
ReinforcementLearningR

June 23, 2019

1 Reinforcement Learning

by Jonas Peters and Rune Christiansen, 21.06.2019
This notebook aims to give you a basic understanding of reinforcement learning. It is based

on a practical application to the game tictactoe.

In [12]: library(hash)

hash-2.2.6 provided by Decision Patterns

Reinforcement learning can be understood by imagining an agent that takes actions according
to a given (probabilistic) strategy. The agent is embedded in a world that determines what resem-
bles a permitted move. After taking a set of actions, the agent receives a reward. Based on the
profitability of his actions, he then repeatedly updates his strategy, striving towards maximizing
this reward. We now make this intuition notion more precise.

For every t = 1, 2, . . . , T, let St and At denote the ”state of the world” at time t and the action
that is taken at time t, respectively. We let Y denote a reward. The variables Y, S1, A1, . . . , ST, AT
are part of a causal system in which, for all t, PA(At) = St, i.e., the action at time t is taken only
on the basis of the current state of the world. The way in which this action is chosen is called a
strategy. More formally, a strategy π is a mapping (a, s) 7→ π(a | s) := P(At = a | St = s).

How should an agent update his strategy? A natural choice is to pick the one that yields the
highest expected reward. In practice, the expected rewards under different strategies are unkown
and need to be estimated from data. This involves estimating properties of a distribution (the
reward distribution under a given strategy) that we do not observe data from (the strategy has
not yet been used). Exploiting knowledge of the underlying causal structure, this can be done be
inverse probability weighting.

1.1 Inverse Probability Weighting

Let X = (Y, S1, A1, . . . , ST, AT) denote the full system of variables. Let π and π̃ be two differ-
ent strategies, and let p and p̃ denote the respective densities over X that are induced by these
strategies. Using Markov factorization of p and p̃ we see that

ξ := Ẽ[Y] =
∫

y p̃(x) dx =
∫

y
p̃(x)
p(x)

p(x) dx =
∫

y ∏T
t=1 p̃(at | st)

∏T
t=1 p(at | st)

p(x) dx =
∫

y ∏T
t=1 π̃(at | st)

∏T
t=1 π(at | st)

p(x) dx = E

[
Y ∏T

t=1 π̃(At | St)

∏T
t=1 π(At | St)

]
,

(1)

1

i.e., the expected return ξ under strategy π̃ can be optained from the distribution p induced
by the original strategy π. In practice, this means that we can estimate ξ given data X1, . . . , Xn

obtained under strategy π:

ξ̂n :=
1
n

n

∑
i=1

Yi ∏T
t=1 π̃(Ai

t | Si
t)

∏T
t=1 π(Ai

t | Si
t)

. (1)

1.2 TicTacToe

Imagine you are playing a game of TicTacToe against another player. At every stage of the game,
the current "state of the world" can be described by a 9-dimensional vector s ∈ S := {−1, 0, 1}9

indicating which fields are marked by an "o" (-1), which are marked by an "x" (1) and which are
left blank (0). (In practice, many of the elements in S do not correspond to possible game states,
but this is irrelevant for the application.) An action corresponds to choosing one of the free fields,
i.e., the possible actions are A := {1, . . . , 9}. The reward Y ∈ {−1, 0, 1} (defeat/draw/win) is
obtained after a game is finished.

Below, we give an implementation of the game.

In [4]: ## The Game

game <- function(player1, player2, silent = FALSE){
gameState <- rep(0,9)

while(evaluateGameState(gameState)==42){
movePlus1 <- do.call(player1, list(gameState))$move
gameState[movePlus1] <- 1
if(evaluateGameState(gameState)==42){

moveMinus1 <- do.call(player2, list(-gameState))$move
gameState[moveMinus1] <- -1

}
}
evGS <- evaluateGameState(gameState)
if(evGS==0){

do.call(paste(player1, ".draw", sep = ""), list())
do.call(paste(player2, ".draw", sep = ""), list())
totalResults[totalGames] <<- 0
res <- 0
if(!silent){

cat("Draw!")
cat("\n\n")
cat("Result:")
cat("\n\n")
print(matrix(gameState,3,3,byrow=T))

}
}
if(evGS==1){

res <- 1
do.call(paste(player1, ".win", sep = ""), list())

2

do.call(paste(player2, ".loss", sep = ""), list())
totalResults[totalGames] <<- 1
if(!silent){

print("The winner is player 1")
cat("\n\n")
cat("Result:")
cat("\n\n")
print(matrix(gameState,3,3,byrow=T))

}
}
if(evGS==-1){

res <- -1
totalResults[totalGames] <<- -1
do.call(paste(player1, ".loss", sep = ""), list())
do.call(paste(player2, ".win", sep = ""), list())
if(!silent){

print("The winner is player -1")
cat("\n\n")
cat("Result:")
cat("\n\n")
print(matrix(gameState,3,3,byrow=T))

}
}
return(res)

}

gamestate

evaluateGameState <- function(gameState, permut = (1:9)){
gameState <- gameState[permut]
gameStateMat <- matrix(gameState, 3, 3, byrow = T)
rSums <- rowSums(gameStateMat)
cSums <- colSums(gameStateMat)
dSums <- c(sum(gameState[c(1,5,9)]), sum(gameState[c(3,5,7)]))
sums <- c(rSums, cSums, dSums)
if(any(sums==3)) return(1)
else if(any(sums==-3)) return(-1)
else if(any(gameState==0)) return(42)
else return(0)

}

players

######################## playerRandom ########################
chooses randomly among empty fields
playerRandom <- function(gameState){

3

move <- sample((1:9)[which(gameState==0)],1)
return(list(move = move))

}

playerRandom.draw <- function(){
historyRandom$n <<- historyRandom$n + 1
historyRandom$results[historyRandom$n] <<- 0

}
playerRandom.win <- function(){

historyRandom$n <<- historyRandom$n + 1
historyRandom$results[historyRandom$n] <<- 1

}
playerRandom.loss <- function(){

historyRandom$n <<- historyRandom$n + 1
historyRandom$results[historyRandom$n] <<- -1

}

######################## playerLeft ########################
chooses the leftmost empty field
playerLeft <- function(gameState){

move <- which.min(abs(gameState))
return(list(move = move))

}

playerLeft.draw <- function(){
historyLeft$n <<- historyLeft$n + 1
historyLeft$results[historyLeft$n] <<- 0

}
playerLeft.win <- function(){

historyLeft$n <<- historyLeft$n + 1
historyLeft$results[historyLeft$n] <<- 1

}
playerLeft.loss <- function(){

historyLeft$n <<- historyLeft$n + 1
historyLeft$results[historyLeft$n] <<- -1

}

1.2.1 Exercise 1

Get familiar with the code. Play a couple of games between playerLeft and playerRandom. Which
strategy seems to work best?

1.2.2 Solution 1

In [5]: historyRandom <- list(n = 0, results = NA, games = list())
historyLeft <- list(n = 0, results = NA, games = list())
totalGames <- 0

4

totalResults <- c()

#########################
Play PlayerLeft against PlayerRandom
fill in
#########################

1.2.3 End of Solution 1

1.3 Estimating expected rewards

A strategy for playing TicTacToe is a map

π : A× S → [0, 1], such that for all s ∈ S , ∑
a∈A

π(a | s) = 1.

We can parametrize the space of strategies by θ ∈ R|A|×|S| using

πθ(a | s) = Pθ(At = a | St = s) =
exp(θas)

∑θa′∈A
exp (θa′s)

. (2)

Assume that we play a numer of games i = 1, . . . , n under a given strategy, and assume that
we have saved this strategy, i.e., the probabilities πdata(Ai

j | Si
j) are known (and fixed). Using (1),

we can estimate the performance under a new strategy θ by

ξ̂n(θ) =
1
n

n

∑
i=1

Yi
pθ(gamei)

pdata(gamei)
=

1
n

n

∑
i=1

Yi
πθ(Ai

1 | Si
1)πθ(Ai

2 | Si
2)πθ(Ai

3 | Si
3)πθ(Ai

4 | Si
4)

πdata(Ai
1 | Si

1)πdata(Ai
2 | Si

2)πdata(Ai
3 | Si

3)πdata(Ai
4 | Si

4)
,

(3)

1.3.1 Exercise 2

We now play 10,000 games against PlayerLeft using the random strategy. Use the estimator (2) to
estimate the performance against PlayerLeft if you play the same strategy as PlayerLeft. What is
the true expected score in that case?

We first update PlayerRandom to save information about the played moves and the probability
with which they were taken.

1.3.2 Solution 2

In [6]: # updated playerRandom
playerRandom <- function(gameState){

probmass <- rep(0,9)
probmass[gameState == 0] <- 1/sum(gameState == 0)
move <- sample(1:9, size=1, prob = probmass)
ngames <- historyRandom$n + 1
if(sum(gameState==0)>7){

There is at most 1 occupied field. It is thus playerRandom's first turn.
We initialize entry number 'ngames' in historyRandom$games.
historyRandom$games contains information on the current gamestate,

5

the move taken, and the probability with which it was taken.
historyRandom$games[[ngames]] <<- c(gameState, move, probmass[move])

}else{
We update entry number 'ngames' in historyRandom
historyRandom$games[[ngames]] <<- rbind(historyRandom$games[[ngames]], c(gameState, move, probmass[move]))

}
return(list(move = move))

}

In [7]: # 10000 games between PlayerRandom and PlayerLeft
historyRandom <- list(n = 0, results = NA, games = list())
set.seed(1)
numGames <- 10000
player1 <- "playerRandom"
player2 <- "playerLeft"

totalResults <- c()
totalGames <- 1

for(i in 1:numGames){
game(player1, player2, silent = TRUE)
totalGames <- totalGames +1

}

play 10000 games
plot((1:numGames) - cumsum(totalResults), xlim = c(0,numGames),

ylim = c(0,numGames), ylab = "games not won", type = "l")

average reward
mean(historyRandom$results)

0.0763

6

In [8]: #### compute expected reward under strategy of playerLeft

weights <- rep(1,historyRandom$n) # initializing weights
for(i in 1:historyRandom$n){

currentgame <- historyRandom$games[[i]]
update weights, i.e., compute the fraction in the i'th term of the sum in (3)
for(j in 1:(dim(currentgame)[1])){

#########################
fill in
#########################

}
}

7

estimate for expected reward under the strategy of playerLeft
mean(weights*historyRandom$results)

0.0763

1.3.3 End of Solution 2

1.3.4 Updating the strategy using gradient descent

In order to sequentially move towards a higher reward, we can, at every step, update our strategy
by moving in a ascent direction of (3). We first need to calculate an expression for the gradient of
(3).

Computing the gradient Given a and s. Let us separate the games {1, . . . , n} into three distinct
subsets S , T , and U , s.t. {1, . . . , n} = S ∪ T ∪ U . S contains all i, s.t. there is a j ∈ {1, 2, 3, 4} with
Si

j = s and Ai
j = a. T contains all i, s.t. there is a j ∈ {1, 2, 3, 4} with Si

j = s but Ai
j ̸= a. U is the

rest. We have
∂

∂θas

exp(θas)

∑a′ exp(θa′s)
=

(
1− exp(θas)

∑a′ exp(θa′s)

)
exp(θas)

∑a′ exp(θa′s)
.

and
∂

∂θas

exp(θãs)

∑a′ exp(θa′s)
= − exp(θas)

∑a′ exp(θa′s)

exp(θãs)

∑a′ exp(θa′s)
.

Thus,

∂

∂θas
Ê(θ) =

1
n

(
∑
i∈S

Yi

(
1− exp(θas)

∑a′ exp(θa′s)

)
πθ(Ai

1 | Si
1)πθ(Ai

2 | Si
2)πθ(Ai

3 | Si
3)πθ(Ai

4 | Si
4)

πdata(Ai
1 | Si

1)πdata(Ai
2 | Si

2)πdata(Ai
3 | Si

3)πdata(Ai
4 | Si

4)

+ ∑
i∈T

Yi

(
− exp(θas)

∑a′ exp(θa′s)

)
πθ(Ai

1 | Si
1)πθ(Ai

2 | Si
2)πθ(Ai

3 | Si
3)πθ(Ai

4 | Si
4)

πdata(Ai
1 | Si

1)πdata(Ai
2 | Si

2)πdata(Ai
3 | Si

3)πdata(Ai
4 | Si

4)

)
.

Performing the gradient step Let λ > 0. Given a current strategy θcurrent, we perform a gradient
step by updating, for all a, s,

θas ← θas + λ
∂

∂θas
Ê(θ)|θ=θcurrent

1.3.5 Exercise 3

Fill in the relevant lines of code in the below implementation of the gradient step. We first define
the new player, PlayerLearn.

In [9]: ######################## playerLearn ########################
updates strategy based on experience
playerLearn <- function(gameState){

if(is.null(strategyLearn[[toString(gameState)]])){
if gamestate has not been seen yet,
initialize strategy by uniform

8

probmass <- rep(0,9)
probmass[gameState == 0] <- 1/sum(gameState == 0)
strategyLearn[[toString(gameState)]] <<- log(probmass)

} else {
otherwise use current paramters in strategyLearn
and compute strategy from Equation (2)
probmass <- exp(strategyLearn[[toString(gameState)]])/sum(exp(strategyLearn[[toString(gameState)]]))

}
move <- sample(1:9, size=1, prob = probmass)
ngames <- historyLearn$n + 1
if(sum(gameState==0)>7){

historyLearn$games[[ngames]] <<- c(gameState, move, probmass[move])
}else{

historyLearn$games[[ngames]] <<- rbind(historyLearn$games[[ngames]], c(gameState, move, probmass[move]))
}
return(list(move = move))

}

playerLearn.draw <- function(){
historyLearn$n <<- historyLearn$n + 1
historyLearn$results[historyLearn$n] <<- 0
playerLearn.update()

}
playerLearn.win <- function(){

historyLearn$n <<- historyLearn$n + 1
historyLearn$results[historyLearn$n] <<- 1
playerLearn.update()

}
playerLearn.loss <- function(){

historyLearn$n <<- historyLearn$n + 1
historyLearn$results[historyLearn$n] <<- -1
playerLearn.update()

}

In [10]: playerLearn.update <- function(){
stepsize <- lambda/historyLearn$n # decrease stepsize with time

compute gradient
if((totalGames > waitUntilStep) && ((totalGames %% doStepEvery) == doStepEvery-1)){ # update strategy

gradientLearn <- copy(strategyLearn)
.set(gradientLearn, keys(gradientLearn), rep(list(rep(0,9)),length(keys(gradientLearn))))
for(i in 1:historyLearn$n){

gamee <- historyLearn$games[[i]]
gamee
wup <- 1
wdown <- 1

for(j in 1:dim(gamee)[1]){

9

gs <- gamee[j,1:9]

wup looks at current probabilities.
ac = gamee[j,10]
wup <- wup * exp(strategyLearn[[toString(gs)]][ac])/sum(exp(strategyLearn[[toString(gs)]]))
wdown looks at probabilities, under which the action was decided.
wdown <- wdown * gamee[j,11]

}
if(wup > 0){ #if games have zero prob. they are disregarded.

for(j in 1:dim(gamee)[1]){
get hashed game state
gs <- gamee[j,1:9]
ac <- gamee[j,10]
gradientLearn[[toString(gs)]][ac] = gradientLearn[[toString(gs)]][ac] +

historyLearn$results[i] * wup/wdown * (1 - exp(strategyLearn[[toString(gs)]][ac])/sum(exp(strategyLearn[[toString(gs)]])))
others <- setdiff(which(strategyLearn[[toString(gs)]] > -Inf), ac)
gradientLearn[[toString(gs)]][others] = gradientLearn[[toString(gs)]][others] -

historyLearn$results[i] * wup/wdown * exp(strategyLearn[[toString(gs)]][others])/sum(exp(strategyLearn[[toString(gs)]]))
}

}
}

gradient step
for(i in keys(strategyLearn)){

compute update of i'th entry in strategyLearn
store result in object 'newVector'

######################################
change the following assignment
newVector <- rep(1,9)
######################################

newVector <- newVector - mean(newVector[newVector > -Inf])
if(max(newVector) > 20){

newVector <- newVector * 20 / max(newVector)
}
.set(strategyLearn, i, newVector)

}
}

clear history to keep only the last "keepMin" games
if((totalGames > keepMin) && ((totalGames %% clearEvery) == (clearEvery - 1))){ #clear history

historyLearn$games <<- historyLearn$games[(historyLearn$n - keepMin + 1):historyLearn$n]
historyLearn$results <<- historyLearn$results[(historyLearn$n - keepMin + 1):historyLearn$n]
historyLearn$n <<- keepMin

}
}

10

1.3.6 Exercise 4

Learn how to play against PlayerRandom. Start to play with the random strategy and update your
strategy using gradient descent. In total, play 10, 000 games. Choose the step size lambda and the
interval of how often to do one step of gradient ascent, i.e., the variable doStepEvery, such that
from the last 1, 000 games you win at least 90%.

Write down one of the most likely games under the final (learned) strategy? (Hint: you can
access the strategy for a given gamestate gst by the command strategyLearn[[toString(gst)]].)

In [13]: strategyLearn <- hash()
historyLearn <- list(n = 0, results = NA, games = list())

waitUntilStep <- 500
clearEvery <- 500
keepMin <- 500
numGames <- 10000
player1 <- "playerLearn"
player2 <- "playerRandom"
totalResults <- c()
totalGames <- 1

##
adjust values for lambda and doStepEvery
lambda <- 20
doStepEvery <- 1000
##

set.seed(20190623)
for(i in 1:numGames){

game(player1, player2, silent = TRUE)
totalGames <- totalGames +1

}

plot over performance
plot((1:numGames) - cumsum(totalResults), xlim = c(0,numGames),

ylim = c(0,numGames), ylab = "games not won", type = "l")

percentage of last 1000 games that have been won
mean(tail(historyLearn$results,1000)==1)

0.437125748502994

11

In [141]: strategyLearn[[toString(c(0,0,0,0,0,0,0,0,0))]] # largest entry 5
strategyLearn[[toString(c(-1,0,0,0,1,0,0,0,0))]] # largest entry 4
strategyLearn[[toString(c(-1,0,0,1,1,0,0,-1,0))]] # largest entry 6 -> WIN

1. -0.482216570484333 2. -3.30988366717526 3. 1.97197546370782 4. 0.455066756239415
5. 9.06035819764114 6. -6.27495388266287 7. 0.672412678577698 8. -3.69683031983769
9. 1.60407134399408

1. -Inf 2. -0.167421554075131 3. -1.89051728316382 4. 6.54649830047452 5. -Inf
6. -0.178092622550847 7. -0.794758091979958 8. -2.40689759372544 9. -1.10881115497933

1. -Inf 2. -1.3344270065945 3. -1.50917884537608 4. -Inf 5. -Inf 6. 4.72975484906199
7. -1.38550341368495 8. -Inf 9. -0.50064558340647

NULL

12

	Reinforcement Learning
	Inverse Probability Weighting
	TicTacToe
	Exercise 1
	Solution 1
	End of Solution 1

	Estimating expected rewards
	Exercise 2
	Solution 2
	End of Solution 2
	Updating the strategy using gradient descent
	Exercise 3
	Exercise 4

