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1 Invariant Causal Prediction

by Jonas Peters, Niklas Pfister and Rune Christiansen, 18.06.2019
This notebook aims to give you a basic understanding of invariant causal prediction for causal

inference.
The method’s goal is as follows: Suppose we are given data (X1, Y1), . . . , (Xn, Yn) from a target

variable Y and a vector of d predictors X. We are then trying to determine the causal parents
pa(Y) ⊆ {1, . . . , d} of Y. The inference will be based on heterogeneity in the data (e.g., the data
come from different interventional settings).

In [19]: library(InvariantCausalPrediction)
library(seqICP)

1.1 Environment based approach

We first start with a fundamental observation that we will exploit later.
Assume the d+ 1 dimensonal vectors Zi = (Z0

i , Z1
i , . . . , Zd

i ) for i = 1, . . . , n are independent ob-
servations generated by (potentially) different interventional settings of the same linear structural
causal model (SCM) such that the induced graphs are directed and acyclic (i.e., DAGs). Assume
further that none of the interventions occurs directly on the variable Z0. Then, for Y := Z0 and
X := (Z1, . . . , Zd) we have following invariance: There exists β ∈ (R \ {0})|pa(Y)| such that for all
i ∈ {1, . . . , n} it holds that

Yi = µ + Xpa(Y)
i β + ϵi and ϵi ⊥⊥ Xpa(Y)

i , (1)

where ϵ1, . . . , ϵn are i.i.d. noise variables.

1.1.1 Exercise 1

Generate one sample from a distribution from the linear SCM

S :

{
Xi = ϵ1

i

Yi = 1.5 · Xi + ϵ2
i ,

(1)

and a second sample from the same SCM under a shift intervention on X. Plot both samples in
the same (X,Y)-scatterplot using different colors. Does the conditional distribution of Y|X remain
invariant, i.e., it is the same in both samples? What about the distribution of Y?
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1.1.2 Solution 1

In [20]: # Generate n=1000 observations from the observational distribution,
# and store observations in vectors called "Xa" and "Ya"
######################
# fill in
######################

# Generate n=1000 observations from the interventional distribution,
# and store observations in vectors called "Xb" and "Yb"
######################
# fill in
######################

if(exists("Xa") & exists("Xb") & exists("Ya") & exists("Yb")){
# Plot both samples
red <- rgb(1,0,0,alpha=0.4)
blue <- rgb(0,0,1,alpha=0.4)
# Y vs X1
plot(Xa,Ya,pch=16,col=blue,xlim=range(c(Xa,Xb)),ylim=range(c(Ya,Yb)),xlab="X",ylab="Y")
points(Xb,Yb,pch=17,col=red)
legend("topright",c("observational","interventional"),pch=c(16,17),col=c(blue,red),inset=0.02)

}

1.1.3 End Solution 1

We now assume that we are given the data and try to infer pa(Y). The method of invariant causal
prediction exploits the invariance (1) from above. It goes over all sets of potential parents pa(Y)
and finds all sets for which this invariance is satisfied.

To get a better understanding of how exactly invariant causal prediction performs this search,
we consider the following toy data set.

In [21]: load(file = "./InvariantCausalPredictionData1.RData") # load data

We have now loaded a sample consisting of the variables Y, X1, X2 and X3. The variables
correspond to the columns of the matrix data and the rows correspond to independent observa-
tions from an underlying SCM. The first 140 rows are sampled from an observational distribution,
while the remaining 80 rows come from an interventional setting for which it is known that none
of the interventions occured directly on Y. In the following two exercises we will determine the
parents of Y using invariant causal prediction. First, we do this maually, and later we will make
use of some functions already implemented in R.

1.1.4 Exercise 2

Perform a regression of Y on all possible sets of predictors (i.e. {X1}, {X2}, {X3}, {X1, X2}, {X1, X3},
{X2, X3}, {X1, X2, X3}). For each of the 7 regressions plot the residuals vs the fitted values (this
is called a Tukey-Anscombe plot). In each figure, plot the data points from the first environment
in "blue" and the points from the second environment in "red". Determine whether the corre-
sponding conditional remains invariant across the two environments. Moreover, check whether
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the distribution of Y itself remains invariant. What is the parent set? Hint: Think about which sets
are definetly not the correct parent sets.

1.1.5 Solution 2

In [22]: # extract response and predictors
Y <- data[,1]
Xmat <- data[,2:4]

# define the potential parent sets
S <- list( c(1), c(2), c(3), c(1,2), c(1,3), c(2,3), c(1,2,3))

# perform regression for each set in S
resid <- fitted <- vector("list", length(S))
for(i in 1:length(S)){

# regress Y linearly on the i'th set S (e.g. using lm.fit)
# store the residuals in resid[[i]]
# and the fitted values in fitted[[i]]
#########################
## fill in
#########################

}

filledInResid <- all(unlist(lapply(resid, length)) == length(Y))
filledInFitted <- all(unlist(lapply(fitted, length)) == length(Y))

if(filledInResid & filledInFitted){
# plot the resulting
env <- c(rep(0,140),rep(1,80))
par(mfrow=c(2,2))
red <- rgb(1,0,0,alpha=0.4)
blue <- rgb(0,0,1,alpha=0.4)
names <- c("X1", "X2", "X3", "X1, X2", "X1, X3", "X2, X3", "X1, X2, X3")
# plot Y vs index (empty set)
plot((1:length(Y))[env==0], Y[env==0], pch=16, col=blue, xlim=c(0,220), ylim=range(Y), xlab="index", ylab="Y", main="empty set")
points((1:length(Y))[env==1], Y[env==1], pch=17, col=red)
legend("topleft",c("observational","interventional"),pch=c(16,17),col=c(blue,red),inset=0.02)
# all remaining potential sets
for(i in 1:length(S)){

plot(fitted[[i]][env==0], resid[[i]][env==0], pch=16, col=blue, xlim=range(fitted[[i]]), ylim=range(resid[[i]]), xlab="fitted values", ylab="residuals", main=names[i])
points(fitted[[i]][env==1], resid[[i]][env==1], pch=17, col=red)
legend("topleft",c("observational","interventional"),pch=c(16,17),col=c(blue,red),inset=0.02)

}
}
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1.1.6 End of Solution 2

1.1.7 Exercise 3

For the same data set apply the invariant causal prediction function ICP form the package Invari-
antCausalPrediction to determine the parent set. Hint: You will need to define a vector ExpInd
which has the same length as the number of observations and indicates from which environment
each observations comes (e.g. 0 for observational data and 1 for interventional data).

1.1.8 Solution 3

1.1.9 End of Solution 3

1.2 Extension to an environment-free approach

In the above exercises we knew which observations corresponded to the observational and which
to the interventional setting. In this section we want to show that we can still apply a similar
methodology even if this environment information is not known. All we need is a sequential
ordering of the data. For example, the data could be grouped together for each environment or
the interventions could change continuously across time. We illustrate this using the following
toy example.

In [23]: load(file = "./InvariantCausalPredictionData2.RData") # load data2

The matrix data2 contains the three variables Y, X1 and X2 as columns and each row corre-
sponds to an independent observations from the same SCM under smoothly changing interven-
tions. To be more precise, the interventions correspond to smooth shifts in the variance of the
noise.

1.2.1 Exercise 4

Use the invariant causal prediction function for sequential data seqICP from the package seqICP
to find an estimate of the parent set for the variable Y. Set the parameter test to "smooth.variance",
this leads the seqICP to performs a hypothesis test tuned against alternatives that result from
smooth variance interventions.

1.2.2 Solution 4

1.2.3 End of Solution 4
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