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Abstract

In this article I derive an alternative algorithm to Hudson and Kaplan’s (Genetics 111, 147–165) algorithm that gives a lower

bound to the number of recombination events in a sample’s history. It is shown that the number, TM ; found by the algorithm is the

least number of topologies required to explain a set of DNA sequences sampled under the infinite-site assumption. Let T ¼
ðT1;y;TrÞ be a list of topologies compatible with the sequences, i.e., Tk is compatible with an interval, Ik; of sites in the alignment.

A characterization of all lists having TM topologies is given and it is shown that TM relates to specific patterns in the alignment, here

called chain series. Further, a number of theorems relating general lists of topologies to the number TM is presented. The results are

discussed in relation to the true minimum number of recombination events required to explain an alignment.

r 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Currently, there is a lot of interest in estimating
recombination rates from population samples of DNA
sequences or haplotyped SNP data. Recombination
events can be inferred with certainty from data if specific
patterns of mutation occur. For example, with binary
sequences, an instance of all four gamete types 00, 01, 10,
and 11 in two columns in the alignment is indicative of at
least one recombination event in the sample’s history.
Here and later the possibility of recurrent mutations is
ignored. The pattern provides a simple way of testing for
the presence of recombination and was termed the four-
gamete test by Hudson and Kaplan (1985). They went
further and derived, based on the four-gamete test, a
lower bound TM (their number RM) on the number of
recombination events in a sample’s history.

Hudson and Kaplan’s (1985) TM does not give the
true minimum in most cases and other statistics than TM

can be shown to perform better. For example, the
haplotype statistic explored by Myers (2002) always
gives a number not less than TM : However, one big
advantage of TM is that it is easy to implement and
compute, even for large sample sizes and many
segregating sites. The true minimum, on the other hand,

is hard to find. The trivial way to find the true minimum
is by exhaustive trial and error. This is truly inefficient,
but no efficient algorithm is known. Other very similar,
though not entirely equivalent, problems in graph theory
are known to be NP-hard and thus not solvable by any
efficient means (see for example Allen and Steel, 2001).

In this paper I consider a set of binary sequences and
derive an alternative algorithm to that of Hudson and
Kaplan. To do so I consider a related problem, namely
the problem of finding a minimal set of trees that explain
the sequences, such that any two neighbor trees are
incompatible with each other. If this is so, there is at
least one recombination event between two neighbor
trees. As an example consider a sample with n ¼ 6
sequences and m ¼ 7 sites,

1 2 3 4 5 6 7

0 1 0 0 0 1 0
1 1 1 1 1 0 0
1 1 0 0 0 0 1
0 0 1 1 1 1 0
0 0 0 0 1 1 0
0 1 1 0 1 0 1

The sequences can be explained by three trees, namely
one tree explaining sites 1 and 2, one tree explaining 3, 4,E-mail address: cwiuf@variagenics.com (Carsten Wiuf).
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and 5, and one explaining 6 and 7. For each tree only
one substitution event is required in each column and we
say that the sites are compatible with the tree. As we
shall see the minimum number of trees is one larger than
TM ; that is TM ¼ 2: The haplotype bound is 4, because
there are six distinct haplotypes derived from the sites
1–3 and similarly 6 for the sites 4–6 (Myers, 2002). Each
requires at least 6� 3� 1 ¼ 2 recombination events,
where 3 is the number of sites. I will characterize the set
of all possible solutions to the problem of finding the
minimum number of trees and show how this number
relates to certain patterns in the alignment, called chain
series. In addition, the number TM is related to general
lists of topologies that explain the sequences. In the
discussion I will comment in more detail on TM ’s
relation to the true minimum number of recombination
events.

2. Results

Consider a sample of n sequences with m segregating
sites. Assume we have no information about the root,
branch lengths or about which of the two sites is
ancestral. In that case a tree is just a topology.
Throughout the paper topologies are thought of as
bifurcating, consistent with standard stochastic models
of sequence evolution. However, this assumption is not
at all crucial to the results. Each site i in the sample
induces a bipartition ðB0;B1Þ; where Bk; k ¼ 0; 1; is the
set of sequences with k in site i: Let Si; i ¼ 1;y;m; be
the class of bifurcating topologies, or topologies for
short, compatible with site i: Further, assume an infinite-
site model, that is each site has mutated at most once.

The only prerequisite we need is the Compatibility
Theorem (Estabrook et al., 1975, see also Gusfield,
1991). Say two sites or columns in the alignment, i1 and
i2; are incompatible if all four gamete types, 00, 01, 10,
and 11 are present in the two columns. Otherwise, the
two sites are said to be compatible. In the previous
example, sites 1 and 2 are compatible, whereas 2 and 3
are not. Note that this second concept of compatibility
compares sites with sites, whereas the first relates sites to
trees. The Compatibility Theorem provides the relation
between the two concepts.

The compatibility theorem. The whole sample is compa-

tible with a single topology if and only if all pairs of sites

i1 and i2; i1; i2Af1;y;mg; are compatible.

This theorem is very strong because it allows us to
check for compatibility with a tree by checking for
pairwise compatibility of sites, which is a lot easier to
do. In the following, it will be demonstrated how useful
this is. The next lemma is a consequence of the
Compatibility Theorem.

Lemma 1. Let G1 and G2 be two non-empty classes of

topologies such that Gk ¼
T

iAIk
Si; IkD½1;y;m�; k ¼

1; 2: Then G1 and G2; are incompatible, i.e., G1-G2 ¼ |;
if and only if there exist ikAIk; k ¼ 1; 2 such that

Si1-Si2 ¼ |:

Proof. Only the ‘only if’ needs to be proved. Assume the
statement is not true, then Si1-Si2a| for all
ði1; i2ÞAI1 	 I2: This implies that Si-Sja| for all
ði; jÞAðI1,I2Þ

2; and further according to the Compat-
ibility Theorem that all sites in I1,I2 can be related by a
tree. This contradicts that G1 and G2 are incompati-
ble. &

Definition 1. A list of topology classes, T ¼
ðT1;T2;y;TrÞ is said to be compatible with the sample
if Tk ¼

T
iAIk

Sia| for k ¼ 1;y; r; Ik ¼ ½ik; ikþ1 �
1�; ikoikþ1; i1 ¼ 1; and irþ1 ¼ m þ 1: The list T is said
to be disjoint if Tk-Tkþ1 ¼ | for k ¼ 1;y; r � 1; and
T is said to be minimal if r is as small as possible. The
smallest r is denoted by TM :

Obviously, T cannot be minimal without being
disjoint. Also note that in the definition of disjointness
it is only required that Ti-Tj ¼ | for neighbor classes
j ¼ i þ 1: In the following T is assumed to be
compatible with the sample. Further, the notation T
and I ¼ ðI1;y; IrÞ are used interchangeably.

Definition 2. Let T be a disjoint list with r elements.
A series akobkpakþ1; akAIk; bkAIkþ1; for
k ¼ 1;y; r � 1; with the property that Sak

-Sbk
¼ |;

i.e., sites ak and bk are incompatible, is called a chain
series.

Theorem 1. Let T be a disjoint list with r elements.

Then T is minimal if and only if T admits a chain

series.

Proof. If T admits a chain series then there cannot be
another compatible list with fewer elements than r; i.e.,
TMXr; and further because T is compatible by
assumption, rXTM : That is TM ¼ r and T is minimal.
Assume now T is minimal. Induction will be used to
prove that T admits a chain series. If r ¼ 2; then, there
exists a chain series (Lemma 1). For the induction step
assume T admits a chain series if there are at most r � 1
elements in T: If T has r elements construct a new list
Tn ¼ ðTn

1 ;y;Tn
r Þ such that Tn

k ¼ Tk for kor � 1 and
Tn

r�1 and Tn
r are defined in the following way. Let in be

the largest element in Ir�1 ¼ ½ir�1; ir � 1� such that Sin is
incompatible with Tr: Such an element exists. Define
Tn

r�1 and Tn
r by Tn

r�1 ¼
Tin

i¼ir�1
Si and Tn

r ¼
Tm

i¼inþ1 Si:
Note that Tn is compatible with the sample and that
ðTn

1 ;y;Tn
r�1Þ is minimal for the sample restricted to the

sites 1;y; in (see illustration). Otherwise T could not be
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minimal either.

By the induction hypothesis there exists a chain series,
C; for ðTn

1 ;y;Tn
r�1Þ and further there exists a site

br�1AIr such that in and br�1 are incompatible (by
definition of in). Extending C with ar�1 � in and br�1

gives a chain series for T: &

Example 1. A list can be disjoint without being minimal
and hence not admit a chain series. For example con-
sider the following five sequences with four segregating
sites, 0000, 0001, 0111, 1100, and 1111. The pairs of
sites ð1; 3Þ; ð2; 4Þ and ð1; 4Þ are all incompatible, and one
can construct a disjoint list of three classes, T1 ¼
S1; T2 ¼ S2-S3; and T3 ¼ S4: However, there is no
chain because 1 is only incompatible with 3 in T2; and 4
only with 2. A minimal list is T ¼ ðS1-S2;S3-S4Þ
which has three chains, ða11;b

1
1Þ ¼ ð1; 3Þ; ða21;b

2
1Þ ¼ ð2; 4Þ;

and ða31; b
3
1Þ ¼ ð1; 4Þ: It is clear that four is the least

possible number of sites for which an example of this
kind can be found. Neither can an example be found
with four sequences because this would force sites 2
and 3 to have the same mutation pattern. Thus, an
example with fewer sites or fewer sequences cannot be
constructed.

Algorithms that find the minimum number of
topology classes, TM ; or produce a minimal list are of
interest. Two such algorithms are given here.

Algorithm 1. Define Ti ¼ ðTi
1;T

i
2;y;Ti

ri
Þ; i ¼ 1; 2;y;m;

recursively by

(1) T1 ¼ ðT1
1 Þ ¼ ðS1Þ and r1 ¼ 1;

(2) If Siþ1 is compatible with Ti
ri

then riþ1 ¼ ri and

Tiþ1 ¼ ðTiþ1
1 ;Tiþ1

2 ;y;Tiþ1
riþ1

Þ

¼ ðTi
1;T

i
2;y;Ti

ri
-Siþ1Þ;

(3) If Siþ1 is incompatible with Ti
ri

then riþ1 ¼ ri þ 1 and

Tiþ1 ¼ ðTiþ1
1 ;Tiþ1

2 ;y;Tiþ1
riþ1

Þ ¼ ðTi
1;T

i
2;y;Ti

ri
;Siþ1Þ:

Then Ti is minimal for the sample restricted to the

!sites 1; 2;y; i and the minimal number of classes is ri;
in particular, Tm is minimal for the sample and

TM ¼ rm:

Note that Tm has the property that a new topology
class is only postulated for site i if Si is incompatible
with the previous class.

Proof. Tr is obviously disjoint. Define bk ¼ ikþ1; k ¼
1;y; rm � 1; that is bk is the left most site in topology
class Tkþ1: Choose akATk such that ak and bk are
incompatible. This is possible because bk and Tk are
incompatible (by construction). Clearly, bkpakþ1 be-
cause bk is the left-most site in Tkþ1 and akobk by
construction. In conclusion, Tr admits a chain series
and is thus minimal. &

Hudson and Kaplan (1985) provide a different
algorithm. The following algorithm is due to them.

Algorithm 2. Define Dij to be one if sites i and j are

incompatible, and zero otherwise. Order all intervals

½i; j�; ioj; for which Dij ¼ 1 into a list, D; alphabetically.

With a slight abuse of language, ½i1; j1� and ½i2; j2� are said

to be disjoint if j1pi2: Do the following:

(1) If ½i1; j1�; ½i2; j2�AD and i1pi2oj2pj1; then remove

½i1; j1� from the list, i.e., D :¼ DW½i1; j1�: Continue

until it is not possible to remove any more intervals.
(2) Let ½i; j� be the first interval in D not disjoint from all

the other intervals. Remove all intervals, ½i1; j1�; such

that ioi1oj: Continue in the same fashion with the

next interval that is not disjoint from all the other

intervals in the updated list, and so forth.
(3) Stop when all intervals in D are disjoint.

Let Dn ¼ ð½i1; j1�;y; ½ir�1; jr�1�Þ be the final disjoint

list ordered alphabetically. Let j0 ¼ 1; jr ¼ m þ 1 and

define Tk ¼
Tjk�1

i¼jk�1
Si; k ¼ 1; 2;y; r: Then T ¼

ðT1;T2;y;TrÞ is minimal and TM ¼ jDnj þ 1 ¼ r:

Comments. Two comments are appropriate: (i) The first
step creates a unique list with the property that either
j1pi2 or i1oi2oj1oj2 for any two intervals ½i1; j1� and
½i2; j2� in D with i1pi2: If this was not the case one could
continue to remove intervals. (ii) If an interval ½i; j� is
removed from the list, then there is an interval in the
final list, Dn; that is not disjoint from ½i; j�: The
comments are used in the proof below.

Proof. First, it will be shown that Tka| for k ¼ 1;y; r:
Put Ik ¼ ½jk�1; jk � 1�: According to the Compatibility
Theorem it suffices to prove that all sites in Ik are
pairwise compatible. Assume oppositely that there exists
a pair of sites i; jAIk; ioj; such that i and j are
incompatible. Note that ikAIk: Then there are three
possibilities: Either (i) ikpi; (ii) ioikoj; or (iii) jpik: If
(i), then ðik; jkÞ should be removed from D; according to
rule (1). If (ii), then again ðik; jkÞ should be removed from
D because ði; jÞ occurs before ðik; jkÞ in application of rule
(2). If iii) then ði; jÞ should appear in the final list, Dn;
because ði; jÞ is disjoint from all the pairs listed in Dn: In
all cases a contradiction is reached and it is concluded
that the sites in Ik are compatible with a tree.
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Next, it will be shown that T is disjoint and admits a
chain series. If this is so, T is minimal and TM ¼ r ¼
jDnj þ 1: Define ak ¼ ik and bk ¼ jk for k ¼ 1;y; r � 1:
Then, akobkpakþ1 (according to the Comments) and
ðak; bkÞ is an incompatible pair of sites, because Dakbk

¼
1: Further, note that akAIk and bkAIkþ1: Then,
ak;bk; k ¼ 1;y; r � 1; form a chain series and TM ¼
jDnj þ 1 ¼ r: The proof is completed. &

It transpires by inspection of the rules in Algorithm 2
that the list T as defined in Algorithm 2 is identical to
the list defined in Algorithm 1. This provides an
alternative proof of the fact that Algorithm 2 produces
a minimal list.

Algorithm 1 runs linearly in the number of segregat-
ing sites, m: There are at most 2n � 3 non-empty splits
for a given topology with n leaves (n � 3 if singletons are
not counted) and it takes at most OðnÞ operations to
compare two splits. So, Algorithm 1 runs in time
Oðmn minfm; ngÞ ðminfm; ng because there are at most
m different splits). Algorithm 2 runs quadratic in m;
because there are mðm � 1Þ=2 pairs of sites, and for each
pair it takes at most OðnÞ operations to check whether
the pair is incompatible or not. The list can be sorted at
the same time, in total in Oðnm2Þ: Reducing the list can
be done in Oðm2Þ; going through the list twice, once for
each of the steps 1 and 2. Thus, Algorithm 2 runs in time
Oðnm2Þ: If mbn; Algorithm 1 results in a substantial
reduction in computer time compared to Algorithm 2.

Gusfield (1991) founds an OðnmÞ algorithm that
decides whether the sample conforms to a single
topology and if it does constructs this. It does not seem
that his technique can improve the running time of the
two algorithms discussed here.

Theorem 2. Assume T1 ¼ ðT1
1 ;y;T1

r Þ is minimal with

chain series ak;bk; k ¼ 1;y; 1� r; and let T2 ¼
ðT2

1 ;y;T2
s Þ; sXr; be another compatible list, not neces-

sarily disjoint. Then a1;b1;b2;y;br�1 fall in r different

classes of T2: If T2 is minimal, i.e., s ¼ r; then bk and

akþ1; k ¼ 1;y; r � 2; fall in the same class and

ak;bk; k ¼ 1;y; r � 1; is a chain series of T2:

Proof. Since ak; bk; k ¼ 1;y; r � 1; is a chain then

a1ob1pa2ob2p?par�1obr�1:

The two sites, a1 and b1; fall in different classes because
they are incompatible. Also bk and bkþ1; k ¼ 1;y; r � 2;
fall in different classes. Otherwise akþ1 would also fall in
the same class as bk and bkþ1 because bkpakþ1obkþ1:
But this is impossible because akþ1 and bkþ1 are
incompatible. Hence, a1;b1; b2;y;br�1 fall in r different
classes. If T2 is minimal, then there are exactly r classes
in T2; implying that akþ1 falls in the same class as bk:
Hence, ak; bk; k ¼ 1;y; r � 1; is a chain series of T2:
The proof is completed. &

Assume that TM ¼ r: Define amax
k and bmin

k ; k ¼
1;y; r � 1; by

amax
k ¼ maxfak j aj ;bj ; j ¼ 1;y; r � 1; is a chaing ð1Þ

and

bmin
k ¼ minfbk j aj ; bj ; j ¼ 1;y; r � 1; is a chaing: ð2Þ

Because the number of sites, m; is finite, amax
k and bmin

k both
belong to a chain series (though not necessarily the same
chain series, Example 1). Put bmin

0 ¼ 1 and amax
r ¼ m; and

let IM
k ¼ ½bmin

k�1; a
max
k � and JM

k ¼ ½amax
k þ 1;bmin

k � 1� ðJM
k

can be empty), k ¼ 1;y; r: An illustration of the relation
between a minimal list T (or I) and IM

k and JM
k is useful.

Below r ¼ 4; thick lines represent IM
k ; thin lines JM

k ; and
the boundary between Ik and Ikþ1 is marked with a vertical
thin line. Note that Theorem 2 implies that IM

k DIk for all k:
The next lemma relates amax

k and bmin
k to the minimal list

constructed as in Algorithm 1.

Lemma 2. Let T ¼ ðT1;y;TrÞ be the list constructed as

in Algorithm 1 and let Tn ¼ ðTn
1 ;y;Tn

r Þ be the list

constructed as in Algorithm 1; when applied to the

reversed set of sequences (numbering of topologies is

from left to right, i.e., not reversed). Define bk; k ¼
1;y; r � 1; to be the first element in Tkþ1 and, similarly,
define ak; k ¼ 1;y; r � 1; to be the last element in Tn

k

(the first element when going from right to left). Then

bk ¼ bmin
k and ak ¼ amax

k :

Proof. According to Theorem 2, bmin
k ATkþ1; because

bmin
k is at least in one chain series. But bk is the first

element in Tkþ1; and thus bkpbmin
k : However, by

definition of bmin
k and construction of bk; bmin

k pbk;
hence bmin

k ¼ bk: Obviously, Tn is also a minimal list
with respect to the original left-to-right direction and a
chain series can be constructed with ak being the first
element in an incompatible pair. Then, akpamax

k ;
because amax

k ATn
k according to Theorem 2. But also

amax
k pak because ak is the last element in Tn

k : Hence
equality, ak ¼ amax

k : &

Corollary 1. The sets IM
k ,JM

k and JM
k ,IM

kþ1; k ¼
1;y; r � 1; are both compatible with a tree. In particular,
JM

k is compatible with a tree.

Proof. According to Lemma 2, IM
k ,JM

k ¼ ½bmin
k�1;b

min
k �

1�; which equals Ik in the list constructed as in Algorithm
1. Similarly, JM

k ,IM
kþ1 ¼ ½amax

k þ 1; amax
kþ1�; which equals

In
kþ1 in the list constructed as in Algorithm 1 when
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applied to the reversed set of sequences. Both Ik and In
k

are compatible with a tree by construction and the
corollary is proved. &

Example 2. Consider the following n ¼ 5 sequences with
m ¼ 5 sites: 00000, 00011, 01110, 11000, 11111. It can
easily be seen that IM

1 ¼ ½1�; IM
2 ¼ ½3�; IM

3 ¼ ½5�; JM
1 ¼

½2� and JM
2 ¼ ½4�: A minimal list can either have (i) I1 ¼

½1; 2� or (ii) I1 ¼ ½1�: If (i), then one can choose to put site
4 in either I2 or I3: If (ii), then I2 ¼ ½2; 3� and I3 ¼ ½4; 5�
because the sites 2 and 4 are incompatible. Thus,
whether the sites in JM

k are allocated to Ik or Ikþ1

potentially affects the allocation of the sites in JM
kþ1; and

so forth. There cannot be an example of this kind with
less than five sites, neither can there be one with four
sequences.

In the next two lemmas general disjoint lists are
related to the number TM :

Theorem 3. Let T ¼ ðT1;y;TsÞ be any disjoint list.

Then TMpsp2TM � 1:

Proof. That TMps follows from the definition of TM :
To prove sp2TM � 1; let Tn ¼ ðTn

1 ;y;Tn
r Þ be a

minimal list with intervals In
1 ;y; In

r ; and let I1;y; Is

be the intervals of T: The interval In
1 can at most be

overlapping with I1 and I2; otherwise I1 and I2 would be
compatible with each other. Each interval In

k ; 1okor;
can at most be overlapping with two intervals, Ij ; and
Ijþ1 for some j; that are not also overlapping with any of
In
1 ;y; In

k�1: Finally, In
r can at most be overlapping with

the interval, Is; that is not also overlapping with any of
In
1 ;y; In

r�1: In conclusion, sp2ðr � 1Þ þ 1 ¼ 2TM � 1; as
desired. &

If equality holds in Theorem 3 the list is called
maximal. A maximal list always consists of an odd
number of topology classes.

Example 3. The bound in Theorem 3 is as good as
possible. Consider Example 1. Denote the sites patterns
by a; b; c; and d; in the order they occur in Example 1,
and define five sequences by the following series of site
patterns: a; b; c; d; d; c; b; a; a; b;y (for as long as we
want). A minimal list is obtained by grouping sites in the
following way: I1 ¼ ½1; 2� (with patterns a; b), I2 ¼
½3; 6� ðc; d; d; cÞ; I3 ¼ ½7; 10� ðb; a; a; bÞ; etc. If m is odd
then a maximal list is I1 ¼ ½1� ðaÞ; I2 ¼ ½2; 3� ðb; cÞ; I3 ¼
½4; 5� ðd; dÞ; I4 ¼ ½6; 7� ðc; bÞ; I5 ¼ ½8; 9� ða; aÞ; etc., be-
cause a and c are incompatible, and b and d are
incompatible.

Example 4. A maximal list does not always exist.
Consider the following two site patterns or columns
in the alignment for four sequences: a ¼ 0011 and
b ¼ 0101 (here, one string represents a column,

not a sequence). Define four sequences by
a; b; a; b; a; b; a; b; a;y (for as long as we want). Then
there is only one disjoint (and minimal) list because a

and b are incompatible.

Lemma 3. For any disjoint list T ¼ ðT1;y;TsÞ there

exists akAIk and bkAIkþ1; k ¼ 1;y; s � 1; such that ak

and bk are incompatible, akoakþ1; bkobkþ1; akobk;
and bkoakþ2:

Proof. Since T is disjoint, there exist akAIk and
bkAIkþ1 such that ak and bk are incompatible. The
inequalities follow from how ak and bk are chosen. &

Theorem 4. Let T ¼ ðT1;y;TsÞ be a disjoint list and let

ak;bk; k ¼ 1;y; s � 1; be a series fulfilling Lemma 3:
Then there is at least s � TM instances of akþ1obk for

some k ¼ 1;y; s � 2:

Proof. Let Tn ¼ ðTn
1 ;y;Tn

r Þ; r ¼ TM ; be a minimal
list with intervals In ¼ ðIn

1 ;y; In
r Þ; constructed as in

Algorithm 1. The proof is by induction on s: If s ¼ 1 the
result is obviously true since s � TM ¼ 1� 1X0 (alter-
natively, s ¼ 2 can be taken as the basis of induction:
s � TM ¼ 2� 2X0). Assume now the theorem is true
for any disjoint list of length less than or equal to s � 1:
There are two cases, I and II, illustrated below:

In case I, In
r�1 ends after or at the same site as Is�1: In

case II, In
r�1 ends before Is�1 and In

r�2 before Is�2

(endpoints of intervals are marked with small vertical
lines). That these are the only two cases follows from the
construction of Tn: Put Tj ¼ ðT1;y;TjÞ and let TM ðjÞ
be the minimum number of topology classes for Tj :
Note that if ak;bk; k ¼ 1;y; s � 1; is a series fulfilling
Lemma 3 for T; then ak; bk; k ¼ 1;y; j; fulfills Lemma
3 for Tj : Further, let cðjÞ be the number of times
akþ1obk for some k for Tj : Clearly, cðj þ 1ÞXcðjÞ
for all j:

Consider case I. Then TMðs � 1Þ ¼ r � 1 and
cðsÞXcðs � 1ÞXðs � 1Þ � ðr � 1Þ ¼ s � r by the induction
hypothesis and the theorem holds for s:

Consider case II. Here TMðs � 1Þ ¼ r: Note that
as�1AIs�1-In

r�1 and bs�1AIs: The case splits into two
subcases, A and B, according to which set bs�2 belongs
to. Subcase A : bs�2AIs�1-In

r ; and subcase
B : bs�2AIs�1-In

r�1: If A, then clearly as�1obs�2; and
cðsÞ ¼ 1þ cðs � 1ÞX1þ ðs � 1Þ � r ¼ s � r; and the
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theorem holds for s: If B, consider Tn

s�1 with intervals
defined by In

s�1 ¼ ðI1;y; Is�2; Is�1-In
r�1Þ; i.e., T

n

s�1 is
T restricted to the sites up to and including those in
In

r�1: The list T
n

s�1 has s � 1 elements, is disjoint because
Is�2 and Is�1-In

r�1 are incompatible (as�2AIs�2 and
bs�2AIs�1-In

r�1 are incompatible by assumption), and
ak;bk; k ¼ 1;y; s � 2; is a series fulfilling Lemma 3 for
Tn

s�1: Further, the minimum number of topology classes
of Tn

s�1 is r � 1; by construction. Using the induction
hypothesis on Tn

s�1 gives cðsÞXðs � 1Þ � ðr � 1Þ ¼ r � s

and the theorem holds for s as well. The proof is
completed.

Example 5. The inequality in Theorem 4 cannot be
improved. Consider the sample in Examples 1 and 3
with eight sites given by the patterns a; b; c; d; d; c; b; a:
Duplicate the five sequences to obtain 10 sequences in
the following way: Add columns of five zeros to the first
four sites, call these a1; b1; c1; and d1: As to the next
four sites, prefix each column with five zeros. Call these
d2; c2; b2 and a2: Then, the sample is given by
a1; b1; c1; d1; d2; c2; b2; a2: For each i ¼ 1; 2; the sites
ai; bi; ci; and di have the same incompatibility pattern
as a; b; c; d; whereas any site with subscript 1 is
compatible with a site with subscript 2, for example,
a1 is compatible with c2; and so forth. The list I11 ¼
½1� ða1Þ; I12 ¼ ½2; 3� ðb1; c1Þ; I13 ¼ ½4; 5� ðd1; d2Þ; I14 ¼
½6; 7� ðc2; b2Þ; I15 ¼ ½8� ða2Þ is disjoint and there is only
one series, ak;bk; k ¼ 1; 2; 3; 4; fulfilling Lemma 3:
ða11; b

1
1Þ ¼ ð1; 3Þ; ða12; b

1
2Þ ¼ ð2; 4Þ; ða13;b

1
3Þ ¼ ð5; 7Þ; and

ða14; b
1
4Þ ¼ ð6; 8Þ: Further, this series fulfills equality in

Theorem 4, s � TM ¼ 5� 3 ¼ 2:
However, if d1 and d2 are interchanged such that the

alignment now is a1; b1; c1; d2; d1; c2; b2; a2; then the
list I21 ¼½1� ða1Þ; I22 ¼½2; 3� ðb1; c1Þ; I23 ¼ ½4; 5� ðd2; d1Þ;
I24 ¼ ½6; 7� ðc2; b2Þ; I25 ¼ ½8� ða2Þ has only one series
fulfilling Lemma 3, namely: ða21; b

2
1Þ ¼ ð1; 3Þ; ða22;b

2
2Þ ¼

ð2; 5Þ; ða23;b
2
3Þ ¼ ð4; 7Þ; and ða24;b

2
4Þ ¼ ð6; 8Þ: But this

series has three instances of akþ1obk and 3 > s � TM ¼
5� 3 ¼ 2: In conclusion, the inequality in Theorem 4
cannot be improved.

3. Discussion

The number produced by Hudson and Kaplan’s
(1985) algorithm was shown to be the minimum number
of topologies minus one required to explain a sample of
sequences fulfilling the infinite-site assumption. How-
ever, as pointed out in the Introduction this number is
rarely the true minimum number of recombinations,
RM ; required to explain the data. It turns out that RM

can be found using a recursion of the form,

Rð1;TÞ ¼ wð1;TÞ;

Rði;TÞ ¼ minfRði � 1;T 0Þ þ dðT ;T 0Þ þ wði;TÞ j T 0 treeg;

and

R ¼ minfRðm;TÞ j T treeg;

i ¼ 1;y;m; where Rði � 1;T 0Þ is the minimum for
the first i � 1 sites assuming the tree in the ði � 1Þth
site is T 0 and wði;TÞ is 0 if T is compatible with site i

(i.e., T is compatible with the partition ðB0;B1Þ in site i),
and infinite otherwise. Here a tree T is a topology
with time points assigned to each node indicating
when coalescence took place in the past and d is
a metric derived from the coalescent process with
recombination. In general d is difficult to compute.
However, lower bounds to RM can be obtained by
bounding d by some metric d 0 such that dXd 0: If d 0 ¼
1fT1;T2g is an indicator variable that is zero if the
two trees, T1 and T2; have the same topology and
one otherwise, the bound is exactly TM : Other possible
bounding metrics d 0 are much more difficult to compute
(Allen and Steel, 2001) and the algorithm easily becomes
inefficient. This will be the subject of a subsequent
paper. It is worth pointing out that the true minimum
in general is much lower than the actual experienced
number of recombination events in a sample’s history.
Hudson and Kaplan (1985) found, simulating under
the neutral coalescent model, that for realistic values
of the recombination rate the discrepancy between
the true minimum and the actual number can be five-
fold or more.

It transpires that the results presented here essentially
depend on the Compatibility Theorem. The proofs
are based on relating compatibility between sites to
compatibility between sites and trees. By changing the
definition of compatibility we change the results
accordingly, but not the proofs. For example, ancestral
states could be imposed, derived from chimp sequences
or from some consensus rule, and two sites would be
incompatible if all three gametes ð0; 1Þ; ð1; 0Þ; and ð1; 1Þ
are found in two columns, assuming 0 is the ancestral
state.
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