Random effects & Repeated measurements

Bo Markussen
bomar@math.ku.dk

Department of Mathematical Sciences

December 22, 2021
Lecture outline

- Why is it called ANOVA?
- Experimental design and **random effects**.
 - Hypothetical data example: Comparison of two treatments.
- Data example 1: Color of pork meat.
 - Random effects in models with continuous response.
- Data example 2: Germination of Orobanche seeds.
 - Overdispersion in logistic regression.
- Data example 3: Growth of Baobab trees.
 - Repeated measurements.
 - General concepts about analysis of **repeated measurements**. We will also briefly talk about analysis using **summary measures**.
ANalysis Of VAriance: Why this name?

Growth of rats example:

<table>
<thead>
<tr>
<th>antibio</th>
<th>vitamin</th>
<th>growth 0</th>
<th>growth 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1.30, 1.19, 1.08</td>
<td>1.26, 1.21, 1.19</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>1.05, 1.00, 1.05</td>
<td>1.52, 1.56, 1.55</td>
</tr>
</tbody>
</table>

> anova(lm(growth~antibio+vitamin+antibio:vitamin,data=rats))

Analysis of Variance Table

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>antibio</td>
<td>1</td>
<td>0.020833</td>
<td>0.020833</td>
<td>5.6818</td>
<td>0.044292 *</td>
</tr>
<tr>
<td>vitamin</td>
<td>1</td>
<td>0.218700</td>
<td>0.218700</td>
<td>59.6455</td>
<td>5.622e-05 ***</td>
</tr>
<tr>
<td>antibio:vitamin</td>
<td>1</td>
<td>0.172800</td>
<td>0.172800</td>
<td>47.1273</td>
<td>0.000129 ***</td>
</tr>
<tr>
<td>Residuals</td>
<td>8</td>
<td>0.029333</td>
<td>0.003667</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The total variation in the response is decomposed using the right hand side of ~ from left to right(!):

\[
SS_{total} = \sum_{i=1}^{N} (growth_i - \mu_{growth})^2 = SS_{antibio} + SS_{vitamin} + SS_{antibio:vitamin} + SS_{error}
\]
Sum-of-Squares and Mean-Sum-of-Squares

F-test: Is the systematic variation large relative to the random variation?

\[\text{SS}_{\text{antibio}}, \text{SS}_{\text{vitamin}}, \text{SS}_{\text{antibio:vitamin}}, \text{SS}_{\text{error}} \] visualized by area of the green circles.

Variance estimates \(\text{MSS} = \text{SS}/\text{df} \) visualized by area of the blue circles.
What does `drop1()` do for linear normal models?

The same tests, but obeying to the hierarchical principle!

```r
> anova(lm(growth~antibio+vitamin+antibio:vitamin,data=rats))
Analysis of Variance Table

Response: growth

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>antibio</td>
<td>1</td>
<td>0.020833</td>
<td>0.020833</td>
<td>5.6818</td>
<td>0.044292 *</td>
</tr>
<tr>
<td>vitamin</td>
<td>1</td>
<td>0.218700</td>
<td>0.218700</td>
<td>59.6455</td>
<td>5.622e-05 ***</td>
</tr>
<tr>
<td>antibio:vitamin</td>
<td>1</td>
<td>0.172800</td>
<td>0.172800</td>
<td>47.1273</td>
<td>0.000129 ***</td>
</tr>
<tr>
<td>Residuals</td>
<td>8</td>
<td>0.029333</td>
<td>0.003667</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

> drop1(lm(growth~antibio*vitamin,data=rats),test="F")
Single term deletions

Model:
growth ~ antibio * vitamin

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;none&gt;</td>
<td></td>
<td>0.029333</td>
<td>-64.167</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>antibio:vitamin</td>
<td>1</td>
<td>0.1728</td>
<td>0.202133</td>
<td>-43.005</td>
<td>47.127</td>
<td>0.000129 ***</td>
</tr>
</tbody>
</table>
```
Questions?

Analysis-of-variance for linear normal models:

- The **total variation** around the common mean is decomposed into the parts explained by the used **fixed effects** and the **error term**.
- Dividing by the corresponding **degrees-of-freedom** yields estimates for the variation “between groups” (the fixed effects) and “within groups” (the error term).
- Test for null hypothesis of no effect is done on the ratio

\[
\frac{\text{between group variation}}{\text{within group variation}} = \frac{\text{MSS}_{\text{effect}}}{\text{MSS}_{\text{error}}}
\]

Thus comparing systematic variation to random variation, just as for the T-tests!
Random effects

- Every linear normal model has at least one random effect, namely the error term, which captures non-modelled biological variation, e.g.

\[
\text{son}_i = \alpha + \beta \ast \text{father}_i + \text{error}_i
\sim \mathcal{N}(0, \sigma^2)
\]

- Additional random effects may be used to capture common non-modelled biological variation, e.g.

\[
\begin{align*}
\text{son}_i &= \alpha + \beta \ast \text{father}_i + A(\text{family}_i) + \text{error}_i \\
&\sim \mathcal{N}(0, \sigma^2_{\text{family}}) \\
\text{son}_j &= \alpha + \beta \ast \text{father}_j + A(\text{family}_j) + \text{error}_j \\
&\sim \mathcal{N}(0, \sigma^2_{\text{family}})
\end{align*}
\]

If \(\text{family}_i = \text{family}_j = \text{Markussen}\), say, the two sons (e.g. lecturer and his brother) share a common unobserved component \(A(\text{Markussen})\).

Quiz: What could that shared component be?
Hypothetical data example: 1-way ANOVA
Comparison of two treatments. Five animals per treatment

<table>
<thead>
<tr>
<th>treat</th>
<th>Observations</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.8 14.2 11.2 11.4 13.9</td>
<td>12.90</td>
</tr>
<tr>
<td>2</td>
<td>13.1 12.3 11.0 14.0 10.7</td>
<td>12.22</td>
</tr>
</tbody>
</table>

> anova(lm(y~treat,data=rep1))
Analysis of Variance Table

Response: y

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>treat</td>
<td>1 1.156</td>
<td>1.1560</td>
<td>0.5643</td>
<td>0.474</td>
</tr>
<tr>
<td>Residuals</td>
<td>8 16.388</td>
<td>2.0485</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The F-test compares variation between treatments relative to variation within treatments. Here treatment is non-significant (p=0.474).

\[[I]_8^{10} \rightarrow \text{treat}_1^2 \rightarrow 1_1^1 \]

\[p=0.474 \quad p=3.07e-09 \]
Now measure each animal twice
Almost the same observations repeated!

<table>
<thead>
<tr>
<th>treat</th>
<th>Observations</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.8, 13.7</td>
<td>14.2, 14.3</td>
</tr>
<tr>
<td>2</td>
<td>13.1, 13.2</td>
<td>12.3, 12.1</td>
</tr>
</tbody>
</table>

> anova(lm(y~treat+animal,data=rbind(rep1,rep2)))

Analysis of Variance Table
Response: y

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>treat</td>
<td>1</td>
<td>2.312</td>
<td>2.3120</td>
<td>330.29</td>
</tr>
<tr>
<td>animal</td>
<td>8</td>
<td>34.466</td>
<td>4.3082</td>
<td>615.46</td>
</tr>
<tr>
<td>Residuals</td>
<td>10</td>
<td>0.070</td>
<td>0.0070</td>
<td></td>
</tr>
</tbody>
</table>

How can double measurements on the same animals suddenly change significance from (NS) to (***) ??
What went wrong?

- In the first analysis (slide 8) residual variation (mainly) represents variation between animals.

- In the second analysis (slide 9) residual variation represents measurement error.

- Treatments are compared by comparing different animals. Therefore the relevant variation for comparing treatments is variation between animals.

- Conclusion: First analysis is OK. Second analysis shows that the two groups of animals are different, but not necessarily that they are more different than animals are in general!
Factors with random effect

- The factor “animal” is not reproducible.

- The specific animals are
 ▶ of no interest beyond the present experiment.
 ▶ representatives of a population.

These statements characterize factors which we want to include as random effects in the model.

- Estimates describe properties of the population, typically the standard deviation in the scale of the response.

- Typical factors with random effects: field, litter, replication, day, herd, and block factors in general.
 ▶ But possibly(!) also: strain, species, and other factors of no particular interest in a given experiment.
Factors with fixed (also called “systematic”) effect

- The factor “treatment” is reproducible.

- The specific treatments are
 - of interest beyond the present experiment — that is why we made it!
 - or other reproducible effects.
 - they only represent themselves.

These statements are typical for factors which we want to include as fixed effects in the model.

- Estimates describe properties of the individual “treatments”, typically the mean of the response.
Fixed effects vs. Random effects

- Fixed effects:
 - Estimated mean for each level of the factor.
 - Use many degrees of freedom (which is a bad thing).

- Random effects:
 - Estimated standard deviation between the levels.
 - Use only 1 degree of freedom (which is a good thing).
 - Requires iterative search for parameter estimates (which is a bad thing, although it doesn't really pose an actual problem).

Rough rule of thumb

A block factor with 4 or fewer levels is often used with fixed effect (we avoid estimating variation from few points as well as normality assumption on random effect, and we don’t lose many degrees of freedom anyway).
Three models for the dataset on slide 9

(A) \(Y_i = \alpha(treat_i) + \text{error}_i \)

- \(\alpha(1), \alpha(2) \) are constants (fixed effects).
- **Wrong**: Effect of animal is ignored.

(B) \(Y_i = \alpha(treat_i) + \beta(\text{animal}_i) + \text{error}_i \)

- \(\alpha(1), \alpha(2) \) and \(\beta(1), \ldots, \beta(10) \) are constants (fixed effects).
- **Wrong**: Meaningless model for testing treatment effect.

(C) \(Y_i = \alpha(treat_i) + A(\text{animal}_i) + \text{error}_i \)

- \(\alpha(1), \alpha(2) \) constants (fixed effects).
- \(A(1), \ldots, A(10) \) independent \(\mathcal{N}(0, \sigma^2_A) \) distributed random variables.
- **Recommended**: Model with random effect of animal.
Design diagrams for the two last models

Random factors are designated by square brackets

(B) \(Y_i = \alpha(\text{treat}_i) + \beta(\text{animal}_i) + \text{error}_i \) has diagram

Remark: treat can not be tested since animal is nested within it.

(C) \(Y_i = \alpha(\text{treat}_i) + A(\text{animal}_i) + \text{error}_i \) has diagram

Remark: treat is tested against the random factor animal.

Rule of thumb

When testing the effect of a factor (here treat) any factors nested within it (here animal) usually should be modelled with random effect.
Random effects using R

- Two packages (developed by Bates et al) available: `nlme` and `lme4`
 - `nlme` also analyses repeated measurements and non-linear models.
 - However, `lme4` is maintained by the developers, allows for non-nested random effects, and may also be used for categorical responses.
 - For models without repeated measurements I recommend the `lme4`-package.

- See also `lmerTest`-package, which is an add on to `lme4`.

- A methodological challenge is that random effects models for continuous responses may be estimated by two different methods.
 - ML (maximum likelihood) is needed if you want to do likelihood-ratio tests (which we will do).
 - REML (restricted maximum likelihood) is recommended for estimation of effects.
 - Luckily `lme4` and `drop1()` automatically take care of this!

- Model validation: Needed both for fixed and random effects.
Questions?

- And then a break!

- After the break we see how to use a random effect in a so-called **split-plot** design. This example also exemplifies “Where is the effects?”, and show how to estimate random effects models in R.
Data example 1: Color of pork meat

- 2 breeds
 - old: 10 pigs
 - new: 10 pigs

- After slaughter: 6 pork chops from each pig.

- Storage in light or darkness for 1, 4 or 6 days.

- Response = redness of meat (continuous measurement)

<table>
<thead>
<tr>
<th>Storage</th>
<th>1 days</th>
<th>4 days</th>
<th>6 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark</td>
<td>chop 1</td>
<td>chop 2</td>
<td>chop 3</td>
</tr>
<tr>
<td>Light</td>
<td>chop 4</td>
<td>chop 5</td>
<td>chop 6</td>
</tr>
</tbody>
</table>

- In total 2*10*6 = 120 pork chops.
Data example 1: Table of Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Range</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>breed</td>
<td>nominal</td>
<td>old, new</td>
<td>fixed effect</td>
</tr>
<tr>
<td>pig</td>
<td>nominal</td>
<td>1, . . . , 20</td>
<td>random effect</td>
</tr>
<tr>
<td>storage</td>
<td>nominal</td>
<td>dark, light</td>
<td>fixed effect</td>
</tr>
<tr>
<td>time</td>
<td>ordinal</td>
<td>$1 < 4 < 6$ (days)</td>
<td>fixed effect</td>
</tr>
<tr>
<td>redness</td>
<td>continuous</td>
<td>[1.606; 14.123]</td>
<td>response</td>
</tr>
</tbody>
</table>

- pig is nested within breed
 (breed is the “nest” and pigs are the “eggs”).

- breed is a **between-pig** factor.

- storage and time are **within-pig** factors.

- Use full factorial design for the fixed effects.
Example is a typical split-plot experiment

- Two types of experimental units:
 - Pigs ("whole-plots") with the "whole-plot factor" breed.
 - Chops ("sub-plots") with the "sub-plot factors" storage and time.

Design diagram:
R code: Validation of random effects model

\[\text{redness}_i = \alpha(\text{breed}_i, \text{storage}_i, \text{time}_i) + A(\text{pig}_i) + \epsilon_i, \]
where \(A(j) \sim \mathcal{N}(0, \sigma_A^2) \) and \(\epsilon_i \sim \mathcal{N}(0, \sigma^2) \)

Read dataset: Recode some variables as factors
redness <- read.delim("redness.txt")
redness$pig <- factor(redness$pig)
redness$time <- factor(redness$time)

Fit random effects model
m0 <- lmer(redness~breed*storage*time+(1|pig),data=redness)

Residual plot
plot(m0)

Normal quantile plots
qqnorm(residuals(m0))
qqnorm(ranef(m0)$pig[,1])
Two of the three validation plots

Normal quantile plot for residuals not shown

- Residual plot (mean zero?, variance homogeneity?): Standardised residuals vs. predicted values (including random effects).
 - Observation no. 44 appears to be an outlier.
- Normal quantile plot for predicted random effects.
 - Note that we only have 20 points, one for each pig.
R code: Backward model reduction

In the example using AIC, but we have also asked for p-values

```r
# Refit model without obs. no. 44
m1 <- lmer(redness~breed*storage*time+(1|pig),data=redness[-44,])

# Backward model reduction:
# Here with dense code using update()
drop1(m1,test="Chisq")
drop1(m2 <- update(m1,.~.-breed:storage:time),test="Chisq")
drop1(m3 <- update(m2,.~.-breed:time),test="Chisq")
drop1(m4 <- update(m3,.~.-breed:storage),test="Chisq")
```

- Syntax for `lmer()`:
 - Random effects specified in terms `(1|·)`.
 - Other things done as for `lm()`.

- Technicality: Tests done as chi-squared test on likelihood ratio.

- Automated backward model selection using p-values via `step()` function in `lmerTest`-package.
Results for the final model

\[\text{redness}_i = \alpha(\text{breed}_i) + \beta(\text{storage}_i, \text{time}_i) + A(\text{pig}_i) + \epsilon_i, \] where \(A(j) \sim \mathcal{N}(0, \sigma_A^2) \) and \(\epsilon_i \sim \mathcal{N}(0, \sigma^2) \)

- Likelihood ratio test in model m4:
 \[p(\text{breed}, df=1)=0.0141, \quad p(\text{storage:time},df=2)=0.0001 \]

- The old breed has more redness than the new breed:
 \[\text{emmean}(\text{old})-\text{emmean}(\text{new})=0.8116 \quad (95\% \text{ CI}: 0.1317 ; 1.4915) \]

- Estimated marginal means for combination of storage (D, L) and time (1, 4, 6) are found and displayed (see next slide) using the R code:

\[
\begin{align*}
\text{plot(} & \text{emmeans(m4,} \sim \text{time}|\text{storage}),\text{int.adjust=} \text{"tukey"},\text{horizontal=} \text{FALSE}) + \\
& \text{ylab("Redness of meat") +} \\
& \text{ggtitle("95pct simultaneous confidence intervals within storage")}
\end{align*}
\]
Meat fade over time (when stored in light)

95pct simultaneous confidence intervals within storage

Redness of meat

storage: D

storage: L

Redness of meat

time
Quantification of sources of variation
In some analyses this quantification is the main objective

> summary(m4)
Linear mixed model fit by REML
Formula: y ~ breed + storage*time + (1 | pig)

Random effects:

<table>
<thead>
<tr>
<th>Groups</th>
<th>Name</th>
<th>Variance</th>
<th>Std.Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pig</td>
<td>(Intercept)</td>
<td>0.200</td>
<td>0.4473</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>1.923</td>
<td>1.3866</td>
</tr>
</tbody>
</table>

Number of obs: 119, groups: pig, 20

- Total variance = 0.200 + 1.923 = 2.123.
 - Of this 9% is due to variation between pigs (random effect of pig).
 - And 91% comes from other sources (residual).
Questions?

- And then a break!

- After the break we discuss how to estimate categorical regressions with random effects.
Data example 2: Binary data

Number of Orobanche seeds germinating (yes/no) in extracts of bean and cucumber roots. In total 21 batches of two different orobanche varieties as shown below.

<table>
<thead>
<tr>
<th></th>
<th>O. 75</th>
<th>O. 73</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bean</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

Thus, the first batch consisted of 39 seeds of variety O.75 grown in bean roots, out of which 10 seeds germinated.
Data example 2: Germination of Orobanche seeds

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Range</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>variety</td>
<td>nominal</td>
<td>0.75, 0.73</td>
<td>fixed effect</td>
</tr>
<tr>
<td>root</td>
<td>nominal</td>
<td>bean, cucumber</td>
<td>fixed effect</td>
</tr>
<tr>
<td>batch</td>
<td>nominal</td>
<td>1, ..., 21</td>
<td>random effect</td>
</tr>
<tr>
<td>germination</td>
<td>binary</td>
<td>yes, no</td>
<td>response</td>
</tr>
</tbody>
</table>

Interest on the effect of **variety** and **root** on germination of the seeds. The particular **batches** are not of interest, but representatives of a population.
Logistic regression with random effects

- Logistic regression models probability of germination via

\[
\log(\text{odds for germination of } i\text{'th seed}) = \alpha(\text{variety}_i, \text{root}_i)
\]

But what if the batches are different?

- A solution is to include \textbf{batch} as a random effect. Thus, for independent \(B(1), \ldots, B(21) \sim \mathcal{N}(0, \sigma_B^2) \) we have

\[
\log(\text{odds for germination of } i\text{'th seed}) = \alpha(\text{variety}_i, \text{root}_i) + B(\text{batch}_i)
\]

The additional variability induced by the random factor is called \textbf{overdispersion}.

- Alternatives to random effects models:
 - Correct for overdispersion by rescaling the standard errors: done using \textit{quasibinomial}-family in \texttt{glm}().
 - Estimate empirical correlation using the \texttt{gee}-approach.
Data example 2 continued
Comparison with other approaches to overdispersion

<table>
<thead>
<tr>
<th>Logistic regression model</th>
<th>Test of variety:root</th>
<th>Overdispersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLMM (what we did)</td>
<td>p=0.0413</td>
<td>modelled</td>
</tr>
<tr>
<td>GEE</td>
<td>p=0.0374</td>
<td>scale=1.8618</td>
</tr>
<tr>
<td>quasibinomial</td>
<td>p=0.0636</td>
<td>scale=1.8618</td>
</tr>
<tr>
<td>Plain</td>
<td>p=0.0114</td>
<td>not modelled</td>
</tr>
</tbody>
</table>

- In this example plain logistic regression is questionable, and p=0.0114 is not trustworthy.
- In practice all the 3 other methods can be used.
 - Although they disagree on the significance in this situation. This is not a paradox, but simply different tests for the same hypothesis.
 - If valid, then I prefer the GLMM. But this is a matter of taste.

- To see if you have overdispersion check whether the scale parameter in the quasibinomial analysis is (significantly) larger than 1.
 - Alternatively, make hypothesis test on the random effect in the GLMM.
Summary of random effects

- A factor should be used as a random effect if it is...
 - non reproducible,
 - of no interest beyond the present experiment,
 - representatives of a population.

- Often block factors are used with random effects.

- Rule of thumb: To test a fixed effect any factor nested within it should usually be modelled as a random effect.

- In these lectures we only discussed models with random intercepts. However, we may also have models with random slopes of some continuous covariate. E.g., if `redness$time` is continuous:
 \[\text{lmer}(y \sim \text{breed} \times \text{storage} \times \text{time} + (1 + \text{time} | \text{pig}), \text{data}=\text{redness}) \]

- Random effects also possible for categorical regression models:
 - Related to overdispersion.
 - GLMM (generalized linear mixed effects models) used in these lectures.
Questions?

- And then a break!

- After the break we discuss models for repeated measurements.
Repeated measurements models: Why?

- Data example 1: Color of pork meat.
- 10 pigs from both old and new breed: 7 chops from each pig.

<table>
<thead>
<tr>
<th>Storage</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 days</td>
</tr>
<tr>
<td>Dark</td>
<td>chop 1: data</td>
</tr>
<tr>
<td>Light</td>
<td>not used</td>
</tr>
</tbody>
</table>

Random effect model for chops 2 to 7 (in total 2*10*6=120 observations):

\[
\text{redness}_i = \alpha(\text{storage}_i, \text{time}_i, \text{breed}_i) + A(\text{pig}_i) + \epsilon_i \\
\sim \mathcal{N}(0, \sigma^2_A) \quad \sim \mathcal{N}(0, \sigma^2)
\]

But what if the experimental design has been like this?

<table>
<thead>
<tr>
<th>Storage</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 days</td>
</tr>
<tr>
<td>Dark</td>
<td>chop 1</td>
</tr>
<tr>
<td>Light</td>
<td>chop 2</td>
</tr>
</tbody>
</table>
Example continued...

Alternative design has 4 measurements for each pork chop

<table>
<thead>
<tr>
<th>Storage</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 days</td>
</tr>
<tr>
<td>Dark</td>
<td>chop 1</td>
</tr>
<tr>
<td>Light</td>
<td>chop 2</td>
</tr>
</tbody>
</table>

Random effect model for the alternative design:

\[
\text{redness}_i = \alpha(\text{storage}_i, \text{time}_i, \text{breed}_i) + A(\text{pig}_i) + B(\text{pig}_i, \text{chop}_i) + \epsilon_i
\]

\[
\sim \mathcal{N}(0, \sigma_A^2) \quad \sim \mathcal{N}(0, \sigma_B^2) \quad \sim \mathcal{N}(0, \sigma^2)
\]

Here the 4 measurements on the same pork chop (from the same pig) share an additional random effect \(B(\text{pig}, \text{chop}) \).

- But perhaps measurements taken close in time are more correlated than measurements taken far apart in time! How to model that?
General remarks on repeated measurements

- Repeated measurements originate from study designs where the experimental units have been measured several times (typically at different time points or at different spatial positions):
 - “Economic” necessity, e.g. when experimental units are expensive.
 - Experimental units may serve as their own controls.
 - Response profile (i.e. response over time) is of scientific interest.
 - Repeated measurements are analysed either to gain power or to investigate the response profile.

- A summary measure is a single number capturing the important feature of the response profile.
 - Examples: AUC (area under the curve), mean, maximum, minimum, range between max and min, time under a pre-specified level, slope, curvature, halving time, slope after the minimum, ...
 - Summary measure preferably suggested from the scientific study, not from the statistical analysis.
 - Summary measures reduce the repeated measurements to a single observation → statistical analysis without repeated measurements.
Which method to use?
Summary measures vs. Random effects vs. Repeated measurements

- Summary measures is always an option.
 - Unless you have particular interest in the response profile I recommend analysis of summary measures (if it has sufficient power).

- With few repeated measurements per subject, say 4 or less, it does not make sense to estimate the serial correlation structure.
 - Simply use a random effect model.

- With many repeated measurements per subject, say 5 or more, you have enough information to estimate the serial correlation structure.
 - This is necessary to have trustworthy p-values and confidence intervals.
 - However, sometimes it is possible to model serial correlation via random slopes. But we will not investigate this further in the this lecture.
Case study: Growth of Baobab trees under water stress
Data kindly provided by Henri-Noël Bouda

- Baobab seeds from 3 countries and 7 provenances sown in the beginning of 2009.
- Plants grown under 3 water regimes (100%, 75% and 50% field capacity).
- Diameter and height of plants measured monthly.
- To measure root weight etc. some plants were harvested in August 2009, some plants in February 2010.

Purpose of experiment:
- How does water drought effect growth of trees?
- Is there an interaction with country and/or provenance?
Individual response profiles (subject profiles)

For the 362 baobab trees that survived until harvest

- A good plot to make. Gives overview of the data and provides an impression of the “typical” time-response relationship.

- Here the power transformations \(\text{height} \leadsto \text{height}^{1/2} \) and \(\text{diameter} \leadsto \text{diameter}^{2/3} \) were chosen from a Box-Cox analysis.
Average response profiles

A good plot to make. Gives overview of the treatment effects.

Diameter response profiles averaged within the 9 combinations of treatments and countries
Data organization in Excel sheet

Wide form (also called “horizontal organization”) of responses: diameter, height

<table>
<thead>
<tr>
<th>Variable</th>
<th>Levels</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>3 (Burkina, Mali, Tanzanie)</td>
<td>Country</td>
</tr>
<tr>
<td>Provenance</td>
<td>7 (Kolangal, . . . , Samé)</td>
<td>3 provenances from Burkina, 3 from Mali, 1 from Tanzanie</td>
</tr>
<tr>
<td>Plant</td>
<td>362 (BKol-04, . . . , TNku-76)</td>
<td>Plant id</td>
</tr>
<tr>
<td>Block</td>
<td>3 (1,2,3)</td>
<td>Field blocks</td>
</tr>
<tr>
<td>Treatment</td>
<td>3 (1,2,3)</td>
<td>Water regime</td>
</tr>
<tr>
<td>HarvestDate</td>
<td>3 (aug-09, feb-10, missing)</td>
<td>Day of harvest</td>
</tr>
<tr>
<td>Dia0209</td>
<td>continuous (or missing)</td>
<td>Diameter, February 2009</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>Dia0110</td>
<td>continuous (or missing)</td>
<td>Diameter, January 2010</td>
</tr>
<tr>
<td>Hei0209</td>
<td>continuous (or missing)</td>
<td>Height, February 2009</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>Hei0110</td>
<td>continuous (or missing)</td>
<td>Height, January 2010</td>
</tr>
</tbody>
</table>
Long form: diameter, height for each month
The “long form” is also referred to as the “vertical organization”

<table>
<thead>
<tr>
<th>Variable</th>
<th>Levels</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>3 (Burkina, Mali, Tanzanie)</td>
<td>Country</td>
</tr>
<tr>
<td>Provenance</td>
<td>7 (Kolangal, . . . , Samé)</td>
<td>3 provenances from Burkina, 3 from Mali, 1 from Tanzanie</td>
</tr>
<tr>
<td>Plant</td>
<td>362 (BKol-04, . . . , TNku-76)</td>
<td>Plant id</td>
</tr>
<tr>
<td>Block</td>
<td>3 (1, 2, 3)</td>
<td>Field blocks</td>
</tr>
<tr>
<td>Treatment</td>
<td>3 (1, 2, 3)</td>
<td>Water regime</td>
</tr>
<tr>
<td>HarvestDate</td>
<td>3 (aug-09, feb-10, missing)</td>
<td>Day of harvest</td>
</tr>
<tr>
<td>month</td>
<td>12 (2, . . . , 12, 1)</td>
<td>Month of year</td>
</tr>
<tr>
<td>year</td>
<td>2 (09, 10)</td>
<td>Year</td>
</tr>
<tr>
<td>diameter</td>
<td>continuous</td>
<td>Diameter</td>
</tr>
<tr>
<td>height</td>
<td>continuous</td>
<td>Height</td>
</tr>
<tr>
<td>age</td>
<td>continuous (1 to 12)</td>
<td>Months since January’09</td>
</tr>
</tbody>
</table>
Long form as needed for the statistical analysis

<table>
<thead>
<tr>
<th>Country</th>
<th>Provenance</th>
<th>Plant</th>
<th>Block</th>
<th>Treatment</th>
<th>HarvestDate</th>
<th>month</th>
<th>year</th>
<th>diameter</th>
<th>height</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-11</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>02</td>
<td>09</td>
<td>4.33</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-11</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>03</td>
<td>09</td>
<td>4.33</td>
<td>33</td>
<td>2</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-11</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>04</td>
<td>09</td>
<td>5.62</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-11</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>05</td>
<td>09</td>
<td>5.65</td>
<td>42</td>
<td>4</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-11</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>06</td>
<td>09</td>
<td>7.1</td>
<td>52</td>
<td>5</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-11</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>07</td>
<td>09</td>
<td>10</td>
<td>54</td>
<td>6</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-11</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>08</td>
<td>09</td>
<td>13.4</td>
<td>69</td>
<td>7</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-78</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>02</td>
<td>09</td>
<td>4.65</td>
<td>39</td>
<td>1</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-78</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>03</td>
<td>09</td>
<td>4.65</td>
<td>39</td>
<td>2</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-78</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>04</td>
<td>09</td>
<td>6.43</td>
<td>39</td>
<td>3</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-78</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>05</td>
<td>09</td>
<td>6.5</td>
<td>43</td>
<td>4</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-78</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>06</td>
<td>09</td>
<td>8</td>
<td>49</td>
<td>5</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-78</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>07</td>
<td>09</td>
<td>8.6</td>
<td>62</td>
<td>6</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-78</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>08</td>
<td>09</td>
<td>13.7</td>
<td>75</td>
<td>7</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-86</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>02</td>
<td>09</td>
<td>6.25</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-86</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>03</td>
<td>09</td>
<td>6.25</td>
<td>29</td>
<td>2</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-86</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>04</td>
<td>09</td>
<td>8.57</td>
<td>31</td>
<td>3</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-86</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>05</td>
<td>09</td>
<td>8.61</td>
<td>35</td>
<td>4</td>
</tr>
<tr>
<td>Burkina</td>
<td>Kolangal</td>
<td>BKol-86</td>
<td>1</td>
<td>1</td>
<td>2009-08-01</td>
<td>06</td>
<td>09</td>
<td>9.1</td>
<td>43</td>
<td>5</td>
</tr>
</tbody>
</table>

...
Table of variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Range</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>nominal</td>
<td>Burkina, Mali, Tanzania</td>
<td>fixed effect</td>
</tr>
<tr>
<td>Provenance</td>
<td>nominal</td>
<td>Kolangal, . . . , Samé</td>
<td>fixed effect</td>
</tr>
<tr>
<td>Remark: nested in Country</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant</td>
<td>nominal</td>
<td>BKol-04, . . . , TNku-76</td>
<td>random effect</td>
</tr>
<tr>
<td>Block</td>
<td>nominal</td>
<td>1, 2, 3</td>
<td>fixed effect</td>
</tr>
<tr>
<td>Treatment</td>
<td>ordinal</td>
<td>1 < 2 < 3</td>
<td>fixed effect</td>
</tr>
<tr>
<td>age</td>
<td>nominal</td>
<td>1, 2, . . . , 12</td>
<td>fixed effect</td>
</tr>
<tr>
<td></td>
<td>continuous</td>
<td>[1; 12]</td>
<td>correlation effect</td>
</tr>
<tr>
<td>diameter</td>
<td>continuous</td>
<td>[0; 23.7]</td>
<td>response</td>
</tr>
<tr>
<td>height</td>
<td>continuous</td>
<td>[0; 142]</td>
<td>response</td>
</tr>
</tbody>
</table>

- The two responses (diameter, height) analysed separately.
- R code via `lme()` in `nlme-package`:
 - fixed effects are specified in **model formula**.
 - random effects are specified in **random option**.
 - correlations are specified in **corr option**.
Diagram of fixed and random factors
Not all details included in the diagram, that otherwise would be too complex

- In the model reduction provenance is nested within country.
- Are the residuals \(\epsilon_i, i = 1, \ldots, 3407 \), independent?
Repeated measurements model

diameter_i = \alpha(treat_i, age_i, provenance_i, block_i)
+ A(plant_i) + B(plant_i, age_i) + \epsilon_i
\sim \mathcal{N}(0,\sigma^2_A) \sim \mathcal{N}(0,\sigma^2_B) \sim \mathcal{N}(0,\sigma^2)

- **Random effect** A: Some plants are bigger than others.

- **Correlated effect** B: Correlated within plants (\sim subject id). Correlation typically decreases with increasing time distance. Uncorrelated between plants.
 - Possible interpretation is variation between time position of growth period.

- **Error term** ϵ: Possible interpretation is measurement error.
Three examples of correlation structures for B

diameter$_i = \alpha(treat_i, age_i, provenance_i, block_i) + A(plant_i) + B(plant_i, age_i) + \epsilon_i$

(A) The model without the serial correlated effect B.
 ▶ In this case we have a random effect model. This model is also referred to as the random intercept model or the compound symmetry model.

(B) $\text{Var}(B(plant, age_i), B(plant, age_j)) = \sigma_B^2 \exp\left(-\frac{|age_i - age_j|}{d}\right)$
 ▶ Correlation has exponential decrease.

(C) $\text{Var}(B(plant, age_i), B(plant, age_j)) = \sigma_B^2 \exp\left(-\frac{|age_i - age_j|^2}{\rho^2}\right)$
 ▶ Correlation has Gaussian decrease.
 ▶ When a random effect A and an error term ϵ are present, this model is sometimes referred to as the Diggle model after Peter Diggle.
R code

Transformation of wide-format into long-format
baobab %>%
 pivot_longer(cols=Dia0209:Hei0110,
 names_to = c(".value","month","year"),
 names_sep = c(3,5),
 values_drop_na = TRUE) %>%
 mutate(age=as.numeric(month)-1+12*(as.numeric(year)-9)) %>%
 mutate(Treatment=factor(Treatment)) %>%
 rename(diameter=Dia,height=Hei) ->
 long

Diggle model: two other models in R script
mGauss <- lme(diameter~Treatment*Block+
 Treatment*factor(age)*Provenance,
 random=~1|Plant,
 corr=corGaus(form=~age|Plant,nugget=TRUE),
 data=long)
Which repeated measurements model to use?
There exists many other models than those listed on slide 47

- Is the model valid?
 - Residual plot: Non-random scatter suggests that the explanatory variables have not been used appropriately, e.g. an interaction or a quadratic term might be missing.
 - Normal quantile plots: Residuals not on a straight line suggests that the response variable perhaps should be transformed.
 - Semi-variogram: Compares empirical correlation structure (the dots) to the fitted theoretical correlation structure (the line).

- Interpretation?
 - Random effects have a simple interpretation, which speak in favour of the compound symmetry model. The exponential decrease and the Diggle model have similar interpretations.

- Akaike Information Criterion (AIC): “The smaller the better”.
 - For the Baobab dataset the compound symmetry model is clearly rejected by the AIC.
plot(mExp, main="Exponential decrease model")
plot(mGauss, main="Diggle model")
Exponential vs. Gaussian decrease: Normal quantile plot

qqnorm(resid(mExp), main="Exponential decrease model")
qqnorm(resid(mGauss), main="Diggle model")
Semi-variogram: $\gamma(h) = \frac{1}{2} \text{var}(X(t + h) - X(t))$

```r
plot(Variogram(mExp), ylim=c(0, 0.7))
plot(Variogram(mGauss), ylim=c(0, 1.1))
```
Choice of repeated measurements model
Residual and normal quantile plots acceptable for all models

<table>
<thead>
<tr>
<th>Model</th>
<th>Compound symmetry</th>
<th>Exponential decrease</th>
<th>Diggle</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>3172</td>
<td>1397</td>
<td>1514</td>
</tr>
</tbody>
</table>

- Akaike Information Criterion (AIC) clearly prefers the exponential decrease model, which we describe as:

 “An ANOVA with random effect of plant and residual errors correlated within plants. The errors consist of an independent component and a component with exponential decreasing correlation. For the fixed effects we used the concatenation of the full factorial design of (treatment, age, provenance) and the full factorial design of (treatment, block)”.
Overview of steps in a repeated measurements analysis

- List and classify the variables in the design.
 - Done (see slide 44).

- Make plots of individual, and perhaps averaged, response profiles.
 - Done (see slides 39 and 40).

- Choose and validate a correlation structure.
 - Done (see slides 50 to 53).

- Test on fixed effects: Done as usual for ANOVA and ANCOVA models.
 - Remember to refit models using `maximum likelihood` (method="ML").
 - Unfortunately the `drop1()` function does not work for lme-objects. So this has to be done by hand (see R guide Section 9.5.3).
 - Automatic model selection based on AIC may be done using `stepAIC()` from the MASS-package.

- Report estimates and conclusions from the final model (as usual, e.g. using the emmeans-package as seen on next slide).
Visualization of estimated marginal means

my.emm <- as.data.frame(emmeans(mExp.final, ~factor(age) | Treatment:Provenance))

ggplot(my.emm) +
 geom_line(aes(x=age, y=emmean^(3/2), group=Treatment, col=Treatment)) +
 geom_errorbar(aes(x=age, ymin=lower.CL^(3/2), ymax=upper.CL^(3/2), col=Treatment)) +
 facet_wrap(.~Provenance) +
 scale_x_continuous(breaks=seq(2,12,2)) +
 ylab("Diameter")
Questions?

- And then a break!?

- After the break we discuss analysis of summary measures as an “easy” alternative to repeated measurements models.
Analysis of Summary measures

An alternative to the repeated measurements analysis discussed above

- Idea:
 - Reduce the curve for each subject to a single value.
 - Analyze this summary measure as usual (ANOVA, regression, ...).

- As summary measures we could for example use:
 - Average response over time.
 - Area under curve (AUC, often used in medicine).
 - Slope of curve (rate of increase).
 - Maximal response.
 - Position (e.g. time) of maximal response.
 - Halving time since maximal response.
 - Curvature: fit $\alpha + \beta \cdot \text{time} + \gamma \cdot \text{time}^2$ for each individual and use $\hat{\gamma}$.

Note: The summary measures should be computed for each subject — not on the average profiles!
Principles for choosing summary measures

- Select a measure that addresses the problem under investigation.

- Do not choose summary measures on the basis of visual inspection of the treatment differences — this is cheating.
 - But it is OK to plot all profiles in one graph and select “typical features” of the curves for further investigation.

- You may analyze more than one summary measure. If so, then choose some that reflect different aspects of the curves. For example:
 - AUC and average response is NOT a good combination.
 - AUC and rate of increase might be a good combination.

But be aware of the associated multiple testing problem.
Analysis of summary measures: Pros and Cons

- **Advantages:**
 - Simple analysis, which is more easily communicated.
 - Often powerful analysis if the summary measure is chosen appropriately.
 - Model validation more easy and transparent.

- **Disadvantages:**
 - Each curve is reduced to a single value — loss of information?
 - Which summary measure should be used?
 - No investigation of the “temporal” structure, which might be important for the problem under investigation.