimum number of topology classes for 7.
Note that if oy, f5;, k=1,...,5 — 1, is a series fulfilling
Lemma 3 for 7, then oy, f;, kK =1, ...,J, fulfills Lemma
3 for 7 ;. Further, let c(j) be the number of times
opr1 <Py for some k for 7;. Clearly, c(j + 1)=>c())
for all j.

Consider case I. Then Ty(s—1)=r—1 and
c$)=c(s—1)=(s—1)— (r— 1) = s — r by the induction
hypothesis and the theorem holds for s.

Consider case II. Here T,/ (s—1)=r. Note that
as_1€L_1nI* | and f,_,€l. The case splits into two
subcases, A and B, according to which set f,_, belongs
to. Subcase A: f,_,el_1nI[f, and subcase
B: el nI*,. If A, then clearly a,<p,_,, and
cs)y=1+c(s—1)=1+G—-1)—r=s—r, and the
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theorem holds for s. If B, consider 7 | with intervals
defined by J% | = (I}, ..., L2, i1 nI¥ ), ie, TF | is
7 restricted to the sites up to and including those in
I* . The list 7¥ | has s — 1 elements, is disjoint because
I, and I,_;nI*, are incompatible (a,_>€l,_, and
Bs_r€l,_1 N I* | are incompatible by assumption), and
ok, P, k=1,...,58 — 2, 1s a series fulfilling Lemma 3 for
% |. Further, the minimum number of topology classes
of 7% | is r— 1, by construction. Using the induction
hypothesis on 7% | gives c(s)=(s—1)—(r—1)=r—s
and the theorem holds for s as well. The proof is
completed.

Example 5. The inequality in Theorem 4 cannot be
improved. Consider the sample in Examples 1 and 3
with eight sites given by the patterns a,b,c¢,d,d,c,b,a.
Duplicate the five sequences to obtain 10 sequences in
the following way: Add columns of five zeros to the first
four sites, call these ay, by, ¢, and d;. As to the next
four sites, prefix each column with five zeros. Call these
dr, ¢3, by and ap. Then, the sample is given by
ap, by, c1,dy,dr, cr,by,a,. For each i=1,2, the sites
a;, b;, ¢;, and d; have the same incompatibility pattern
as a,b,c,d, whereas any site with subscript 1 is
compatible with a site with subscript 2, for example,
a; is compatible with ¢;, and so forth. The list Il1 =
[1] (al), 121 = [2, 3] (b],C]), 131 = [4, 5] (dl,dz), IJ =
[6,7] (c2,b2), Id =[8] (a») is disjoint and there is only
one series, o, f, k=1,2,3,4, fulfilling Lemma 3:
(o, B) = (1,3), (2, ) = (2. 4), (o5, 43) = (5,7), ~and
(4, ;) = (6,8). Further, this series fulfills equality in
Theorem 4, s — Tyy =5—-3 =2.

However, if d; and d, are interchanged such that the
alignment now 1is ay,by,c1,dy,dy,c2,by,a;, then the
list F=[1] (@), B=[23] bic). B=[45] (dnd),
I? =1[6,7] (c2,b2), 12 =[8] (12) has only one series
fulfilling Lemma 3, namely: (oc%,ﬂj) =(1,3), (03,53) =
(2,5), (a%,/ﬁ%):(4,7), and (a3, ;) = (6,8). But this
series has three instances of a1 <f;, and 3>s5— Ty =
5 —3 =2. In conclusion, the inequality in Theorem 4
cannot be improved.

3. Discussion

The number produced by Hudson and Kaplan’s
(1985) algorithm was shown to be the minimum number
of topologies minus one required to explain a sample of
sequences fulfilling the infinite-site assumption. How-
ever, as pointed out in the Introduction this number is
rarely the true minimum number of recombinations,
Ry, required to explain the data. It turns out that Ry,
can be found using a recursion of the form,

R, T)=w(,T),

R, T)=min{R(i — 1, T+ d(T,T") + w(i,T)| T' tree},

and
R=min{R(m,T)|T tree},

i=1,...,m, where R(i—1,7") is the minimum for
the first i — 1 sites assuming the tree in the (i — 1)th
site is 77 and w(i, T) is 0 if T is compatible with site i
(i.e., T is compatible with the partition (By, B)) in site i),
and infinite otherwise. Here a tree T is a topology
with time points assigned to each node indicating
when coalescence took place in the past and d is
a metric derived from the coalescent process with
recombination. In general d is difficult to compute.
However, lower bounds to R,; can be obtained by
bounding d by some metric d’ such that d=>d'. If d' =
1{T),T>} is an indicator variable that is zero if the
two trees, 77 and 75, have the same topology and
one otherwise, the bound is exactly T),. Other possible
bounding metrics d’ are much more difficult to compute
(Allen and Steel, 2001) and the algorithm easily becomes
inefficient. This will be the subject of a subsequent
paper. It is worth pointing out that the true minimum
in general is much lower than the actual experienced
number of recombination events in a sample’s history.
Hudson and Kaplan (1985) found, simulating under
the neutral coalescent model, that for realistic values
of the recombination rate the discrepancy between
the true minimum and the actual number can be five-
fold or more.

It transpires that the results presented here essentially
depend on the Compatibility Theorem. The proofs
are based on relating compatibility between sites to
compatibility between sites and trees. By changing the
definition of compatibility we change the results
accordingly, but not the proofs. For example, ancestral
states could be imposed, derived from chimp sequences
or from some consensus rule, and two sites would be
incompatible if all three gametes (0, 1), (1,0), and (1, 1)
are found in two columns, assuming O is the ancestral
state.
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