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Plan for lecture

Summary of Day 1.
▶ Recap of T-tests.
▶ Solution to Exercise 1.2 and 1.5.

Discussion of papers.
▶ Stern & Smith: “Sifting the evidence — What’s wrong with

significance tests?”
▶ Gelman & Carlin: “Beyond Power Calculations: Assessing Type S

(Sign) and Type M (Magnitude) Errors”

Non-parametric tests:
▶ Wilcoxon / Mann-Whitney, Kruskal-Wallis.

Analysis of 2-way tables.
▶ More assumptions =⇒ more power.
▶ Interpretations and associated tests.
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Summary of Day 1

Statistics answers four important questions:
1 Is there an effect? (falsification of null hypothesis, p-value)
2 Where is the effect? (p-values from post hoc analyses)
3 What is the effect? (confidence and prediction intervals)
4 Can the conclusions be trusted? (model validation)

We do model based frequentist statistics: Interpretation of p-values
and confidence intervals via the meta-experiment.

Tidy data: Datasets consists of variables (columns) and observations
(rows).

T-tests, data transformation, and validation of normality assumption.
▶ Due to lack of time this was only superficially discussed on Day 1.
▶ We will recap one and two sample T-tests today, and return to data

transformation later in the course.
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Data example 4 from Day 1: Phosphor in lakes
Two independent samples, not necessarily of the same length

> lakes

# A tibble: 627 x 2

location phosphor

<chr> <dbl>

1 East-Denmark 255

2 East-Denmark 102.

3 East-Denmark 166.

4 East-Denmark 42.5

5 East-Denmark 102.

6 East-Denmark 60.6

7 East-Denmark 89.8

8 East-Denmark 182.

9 East-Denmark 243.

10 East-Denmark 30.9

# ... with 617 more rows

R code (here log-transformation needed to have normality)

t.test(log(phosphor)~location,data=lakes)

DSL (MATH) AS / SmB-I Day 2 4 / 54



Solution to Exercise 1.2

Example 1: Growth of rats, N = 12.

Variable Type Range Usage
antibiotica Nominal 0, 40 fixed effect
vitamin Nominal 0, 5 fixed effect
growth Continuous [1.00 ; 1.56] response

Example 2 (for paired analysis): Tenderness of meat, N = 24.

Variable Type Range Usage
pH.group Nominal low, high fixed effect
Tunnel Continuous [3.11 ; 8.78] response
Fast Continuous [3.33 ; 8.44] response

Example 2 (for mixed model): Tenderness of meat, N = 48.

Variable Type Range Usage
Pork Nominal 24 levels random effect
pH.group Nominal low, high fixed effect
method Nominal tunnel, fast fixed effect
tenderness Continuous [3.11 ; 8.44] response
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Solution to Exercise 1.2 (continued)

Example 3: Weight loss (raw binary data), N = 160.

Variable Type Range Usage
diet Nominal 2 levels fixed effect
week Ordinal 1 < . . .< 8 fixed effect
person Nominal 20 levels random effect
weight.loss Binary no, yes response

Example 3: Weight loss (for binomial analysis), which is also available
from the table, N = 20.

Variable Type Range Usage
diet Nominal 2 levels fixed effect
weeks.with.weight.loss Count 0 < . . .< 8 response
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Solution to Exercise 1.2 (continued)

Example 4 (with univariate end-point): Stress and metabolism,
N = 8 ∗ 96 = 768.

Variable Type Range Usage
number.of.rats Continuous 5,6 weight (!?)
group Nominal 8 levels random effect
sex Nominal male, female fixed effect
stabeling Nominal no, yes fixed effect
food.additive Nominal no, yes fixed effect
gene Nominal 96 levels fixed effect
expression Continuous [–5.7060 ; 13.2240] response
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Solution to Exercise 1.5 (slide 1 of 4)

Open data frame hypertension from the R datafile
hypertension.RData to see the variables:

change1 = change of blood pressure over study period 1
change2 = change of blood pressure over study period 2
average = (change1+change2)/2

diff = change1 − change2
E diff N = changeE − changeN

Four tests:
Two sample test: E diff N in E/N-group vs. N/E-group
Two sample test: average in E/N-group vs. N/E-group
Two sample test: diff in E/N-group vs. N/E-group
One sample test: E diff N against 0

Question: What do the four hypotheses mean?

DSL (MATH) AS / SmB-I Day 2 8 / 54



Solution of Exercise 1.5 (slide 2 of 4)

Let’s do some algebra:

e1 = effect of drug E in period 1
e2 = effect of drug E in period 2
n1 = effect of drug N in period 1
n2 = effect of drug N in period 2

E/N patients experience effects (e1,n2)

N/E patients experience effects (n1,e2)

Two first null hypotheses stipulate the following:

Test 1: e1−n2 = e2−n1 (No spill-over: e1+n1 = e2+n2)
Test 2: e1+n2 = e2+n1 (No interaction: e1−n1 = e2−n2)

If these hypotheses are not rejected, then e1=e2=e and n1=n2=n

Thereafter two last null hypotheses stipulate:

Test 3: e−n = n−e (No difference: e=n)
Test 4: e−n = 0 (No difference: e=n)
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Solution to Exercise 1.5 (slide 3 of 4): R code

Test 1: Example of a two-sample test
# T-test

ggplot(hypertension,aes(sample=E_diff_N)) + geom_qq() + facet_grid(.~order)

t.test(E_diff_N~order,data=hypertension)

# Wilcoxon Rank Sum test

wilcox.test(E_diff_N~order,data=hypertension)

Test 4: Example of a one-sample test
# T-test

ggplot(hypertension,aes(sample=E_diff_N)) + geom_qq()

t.test(hypertension$E_diff_N)

# Wilcoxon Signed Rank test

wilcox.test(hypertension$E_diff_N)

Recommendation: Only use Wilcoxon tests if the t-tests are not valid.

DSL (MATH) AS / SmB-I Day 2 10 / 54



Solution to Exercise 1.5 (4/4): Conclusion from analysis

Test number: Statistical
null hypothesis test Assumptions p-value

1: No spill-over Welch T-test Normality ok(!?) 0.2011
Wilcoxon None 0.0981

2: No interaction Welch T-test Normality questionable 0.5136
Wilcoxon None 0.6791

3: No drug Welch T-test Normality questionable 0.0932
difference Wilcoxon None 0.0826

4: No drug T-test Normality ok! 0.1108
difference Wilcoxon None 0.1328

Neither spill-over (although significant at α = 0.10) nor interaction.

However, drug effect is non-significant.

Here the two-sample test is more powerful than the one-sample test
(0.0932 vs. 0.1108). But personally I prefer the one-sample test due
to its interpretation (e.g. confidence interval for drug difference).
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Questions?

And then a break.

After the break we discuss the two papers. These papers address
problems that may arise in experiments with low statistical power:

▶ Is there an effect? (Sterne & Smith)
▶ What is the effect? (Gelman & Carlin)
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What’s wrong with significance tests?
Table 2, Sterne & Smith, BMJ, 226–231, 2001

Null hypothesis:
True False

Test: Don’t reject Correct Type II error
Reject Type I error (significance level) Correct (power)

Specificity = P(don’t reject | hypothesis true) = 1 − significance level

Sensitivity = P(reject | hypothesis false) = power

The p-value is not the probability that the hypothesis is true. As a
“counterexample” consider the following 1000 tests (4595 > 0.05):

Null hypothesis true Null hypothesis false

Result of experiment (no association) (association!) Total

Don’t reject null hypothesis 855 50 905
Reject null hypothesis 45 50 95
Total 900 100 1000
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Percentage of significant results that are false positives
Table 3, Sterne & Smith, BMJ, 226–231, 2001

Significance level
Ideas correct Power α = 5% α = 1% α = 0.1%

80% 20% 5.9 1.2 0.10
50% 2.4 0.5 0.05
80% 1.5 0.3 0.03

50% 20% 20.0 4.8 0.50
50% 9.1 2.0 0.20
80% 5.9 1.2 0.10

10% 20% 69.2 31.0 4.30
50% 47.4 15.3 1.80
80% 36.0 10.1 1.10

1% 20% 96.1 83.2 33.10
50% 90.8 66.4 16.50
80% 86.1 55.3 11.00
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Type S (sign) and Type M (magnitude) errors
Gelman & Carlin, Persp. Psych. Science, 1–11, 2014.

Sterne & Smith discuss risk of false positive (Is there an effect?), i.e.
the proportion of true null hypothesis among rejected tests.

Null hypothesis:
True False

Test: Don’t reject Correct Type II error
Reject False positive Possibly Type S/M error

Gelman & Carlin discuss risk of wrong conclusions (What is the
effect?) given correctly rejected (and false) null hypothesis!

▶ Type S error = the estimate (from a rejected false null hypothesis) has
the wrong sign.

▶ Type M error = the estimate (from a rejected false null hypothesis) has
a too large magnitude.

Risk of false positives and of Type S and Type M errors is only
problematic when the power of the test is low.
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Risk of Type S and Type M error
Figure 2, Gelman & Carlin, 2014: Effect size from 0 to 100, SE=1, α = 0.05, df=∞
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Remark: Exaggeration ratio approaches ∞ as effects size approaches 0.
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Questions?

And then a break.

After the break we discuss non-parametric tests that may by used in
replacement of T-tests and 1-way ANOVA when the normality
assumption is not satisfied:

▶ Wilcoxon’s signed rank test (one sample).
▶ Wilcoxon’s rank sum test (two independent samples). Also known as

Mann-Whitney test.
▶ Kruskal-Wallis test (1-way design with more than 2 groups).
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Data example: Density of nerve cells
Motivation for non-parametric tests

Density of nerve cells measured at two sites of the intestine,
midregion/mesentric region of jejunum (“tyndtarm”), for n=9 horses.

horse mid mes diff

1 50.6 38.0 12.6

2 39.2 18.6 20.6

3 35.2 23.2 12.0

4 17.0 19.0 -2.0

5 11.2 6.6 4.6

6 14.2 16.4 -2.2

7 24.2 14.4 9.8

8 37.4 37.6 -0.2

9 35.2 24.4 10.8

Densities of nerve cells are
significantly different at the two sites:

p = 2·P
(
Tdf=8 >

7.33− 0

2.60

)
= 0.0222

This conclusion, however, relies on
the assumption that diff is normally
distributed.

But what if this assumption fails?
Usually, I either see if log(mid

mes) is normal, or use a non-parametric test.
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Non-parametric methods
Tests that do not assume normality

Pro and Cons:

+ “No” assumptions, no distribution checks needed.

− Only available for some situations.

− Often less powerful (but not always!).

− No model, no estimates, no confidence intervals, no predictions.

− Two sample T-test with unequal variances (known as Welch T-test)
may be less restrictive when applicable.

Today:

One sample: Sign test (appealing, but very weak and never used),
Wilcoxon signed rank test (preferable).

Two samples: Wilcoxon rank sum test (Mann-Whitney).

1-way ANOVA: Kruskal-Wallis test.
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Sign test for the density of nerve cells example
Paired two sample T-test gives p=0.0222

horse mid mes diff sign

1 50.6 38.0 12.6 +

2 39.2 18.6 20.6 +

3 35.2 23.2 12.0 +

4 17.0 19.0 -2.0 -

5 11.2 6.6 4.6 +

6 14.2 16.4 -2.2 -

7 24.2 14.4 9.8 +

8 37.4 37.6 -0.2 -

9 35.2 24.4 10.8 +

Test statistic r = number of positive signs = 6

If H0 (+/− are exchangeable) is true, then r ∼ bin(n, 0.5):

p = 2 · P
(
bin(9, 0.5) ≥ 6

)
= 0.5078

Absolutely no evidence against H0.
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Wilcoxon’s signed rank test for Data example 2
Paired two sample T-test gives p=0.0222

horse mid mes diff abs_diff sign rank

1 50.6 38.0 12.6 12.6 + 8

2 39.2 18.6 20.6 20.6 + 9

3 35.2 23.2 12.0 12.0 + 7

4 17.0 19.0 -2.0 2.0 - 2

5 11.2 6.6 4.6 4.6 + 4

6 14.2 16.4 -2.2 2.2 - 3

7 24.2 14.4 9.8 9.8 + 5

8 37.4 37.6 -0.2 0.2 - 1

9 35.2 24.4 10.8 10.8 + 6

Test statistic S+ = sum of ranks of positive diff.’s
= 8+9+7+4+5+6 = 39 (out of total=45)

If H0 (distribution of diff’s is symmetric) is true, then

p = 2 · P(S+ ≥ 39) = 0.05469

Almost significant at 5%. Some evidence of larger values at “mid”.
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R code available in script: cellDensity.R
Try to execute the script on your own laptop and locate the results

# Hard code data into two vectors

mid <- c(50.6,39.2,35.2,17.0,11.2,14.2,24.2,37.4,35.2)

mes <- c(38.0,18.6,23.2,19.0, 6.6,16.4,14.4,37.6,24.2)

# Make t-test

qqnorm(mid-mes)

shapiro.test(mid-mes)

t.test(mid,mes,paired=TRUE)

# Sign test: Is never used!

binom.test(sum(mid>mes),length(mid))

# Make Wilcoxon rank sum test

wilcox.test(mid,mes,paired=TRUE)
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Non-parametric two sample tests
2 groups of observations

Null hypothesis: Both groups have the same continuous distribution.

The Wilcoxon rank sum test, also know as Mann-Whitney test, is
based on the ranks Rj (among all observations) via the test statistic

S =
∑

observations j from the first group

Rj

To compute p-value we need the distribution of S under the null
hypothesis. On slide 24 we discuss how this may be done.

There exists many other non-parametric test statistics. Doing several
tests and choosing the one with the minimal p-value is cheating!

▶ Quiz: Can you explain why?
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p-values: Exact / Simulated exact / Approximate
In some situations, e.g. two sample T-test with equal variances, the
distribution of the test statistics is known mathematically. In these
situations we may compute the exact p-value.

Simulated p-values:
1 Simulate 10000 datasets, say, assuming the null hypothesis.
2 Compute the test statistic for each simulated dataset.
3 Is the observed test statistic extreme among the 10000 simulated test

statisitcs?
4 Leads to estimate and confidence interval for the exact p-value.

On Day 1 we tried this for the milk yield example.

Use an approximation of the test statistic distribution, e.g.

p = 2 · P
(
Z ≥ |zobs|

)
, Z =

S −mean(S)√
var(S)

∼ N (0, 1)︸ ︷︷ ︸
approximatively

,

but several other approximations (Satterthwaite, Kenward-Roger, . . . )
appear in various situations.
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Non-parametric equivalent for 1-way ANOVA
When there are more than 2 groups

Null hypothesis: All groups have the same continuous distribution.

Test statistic constructed via the ranks of the observations.

Approximative p-value via χ2-distribution.

The equivalent (when more than 2 groups) of the Wilcoxon test is
also known as Kruskal-Wallis test.

Remarks:

1 A falsification of the null hypothesis only tell us that the groups do
not have the same continuous distribution.

2 In principle none of the non-parametric methods discussed today
tolerate ties, e.g. that two observations are identical. However, there
of course exists remedies for this.
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Questions?

And then a break.

After the break we discuss tests for 2-way contingency tables. Doing
this we consider the following principles:

▶ Can the p-values be trusted?
▶ Using ordinal instead of nominal structure =⇒ more power!
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Statistics and tests for 2-way contingency tables
Multi-way tables: Graphical models (not covered in this course)

Overview:

Number of categories See slide
Variable 1 Variable 2

2 2 30–35
2+ (nominal) 2+ (nominal) 37
2+ (nominal) 2+ (ordinal) 38
2+ (ordinal) 2+ (ordinal) 39–40
2 (paired) 2 (paired) 43–47
2+ (paired) 2+ (paired) 48–49

Statistical principles: Validity and Power.

Data representation and R functions.
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How to describe these methods in publications?

The methods discussed today are so simple/standard that I wouldn’t
include a description in the Method section.

▶ In particular, these methods do not require model validation.
▶ However, the simulated χ2-test is not yet standard. So you perhaps

need to make a comment if you use that test (see later).

In the Results section I would present tables with both raw
observations and model estimates. Together with a statement like (cf.
gait score example):

Spearman’s rank correlation shows strong evidence of treatment
effect on gait score (r̂s = −0.1968, p = 0.00066).
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Table-of-Variables: Overview of data examples

Data example 1: Avadex and cancer

Variable Type Range Usage
Avadex nominal no, yes fixed effect
Tumor nominal no, yes response

Data example 2: Activity of chicken

Variable Type Range Usage
Treatment ordinal A < B < C < D fixed effect
Gait.score ordinal 0 < 1 < 2 < 3.5 response

Data example 3: Marijuana and sleeping problems

Variable Type Range Usage
Marijuana nominal no, yes response
Control nominal no, yes response
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Data example 1: Fungicide Avadex given to mice
Comparing two proportions (2× 2-tabel). Notice treatment and response.

Tumor
+ − Total

Avadex + 4 12 16
− 5 74 79

Total 9 86 95

n1 = 16 mice got Avadex in their food
n2 = 79 mice got no Avadex (controls)

Presumably, most of you have learned (in your basic statistics course)
about the three tests listed below. What are the differences, and which
test should we use for the example above?

χ2-test for independence (between Tumor and Avadex).

χ2-test for homogeneity (of Tumor risks across the Avadex groups).

Fishers exact test.
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Chi square test (2× 2 tables)
Null hypothesis: Independence / Null hypothesis: Homogeneity of proportions.

Var. 2 Total

Var. 1 a b a+b
c d c+d

Total a+c b+d n

Rule of thumb: Valid when

80% of cells: expected ≥ 5
all cells: expected ≥ 1

For 2× 2 tables: all expected ≥ 5.

Chi square test statistic:

X 2 =
∑
cells

(observed− expected)2

expected

Yates’ continuity correction (classically only for 2× 2 tables):

X 2
Yates =

∑
cells

(|observed− expected| − 1
2)

2

expected
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Independence test using R
If you don’t want the (recommended) continuity correction use option: correct=FALSE

> chisq.test(matrix(c(4,5,12,74),2,2))

Pearson’s Chi-squared test with Yates’ continuity correction

data: matrix(c(4, 5, 12, 74), 2, 2)

X-squared = 3.4503, df = 1, p-value = 0.06324

Warning message:

In chisq.test(matrix(c(4, 5, 12, 74), 2, 2)) :

Chi-squared approximation may be incorrect
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Homogeneity test in 2× 2-table using R
If you don’t want the (recommended) continuity correction use option: correct=FALSE

> prop.test(c(4,5),n=c(16,79))

2-sample test for equality of proportions with continuity correction

data: c(4, 5) out of c(16, 79)

X-squared = 3.4503, df = 1, p-value = 0.06324

alternative hypothesis: two.sided

95 percent confidence interval:

-0.06973073 0.44314845

sample estimates:

prop 1 prop 2

0.25000000 0.06329114

Warning: In prop.test(c(4, 5), n = c(16, 79)) :

Chi-squared approximation may be incorrect
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What if the Chi-square test is invalid?

Classically, Fisher’s Exact Test is recommended

fisher.test(matrix(c(4,5,12,74),2,2))

However, Fisher’s test has a slightly different interpretation of the null
hypothesis!

Alternative approach, which is always valid: keep the X 2-statistic and
simulate the p-value. This gives different tests for the hypotheses of
independence of variables and homogeneity of proportions:

▶ Testing for independence between tumors and avadex requires
conditioning on the total sum.

▶ Comparing proportions of tumors requires conditioning on the row
marginals.

▶ Quiz: What is correct in the present example?

Implemented in LabApplStat-package

chisq.test.simulate(matrix(c(4,5,12,74),2,2),"row")

R function for power computations: power.chisq.test.simulate()
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Avadex: Presentation of results

Tumor
+ − Total

Avadex + 4 (25%) 12 (75%) 16 (100%)
− 5 (6%) 74 (94%) 79 (100%)

Total 9 (9%) 86 (91%) 95 (100%)

Chi-square: X 2 = 5.4083, p=0.0200 (*, validity questionable)
Yates: X 2

Yates = 3.4503, p=0.0632 (NS, validity questionable)
Fisher: p=0.0411 (*, “wrong” null hypothesis)
Simulated Chi-square: X 2 = 5.4083, p=0.0224 (*, valid)

Only the simulated Chi-square is needed, and we conclude that
Avadex increase risk of tumors (p=0.02).

Estimated tumor probabilities:

Avadex p(tumor) 95% confidence interval

+ 0.250 (0.083 ; 0.526)
− 0.063 (0.024 ; 0.148)
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Data example 2: Activity of chicken
Graphical display using R: assocplot()

Treatment GAIT-score: 0 1 2 3.5 Total
A (ad libitum feeding) 12 26 20 12 70
B (fasting 8 H/day, 1 week) 13 27 22 13 75
C (fasting 8 H/day, 2 weeks) 25 25 18 8 76
D (fasting 8 H/day, 3 weeks) 28 23 21 3 75
Total 78 101 81 36 296

Treatment A Treatment B Treatment C Treatment D

3.
5

2
1

0
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Unordered categories (r × k table)
Null hypothesis: No association between row and column variables

Chi square test statistic:

X 2 =
∑
cells

(observed− expected)2

expected
, expected =

row total · column total

grand total

Under the null hypothesis, X 2 approximately follows a χ2-distribution
with df = (r − 1) · (k − 1).

Chicken example: X 2
obs = 17.68, p-value = P

(
χ2
df=9 ≥ X 2

obs

)
= 0.04 (*)

GAIT-score
Treatment 0 1 2 3.5 Total
A 12 26 20 12 70
B 13 27 22 13 75
C 25 25 18 8 76
D 28 23 21 3 75
Total 78 101 81 36 296

Can we do better than this, i.e.

Get more power?

Get more precise statement of the
effect?
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One ordered category (r × k table)
Compare rank sums of treatment groups using Kruskal-Wallis

Chicken example: GAIT-score is an ordinal variable.

Ranks for GAIT-score with resolved ties:

A: 39.5, . . . , 39.5︸ ︷︷ ︸
12

, 129, . . . , 129︸ ︷︷ ︸
26

, 220, . . . , 220︸ ︷︷ ︸
20

, 278.5, . . . , 278.5︸ ︷︷ ︸
12

B: 39.5, . . . , 39.5︸ ︷︷ ︸
13

, 129, . . . , 129︸ ︷︷ ︸
27

, 220, . . . , 220︸ ︷︷ ︸
22

, 278.5, . . . , 278.5︸ ︷︷ ︸
11

C: 39.5, . . . , 39.5︸ ︷︷ ︸
25

, 129, . . . , 129︸ ︷︷ ︸
25

, 220, . . . , 220︸ ︷︷ ︸
18

, 278.5, . . . , 278.5︸ ︷︷ ︸
8

D: 39.5, . . . , 39.5︸ ︷︷ ︸
28

, 129, . . . , 129︸ ︷︷ ︸
23

, 220, . . . , 220︸ ︷︷ ︸
21

, 278.5, . . . , 278.5︸ ︷︷ ︸
3

Test statistic = 13.0272.

P-value = 0.00457 (**)
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Two ordered categories (r × k table)

Arguably, treatment is also an ordinal variable:
(A: ad libitum feeding, B:fasting 8 H/day, 1 week, C: 2 weeks, D: 3 weeks)

Separate ranks for both variables (also resolving ties):

35.5: 39.5, . . . , 39.5︸ ︷︷ ︸
12

, 129, . . . , 129︸ ︷︷ ︸
26

, 220, . . . , 220︸ ︷︷ ︸
20

, 278.5, . . . , 278.5︸ ︷︷ ︸
12

108: 39.5, . . . , 39.5︸ ︷︷ ︸
13

, 129, . . . , 129︸ ︷︷ ︸
27

, 220, . . . , 220︸ ︷︷ ︸
22

, 278.5, . . . , 278.5︸ ︷︷ ︸
11

183.5: 39.5, . . . , 39.5︸ ︷︷ ︸
25

, 129, . . . , 129︸ ︷︷ ︸
25

, 220, . . . , 220︸ ︷︷ ︸
18

, 278.5, . . . , 278.5︸ ︷︷ ︸
8

259: 39.5, . . . , 39.5︸ ︷︷ ︸
28

, 129, . . . , 129︸ ︷︷ ︸
23

, 220, . . . , 220︸ ︷︷ ︸
21

, 278.5, . . . , 278.5︸ ︷︷ ︸
3
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Two ordered categories (r × k table)
Null hypothesis: rs = 0. Alternative hypothesis: rs ̸= 0.

Spearmans rank correlation rs :

r̂s =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2︸ ︷︷ ︸
Pearson correlation of the ranks x and y

Test statistic and p-value done using either an exact algorithm or an
approximative T-test.

▶ In R the exact algorithm is used if there are no ties and if the sample
size n is less than 1290.

▶ For applications it is of minor importance which tests is used. So we
simply ignore the issue. Also when the Spearman rank correlation is
used in papers!

Chicken example: r̂s = −0.1969, p = 0.0006596 (***)
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Activity of Chicken: Comparison of hypothesis tests
Statistical power gained when using that both treatment and response are ordinal

Test X2 Effective DF p-value
Spearman rank correlation NA 1 0.00066 (***)
Kruskal-Wallis 13.0272 3 0.00458 (**)
Chi-square 17.6187 9 0.03909 (*)

How to do these tests is exemplified in the R script “chicken.R”.

To my knowledge Kruskal-Wallis and Spearman rank correlation
require that data is given with individual observations, i.e. in a data
frame with 2 variables and 296 observations.

▶ One way of transforming table data to individual data is shown in the
R script “chicken.R”.
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Activity of Chicken: Presentation of results
Spearman’s rank correlation shows strong evidence of treatment effect on
gait score (r̂s = −0.1968, p = 0.00066).

The estimated proportions are given
in the following table:

Count, GAIT-score
Row % 0 1 2 3.5 Total
A 12 26 20 12 70

17.14 37.14 28.57 17.14 100
B 13 27 22 13 75

17.33 36.00 29.33 17.33 100
C 25 25 18 8 76

32.89 32.89 23.68 10.53 100
D 28 23 21 3 75

37.33 30.67 28.00 4.00 100
Total 78 101 81 36 296

26.35 34.12 27.36 12.16 100

Confidence intervals on the proportions might be given.

Quantification of the association might be improved.

Analysis might be refined by pairwise comparisons of the treatment
groups (plot suggests: A=B, C=D).
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Agreement between two binary responses

Correct answer

Student Pre-test Post-test

1 No No

2 No Yes

3 No No

4 No Yes

5 No Yes

6 Yes Yes

7 No No

...

...

30 No Yes

Correct answer Post-test
of question Yes No Total

Pre-test Yes 2 0 2
No 21 7 28

Total 23 7 30

Did the teaching improve the students performance, or is there
agreement between performance before and after the teaching?

▶ Are the responses the same at the two time points? (See slides 44–45)
▶ Is there a direction of the disagreement? (See slides 46–47)

Similar issues arise when two raters categorize the same probes, either
on nominal or ordinal scale. Possibly with more than 2 categories.
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Measuring agreement: Kappa coefficient
How many of the observations are on the diagonal?

Variable 2
+ − Total

Variable 1 + a b a+b
− c d c+d

Total a+c b+d n

Observed fraction on the diagonal:

pobs =
a+ d

n

Expected fraction on the diagonal (given the marginals):

pexp =
a+ b

n
· a+ c

n
+

c + d

n
· b + d

n

Kappa coefficient (R: kappa2() from irr-package)

κ =
pobs − pexp
1− pexp
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Measuring agreement: Kappa coefficient (II)

Maximal agreement if κ = 1. Positive agreement if κ > 0.

How large κ should be to claim strong agreement is contextual.
However, here is a guideline:

Value of κ Strength of agreement

< 0.20 Poor
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Good
0.81–1.00 Very good

Making hypothesis tests on κ makes less sense (why?). But we may
of course make confidence intervals.

If there is more than two levels we may also use the weighted kappa
coefficient, which incorporates the distance to the diagonal.
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Is there a direction of the disagreement?
McNemar’s test for paired binary observations

Variable 2
+ − Total

Variable 1 + a b a+b
− c d c+d

Total a+c b+d n

Null hypothesis:

P(+,−) = P(−,+)

Estimates (under the model):

P̂(+,−) =
b

n
, P̂(−,+) =

c

n

Test statistic and continuity correction:

z =
b − c√
b + c

, zc =
|b − c | − 1√

b + c

Squared test statistic evaluated in a chi-square distribution with 1
degree of freedom.
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Data example 3: Marijuana and sleeping problems
Matched case-control study. Null hypothesis: pmarijuana = pcontrols

Design: 32 cases (marijuane users)
32 controls (cases matched: age, sex, job, . . . )

Observation:
Sleeping Marijuana group
problems Yes No Total

Controls Yes 4 9 13 (41 %)
No 3 16 19

Total 7 (22 %) 25 32 (100 %)

Estimates: p̂marijuana =
7
32 = 0.22, p̂controls =

13
32 = 0.41

McNemar’s test with continuity correction:

zc =
|9− 3| − 1√

9 + 3
=

5√
12

P-value: p = 2 · P
(
Z 2 > z2c = 25

12

)
= 0.1489 (NS)
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Stuart-Maxwell test for marginal homogeneity
Paired observations with more than 2 categories (I)

Eye-testing (unaided distance vision performance) of N = 7477 female
employees in Royal Ordnance factories between 1943 and 1946.

Left eye
Right eye 1st grade 2nd grade 3rd grade 4th Grade Total

1st grade 1520 266 124 66 1976
2nd grade 234 1512 432 78 2256
3rd grade 117 362 1772 205 2456
4th Grade 36 82 179 492 789

Total 1907 2222 2507 841 7477

Null hypothesis: green distribution = blue distribution.

Here this means that left and right eyes perform equally well.

R analysis: stuart.maxwell.mh() from irr-package.
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Bowker’s test for asymmetry.
Paired observations with more than 2 categories (II)

Left eye
Right eye 1st grade 2nd grade 3rd grade 4th Grade Total

1st grade 1520 266 124 66 1976
2nd grade 234 1512 432 78 2256
3rd grade 117 362 1772 205 2456
4th Grade 36 82 179 492 789

Total 1907 2222 2507 841 7477

Null hypothesis: green counts and blue counts mirror each other
across the diagonal.

Here this means that there is complete “symmetry” between joint
performance of left and right eyes. Note that this hypothesis is more
restrictive than marginal homogeneity.

R analysis: mcnemar.test()
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Summary of lecture

Non-parametric test can be used when normality assumption isn’t
satisfied.

▶ Common non-parametric tests available for designs corresponding to
T-tests and 1-way ANOVA.

Risk of wrong conclusions when the statistical power is low.
▶ Gelman & Carlin even recommend retrospective power analysis. This

is, however, somewhat controversial.

Analysis of 2-way contingency tables.
▶ Association vs. marginal homogeneity (what is the relevant null

hypothesis?)
▶ Simulation of p-value available in the LabApplStat-package in cases,

where the approximation by the χ2-distribution is invalid.
▶ Nominal vs. ordinal variables (power to be gained!)

The remaining slides contain solutions to some of the exercises.
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Solution to Exercise 2.3

There are 64 observations of 2 variables: treatment, seasick

Chi-square test, here on the “long” dataset

chisq.test(table(read.table("dramanine.txt",header=T)))

gives X 2
Yates = 6.9827, df = 1, p= 0.0082.

Since there is a significant effect of treatment we estimate
proportion of seasickness in each subgroup:

Group p̂(seasick) Lower 95% CL Upper 95% CL

draminine 0.0882 0.0231 0.2481
placebo 0.4000 0.2322 0.5925

Confidence intervals are found by R calls:

prop.test(3,n=34)

prop.test(12,n=30)
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Solution to Exercise 2.4

The described data consists of 85 case-control pairs (boldface numbers are
stated in the exercise text):

Sibling
Patient No tonsillectomy Tonsillectomy Total

No tonsillectomy 37 7 44
Tonsillectomy 15 26 41

Total 52 33 85

McNemar’s test gives p=0.1356 (so still non-significant):

mcnemar.test(matrix(c(37,15,7,26),2,2))

Concerning the data organisation please note that the rows from the table
in the exercise text now are the marginals in the paired design. Moreover,
we have 85 pairs (instead of 170 persons).
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Solution to Exercise 2.6

> library(LabApplStat)

> retrodesign(c(0.001,0.003,0.01),SE=0.033)

power typeS exaggeration

1 0.05010520 0.4646377 76.682346

2 0.05094724 0.3953041 25.502874

3 0.06058446 0.1950669 7.751928

> power.prop.test(p1=0.49,p2=0.491,power=0.80)

Two-sample comparison of proportions power calculation

n = 3923022

p1 = 0.49

p2 = 0.491

sig.level = 0.05

power = 0.8

alternative = two.sided

NOTE: n is number in *each* group
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Solution to Exercise 2.7

Categorization of the continuous height measurements results in the
following table:

Count Sons
(row pct) Small Tall Total

Parents: small 247 (62%) 152 (38%) 399 (100%)
tall 189 (34%) 364 (66%) 553 (100%)

Total 436 516 952

Chi-square test for association: χ2 = 70.6704, df=1, p < 2.2 · 10−16:

chisq.test(matrix(c(247,189,152,364),2,2))

Thus, the association is highly significant. Inspection of the row
percentages shows that tall parents tend to get tall sons.

In this situation McNemar’s test is non-significant (p=0.05123).
What is the interpretation of this test?
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