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1 Restricted Structural Causal Models

by Jonas Peters, Niklas Pfister and Rune Christiansnen, 20.06.2019
This notebook is intended to give you some insight on identifiability of additive noise models

and how they could be estimated in practice. The references are sparse and are somewhat biased
towards [1]. We do not intend to claim that this is the original reference.

In [13]: library(mgcv)
library(dHSIC)
source("utils.R")

1.1 Two Variables

Assume we are given a sample from a bivaraite distribution over X and Y and want to find out,
which variable is the cause and which the effect, i.e., whether the distribution has been induced
by an SCM with graph X → Y or Y → X.

Without further assumptions, this will not be possible: Either graph can induce any distribu-
tion (e.g., see Proposition 4.1 in [1]). This is different, however, if we restrict the model class. E.g.,
if we consider only linear assignments, we have the following statement:

Given a distribution over X and Y that is induced by an SCM with linear assignments and
graph X → Y, then it is also induced by an SCM with linear assignments and graph X ← Y only
if the noise variables are Gaussian (e.g., see [2] or Thm 4.2. in [1]).

1.1.1 Exercise 1:

Generate a (large) sample from a distribution from a linear SCM with graph X → Y and non-
Gaussian noise (e.g., uniform). Do the same for a linear SCM with the reversed graph X ← Y. Plot
both samples. What is the (systematic) difference between the two pictures?

1.1.2 Solution 1:

1.1.3 End of Solution 1

A very similar statement holds for nonlinear functions, too: If a distribution is induced by
Y = f (X) + NY with NY independent of X, then only for very few (and somewhat non-generic)
combinations of functions f and distributions of X and NY, will we find a model in the backward
direction, too (e.g., see Thm 4.5 in [1]).
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But how can we find the graph if we are only given a sample from the joint (observational)
distribution? In other words, how do we decide which model the data come from:

Y = f (X) + NY, NY indep. X (1)

or
X = g(Y) + NX, NX indep. Y? (2)

Let us consider a real world data set.

In [14]: XX <- read.csv('./RestrictedSCMsData1.txt', sep = "\t")
XX <- XX[1:1000,]
Y <- XX[,2]
X <- XX[,1]
plot(X, Y, pch = 19, cex = .8)
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The next two exercises contain two approaches that aim to estimate the underlying causal
DAG, i.e., whether X → Y or X ← Y.

1.1.4 Exercise 2:

First, we perform an approach based on independence tests. If (1) is correct, then Y − f (X) is
independent of X. If (1) is incorrect, then Y− f (X) is dependent on X for all choices of f . We can
thus verify (1) by estimating the regression of Y on X and checking if the residuals are independent
of X. More formally, we follow the following procedure.

1. Regress Y on X and obtain estimate f̂ .
2. Check whether the residuals Y− f̂ (X) are independent of X.
3. Repeat the same in the opposite direction.
4. If the independence is accepted for one direction and rejected for the other, infer the former

one as the causal direction.

To regress B on A, you may use gam(B s(A)) from package mgcv; the residuals can be accessed
by gam(B s(A))$residuals. For the independence test you can use dhsic.test from package
dHSIC (setting method = "gamma" will increase the speed).

1.1.5 Solution 2:

1.1.6 End of Solution 2

1.1.7 Exercise 3:

If we know the distribution of the noise variables, we can also choose a maximum likelihood (ML),
also called score-based approach. (This means --- roughly--- that we are choosing the model class
that is closer to the observed empirical distribution in KL distance.) Given a data set, each possible
DAG over variables (X, Y) induces a different likelihood function, different maximum likelihood
estimates, and therefore a different likelihood score. We can then choose the graph that obtains
the highest score.

Assume that all noise variables are Gaussian with zero mean and a certain variance σ2. In this
case, it can be shown that the likelihood score for DAG G is proportional to

− log(var(RGX))− log(var(RGY)),

where RGX and RGY are the residuals obtained from regressing X and Y on their parents in G, re-
spectively.

For any given graph G, we obtain thus obtain a score propotional to the likelihood score by the
following three steps.

1. Regress each node on its parents.
2. Compute the variance of all residuals (here: RGX and RGY).
3. Calculate the above score.

Compute this score for all graphs (here: X → Y, X ← Y and the empty graph X Y) and
compare.
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