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1.1 Introduction

The introduction of Bayesian networks (Pearl 1986b) and associated local
computation algorithms (Lauritzen and Spiegelhalter 1988, Shenoy and
Shafer 1990, Jensen, Lauritzen and Olesen 1990) has initiated a renewed
interest for understanding causal concepts in connection with modelling
complex stochastic systems.

It has become clear that graphical models, in particular those based upon
directed acyclic graphs, have natural causal interpretations and thus form a
base for a language in which causal concepts can be discussed and analysed
in precise terms.

As a consequence there has been an explosion of writings, not primarily
within mainstream statistical literature, concerned with the exploitation of
this language to clarify and extend causal concepts. Among these we men-
tion in particular books by Spirtes, Glymour and Scheines (1993), Shafer
(1996), and Pearl (2000) as well as the collection of papers in Glymour and
Cooper (1999).

Very briefly, but fundamentally, the important distinction to be made is
the distinction between two types of conditional probability. We refer to
these as conditioning by intervention and conditioning by observation and
suggest the notation

plly) =P(X =2|Y <y), pk|ly)=PX=2|Y =y)

for these two notions. Other authors have used expressions such as do(y),
Y =g, and set(Y = y) to denote intervention conditioning.
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Much existing controversy and lack of clarity is due to the misconception
that these two are identical or even related in a simple fashion although
the distinction has also been made both properly, clearly, and explicitly in
better expositions of regression, see for example Box (1966) or Section 3.3
of Cox (1984).

In the following, we try to develop the basic ideas needed to make this
distinction precise and discuss a number of classical statistical problems
where the distinction is important.

There are many important aspects and views of causality and causal
inference which are not even touched upon here, as we are only concerned
with one particular such aspect: the prediction of the effect of interventions
in a given system.

The material is organized as follows. Section 1.2 introduces the necessary
graph-terminology. The next three sections are concerned with the very
basic elements of graphical models, conditional independence and Markov
properties for undirected and directed graphs.

Section 1.6 introduces the notion of a causal Markov field and associ-
ated intervention probabilities. The next sections are concerned with the
exploitation of this idea in a number of important cases.

We conclude by discussing structural equation models and methods based
upon using counterfactual variables or potential responses, and finally give
a brief discussion of other issues which are not treated per se here.

While writing, I have in particular exploited Pearl (1995a) and Robins
(1997).

1.2 Graph terminology

This section introduces some necessary graph terminology. We are basically
following the terminology used in Cowell, Dawid, Lauritzen and Spiegel-
halter (1999) which is almost identical to that in Lauritzen (1996).

We define a graph G to be a pair G = (V, E), where V is a finite set
of wertices, also called nodes, of G, and E is a subset of the set V x V of
ordered pairs of vertices, called the edges or links of G. Thus, as F is a set,
the graph G has no multiple edges. We further require that E consist of
pairs of distinct vertices, so that there are no loops.

If both ordered pairs («, 8) and (3, a) belong to E, we say that we have
an undirected edge between o and (3, and write a ~ 3; we also say that «
and (3 are neighbours, a is a neighbour of 3, or 8 is a neighbour of a. The
set of neighbours of a vertex  is denoted by ne(f3).

If (o, B) € E but (8,a) ¢ E we call the edge directed, and write o — 3.
We also say that « is a parent of 3, and that 8 is a child of . The set
of parents of a vertex § is denoted by pa(f3), and the set of children of a
vertex a by ch(a). The family of 8, denoted fa(f), is fa(8) = {8} U pa(s).
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If (o, B) € E or (B,a) € E we say that « and f are joined. Then a # 3
indicates that « and (3 are not joined, i.e. both (a,3) € E and (8,a) € E.
We also write a A B if (o, 3) ¢ E.

If A C V, the expressions pa(A4), ne(A) and ch(A4) will denote the col-
lection of parents, children and neighbours, respectively, of the elements of
A, but excluding any element in A:

pa(4) =U,capala)\ A,
ne(4) = U,eqne(@)\ 4,
ch(4) = Uyeqch() \ 4

If all the edges of a graph are directed, we say that it is a directed graph.
Conversely, if all the edges of a graph are undirected, we say that it is an
undirected graph.

The boundary bd(a) of a vertex « is the set of parents and neighbours
of «; the boundary bd(A) of a subset A C V is the set of vertices in V' \ A
that are parents or neighbours to vertices in A4, i.e. bd(A) = pa A U ne A.
The closure of A is cl(4) = AUbd(A).

The undirected version G~ of a graph G is the undirected graph obtained
by replacing the directed edges of G by undirected edges.

We call G4 = (A, E4) a subgraph of G = (V,E) if A CV and E4 C
EnN (A x A). Thus it may contain the same vertex set but possibly fewer
edges. If in addition E4 = EN (A x A), we say that G4 is the subgraph of
G induced by the vertex set A.

A graph is called complete if every pair of vertices are joined. We say that
a subset of vertices of G is complete if it induces a complete subgraph. A
complete subgraph which is maximal (with respect to C) is called a cligue.

A path of length n from «a to B is a sequence a = ag,...,a, = [
of distinct vertices such that («a;—1,a;) € E for all i = 1,...,n. Thus a
path can never cross itself and moving along a path never goes against the
directions of arrows.

A cycle of length n is a path with the modification that the first and last
vertex are identical ag = a,. The cycle is directed if it contains at least
one arrow.

A directed graph which contains no cycles is called a directed acyclic
graph, or DAG.

A trail of length n from « to 8 is a sequence a = ag,...,a, = § of
distinct vertices such that a; 1 — «a;, or a; = «;_1, or a;_1 ~ «; for all
t =1,...,n. Thus, moving along a trail could go against the direction of
the arrows, in contrast to the case of a path. In other words, a trail in G is
a sequence of vertices that form a path in the undirected version G~ of G.

It is always possible to well order the nodes of a DAG, by a linear ordering
or numbering, such that if two nodes are connected the edge points from
the lower to the higher of the two nodes with respect to the ordering.
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Given a directed acyclic graph, the set of its vertices a such that a — (3
but not 3 — a are the ancestors an(f) of 8 and the descendants de(a) of
« are the vertices 8 such that a +— 3 but not 3 — «a. The nondescendants
nd(a) of a is the set V'\ (de(a) Ua). If pa(a) C A for all « € A we say that
A is an ancestral set. The symbol An(A) denotes the smallest ancestral set
containing A.

A subset C' C V is said to be an (a, 8)-separator if all trails from « to
B intersect C. The subset C' is said to separate A from B if it is an (a, §)-
separator for every @ € A and 8 € B. An («, 8)-separator C' is said to be
minimal if no proper subset of C' is itself an («, 3)-separator.

For a directed acyclic graph D, we define the moral graph of D to be the
undirected graph D™ obtained from D by first adding undirected edges be-
tween all pairs of vertices which have common children and are not already
joined, and then forming the undirected version of the resulting graph.

1.3 Conditional independence

Throughout this text a central notion is that of conditional independence
of random variables and groups of these.

We are concerned with the situation where we have a collection of ran-
dom variables (X,)aev taking values in probability spaces (X, )acv. The
probability spaces are either real finite-dimensional vector spaces or finite
and discrete sets but could be quite general, just sufficiently well-behaved to
ensure the existence of conditional probabilities. For simplicity we mostly
consider the discrete case.

For A being a subset of V' we let X4 = X4caX, and further X = Xy .
Typical elements of X4 are denoted as x4 = (z4)aca. Similarly X4 =
(Xa)aca-

Formally, if X,Y,Z are random variables with a joint distribution P,
we say that X is conditionally independent of Y given Z under P, and
write X LL Y| Z [P], if, for any measurable set A in the sample space of X,
there exists a version of the conditional probability P(A | Y, Z) which is a
function of Z alone. Usually P will be fixed and omitted from the notation.
If Z is trivial we say that X is independent of Y, and write X 1L Y.

When X, Y, and Z are discrete random variables the condition for
X 1LY | Z simplifies as

PX=zY=y|Z=2)=PX=z|Z=2)PY =y|Z=2),

where the equation holds for all z with P(Z = z) > 0. When the three
variables admit a joint density with respect to a product measure u, we
have

XUY|Z < fxvz(z,y|2) = fx | z(x]|2)fyz(y]2), (1.1)
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where this equation is to hold almost surely with respect to P. The condi-
tion (1.1) can be rewritten as

XUY|Z < fxvz(z,y,2)fz(2) = fxz(z,2)fyz(y,2) (1.2)

and this equality must hold for all values of z when the densities are con-
tinuous.

The ternary relation X 1L Y | Z has the following properties, where h
denotes an arbitrary measurable function on the sample space of X:

(C1) if X 1LY | Z then Y 1L X | Z;

(02) if X 1LY | Z and U = h(X), then U 1LY | Z;

(03) if X ALY | Z and U = h(X), then X 1LY |(Z,U);
(C4) if X 1LY | Z and X LW | (Y, Z), then X 1L (W,Y) | Z.

Note that the converse to (C4) follows from (C2) and (C3).
If we use f as generic symbol for the probability density of the random
variables corresponding to its arguments, the following statements are true:

XUY|Z <= flz,y,2)=f(z,2)f(y,2)/f(2) (1.3)
XUY|Z <<= f(z|y,2)=f(z|z) (1.4)
XUY|Z <= flz,z|y) = flz|2)f(z]y) (1.5)
XUY|Z <= f(z,y,2) = h(z,2)k(y,z) for some h,k (1.6)
XUY|Z <= [f(z,y2)=f(z|2)f(y,2) (1.7)

The equalities above hold apart from a set of triples (z,y,2) with proba-
bility zero.
Another property of the conditional independence relation is often used:

(C5) if X 1LY | Z and X 1L Z|Y then X 1L (Y, Z).

However (C5) does not hold universally, but only under additional con-
ditions — essentially that there be no non-trivial logical relationship be-
tween Y and Z. A trivial counterexample appears when X =Y = Z with
P{X =1} = P{X =0} = 1/2. We have however

Proposition 1.1 If the joint density of all variables with respect to a prod-
uct measure is strictly positive, then the statement (C5) will hold true.

Proof: We assume for simplicity that the variables are discrete with den-
sity f(z,y,2) > 0 and that X LY | Z as well as X 1l Z | Y. Then (1.6)
gives for all values of (z,y,z) that

f(z,y,2) = k(z,2)l(y, 2) = g(z,y)h(y, z)
for suitable strictly positive functions g, h, k,l. Thus we have for all z that

g(z,y) = %
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Choosing a fixed z = zg we get g(z,y) = w(z)p(y) where 7(z) = k(z, z0)

and p(y) = I(y,z0)/h(y, 20). Thus f(z,y,2) = m(z)p(y)h(y,z) and hence
X U (Y, Z) as desired. |

In most cases we are specifically interested in conditional independence
among groups of random variables such as for example X4 = (X,,a € A),
where A is a subset of V. We then use the short notation

ALB|C

for
Xal Xp| Xe

and so on. We then get the following properties as a consequence of (C1)—

(C4):

(C1”) if AL B|C then B1L A|C;

(C2) it ALLB|C and D C B, then A 1L D|C;

(C3) it ALLB|C and D C B, then A 1L B|C' UD;

(C4) if AlLLB|Cand ALLD|BUC, then AL BUD|C.

And similarly the analogue of (C5) is that for disjoint subsets A, B, C, and
D, we have

(C5") if ALLB|CUD and A1 C|BUD then AILBUC|D

although (C5’) does not hold universally, but only under specific extra
assumptions. It holds for example under the assumption that the joint
density of the random variables involved is strictly positive.

It is illuminating to think of the properties (C1)—(C5) or in particular
their analogues (C1’)—(C5’) as purely formal expressions, with a meaning
that is not necessarily tied to probability. If we interpret the symbols used
for random variables as abstract symbols for pieces of knowledge obtained
from, say, reading books, and further interpret the symbolic expression
XUY|Z as:

Knowing Z, reading Y is irrelevant for reading X,
the properties (C1)—(C4) translate to the following:

(I1) if, knowing Z, reading Y is irrelevant for reading X, then so is reading
X for reading Y;

(I12) if, knowing Z, reading Y is irrelevant for reading the book X, then
reading Y is irrelevant for reading any chapter U of X;

(13) if, knowing Z, reading Y is irrelevant for reading the book X, it re-
mains irrelevant after having read any chapter U of X;

(14) if, knowing Z, reading the book Y is irrelevant for reading X and even
after having also read Y, reading W is irrelevant for reading X, then
reading of both Y and W is irrelevant for reading X.
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Thus one can view the relations (C1)-(C4) as pure formal properties of
the notion of irrelevance. The property (C5) is slightly more subtle. In a
certain sense, also the symmetry (C1) is a somewhat special property of
probabilistic conditional independence, rather than general irrelevance.

It is thus tempting to use the relations (C1)—(C4) as formal axioms for
conditional independence or irrelevance. A semi-graphoid is an algebraic
structure which satisfies (C1’)—(C4’). If also (C5’) holds for disjoint subsets,
it is called a graphoid (Pear] 1988). Similarly we refer to (C1’)—(C4’) as the
semi-graphoid azioms and (C1’)—(C5’) as the graphoid azioms.

1.4 Markov properties for undirected graphs

Conditional independence properties of joint distributions of collections of
random variables can be compactly described and expressed as so-called
Markov properties for various graphs. In this section we consider the case
when the graph is undirected. We refer to Lauritzen (1996) or Cowell et al.
(1999) for proofs of all assertions that are not proved here.

Associated with an undirected graph G = (V,E) and a collection of
random variables (X,)acv as above there is a range of different Markov
properties. A probability distribution P on X is said to obey

(P) the pairwise Markov property, relative to G, if for any pair («,3) of
non-adjacent vertices

all g1V \{a, B}
(L) the local Markov property, relative to G, if for any vertex a € V

all V\cl(a)]| bd(a);

(G) the global Markov property, relative to G, if for any triple (A4, B, S) of
disjoint subsets of V' such that S separates A from B in G

Al B|S.

As conditional independence is intimately related to factorization, so are
the Markov properties. A probability measure P on X is said to factorize
according to G if for all complete subsets a C V there exist non-negative
functions v, that depend on = through z, only, and there exists a product
measure i = Qqevjte On X, such that P has density f with respect to p
where f has the form

fey=" I  ¢al@). (1.8)
a complete

The functions ¢, are not uniquely determined. There is arbitrariness in the
choice of u, but also groups of functions ¥, can be multiplied together or
split up in different ways. In fact one can without loss of generality assume
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— although this is not always practical — that only cliques appear as the
sets a, i.e. that
@) =[] velo), (1.9)
ceC
where C is the set of cliques of G. If P factorizes, we say that P has property
(F). The different Markov properties are related as follows

Proposition 1.2 For any undirected graph G and any probability distribu-
tion on X it holds that

(F) = (G) = (L) = (P).
Proof: See Lauritzen (1996). O

For a given graph G and state space X = X,cv X, we denote the set of dis-
tributions that satisfy the different Markov properties as Mp(G), Ma(G),
M,(G), and Mp(G). Proposition 1.2 can now be equivalently formulated
as

Mp(G) € Ma(9) € Mr(G) € Mp(G).

The Markov properties are genuinely different in general, but in the case
where P has a positive density it is possible to show that (P) implies (F),
and thus that all Markov properties are equivalent. This result has been
discovered in various forms by a number of authors (Speed 1979) but is
usually attributed to Hammersley and Clifford (1971). More precisely, we
have

Theorem 1.3 (Hammersley and Clifford) A probability distribution P
with positive density f with respect to a product measure u satisfies the pair-
wise Markov property with respect to an undirected graph G if and only if
it factorizes according to G.

Proof: See Lauritzen (1996). o

In fact, if (C5’) holds, the global, local, and pairwise Markov properties
coincide. This fact is stated in the theorem below, due to Pearl and Paz
(1987); see also Pearl (1988).

Theorem 1.4 (Pearl and Paz) If a probability distribution on X is such
that (C5’) holds for disjoint subsets A, B,C, D then

(G) <= (L) < (P).
Proof: See Lauritzen (1996). O

The global Markov property (G) is important because it gives a general
criterion for deciding when two groups of variables A and B are condition-
ally independent given a third group of variables S. Moreover, it cannot be
further strengthened. For example it holds (Frydenberg 1990b) that if all



THE DIRECTED MARKOV PROPERTY 9
state spaces are binary, i.e. Xy = {1, —1}, then
AN B|Sforall Pe Mp(G) <= S separates A from B.

In other words, if A and B are not separated by S then there is a factorizing
distribution that makes them conditionally dependent.

1.5 The directed Markov property

We consider the same set-up as in the previous section, except that now
the graph D is assumed to be directed and acyclic.

We say that a probability distribution P admits a recursive factoriza-
tion according to D, if there exist (o-finite) measures u, over X and non-
negative functions k%(-,-),« € V, henceforth referred to as kernels, defined
on Xy X Xya(a) such that

/ka(yavmpa(a))ﬂa(dya) =1

and P has density f with respect to the product measure p = ®qcvia
given by
f(z) = H ka(mmmpa(a))'
aceV

We then also say that P has property (DF). It is easy to show that, if
P admits a recursive factorization as above, then the kernels k% (-, Tpa(a))
are in fact densities for the conditional distribution of X, given X5(0) =
Tpa(a) and thus

£@) =TT £@a | Zpaca): (1.10)
acV
We refer to these kernels as the conditional specifications for P. It is im-
mediate that if we form the (undirected) moral graph D™ (see Section 1.2)
we have the following;:

Lemma 1.5 If P admits a recursive factorization according to the directed
acyclic graph D, it factorizes according to the moral graph D™ and therefore
obeys the global Markov property relative to D™.

Proof: The factorization follows from the fact that, by construction, the
sets {a} Upa(a) are complete in D™ and we can therefore let ¢r03upa(a) =
ke.

This simple lemma has very useful consequences and we shall see several
examples of this in the sequel. Also, using the local Markov property on
the moral graph D™ we find that

all V\al bla),
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where bl(a) is the so-called Markov blanket of a. The Markov blanket is
the set of neighbours of a in the moral graph D™. It can be found directly
from the original DAG D as the set of a’s parents, children, and children’s
parents:

bl(a) = pa(a) U ch(a) U {8 : ch(3) N ch(a) # 0}. (1.11)

In particular it follows that the so-called full conditionals satisfy
E(Xa | XV\a) = ['(on |Xb1(a))

with density given as

E(Xa |XV\a) = f(ma |'Tpa(a)) H f(xﬁ |mpa(ﬁ))-
BeEch(a)

The following result is easily shown:

Proposition 1.6 If P admits a recursive factorization according to the
directed acyclic graph D and A is an ancestral set, then the marginal dis-
tribution P4 admits a recursive factorization according to D4 .

In combination with Lemma 1.5 this yields:

Corollary 1.7 Let P factorize recursively according to D. Then
Al B|S

whenever A and B are separated by S in (Dan(auBus))™, the moral graph
of the smallest ancestral set containing AUBUS.

Following Lauritzen, Dawid, Larsen and Leimer (1990), the property in
Corollary 1.7 will be referred to as the directed global Markov property (DQG)
and a distribution satisfying it is a directed Markov field over D.

One can show that the global directed Markov property has the same
role as the global Markov property does in the case of an undirected graph,
in the sense that it gives the sharpest possible rule for reading conditional
independence relations off the directed graph. The procedure is illustrated
in the following example:

Example 1.8 Consider a directed Markov field on the first graph in Fig.
1.1 and the problem of deciding whether a 1L b|S. The moral graph of the
smallest ancestral set containing all the variables involved is shown in the
second graph of Fig. 1.1. It is immediate that S separates a from b in this
moral graph, implying a 1L b| S. a

An alternative formulation of the global, directed Markov property was
given by Pearl (1986a) with a formal treatment in Verma and Pearl (1990).
Recall that a trail in D is a sequence of vertices that forms a path in the
undirected version D~ of D, i.e. when the directions of arrows are ignored.
A trail 7 from a to b in a directed, acyclic graph D is said to be blocked by
S if it contains a vertex v € w such that either

v € S and arrows of 7 do not meet head-to-head at +, or
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S ={z,y}

Figure 1.1 The directed, global Markov property. Is a 1L b|S? In the moral graph
of the smallest ancestral set in the graph containing {a} U {b} U S, clearly S
separates a from b, implying a 1L b|S.

~ and all its descendants are not in S, and arrows of m meet head-to-head
at .
A trail that is not blocked by S is said to be active. Two subsets A and B
are said to be d-separated by S if all trails from A to B are blocked by S.
We then have the following result:

Proposition 1.9 Let A, B and S be disjoint subsets of a directed, acyclic
graph D. Then S d-separates A from B if and only if S separates A from
B in (DAn(AUBUS))m'

Proof: See Lauritzen (1996). o

The global directed Markov property can thus be formulated by requiring
that A 1L B|S whenever S d-separates A from B thereby making the anal-
ogy with the undirected case clearer. It depends on the specific context
and purpose whether the pathwise criterion, or the criterion used in the
definition of the global directed Markov property is easiest to use.

We illustrate the concept of d-separation by applying it to the query of
Example 1.8. As Fig. 1.2 indicates, all trails between a and b are blocked
by S, whereby the global Markov property gives that a 1L b| S.

For further use, we shall use the symbolic expression A 1L p B| S to denote
that A and B are d-separated by S or, equivalently, A and B are separated
by S in (Dan(auBus))™- It was shown in Verma and Pearl (1990) that

Lemma 1.10 For any fized directed acyclic graph D, the relation Lp sat-
isfies the graphoid axioms.

Geiger and Pearl (1990) show that the criterion of d-separation cannot
be improved, in the sense that, for any given directed acyclic graph D, one
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a b a b

S=(x.y) /
X X

Figure 1.2 Illustration of Pearl’s d-separation criterion. There are two trails from
a to b, drawn with thick lines. Both are blocked, but different vertices -y, indicated
with open circles, play the role of blocking vertices.

can find state spaces X,,a € V and a probability distribution P such that
Al B|S < AlpB]|S. (1.12)

This result was strengthened by Meek (1995), who showed that if the state
spaces were finite and had cardinality at least two, the set of probability
distributions P not satisfying (1.12) had Lebesgue measure zero in the set
of all directed Markov probability measures.

To complete this section we say that P obeys the local directed Markov
property (DL) if any variable is conditionally independent of its non-desc-
endants, given its parents:

a1l nd(a) | pa(a).

A seemingly weaker requirement, the ordered directed Markov property
(DO), replaces all non-descendants of « in the above condition by the
predecessors pr(a) of a in some given well-ordering of the nodes:

a 1L pr() | paa).

In contrast with the undirected case we have that all the four properties
(DF), (DL), (DG) and (DO) are equivalent just assuming existence of the
density f. This is stated formally as:

Theorem 1.11 Let D be a directed acyclic graph. For a probability distri-
bution P on X which has density with respect to a product measure i, the
following conditions are equivalent:

(DF) P admits a recursive factorization according to D;

(DG) P obeys the global directed Markov property, relative to D;
(DL) P obeys the local directed Markov property, relative to D;
(DO) P obeys the ordered directed Markov property, relative to D.
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Proof: That (DF) implies (DG) is Corollary 1.7. That (DG) implies (DL)
follows by observing that {a} Und(a) is an ancestral set and that pa(a)
obviously separates {a} from nd(a) \ pa(a) in (Diajund(a))™- It is trivial
that (DL) implies (DO), since pr(a) C nd(a). The final implication is
shown by induction on the number of vertices |V| of D. Let ag be the
last vertex of D. Then we can let k*° be the conditional density of X,,,
given Xy (4.}, Which by (DO) can be chosen to depend on Zp,(4,) only.
The marginal distribution of Xy (4, trivially obeys the ordered directed
Markov property and admits a factorization by the inductive assumption.
Combining this factorization with k%0 yields the factorization for P. This
completes the proof. a

Since the four conditions in Theorem 1.11 are equivalent, it makes sense
to speak of a directed Markov field as one where any of the conditions is
satisfied. The set of such distributions for a directed acyclic graph D is
denoted by M (D).

In the particular case when the directed acyclic graph D is perfect, i.e.
all parents are married, the directed Markov property on D and the fac-
torization property on its undirected version D™~ coincide.

Proposition 1.12 Let D be a perfect directed acyclic graph and D~ its
undirected version. Then P is directed Markov with respect to D if and
only if it factorizes according to D~ .

Proof: See Lauritzen (1996). ad

1.6 Causal Markov models

For simplicity we assume here and in the following that all random vari-
ables are discrete and have finite state spaces unless we specifically indicate
otherwise. To emphasize the discreteness we use little p as a generic symbol
for a probability mass function rather than f for a general density.

1.6.1 Conditioning by observation or intervention

The first important issue is to distinguish between different types of condi-
tioning operations, each of which modify a given probability distribution in
response to information obtained. Conditional probabilities are sometimes
defined and calculated as

PY =y, X =)

P(X =1z)
We refer to this type of conditioning as conditioning by observation or con-
ventional conditioning. In many cases this represents the way in which a

plylz) =P =y|X =1) =
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probability distribution, P(Y = y), should be modified when the infor-
mation X = x is revealed. Paradoxes appear when it is unclear how the
information about X is revealed (Shafer 1985, 1996), but that is a different
discussion.

When discussing causal issues it is important to realize that this is typ-
ically not the way the distribution of Y should be modified if we intervene
externally and force the value of X to be equal to z. We refer to this type of
modification as conditioning by intervention or conditioning by action. To
make the distinction clear we use different symbols for this conditioning,
as indicated below

pyllz) =P =y| X « z).
Generally, the two quantities will be different

p(yllz) # ply|z)

and the quantity on the left-hand side cannot be calculated from the proba-
bility measure P alone, without additional assumptions. To judge whether
these assumptions are reasonable in any given context one needs a speci-
fication of the precise way in which the intervention is made, just as con-
ventional conditioning needs a specification about how the information is
revealed.

In a moment we will give a precise meaning to a directed acyclic graph
being causal. This will imply that in the graph below to the left

*——0 *——=0
X Y X Y

we will have that p(y||z) = p(y|z) and p(z||y) = p(z), whereas these
relations are reversed in the graph to the right, i.e. there it holds that

pyllz) = p(y) and p(z ||y) = p(z|y).

1.6.2 Causal graphs

A directed acyclic graph D is said to be causal for a probability distribution
P with respect to a subset B C V, if P is Markov with respect to D, i.e.

p(l‘) = H p(xa | mpa(a))

acV
and it further holds for any A C B that

plz[|z})

[I »lealzpa)
aeV\A o
p(z)
= - : (1.13)
HaEA p(xa | mpa(a)) Ta=a
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Alternatively, one can think of the right-hand side of (1.13) as the mathe-
matical definition of the intervention probability on the left-hand side.

If B =V we simply say that D is causal or fully causal for P. We also
use the expression that P is a causal directed Markov field with respect
to D or say that P is causally Markov with respect to D. Note that the
causal Markov property thus gives a relation between different probability
measures, each representing the probability law associated with a specific
intervention.

We will refer to (1.13) as the intervention formula. It appeared in various
forms in Pearl (1993) and Spirtes et al. (1993). It is implicit in Robins (1986)
and in other literature.

There are many ways in which this causal interpretation of a directed
Markov model can be justified. But it is also important to realize that there
are many other ways in which one can associate causal relationships with
directed acyclic graphs. This is in particular apparent in the highly interest-
ing book of Shafer (1996) who develops a language for causal interpretation
of probabilities through event trees. This leads to events being more natural
as direct causes than variables. A variety of causal relationships between
variables can then be derived as consequences of the formalism.

In a more general setting one would be interested in allowing other types
of intervention than those described. For example, one could wish to con-
trol the value of a variable in a way that depends on previously observed
variables. But for simplicity we only consider the case of simple interven-
tions.

One should contrast the intervention formula (1.13) with conventional
conditioning using Bayes’ formula:

p(z) p(z)

plele) = p(x%) wa=a% - Ey:yA:xz p(y) ’ (1.14)

TA=TT

which differs from the intervention formula in the denominator, where the
product of conditional specifications is replaced by the marginal probabil-
ity p(z*). This implies in particular that if intervention takes place on a
single variable without parents, observation and intervention have identical
effects:

Corollary 1.13 Ifa € V has no parents, i.e. pa(a) = 0, then it holds that
p(z|lzy) = p(z|zy)-

We illustrate the similarities and differences by intervening on variable 5 in
Figure 1.3. If this graph is causal, we have that the intervention X5  zf
produces the distribution

p(x||25) = p(z)p(ez |21)p(es |21)p(2s | 22)p(6 | 23, 25)p(27 |24, 75, 26)
whereas the observation X5 = zf leads to

p(zlzy) o plzy)p(zz |z1)p(es |z1)p(zs | T2)
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2 4

3 6

Figure 1.3 Illustration of causal directed acyclic graph.

3 6 3 6

Figure 1.4 The intervention Xs < x5 in Fig. 1.3 produces a causal directed
Markov field with respect to the graph on the left. The observation Xs = x} pro-
duces o distribution which satisfies the chain graph Markov property with respect
to the graph to the right.

p(ws | w2, w3)p(2s | w3, 25)p(27 [ 24,25, 26).  (1.15)

The modified distribution P(-| X 4 < x%) is again a directed causal Markov
field over the subgraph Dy 4 induced by the remaining variables. The
corresponding conditional specifications are just modified such that

(Tl Tpay 4(a) l|2%) = p(za | Tpa(a)\A» x;a(a)ﬂA)'

Expressed in words, the causal assumption is that the conditional specifi-
cations are unchanged for variables which are not used for intervention. In
the example above, where we have intervened on variable 5, the only modi-
fications of the specifications involve children of the intervention variables,
i.e. variables 6 and 7, where we get

p(ze |23 || 25) = p(we | 3, 25), (27|24, 26 || 25) = p(w7 | 74,25, 76).

The corresponding subgraph is displayed as the graph to the left in Fig.
1.4. This is again to be contrasted with the effect of observation of variable
5, which creates a dependence structure determined by the chain graph
(Lauritzen 1996) to the right in the same figure. This is due to the factor
p(zk | x2, x3) creating a function depending on (z2,z3) in the factorization
(1.15). Note that, in general, the conditional independence structure in-
duced by conditioning by observation will not be in perfect correspondence
with a chain graph.
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It is important to realize that successive conditioning operations of the
same type commute whereas intervention and observation in general cannot
be interchanged. We therefore adopt the convention that all operations are
performed from the right to the left. Thus

pllylz)=P(X=2|Y +y,Z=2)

denotes the modified probability obtained by first observing Z = z and
subsequently intervening as Y < y, whereas

plx|zlly) =P(X =z|Z=2Y «y)

reflects that the intervention is performed before the observation. As an
example, consider the graph

*—0—0
X Y Z

Intervening with X < z* and then subsequently observing Y = y leads to

p(zlyll=") = p(z]y),
whereas additional assumptions are to be made to predict the effect of the
intervention X < z* after observation of Y = y. Such assumptions could
for example be that X, Y, and Z are functionally related in a structural
equation model, see Section 1.9. This assumption would lead to the equality

p(zllz* [y) = p(z |yl =) = p(z|y)
as then X and Z are functionally unrelated, once the value of y is known
or has been fixed.

Generally, to ensure unambiguous meaning of intervention conditioning
without introducing assumptions beyond those already made, intervention
at a node o must always be made before any variables corresponding to its
descendant nodes have been observed.

1.7 Assessment of treatment effects in sequential trials

The following example is adapted from Robins (1997) and is the simplest
example where traditional approaches to assessment of treatment effects
give incorrect results, whereas the methods described here coincide with
those developed by Robins (1986), known as G-computation, and give the
correct answer.

Consider a study made in a population of AIDS patients. Let us imag-
ine the population being so large that sampling error can be ignored for
practical purposes. The study involves 4 binary variables. In our nota-
tion, a is the label for an initial, randomized treatment, where X, = 1
denotes that the patient has been treated with AZT, and X, = 0 indi-
cates placebo. After a given period it is for each patient observed whether
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Figure 1.5 Graph displaying causal relationships between variables in a particular
sequential trial. The graph is only assumed causal with respect to interventions at
{a,b}. The missing arrow from a to b reflects that b is assigned by randomization.

the patient develops pneumonia, corresponding to the variable I, where
X; = 1 indicates that this is the case. We assume that all patients sur-
vive up to this point. Subsequently a secondary treatment with antibiotics
is contemplated, corresponding to the variable b. For ethical reasons, all
patients who have developed pneumonia are treated with antibiotics, i.e.
P(X, =1|X; =1) =1, whereas the treatment is randomized for the pa-
tients with X; = 0. Finally, after a given period it is registered whether a
given patient has survived up to that time, corresponding to the variable
s, where X; = 1 denotes that the patient has survived.

The question is now to assess the effect on survival of a combined treat-
ment with AZT and antibiotics of a new patient. In other words, we wish
to calculate

P(Xs=1|X,+ 1,Xp < 1) =p(1s]|| 14, 1p)-

This is done in the following way. The relevant graph is displayed in Fig-
ure 1.5, where missing arrows reflect the randomized allocation of treat-
ments. This graph is not fully causal as there may be unobserved variables
(confounders) that simultaneously affect [ and r. It is only assumed causal
with respect to interventions at {a, b}.

Note that not all effects are estimable as there are no observations with
X; = 1 and X, = 0. For example, the effect of treating with AZT only
cannot be assessed. We find

psllta, 1) = Y p(ls,zr|[1a, 1s)
T

Zp(ls |21 || 1a, 1o)p(1 | 1as 1s)

z;
= Zp(ls|xlala71b)p(ml |1a)
Ty
As pointed out by Robins, conventional wisdom gives ambiguous or in-

correct answers: The variable [ is affected by the treatment and one should
therefore not adjust for it but simply use the estimate of the conditional
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probability
p(ls || la: lb) ~ ﬁ(ls | laa lb)-
On the other hand, the covariate [ is also a confounder for the effect of

the treatment on survival. Thus adjustment for [ is needed and one should
rather use

P(Ls |1 10, 1) ~ Y P(Le| 21, Lo, L)1)
z

Both answers disagree with the correct calculation as given above.

The calculation is a special case of more general situations described
by Robins, where randomized treatment allocations and intermediate re-
sponses alternate as ty,r1,t2,72,...,t, 7. and where, for example, the ef-
fect of a combined treatment, fixing ¢i,..., ¢, on the final response ry is
desired. This is then found by G-computation, involving two steps:

1. modifying the joint distribution of all variables (corresponding to a com-
plete DAG in many cases) by the intervention formula (1.13);

2. calculating the marginal distribution of X, by a recursive forward com-
putation, possibly using Monte Carlo methods.

We refrain here from describing the more general situation where the sug-
gested treatment regime is allowed to depend on previous treatments and
recordings, but emphasize that this does not create essentially new prob-
lems.

1.8 Identifiability of causal effects

This section will be concerned with the problem of identifying the effects
of interventions from partial observation of a causal system, expressed in
the form of a causal directed Markov field. It is largely based on ideas in
Pearl (1993) and Pearl (1995a).

1.8.1 The general problem

Consider as usual a finite set of variables V', one of which is labelled ¢
and designated the treatment variable, and another group of variables are
considered to be the response, labelled R. We also assume that there is a
directed acyclic graph D such that the joint distribution of all the variables
V' is causally Markov with respect to D.

The object of interest is the causal effect of t on the group of response
variables R, represented by the intervention distribution

P(Xp=ar|Xi - z;) = plar| ;).

The remaining variables are partitioned into C C V and U C V, where C
is a set of observed covariates whereas the variables in U are to remain un-
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observed. In principle one could discuss multiple treatments and responses,
but this will not be done here.

Thus from an experimental or observational study we obtain information
about the joint distribution of the observed variables, ¢, R and C'. Ignoring
sampling error, can the causal effect of ¢ on R be determined from this
information? Or, phrased in another way, which variables C' are needed in
order to determine this effect? If the causal effect can be determined from
the observed distribution, then how can it be calculated, i.e. is there an
analogue of the G-computation that gives the correct answer? If the causal
effects cannot be precisely determined, can we at least give inequalities that
these numbers must satisfy?

To make the discussion precise, we say that C identifies the causal effect
of t on R if for any pair Py, P, of distributions that are causally Markov
with respect to D it holds that

(2, v, oR) = p2(2e, xc,xRr) = pi(zr||2e) = p2(zR || 21).

The most basic question above can now be phrased as determining whether
a given set covariates C identifies the causal effect of ¢ on r. Clearly, if
C'" D C and C identifies the effect of ¢ on r, so does C’, so we are interested
in minimal sets of identifying covariates.

Generally C will not identify causal effects unless the conditional dis-
tributions are identified by the joint distribution. Thus, throughout this
section we will assume that

p(x,xc) >0 for all combinations of x¢ and x¢, (1.16)

unless we explicitely state otherwise.

1.8.2 Intervention graphs

When the effect of potential intervention are to be discussed, it is con-
venient to represent these explicitly in the associated graph of the model
considered. As also done in Pearl (1993) and Spirtes et al. (1993), this is
done through an intervention graph D', which is formed by augmenting
each node representing a variable where intervention is contemplated, with
an additional parent.

We denote this additional parent of a vertex a by «'. The corresponding
random variable X, is, when no ambiguity results, just denoted by Fj,.
The variable F,, has state space X, U{¢} and the conditional distributions
of X, given its parents in the intervention graph are given by

p,(l‘a |xpa(a): fa) = { p(za |xpa(a)) if fo =0 (1.17)

633&7‘@: if fa - m;,
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where d,, is Kronecker’s symbol

5o = 1 ifx=y
W1 0 otherwise.

A more general setup would let f, vary in the set of all (randomized)
decision policies, but here we only consider the simpler case.

This approach to the representation of causal effects is related to so-called
influence diagrams (Howard and Matheson 1984, Shachter 1986, Smith
1989, Oliver and Smith 1990) and taking this connection to its consequence
gives yet an alternative basis for causal interpretation of graphical models
(Heckerman and Shachter 1995).

Each of the variables F,,,a € A, where A is the set of variables for which
intervention is contemplated, can be given an arbitrary distribution with
positive probability of all states. We then clearly have

p(x) =p'(x|Fy = ¢,a € A),
but it also holds for any subset B C A that

p(zl|lzp) = P(X =2|Xp ¢ 2p)
= P'(z|F,=2},0a€ B,F,=¢,a€ B\ A), (1.18)

since it follows from Corollary 1.13 that

P (X =z|Fy+ a0 € B,F, + ¢,a € B\ A) =
P(X=2|Fa=a%a€B,F,=¢acB\A)

because the variables o' do not have parents. The importance of the relation
(1.18) is that it gives a simple connection between intervention conditioning
in the original graph and conventional conditioning in the intervention
graph.

1.8.8 Three inference rules

The operations needed to find groups of identifying covariates typically in-
volve a sequence of operations that gradually transform expressions involv-
ing intervention probabilities to expressions involving ordinary conditional
probabilities, the latter being in principle accessible by empirical observa-
tion.

We are considering the simple case, where intervention at a node ¢ is con-
templated, its effect on a group of variables R is studied, in a context where
X 4 is observed to be x4. We let Lp/ denote d-separation in the interven-
tion graph D’ obtained by augmenting D with an intervention variable ' as
an additional parent of ¢, and possibly other intervention variables, if also
other interventions are contemplated, as described above. We then have
the following three inference rules:
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Neutral observation of X;:
Rlpt|lA = p(r,|za,2:) =p(Tr|TA) (1.19)
Neutral intervention at ¢:
Rlipt'|A = p(a,|zalloe) = pler|2za) (1.20)
Equivalence of observation and intervention at ¢:
Rip t'|{At} = plar|zal|z) =plzr|Ta,Tt). (1.21)

Each of these can be derived from the directed Markov property of P and
P’ combined with the fact that intervention probabilites can be obtained
by appropriate observation conditioning in the intervention graph.

For example, to derive (1.19) we observe that R Lp/ ¢ | Aimplies R Lpt | A.
This holds because all trails from ¢ to R in D are also trails in D' and if
one is blocked by A in D', it is also blocked by A in D. Therefore the global
directed Markov property for D entails that

Rlpt|A = R1t|A,

whereby (1.19) follows.

The relations (1.20) and (1.21) follow directly from the fact that inter-
vention conditioning at ¢ in D is equivalent to observation conditioning at
t" in D'. These rules are also direct consequences of Theorem 7.1 of Spirtes
et al. (1993)

Although Pearl (1995a) formulates these inference rules somewhat dif-
ferently, he conjectures that the three inference rules are complete, in the
sense that a set of covariates is identifying for the effect of ¢ on R if and
only if all terms involving intervention conditioning in the expression for
the intervention distribution can be changed to terms involving observa-
tional conditioning by successive application of these three rules. We shall
see examples of this in the next subsection, where a number of classical
concepts from epidemiology will be illustrated.

1.8.4 The back-door formulae

One of the classic conditions for a set of covariates to be identifying is cap-
tured in the theorem below, known as the back-door theorem and formula.

As earlier we contemplate the effect of ¢ on a group of variables R and
plan to observe these together with a set of covariates C, whereas the re-
maining variables in the system are unobserved. Also, as above, D' denotes
the intervention graph obtained from D by augmenting with an interven-
tion variable ¢’ as an additional parent of ¢t and Lp denotes d-separation
in D'

We then have the following theorem, which can also be derived directly
from Theorem 7.1 of Spirtes et al. (1993):
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Theorem 1.14 (Back-door) Assume C D Cy, where Cy satisfies

(BD1) The covariates in Co are unaffected by an intervention: Co Lp: t';

(BD2) An intervention only affects the response through the treatment it-
self, as modified by the observed covariates: R Lpt'|Co U {t}.

Then C identifies the effect of the treatment t on R as

perlz) =D pler|zo,, 2)p(rc,)- (1.22)

(el

Proof: The proof is a simple application of the inference rules. If we
partition according to X¢, and then apply first (1.21) for A = Cp and then
(1.20) for R = Cy and A = ), we get

plerllef) = Y pler|ec, | #])plec, || 27)

:L‘CO

= ZP(ZUR | .TCO,CU;)p(.TCO || .7::)

TCo

= 3 porlzen,al)plac,).

:L‘CO

O

Condition (BD1) might as well have been formulated by demanding that
none of the covariates in Cy are descendants of ¢. This is a condition which
can then be checked in D rather than D'.

Note that the positivity assumption (1.16) is important for the joint
distribution to identify p(z g | z¢,, z7) for all combinations of its arguments.

In the formulation given, the name ‘back-door theorem’ is not obvious.
The lemma below clarifies the reason for the name. A back-door trail from
tto R in D is a trail from ¢ to R that does not involve an arrow emanating
from t, i.e. leaves t through the ‘back door’. Similarly, we let a front-door
trail from ¢ to R be a trail that begins with an arrow emanating from ¢.

Lemma 1.15 If no covariates in Cy are descendants of t, r Lp/ t' | CoU{t}
if and only if all back-door trails from t to R are blocked by Cy in D.

Proof: Assume r Lp/ t'|CoU{t}. Each trail from ¢' to R in D’ corresponds
uniquely to a trail from ¢ to R in D. Since the descendants of ¢ are identical
in D and D* and none of these are in Cy, t is blocking all trails from ¢’ to
R in D that correspond to front-door trails and it is not blocking any trails
corresponding to back-door trails. Consequently, these are be blocked by
Co Ut in D' if and only if they are blocked by Cy in D. |

The condition in Lemma 1.15 is also phrased in terms of the original graph
D rather than the intervention graph.
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James Robins (personal communication) gives the following heuristic ar-
gument for the criterion: The treatment effect can be identified if, condi-
tionally on Cj, there is no association beyond causation. Removing arrows
out of ¢ eliminates causation. One must thus demand that no conditional
association remains after these arrows have been removed.

The formula (1.22) is the classical formula which adjusts for covariates
that are not affected by the treatment.

Theorem 1.14 has a slightly more general version, extended by a recursive
argument.

Theorem 1.16 (Extended back-door) Assume C' D Cy, where Cy sat-

isfies

(EBD1) The effect of the treatment t on the covariates in Co is identified
by C;

(BD2) An intervention only affects the response through the treatment it-
self, modified by the observed covariates: R Lp/t' | Cy U {t}.

Then C identifies the effect of the treatment t on R as

plerlla)) =) pler| ey, o))p(ec, || 7). (1.23)

(el

Proof: This is shown exactly as for Theorem 1.14, just omitting the last
step in the calculation. O

Confounding

The first situation to be considered in the light of the back-door theorem is
the classical case of a confounder, which in the current context is defined to
be an unobserved quantity that simultaneously affects the treatment and
the response. Thus, in a causal graph, a confounder is a common ancestor
to the treatment and response. The literature in epidemiology contains a
wealth of more or less precise definitions of the term.

This situation is illustrated in Figure 1.6, displaying the corresponding
intervention graph and its associated moral graph. The conditional distri-
bution of X, after intervention at ¢ cannot be determined from the joint
distribution of (X¢, X,.).

Randomization

The next example illustrates how randomization overcomes the identifica-
tion problem caused by the confounder. Instead of just observing (X;, X,.),
the treatment X; is now allocated by a known random mechanism, possibly
depending on an observed covariate X, leading to the diagram described
in Figure 1.7. The randomization ensures that there is no arrow pointing
from w to t, i.e. the treatment X; is conditionally independent of X, given
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u u
t t r t t r

Figure 1.6 Intervention graph and associated moral graph for experiment with an
unobserved confounder. There is a path in the moral graph from t' to r circum-
venting t so the back-door criterion is violated and the effect of t on r cannot be
identified from observations of t and r.

c U c U
¢ ¢ r t ¢ T
Figure 1.7 Intervention graph and associated moral graph for experiment with

randomized treatment allocation. The moral graph reveals that r Lpit' | {c,t} so
the back-door criterion is satisfied and the treatment effect can be assessed.

the covariates X.. To see that (BD1) of Theorem 1.14 is satisfied, we form
the ancestral set in D' generated by {c,t'}. This is equal to {c, ', u} and the
associated moral graph has only one edge between ¢ and w. Thus ¢ Lp t'.
The ancestral set generated by {c,t,t',r} is equal to the full set of variables,
and the associated moral graph is also displayed in Figure 1.7. Clearly r is
separated from t' by {c,t} in this graph, so (BD2) is satisfied. Note that if
u had been allowed to have an influence on the treatment allocation, the
corresponding arrow from u to ¢ in the graph to the left would have induced
an edge in the moral graph between ¢’ and u, who were common parents
of ¢, thus violating (BD2) and confounding the relation between ¢ and r.

Sufficient covariate

The next situation to be considered is an observational study where we
have no control over the treatment allocation mechanism, but we are able
to find a sufficient set of covariates, i.e. a set of covariates which is so in-
formative about the response mechanism that the response is conditionally
independent of the unobserved variable given the treatment and the covari-
ates. The corresponding intervention graph and associated moral graph is
displayed in Figure 1.8.
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u c u c
[ I I [ I I
t t r t t r

Figure 1.8 Intervention graph and associated moral graph for an observational
study with a sufficient covariate. The moral graph reveals that r Lpit' | {c,t} so
the back-door criterion is satisfied and the treatment effect can be assessed.

t [ t u
@ L M @ & } I
! a t r a a t r

a

Figure 1.9 Intervention graph and associated moral graph for a study with par-
tial compliance. The moral graph reveals that r Lpra' | {a,t} so the effect of the
treatment assignment is identified. However, r is not separated from t' byt so the
effect of the treatment itself cannot be assessed.

The ancestral set generated by ¢ and t' is equal to {c,t',u} and the
associated moral graph has only one edge between ¢ and v and thus ¢ Lp: .
The ancestral set generated by {c,t,t',r} is equal to the full set of variables,
and the associated moral graph is displayed in Figure 1.8. Clearly r is
separated from t' by {e¢, ¢} in this graph, so (BD2) is satisfied.

Partial compliance

The next example describes a study in which treatments are assigned com-
pletely at random to individuals, but not all individuals are complying with
the assignments so that some receive a treatment different from the one as-
signed. The situation is displayed in Figure 1.9, where a is labelling the
assignment and ¢ the actual treatment received. The response, treatment
assigned, and treatment received are all observed. From inspection of the
moral graph it clearly follows that r Lpra’| {a,t} so the effect of the treat-
ment assigned is identified via the back-door formula. The corresponding
assessment is commonly referred to as “analysis by intention-to-treat”.

However, r is not separated from ¢’ by t so the effect of the treatment
itself is not identifiable from these observations. We shall later see how to
derive bounds for the effects in this particular case.
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Figure 1.10 Intervention graph associated with a situation where Theorem 1.17
applies. The covariate c is capturing the way in which t is affecting r, possibly
modified by the unobserved variable u.

1.8.5 The front-door formula

Theorem 1.17 below describes yet another situation where the causal effect
of a treatment can be identified. Here the observed covariates are to be
considered as the active agent determining the response. A basic example
to have in mind could be the effect of smoking on lung cancer, the active
agent being the tar content in the lungs. There could be an unobserved,
say genetic, feature that influenced both the response and the tendency
to smoke. The corresponding diagram is displayed in Figure 1.10 and the
conditions in the Theorem 1.17 reflect conditional independence relations
following from the directed Markov property of this diagram.

Theorem 1.17 (Front-door formula) Assume that C D Cy, and there
is a subset D C V' \ (Co U RU {t}) such that

(FD1) The variables in D are unaffected by an intervention: D Lp: t';

(FD2) An intervention only affects the covariate through the treatment it-
self, independently of the variables in D: Co Lp (D U{t'}) | t;

(FD3) An intervention only affects the response through the covariate, as
modified by the variables in D: R Lp/t'|Cy U D.

Then C identifies the effect of the treatment t on R as
plar ;) =Y plec |2) Y pler|zcy, z)p(zt). (1.24)
Tcy Tt

Proof: We assume without loss of generality that C = Cy and D = U.
Then we have

Y plerlze,eu |la)p@c, 2 || #7)

Tc,Tu
> plar|zc,zv)p(zc |zv || «)p(a || ),
Tc,Tu

where we have used (FD3) together with (1.20) to deduce that the inter-
vention in the first term of the product is neutral.

p(zr || z7)
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Next, (FD2) combined with the semi-graphoid properties (C3’) and (C2’)
(which are satisfied by the relation Lp by Lemma 1.10) yields

CLlpt'|(UU{t}) and C Lp U |t.

Thus (1.21) yields that intervention in the second term may be substi-
tuted with ordinary conditioning, and (1.19) that conditioning with zy
then can be ignored.

Further, (FD1) with (1.20) gives that the third term in the product is
independent of z} so that we have

p(zrllzi) = Y pler|ev,zo)p(zc |2})p(av).
ey ,ec
If we now rewrite p(xy ) by partioning according to x; and note that (FD3)
with (1.19) allows further conditioning on z; in the first term, we get

p(zr|lzf) = Z p(zr |z, zc, z)p(zc | z7)p(zu | 2 )p(w:)

TU,Tc,Tt

= Y placl|zp) Y plar|ve,z)pa:)

and the proof is complete. a

Both the formula and its name are due to Pearl (1995a), where it is given
as part of Theorem 2. Pearl’s front-door conditions are formulated rather
differently and it is not obvious that they are equivalent to those given here,
but we believe them to be. In Pearl’s formulation (and our terminology),
the conditions are:

(FD1’) All directed paths from ¢ to R intersect Co;
(FD2’) All trails from t to Cp in D contain an arrow out of t;
(FD3’) All back-door trails from Cj to R are blocked by ¢ in D.

The justification for the name is not so obvious, neither in Pearl’s for-
mulation nor in the formulation given here. Although it is true that (FD1)
and (FD3) together reflect that Cy blocks front-door paths from ¢ to R,
(FD2) rather reflects that back-door paths from ¢ to Cy are blocked.

Again we note the importance of the positivity assumption (1.16). With-
out this, we could always take ¢ = t and satisfy all conditions in Theo-
rem 1.17. However, then the necessary conditional distributions would not
be identified by the marginal distributions.

1.8.6 Additional examples

We conclude the section on identifiability of treatment effects by discussing
a number of additional examples, illustrating the potential use of the front-
and back-door formulae.
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Figure 1.11 Intervention graph associated with an ezample where both of the
front-door and back-door formulae apply when | and ¢ are observed.

Example 1.18 Consider the example with intervention graph displayed
in Figure 1.11. In the case where ¢ and ! are observed together with the
treatment ¢ and the response r, the back-door formula applies with ¢ as the
covariate and the front-door formula with [ as the covariate. The extended
back-door theorem applies with both covariates observed. Thus it holds
that

p(zr || z7)

Zp(l'r | ze, 2} )p(xC)
= Zp(l‘l | 1‘:) Zp(ﬂ?r | xy, l't)p(l’t)

Z p(@r |z, ze)p(ze)p(a | o7)-

Te,T1

However, although the treatment effect can be identified in all three obser-
vational situations, it is not true that the corresponding maximum likeli-
hood estimates are equally efficient in the case where these are estimated
from data. There is clearly loss of information associated with not observing
all four variables.

To illustrate this, assume that all variables are discrete and a poten-
tial sample of n independent and identically distributed cases with counts
n(xy, x,, x;, T.) are observed, and contrast this with the corresponding in-
complete samples only giving n(z, ., x.) or n(xy, Ty, 7).

In the first situation, the maximum likelihood estimate in the model
which is only restricted by satisfying the directed Markov property on the
graph is equal to

n(ze)n(ze, e )n(ze, )n(c,, , z.)

p(mt7m7‘7xlaxc) = nn(.’fc)n(fft)n(l'l,l'c)

n(xta xc)n(mta ml)n(w’l"a Ty, wc)

)

nn(x)n(z;, z.)

as each of the conditional probabilities of a variable given its parents is
estimated by the corresponding observed relative frequencies (Lauritzen
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1996, Theorem 4.36). Using the extended back-door formula, i.e. the last
relation above, we therefore get

Pl llzp) = > plar o, we)plae)pla | =)

TecHll

Z n(xr, x, o) n(we) n(xl,wf)-

n(xy, x.) n n(z})

Te,T

The similar expression in the back-door case, i.e. when only n(z,, z., x;) is
observed, becomes

plar || )

Zﬁ(xr | ZTe, x:)ﬁ(mc)
Tc

N wn(z
Zp(wr|$mxt) ( C)-
Te

n

Note that in this case it is not generally true that we have

R o _ (@, me, 7))
Ty |Te, ) = ————=
p( r | Cr Ut ) n(mC’ -’I:)tk)
because the model induces restrictions on this conditional probability. How-
ever, it is obvious that

o ||p) = 3 Mo te i) 220

n(ze, x}) n

Te

is still a reasonable estimate of the intervention probability. The latter
estimate is also the traditional estimate used, and it also applies in the
more general case, where the conditional independence ¢ 1L 1|t is violated.
Presumably this estimate will be less efficient if indeed the condition ¢ 1L 1 | ¢
were known to hold.

In the front-door case, when n(z,,z;, ;) is observed, we similarly have

plecllzy) = Y blarlef) Y pler |2, 0)ple)
a Tt

= 3 D) S ) ",

n(z})

X Tt

where again the maximum likelihood estimate of the second conditional
probability may not be equal to the corresponding relative frequency. How-
ever, it is obvious that a reasonable estimate of the treatment effect is equal
to

ploy||z)) = Z n(x, ry) Z n(zy, x, ) ”(iﬂt)

n(z}) n(xy, ) n

It would be interesting to compare the loss of efficiency by not observing ¢
vs. not observing /. a
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Figure 1.12 Intervention graph associated with Example 1.19 with its correspond-
ing moral graph.

~
o~
<

Figure 1.13 Graphical model erpressing that i is an instrumental variable. Note
the similarity with the situation of partial compliance described in Figure 1.9,
where the assignment variable a is an instrument.

Example 1.19 The next example is taken from Pearl (1995a) and is some-
what more complex. It is illustrated in Figure 1.12.

As the figure shows, [ suffices as a covariate for the front-door formula
in Theorem 1.17 to apply.

From the moral graph it is seen by direct inspection that observing b is
necessary but not sufficient to satisfy the back-door Theorem 1.14. It needs
to be supplemented with any non-empty subset of the variables a, u, v, and
d for its union with ¢ to separate t' from r in this graph.

If, for example b, d, and [ are observed together with ¢ and r, the extended
back-door formula (1.23) yields that the treatment effect is to be estimated
from complete data counts as

*
ﬁ(mrnmz) — Z n(mTawbaxdaml)n(xlawt)

p(zp, T4a),
n(zp, Tq, Tr)n(xF) ( )

Tb,T1,Td

where the latter probability ideally should be estimated by taking into ac-
count the relevant restrictions induced by the model, rather than using the
empirical relative frequencies directly. We leave it to the reader to consider
estimation of treatment effects under different observational schemes. O
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Figure 1.13 displays the situation in which the variable ¢ is an instru-
mental variable or instrument for assessing the effect of ¢ on r. This notion
is important in econometrics (Bowden and Turkington 1984, Angrist, Im-
bens and Rubin 1996). An instrumental variable is one which affects the
treatment, but is uncorrelated with unobserved factors. An instrumental
variable can be used to derive bounds for treatment effects as we shall show
in Section 1.10.1 below.

But here we show an inequality which provides a good example of the
restrictions that conditional independence constraints imply for marginal
distributions. More precisely, it holds for any discrete treatment variable
t that if the independence assumptions associated with the diagram in
Figure 1.13 hold, then

sup/ sup f(zp, ¢ | ;) pr(day) < 1, (1.25)

Tt T
where f is a generic symbol for the appropriate (conditional) density. This
instrumental inequality was apparently first derived by Pearl (1995b) and

we give the (quite simple) proof below.
The conditional independence restrictions imply that

f(xr;mt |mz) = / p(l't | mi;mu)f(xr | mt;mu) Pu(dmu)) (126)

where P, denotes the marginal distribution of X, and the remaining enti-
ties are appropriate densities. Since the treatment variable is discrete, we
have

p(ze | 2i,20) <1
and this must also hold for its supremum

h(l’t,l’u) = Supp(mt |£L’“£L’u) S 1.

T

Now we get from (1.26) that

Sup f(ze, 22 |25) = / W(ee, ) (e | 21, 22) Puldiy)

< / f(@r | 21, 2) Pulde,),

whereby

[ sup o i) ()

T

IN

/-r,, /zu f(x, |z, ) Pu(dzy) . (d,)

g

= / / f(@r |z, 2u) pr (dar) Py (dzy)
17

and (1.25) follows.
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The importance of the inequality (1.25) is that it makes the assumption
that 7 is an instrument falsifiable from observations of (X;, X¢, X,).

Note that the discreteness of the variable ¢ is used at a very critical point
in the proof of (1.25). At the time of writing it is not known whether the as-
sumption of i being an instrument is falsifiable in the general case. In other
words, given an arbitrary joint distribution @) of variables (X;, X;, X,.), does
there exist a random variable X,, and a distribution P of (X,, X;, X, X,)
which is Markov with respect to the graph in Figure 1.13 and has @ as
its marginal to (X;, Xz, X,-)? In the case where @) is multivariate Gaussian,
the answer to the last question is known to be positive, i.e. such a distri-
bution always exists and ‘instrumentality’ is therefore not falsifiable in the
Gaussian case.

1.9 Structural equation models

As mentioned in Section 1.6, the assumption that the intervention formula
(1.13) applies is an additional model assumption that does not follow from
the basic axioms of probability. There are different ways of justifying this
assumption and in any given context, subject matter knowledge must play
an essential role in this justification process.

A particular modelling formulation, leading to causal Markov models,
has documented its relevance in several areas of application. Structural
equation models (Bollen 1989) were invented in the context of genetics
(Wright 1921, 1923, 1934) , and exploited in economics (Haavelmo 1943,
Wold 1954) and social sciences (Goldberger 1972), see for example Pearl
(1998) and Spirtes, Richardson, Meek, Scheines and Glymour (1998) for
further discussion.

They were used as the main justification and motivation for studying
causal Markov models in Kiiveri, Speed and Carlin (1984) and Kiiveri and
Speed (1982), as well as in Pearl (1995a) and Pearl (2000).

Most commonly, structural equation models have been assumed linear
although there are important exceptions (Goldfeld and Quandt 1972). Here
we consider a general structural equation system associated with a directed
acyclic graph D. More precisely we consider a system of ‘equations’

Xy go(Xpa(w), Un)sv €V, (1.27)

where the assignments have to be carried out sequentially, in a well-ordering
of the directed acyclic graph D, so that at all times, when X, is about to be
assigned a value, all variables in pa(v) have already been assigned a value.

The variables U,,v € V are assumed to be independent. In the liter-
ature, correlation is generally allowed among the ‘disturbances’ U,. Also
non-recursive systems are often studied. Such systems do not correspond to
directed Markov models and they are not studied here. Conditional inde-
pendence properties for cyclic linear structural equation systems have been
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studied, for example, by Spirtes (1995), Richardson (1996), Spirtes et al.
(1998), and Koster (1996, 1999a, 1999b).

The term ‘structural equation system’ is really misplaced, and ‘structural
assignment system’ would have been much more appropriate. Much contro-
versy in the literature, in particular concerning calculation of intervention
effects, is due to treating the assignment systems as equation systems, ‘solv-
ing’ them and uncritically moving variables between the right-hand side and
the left-hand side of (1.27). In particular, this matters when interventions
are considered.

It is an important aspect of structural equation models that they also
specify the way in which intervention is to be carried out. As is implicit
in much literature and, for example, quite explicit in Strotz and Wold
(1960), the effect of the intervention X, < x on a variable with label a is
simply that the corresponding line in (1.27) is replaced with the assignment
described by the intervention. We refer to this process as intervention by
replacement. Clearly, the justification that this is a reasonable assumption
in any given context is no less difficult than the direct justification of the
causal Markov assumption, since the latter follows from (1.27), as stated
formally below.

Theorem 1.20 Let X = (X,),ev be determined by a structural equation
system corresponding to a given directed acyclic graph D and let P denote
its distribution. If intervention is carried out by replacement, then P is
causally Markov with respect to D.

Proof: Let the vertices of D be well-ordered as vy,...,v, so that the
assignments in (1.27) are carried out in the corresponding order. As the
variables U,, are assumed independent, we clearly have

Uvi AL (lev et 7XUi—1)
and thus, from (C2) and (C3)
U, 1L Xpr(v) | Xpa(v)-
Using (1.27) with (C2) gives

Xy 1L Xpr(v) | Xpa(v)a

i.e. the distribution of X satisfies the ordered directed Markov property
(DO). Theorem 1.11 now yields that P is directed Markov on D.

As intervention in a structural equation system is made by replacement,
it is clear that all conditional distributions except those involving interven-
tions are preserved. Hence the intervention formula (1.13) applies. a

Note that neither the functions g, nor the random discturbances U, are
uniquely determined from the distribution P, and not even if P is known
to be causally Markov. Thus assuming a specific structural equation model
(1.27) is generally stronger — in a way which is typically not empirically
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testable — than just assuming the causal Markov property, as captured in
(1.13).

Some authors seem to prefer to use a structural equation model as jus-
tification for the causal Markov property, rather than taking this property
as a primitive assumption that must stand usual scientific testing. In view
of the above, this may not be reasonable unless specific subject matter
knowledge naturally leads to such equations.

1.10 Potential responses and counterfactuals

As mentioned, any causal Markov model for a given DAG D can be repre-
sented by a structural equation system, although this can be done in many
different ways.

One type of representation deserves particular attention. Observe first
that in each of the equations in (1.27), the values of U, do not matter
beyond what they prescribe as values for g,, for each fixed value of pos-
sible parent configurations xp,(,). Taking this to its consequence, we can
introduce maps w,

Wy Xpa(v) — Xy.

Then each pair (gy,u,) in (1.27) determines a map w, as

Wy (xpa(v)) = Gv (mpa(v) ) uv)

and, conversely, for each set of maps w,, we can define g, as

Ju (xpa(v) ) wv) = Wy (mpa(v))-

Denoting a random map by €2,, we can thus define a structural equation
system by
Xy gv(Xpa(v)v Qv);v ev,

and such a system is said to have canonical form. The random variables
Oy (Tpa(v)) describes the potential response, i.e. the value of X, that would
have been observed, had the parent configuration been equal to (). In
this sense, the sets of random variables

{Qv(mpa(v)) * Tpa(v) € Xpa(v)}

are counterfactual. The variables Q,, were called mapping variables by Heck-
erman and Shachter (1995).

This approach to causal inference was for example used by Neyman
(1923), Rubin (1974, 1978), and Holland (1986), and it plays a funda-
mental rdle in the methods developed by Robins (1996, 1997), although it
is usually introduced in a slightly different context. Counterfactual objects
have at all times been at the basis for causal reasoning (Lewis 1973).

Note that in the formulation given above, the variables 2, are no more
and no less counterfactual than the w used when a random variable X is
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considered to be a deterministic function X (w) of a random element w. This
has proved useful in many contexts, although it has also lead to paradoxes,
when consequences have been taken too far.

Dawid (2000) argues strongly against the use of counterfactual random
variables as for any given individual it is impossible to observe more than
one of the variables Q,(2pa(v)); the counterfactual variables are comple-
mentary. Thus it is dangerous to make assumptions concerning the joint
distribution of {Qy(Tpa(v)) * Tpa(w) € Xr,.(,, ), as such distributions are
purely metaphysical. And, as it seems that all interesting results concern-
ing causal inference can be derived without counterfactuals, the pitfalls
associated with their use can be avoided.

1.10.1 Partial compliance revisited

In this section we show how to use counterfactual variables to get bounds
for treatment effects in the case of partial compliance, corresponding to
the situation displayed in Figure 1.9. Although as mentioned, the bound
can be derived without using conterfactual random variables, they seem to
yield a simple method for deriving these bounds in the present example.

With the same notation as earlier, we are interested in the intervention
probabilities

parl|zi) = [ plor ) Puldn,) (1.28)
Ty

However, only joint observations of a, t, and r are possible. Assuming that
we have an infinite sample, we can observe all combinations of

(T, x| T0) = / p(@y |z, ) (2t | To), o) Pu(day,). (1.29)
Ty

As neither of the back-door or front-door criterions apply, the treatment
effect appears not to be identifiable, but it is possible to derive bounds for
the intervention probabilities in (1.28) subject to the ‘constraints’ given in
(1.29).

For simplicity we assume that all observed values are binary taking the
values 0 or 1. In this case there are a total of six independent constraints,
three for each group of treatment assignment.

Bounds for the probabilities involved can be derived in many ways. For
example, the bounds (1.25) derived for instrumental variables apply to the
observed frequencies here since a is indeed an instrument. Thus this part of
the assumptions can and should be checked with observed data. Bounds for
treatment effects were also derived by Robins (1989) and Manski (1990).
However, it is not always easy to check that the bounds derived are sharp
and indeed Balke and Pearl (1994, 1997) derive sharper bounds and show
that the bounds cannot be improved. Their argument is based upon the
use of counterfactual variables and we shall sketch their argument below.
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It may be illuminating to phrase the arguments in terms of the example
also considered by Imbens and Rubin (1997) and Balke and Pearl (1997).
The example considered is thus the study of the effects on child mortality of
vitamin A supplementation in Sumatra, as described by Sommer, Tarwotjo,
Djunaedi, West, Leodin, Tilden and Mele (1986) and Sommer and Zeger
(1991).

Also here the first part of the argument is that it is not the value or
nature of X, that matters, but only the way in which it affects the two
responses ¢ and r. Thus — as was also done by Imbens and Rubin (1997)
— we can without loss of generality assume that the unobserved variable
is the pair of potential responses w = (w¢,w,), where wi(x,) denotes the
treatment taken by an individual with assigned treatment z,, and w,(x¢)
indicates the response of an individual with treatment x;.

Each of the potential response variables varies in a space of four elements,
so the unobserved variable w has a total of 16 possible values. The four
values of the first variable w; may well be called

{always taker, never taker, complier, defier},

so that we have always taker (z,) = 1, where 1 denotes that vitamin A is
taken, complier (z,) = x, etc. Similarly the four values of w; may be called

{always cured, never cured, beneficial, damaging}.

In these terms we can rewrite the equations (1.28) and (1.29) as
plar |[27) =D p(a, |z, w)p(w). (1.30)
w

and
p(mr;mt |xa) = Zp(xr | mtaw)p(l't | mmw)p(w)' (131)

The difference between these and those above are that the conditional prob-
abilities in (1.30) and (1.31) are known and equal to one or zero. Thus the
problem of finding bounds can be solved by linear programming methods
that also identify the best possible bounds. If we let p;jr = p(ir, ji | ko)
and ¢;; = p(ir || ja), the bounds were found to be

P1o.1 1 = poo.1

Po1.0 < 1 — poo.o
P10.0 + P11.0 — Poo.1 — Pi1.1 Po1.0 + P1o.0 + Pro.1 + P11
Po1.0 + P10.0 — Poo.1 — Po1.1 P1o.0 +Pi1.0 + Poi.1 + Pio.1

and the remaining bounds are obtained by suitable index substitution.
The bounds turn out to be quite wide in the example mentioned and thus
the analysis is inconclusive in this case. Imbens and Rubin (1997), make a
full Bayesian analysis of the model, by imposing prior assumptions on the
distribution of the potential responses, and thereby obtains the conclusion
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that the effect of vitamin A is beneficial on average. However, such prior
assumptions are untestable and may therefore be questionable. See also
Chickering and Pearl (1999) for a further discussion of this example.

As demonstrated in Balke and Pearl (1997), the bounds are sometimes
tight and sharp conclusions therefore available. This holds for example for
data concerning lipids and coronary heart disease analysed by Efron and
Feldman (1991).

1.11 Other issues
1.11.1 Eaxtension to chain graphs

The intervention calculus can be extended to more general graphical models
than those given by directed acyclic graphs. Chain graph models are given
by graphs that have both directed and undirected links, but no cycles that
can be traversed only in one direction without going against the arrows.
The chain components T of such graphs are undirected graphs that are
obtained by removing all directed arrows from a chain graph. They nat-
urally unify directed acyclic graphs and undirected graphs in that undi-
rected graphs are chain graphs with only one chain component, and di-
rected acyclic graphs are chain graphs with all chain components being
singletons. There is a corresponding set of Markov properties associated
with chain graphs (Frydenberg 1990a, Lauritzen 1996). In terms of factor-
ization, the chain graph Markov property manifests itself through an outer

factorization
= H f(l"r |xpa('r)) ) (132)
TET
where each factor further factorizes according to the graph G*(7) as
f(m‘l' |mpa(r)) xpa('r H QSA mA (133)

A€A(T)
where A(7) are the complete sets in G*(7) and
Z (mpa T) Z H ¢A Z’A
zr A€A(T)

The graph G*(7) is obtained from G, pa(-) by dropping directions on edges
and adding edges between any pair of members of pa(r).

If the intervention X, < z} is made, the corresponding intervention
formula can be argued to be

. p(z)
plz||z;) = 1.34
) = S Towmtrn) (134

Ta=T}

where 7, is the chain component including «. This formula specializes to
(1.13) in the fully directed case and (1.14) in the undirected case. This
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intervention formula corresponds to the analogy with decision networks
based on chain graphs as discussed in Cowell et al. (1999). Lauritzen and
Richardson (2000) are investigating dynamic regimes that lead to such an
intervention calculus and their potential use as an alternative interpretation
of simultaneous equation systems.

1.11.2 Causal discovery

Another and more controversial aspect of causal inference from graphical
models is associated with identifying causal relationships from data. Ever
since the appearance of Glymour, Scheines, Spirtes and Kelly (1987) and
the first version of the corresponding program TETRAD, this has been the
subject of sometimes quite heated discussions (Freedman 1997, Humphreys
and Freedman 1996, Robins and Wasserman 1999, Glymour, Spirtes and
Richardson 1999, Humphreys and Freedman 2000).

Basically there have been two different types of approach. The constraint-
based approach (Spirtes et al. 1993) is generally conceived to take place
in an ideal environment where the joint distribution P of a system X of
random variables is known completely without error, whereas the causal
graph D which has generated the distribution is unknown.

Apart from the assumption that such a causal directed acyclic graph D
exists, it is also assumed that P is faithful to D, in other words there are no
conditional independence relationships between the variables that do not
follow from the directed Markov property:

Al B|S = AlpB|S.

As previously mentioned, results of Meek (1995) indicate that most distri-
butions are indeed faithful.

On the assumption above, Spirtes et al. (1993) provide several algorithms
that from a relatively modest number of tests identifies the causal graph
up to Markov equivalence, i.e. produce a graph D' with the property that
for all disjoint subsets A, B, and S of V

Alp B|S <= AlpB|S < Al B|S.

They also give variants of these algorithms that do not assume the entire
system of variables to be observed. These results are supplemented with
conditions for identifiability of causal effects and give methods for identi-
fying causal effects that remain invariant over such an equivalence class.

Richardson and Spirtes (1999) extend the approach to situations involv-
ing feedback.

Little has been done to explore the statistical properties of these and
similar methods applied to cases where knowledge about the distribution
of X is only obtained through finite samples. Although Spirtes et al. (1993)
contains a small simulation study, this area deserves to be better explored.
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Another line of this research is based on a pure Bayesian approach to
learning the structure of a Bayesian network, as initiated by Cooper and
Herskovits (1992) and Heckerman, Geiger and Chickering (1995). This ap-
proach has been further pursued by Heckerman, Meek and Cooper (1999).

See Cooper (1999) for an overview of the current state of the art within
this area.
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