
CHAPTER �

Causal Inference
from

Graphical Models

Ste�en L� Lauritzen
Aalborg University

February ��� ����

��� Introduction

The introduction of Bayesian networks �Pearl ��	
b� and associated local
computation algorithms �Lauritzen and Spiegelhalter ��		� Shenoy and
Shafer ����� Jensen� Lauritzen and Olesen ����� has initiated a renewed
interest for understanding causal concepts in connection with modelling
complex stochastic systems�

It has become clear that graphical models� in particular those based upon
directed acyclic graphs� have natural causal interpretations and thus form a
base for a language in which causal concepts can be discussed and analysed
in precise terms�

As a consequence there has been an explosion of writings� not primarily
within mainstream statistical literature� concerned with the exploitation of
this language to clarify and extend causal concepts� Among these we men�
tion in particular books by Spirtes� Glymour and Scheines ������ Shafer
����
�� and Pearl ������ as well as the collection of papers in Glymour and
Cooper �������

Very brie�y� but fundamentally� the important distinction to be made is
the distinction between two types of conditional probability� We refer to
these as conditioning by intervention and conditioning by observation and
suggest the notation

p�x jj y� � P �X � x jY � y�� p�x j y� � P �X � x jY � y�

for these two notions� Other authors have used expressions such as do�y��
Y � �y� and set�Y � y� to denote intervention conditioning�
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Much existing controversy and lack of clarity is due to the misconception
that these two are identical or even related in a simple fashion although
the distinction has also been made both properly� clearly� and explicitly in
better expositions of regression� see for example Box ���

� or Section �
of Cox ���	���

In the following� we try to develop the basic ideas needed to make this
distinction precise and discuss a number of classical statistical problems
where the distinction is important�

There are many important aspects and views of causality and causal
inference which are not even touched upon here� as we are only concerned
with one particular such aspect� the prediction of the e�ect of interventions
in a given system�

The material is organized as follows� Section ��� introduces the necessary
graph�terminology� The next three sections are concerned with the very
basic elements of graphical models� conditional independence and Markov
properties for undirected and directed graphs�

Section ��
 introduces the notion of a causal Markov �eld and associ�
ated intervention probabilities� The next sections are concerned with the
exploitation of this idea in a number of important cases�

We conclude by discussing structural equation models and methods based
upon using counterfactual variables or potential responses� and �nally give
a brief discussion of other issues which are not treated per se here�

While writing� I have in particular exploited Pearl �����a� and Robins
�������

��� Graph terminology

This section introduces some necessary graph terminology� We are basically
following the terminology used in Cowell� Dawid� Lauritzen and Spiegel�
halter ������ which is almost identical to that in Lauritzen ����
��

We de�ne a graph G to be a pair G � �V�E�� where V is a �nite set
of vertices� also called nodes� of G� and E is a subset of the set V � V of
ordered pairs of vertices� called the edges or links of G� Thus� as E is a set�
the graph G has no multiple edges� We further require that E consist of
pairs of distinct vertices� so that there are no loops�

If both ordered pairs ��� �� and ��� �� belong to E� we say that we have
an undirected edge between � and �� and write � � �� we also say that �
and � are neighbours� � is a neighbour of �� or � is a neighbour of �� The
set of neighbours of a vertex � is denoted by ne����

If ��� �� � E but ��� �� �� E we call the edge directed� and write �� ��
We also say that � is a parent of �� and that � is a child of �� The set
of parents of a vertex � is denoted by pa���� and the set of children of a
vertex � by ch���� The family of �� denoted fa���� is fa��� � f�g � pa����
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If ��� �� � E or ��� �� � E we say that � and � are joined� Then � �� �
indicates that � and � are not joined� i�e� both ��� �� �� E and ��� �� �� E�
We also write � �� � if ��� �� �� E�
If A � V � the expressions pa�A�� ne�A� and ch�A� will denote the col�

lection of parents� children and neighbours� respectively� of the elements of
A� but excluding any element in A�

pa�A� �
S
��A pa��� nA�

ne�A� �
S
��A ne��� nA�

ch�A� �
S
��A ch��� nA�

If all the edges of a graph are directed� we say that it is a directed graph�
Conversely� if all the edges of a graph are undirected� we say that it is an
undirected graph�
The boundary bd��� of a vertex � is the set of parents and neighbours

of �� the boundary bd�A� of a subset A � V is the set of vertices in V nA
that are parents or neighbours to vertices in A� i�e� bd�A� � paA � neA�
The closure of A is cl�A� � A � bd�A��
The undirected version G� of a graph G is the undirected graph obtained

by replacing the directed edges of G by undirected edges�
We call GA � �A�EA� a subgraph of G � �V�E� if A � V and EA �

E 	 �A � A�� Thus it may contain the same vertex set but possibly fewer
edges� If in addition EA � E 	 �A�A�� we say that GA is the subgraph of
G induced by the vertex set A�
A graph is called complete if every pair of vertices are joined� We say that

a subset of vertices of G is complete if it induces a complete subgraph� A
complete subgraph which is maximal �with respect to �� is called a clique�
A path of length n from � to � is a sequence � � ��� � � � � �n � �

of distinct vertices such that ��i��� �i� � E for all i � �� � � � � n� Thus a
path can never cross itself and moving along a path never goes against the
directions of arrows�
A cycle of length n is a path with the modi�cation that the �rst and last

vertex are identical �� � �n� The cycle is directed if it contains at least
one arrow�
A directed graph which contains no cycles is called a directed acyclic

graph� or DAG�
A trail of length n from � to � is a sequence � � ��� � � � � �n � � of

distinct vertices such that �i�� � �i� or �i � �i��� or �i�� � �i for all
i � �� � � � � n� Thus� moving along a trail could go against the direction of
the arrows� in contrast to the case of a path� In other words� a trail in G is
a sequence of vertices that form a path in the undirected version G� of G�
It is always possible to well order the nodes of a DAG� by a linear ordering

or numbering� such that if two nodes are connected the edge points from
the lower to the higher of the two nodes with respect to the ordering�
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Given a directed acyclic graph� the set of its vertices � such that � 
� �
but not � 
� � are the ancestors an��� of � and the descendants de��� of
� are the vertices � such that � 
� � but not � 
� �� The nondescendants
nd��� of � is the set V n �de������� If pa��� � A for all � � A we say that
A is an ancestral set� The symbol An�A� denotes the smallest ancestral set
containing A�

A subset C � V is said to be an ��� ���separator if all trails from � to
� intersect C� The subset C is said to separate A from B if it is an ��� ���
separator for every � � A and � � B� An ��� ���separator C is said to be
minimal if no proper subset of C is itself an ��� ���separator�

For a directed acyclic graph D� we de�ne the moral graph of D to be the
undirected graph Dm obtained from D by �rst adding undirected edges be�
tween all pairs of vertices which have common children and are not already
joined� and then forming the undirected version of the resulting graph�

��� Conditional independence

Throughout this text a central notion is that of conditional independence
of random variables and groups of these�

We are concerned with the situation where we have a collection of ran�
dom variables �X����V taking values in probability spaces �X����V � The
probability spaces are either real �nite�dimensional vector spaces or �nite
and discrete sets but could be quite general� just su�ciently well�behaved to
ensure the existence of conditional probabilities� For simplicity we mostly
consider the discrete case�

For A being a subset of V we let XA � ���AX� and further X � XV �
Typical elements of XA are denoted as xA � �x����A� Similarly XA �
�X����A�

Formally� if X�Y� Z are random variables with a joint distribution P �
we say that X is conditionally independent of Y given Z under P � and
write X ��Y jZ �P �� if� for any measurable set A in the sample space of X �
there exists a version of the conditional probability P �A j Y� Z� which is a
function of Z alone� Usually P will be �xed and omitted from the notation�
If Z is trivial we say that X is independent of Y � and write X ��Y �

When X � Y � and Z are discrete random variables the condition for
X ��Y jZ simpli�es as

P �X � x� Y � y jZ � z� � P �X � x jZ � z�P �Y � y jZ � z��

where the equation holds for all z with P �Z � z� � �� When the three
variables admit a joint density with respect to a product measure �� we
have

X ��Y jZ � fXY jZ�x� y j z� � fX jZ�x j z�fY jZ�y j z�� �����
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where this equation is to hold almost surely with respect to P � The condi�
tion ����� can be rewritten as

X ��Y jZ � fXY Z�x� y� z�fZ�z� � fXZ�x� z�fY Z�y� z� �����

and this equality must hold for all values of z when the densities are con�
tinuous�
The ternary relation X ��Y jZ has the following properties� where h

denotes an arbitrary measurable function on the sample space of X �

�C�� if X ��Y jZ then Y ��X jZ�

�C�� if X ��Y jZ and U � h�X�� then U ��Y jZ�

�C� if X ��Y jZ and U � h�X�� then X ��Y j �Z�U��

�C�� if X ��Y jZ and X ��W j �Y� Z�� then X �� �W�Y � jZ�

Note that the converse to �C�� follows from �C�� and �C��
If we use f as generic symbol for the probability density of the random

variables corresponding to its arguments� the following statements are true�

X ��Y j Z � f�x� y� z� � f�x� z�f�y� z��f�z� ����

X ��Y j Z � f�x j y� z� � f�x j z� �����

X ��Y j Z � f�x� z j y� � f�x j z�f�z j y� �����

X ��Y j Z � f�x� y� z� � h�x� z�k�y� z� for some h� k ���
�

X ��Y j Z � f�x� y� z� � f�x j z�f�y� z�� �����

The equalities above hold apart from a set of triples �x� y� z� with proba�
bility zero�
Another property of the conditional independence relation is often used�

�C�� if X ��Y jZ and X ��Z jY then X �� �Y� Z��

However �C�� does not hold universally� but only under additional con�
ditions � essentially that there be no non�trivial logical relationship be�
tween Y and Z� A trivial counterexample appears when X � Y � Z with
PfX � �g � PfX � �g � ���� We have however

Proposition ��� If the joint density of all variables with respect to a prod�
uct measure is strictly positive� then the statement �C�� will hold true�

Proof� We assume for simplicity that the variables are discrete with den�
sity f�x� y� z� � � and that X ��Y j Z as well as X ��Z j Y � Then ���
�
gives for all values of �x� y� z� that

f�x� y� z� � k�x� z�l�y� z� � g�x� y�h�y� z�

for suitable strictly positive functions g� h� k� l� Thus we have for all z that

g�x� y� �
k�x� z�l�y� z�

h�y� z�
�
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Choosing a �xed z � z� we get g�x� y� � ��x���y� where ��x� � k�x� z��
and ��y� � l�y� z���h�y� z��� Thus f�x� y� z� � ��x���y�h�y� z� and hence
X �� �Y� Z� as desired� �

In most cases we are speci�cally interested in conditional independence
among groups of random variables such as for example XA � �X�� � � A��
where A is a subset of V � We then use the short notation

A��B j C

for
XA��XB j XC

and so on� We then get the following properties as a consequence of �C���
�C���

�C��� if A��B jC then B��A jC�

�C��� if A��B jC and D � B� then A��D jC�

�C�� if A��B jC and D � B� then A��B jC �D�

�C��� if A��B jC and A��D jB � C� then A��B �D jC�

And similarly the analogue of �C�� is that for disjoint subsets A� B� C� and
D� we have

�C��� if A��B jC �D and A��C jB �D then A��B � C jD

although �C��� does not hold universally� but only under speci�c extra
assumptions� It holds for example under the assumption that the joint
density of the random variables involved is strictly positive�
It is illuminating to think of the properties �C����C�� or in particular

their analogues �C�����C��� as purely formal expressions� with a meaning
that is not necessarily tied to probability� If we interpret the symbols used
for random variables as abstract symbols for pieces of knowledge obtained
from� say� reading books� and further interpret the symbolic expression
X ��Y jZ as�

Knowing Z� reading Y is irrelevant for reading X�

the properties �C����C�� translate to the following�

�I�� if� knowing Z� reading Y is irrelevant for reading X � then so is reading
X for reading Y �

�I�� if� knowing Z� reading Y is irrelevant for reading the book X � then
reading Y is irrelevant for reading any chapter U of X �

�I� if� knowing Z� reading Y is irrelevant for reading the book X � it re�
mains irrelevant after having read any chapter U of X �

�I�� if� knowing Z� reading the book Y is irrelevant for reading X and even
after having also read Y � reading W is irrelevant for reading X � then
reading of both Y and W is irrelevant for reading X �
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Thus one can view the relations �C����C�� as pure formal properties of
the notion of irrelevance� The property �C�� is slightly more subtle� In a
certain sense� also the symmetry �C�� is a somewhat special property of
probabilistic conditional independence� rather than general irrelevance�
It is thus tempting to use the relations �C����C�� as formal axioms for

conditional independence or irrelevance� A semi�graphoid is an algebraic
structure which satis�es �C�����C���� If also �C��� holds for disjoint subsets�
it is called a graphoid �Pearl ��		�� Similarly we refer to �C�����C��� as the
semi�graphoid axioms and �C�����C��� as the graphoid axioms�

��� Markov properties for undirected graphs

Conditional independence properties of joint distributions of collections of
random variables can be compactly described and expressed as so�called
Markov properties for various graphs� In this section we consider the case
when the graph is undirected� We refer to Lauritzen ����
� or Cowell et al�
������ for proofs of all assertions that are not proved here�
Associated with an undirected graph G � �V�E� and a collection of

random variables �X����V as above there is a range of di�erent Markov
properties� A probability distribution P on X is said to obey

�P� the pairwise Markov property � relative to G� if for any pair ��� �� of
non�adjacent vertices

���� jV n f�� �g�

�L� the local Markov property � relative to G� if for any vertex � � V

���V n cl��� j bd����

�G� the global Markov property � relative to G� if for any triple �A�B� S� of
disjoint subsets of V such that S separates A from B in G

A��B jS�

As conditional independence is intimately related to factorization� so are
the Markov properties� A probability measure P on X is said to factorize
according to G if for all complete subsets a � V there exist non�negative
functions 	a that depend on x through xa only� and there exists a product
measure � � ���V �� on X � such that P has density f with respect to �
where f has the form

f�x� �
Y

a complete

	a�x�� ���	�

The functions 	a are not uniquely determined� There is arbitrariness in the
choice of �� but also groups of functions 	a can be multiplied together or
split up in di�erent ways� In fact one can without loss of generality assume
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� although this is not always practical � that only cliques appear as the
sets a� i�e� that

f�x� �
Y
c�C

	c�x�� �����

where C is the set of cliques of G� If P factorizes� we say that P has property
�F�� The di�erent Markov properties are related as follows

Proposition ��� For any undirected graph G and any probability distribu�
tion on X it holds that

�F� � �G� � �L� � �P��

Proof� See Lauritzen ����
�� �

For a given graph G and state space X � ���V X� we denote the set of dis�
tributions that satisfy the di�erent Markov properties as MF �G�� MG�G��
ML�G�� and MP �G�� Proposition ��� can now be equivalently formulated
as

MF �G� �MG�G� �ML�G� �MP �G��

The Markov properties are genuinely di�erent in general� but in the case
where P has a positive density it is possible to show that �P� implies �F��
and thus that all Markov properties are equivalent� This result has been
discovered in various forms by a number of authors �Speed ����� but is
usually attributed to Hammersley and Cli�ord ������� More precisely� we
have

Theorem ��� �Hammersley and Cli�ord� A probability distribution P
with positive density f with respect to a product measure � satis�es the pair�
wise Markov property with respect to an undirected graph G if and only if
it factorizes according to G�

Proof� See Lauritzen ����
�� �

In fact� if �C��� holds� the global� local� and pairwise Markov properties
coincide� This fact is stated in the theorem below� due to Pearl and Paz
���	��� see also Pearl ���		��

Theorem ��� �Pearl and Paz� If a probability distribution on X is such
that �C��� holds for disjoint subsets A�B�C�D then

�G� � �L� � �P��

Proof� See Lauritzen ����
�� �

The global Markov property �G� is important because it gives a general
criterion for deciding when two groups of variables A and B are condition�
ally independent given a third group of variables S� Moreover� it cannot be
further strengthened� For example it holds �Frydenberg ����b� that if all
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state spaces are binary� i�e� X� � f����g� then

A��B j S for all P �MF �G� � S separates A from B�

In other words� if A and B are not separated by S then there is a factorizing
distribution that makes them conditionally dependent�

��	 The directed Markov property

We consider the same set�up as in the previous section� except that now
the graph D is assumed to be directed and acyclic�
We say that a probability distribution P admits a recursive factoriza�

tion according to D� if there exist �
��nite� measures �� over X and non�
negative functions k���� ��� � � V � henceforth referred to as kernels� de�ned
on X� �Xpa��� such thatZ

k��y�� xpa�������dy�� � �

and P has density f with respect to the product measure � � ���V ��
given by

f�x� �
Y
��V

k��x�� xpa�����

We then also say that P has property �DF�� It is easy to show that� if
P admits a recursive factorization as above� then the kernels k���� xpa����
are in fact densities for the conditional distribution of X�� given Xpa��� �
xpa��� and thus

f�x� �
Y
��V

f�x� jxpa����� ������

We refer to these kernels as the conditional speci�cations for P � It is im�
mediate that if we form the �undirected� moral graph Dm �see Section ����
we have the following�

Lemma ��	 If P admits a recursive factorization according to the directed
acyclic graph D� it factorizes according to the moral graph Dm and therefore
obeys the global Markov property relative to Dm�

Proof� The factorization follows from the fact that� by construction� the
sets f�g�pa��� are complete in Dm and we can therefore let 	f�g�pa��� �
k�� �

This simple lemma has very useful consequences and we shall see several
examples of this in the sequel� Also� using the local Markov property on
the moral graph Dm we �nd that

���V n � j bl����
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where bl��� is the so�called Markov blanket of �� The Markov blanket is
the set of neighbours of � in the moral graph Dm� It can be found directly
from the original DAG D as the set of ��s parents� children� and children�s
parents�

bl��� � pa��� � ch��� � f� � ch��� 	 ch��� �� �g� ������

In particular it follows that the so�called full conditionals satisfy

L�X� jXV n�� � L�X� jXbl����

with density given as

L�X� jXV n�� � f�x� jxpa����
Y

��ch���

f�x� jxpa�����

The following result is easily shown�

Proposition ��
 If P admits a recursive factorization according to the
directed acyclic graph D and A is an ancestral set� then the marginal dis�
tribution PA admits a recursive factorization according to DA�

In combination with Lemma ��� this yields�

Corollary ��� Let P factorize recursively according to D� Then

A��B jS

whenever A and B are separated by S in �DAn�A�B�S��
m� the moral graph

of the smallest ancestral set containing A � B � S�

Following Lauritzen� Dawid� Larsen and Leimer ������� the property in
Corollary ��� will be referred to as the directed global Markov property �DG�
and a distribution satisfying it is a directed Markov �eld over D�
One can show that the global directed Markov property has the same

r�ole as the global Markov property does in the case of an undirected graph�
in the sense that it gives the sharpest possible rule for reading conditional
independence relations o� the directed graph� The procedure is illustrated
in the following example�

Example ��� Consider a directed Markov �eld on the �rst graph in Fig�
��� and the problem of deciding whether a�� b jS� The moral graph of the
smallest ancestral set containing all the variables involved is shown in the
second graph of Fig� ���� It is immediate that S separates a from b in this
moral graph� implying a�� b jS� �

An alternative formulation of the global� directed Markov property was
given by Pearl ���	
a� with a formal treatment in Verma and Pearl �������
Recall that a trail in D is a sequence of vertices that forms a path in the
undirected version D� of D� i�e� when the directions of arrows are ignored�
A trail � from a to b in a directed� acyclic graph D is said to be blocked by
S if it contains a vertex � � � such that either

� � S and arrows of � do not meet head�to�head at �� or
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Figure ��� The directed� global Markov property� Is a�� b jS� In the moral graph
of the smallest ancestral set in the graph containing fag � fbg � S� clearly S

separates a from b� implying a�� b jS�

� and all its descendants are not in S� and arrows of � meet head�to�head
at ��

A trail that is not blocked by S is said to be active� Two subsets A and B
are said to be d�separated by S if all trails from A to B are blocked by S�
We then have the following result�

Proposition �� Let A� B and S be disjoint subsets of a directed� acyclic
graph D� Then S d�separates A from B if and only if S separates A from
B in �DAn�A�B�S��

m�

Proof� See Lauritzen ����
�� �

The global directed Markov property can thus be formulated by requiring
that A��B jS whenever S d�separates A from B thereby making the anal�
ogy with the undirected case clearer� It depends on the speci�c context
and purpose whether the pathwise criterion� or the criterion used in the
de�nition of the global directed Markov property is easiest to use�
We illustrate the concept of d�separation by applying it to the query of

Example ��	� As Fig� ��� indicates� all trails between a and b are blocked
by S� whereby the global Markov property gives that a�� b jS�
For further use� we shall use the symbolic expressionA�D B jS to denote

that A and B are d�separated by S or� equivalently� A and B are separated
by S in �DAn�A�B�S��

m� It was shown in Verma and Pearl ������ that

Lemma ���� For any �xed directed acyclic graph D� the relation �D sat�
is�es the graphoid axioms�

Geiger and Pearl ������ show that the criterion of d�separation cannot
be improved� in the sense that� for any given directed acyclic graph D� one
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Figure ��� Illustration of Pearl�s d�separation criterion� There are two trails from
a to b� drawn with thick lines� Both are blocked� but di�erent vertices �� indicated
with open circles� play the r�ole of blocking vertices�

can �nd state spaces X�� � � V and a probability distribution P such that

A��B jS � A�D B jS� ������

This result was strengthened by Meek ������� who showed that if the state
spaces were �nite and had cardinality at least two� the set of probability
distributions P not satisfying ������ had Lebesgue measure zero in the set
of all directed Markov probability measures�
To complete this section we say that P obeys the local directed Markov

property �DL� if any variable is conditionally independent of its non�desc�
endants� given its parents�

��� nd��� j pa����

A seemingly weaker requirement� the ordered directed Markov property
�DO�� replaces all non�descendants of � in the above condition by the
predecessors pr��� of � in some given well�ordering of the nodes�

��� pr��� j pa����

In contrast with the undirected case we have that all the four properties
�DF�� �DL�� �DG� and �DO� are equivalent just assuming existence of the
density f � This is stated formally as�

Theorem ���� Let D be a directed acyclic graph� For a probability distri�
bution P on X which has density with respect to a product measure �� the
following conditions are equivalent�

�DF� P admits a recursive factorization according to D�
�DG� P obeys the global directed Markov property� relative to D�
�DL� P obeys the local directed Markov property� relative to D�
�DO� P obeys the ordered directed Markov property� relative to D�
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Proof� That �DF� implies �DG� is Corollary ���� That �DG� implies �DL�
follows by observing that f�g � nd��� is an ancestral set and that pa���
obviously separates f�g from nd��� n pa��� in �Df�g�nd����

m� It is trivial
that �DL� implies �DO�� since pr��� � nd���� The �nal implication is
shown by induction on the number of vertices jV j of D� Let �� be the
last vertex of D� Then we can let k�� be the conditional density of X�� �
given XV nf��g� which by �DO� can be chosen to depend on xpa���� only�
The marginal distribution of XV nf��g trivially obeys the ordered directed
Markov property and admits a factorization by the inductive assumption�
Combining this factorization with k�� yields the factorization for P � This
completes the proof� �

Since the four conditions in Theorem ���� are equivalent� it makes sense
to speak of a directed Markov �eld as one where any of the conditions is
satis�ed� The set of such distributions for a directed acyclic graph D is
denoted by M�D��
In the particular case when the directed acyclic graph D is perfect� i�e�

all parents are married� the directed Markov property on D and the fac�
torization property on its undirected version D� coincide�

Proposition ���� Let D be a perfect directed acyclic graph and D� its
undirected version� Then P is directed Markov with respect to D if and
only if it factorizes according to D��

Proof� See Lauritzen ����
�� �

��
 Causal Markov models

For simplicity we assume here and in the following that all random vari�
ables are discrete and have �nite state spaces unless we speci�cally indicate
otherwise� To emphasize the discreteness we use little p as a generic symbol
for a probability mass function rather than f for a general density�

	�
�	 Conditioning by observation or intervention

The �rst important issue is to distinguish between di�erent types of condi�
tioning operations� each of which modify a given probability distribution in
response to information obtained� Conditional probabilities are sometimes
de�ned and calculated as

p�y jx� � P �Y � y jX � x� �
P �Y � y�X � x�

P �X � x�
�

We refer to this type of conditioning as conditioning by observation or con�
ventional conditioning� In many cases this represents the way in which a
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probability distribution� P �Y � y�� should be modi�ed when the infor�
mation X � x is revealed� Paradoxes appear when it is unclear how the
information about X is revealed �Shafer ��	�� ���
�� but that is a di�erent
discussion�
When discussing causal issues it is important to realize that this is typ�

ically not the way the distribution of Y should be modi�ed if we intervene
externally and force the value of X to be equal to x� We refer to this type of
modi�cation as conditioning by intervention or conditioning by action� To
make the distinction clear we use di�erent symbols for this conditioning�
as indicated below

p�y jjx� � P �Y � y jX � x��

Generally� the two quantities will be di�erent

p�y jjx� �� p�y jx�

and the quantity on the left�hand side cannot be calculated from the proba�
bility measure P alone� without additional assumptions� To judge whether
these assumptions are reasonable in any given context one needs a speci�
�cation of the precise way in which the intervention is made� just as con�
ventional conditioning needs a speci�cation about how the information is
revealed�
In a moment we will give a precise meaning to a directed acyclic graph

being causal� This will imply that in the graph below to the left

X Y X Y

t t t t� �

we will have that p�y jjx� � p�y jx� and p�x jj y� � p�x�� whereas these
relations are reversed in the graph to the right� i�e� there it holds that
p�y jjx� � p�y� and p�x jj y� � p�x j y��

	�
�� Causal graphs

A directed acyclic graph D is said to be causal for a probability distribution
P with respect to a subset B � V � if P is Markov with respect to D� i�e�

p�x� �
Y
��V

p�x� jxpa����

and it further holds for any A � B that

p�x jjx�A� �
Y

��V nA

p�x� jxpa����

������
xA�x�A

�
p�x�Q

��A p�x
�
� jxpa����

����
xA�x�A

� �����
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Alternatively� one can think of the right�hand side of ����� as the mathe�
matical de�nition of the intervention probability on the left�hand side�
If B � V we simply say that D is causal or fully causal for P � We also

use the expression that P is a causal directed Markov �eld with respect
to D or say that P is causally Markov with respect to D� Note that the
causal Markov property thus gives a relation between di�erent probability
measures� each representing the probability law associated with a speci�c
intervention�
We will refer to ����� as the intervention formula� It appeared in various

forms in Pearl ����� and Spirtes et al� ������ It is implicit in Robins ���	
�
and in other literature�
There are many ways in which this causal interpretation of a directed

Markov model can be justi�ed� But it is also important to realize that there
are many other ways in which one can associate causal relationships with
directed acyclic graphs� This is in particular apparent in the highly interest�
ing book of Shafer ����
� who develops a language for causal interpretation
of probabilities through event trees� This leads to events being more natural
as direct causes than variables� A variety of causal relationships between
variables can then be derived as consequences of the formalism�
In a more general setting one would be interested in allowing other types

of intervention than those described� For example� one could wish to con�
trol the value of a variable in a way that depends on previously observed
variables� But for simplicity we only consider the case of simple interven�
tions�
One should contrast the intervention formula ����� with conventional

conditioning using Bayes� formula�

p�x jx�A� �
p�x�

p�x�A�

����
xA�x�A

�
p�x�P

y�yA�x�A
p�y�

�����
xA�x�A

� ������

which di�ers from the intervention formula in the denominator� where the
product of conditional speci�cations is replaced by the marginal probabil�
ity p�x�A�� This implies in particular that if intervention takes place on a
single variable without parents� observation and intervention have identical
e�ects�

Corollary ���� If � � V has no parents� i�e� pa��� � �� then it holds that
p�x jjx��� � p�x jx����

We illustrate the similarities and di�erences by intervening on variable � in
Figure ��� If this graph is causal� we have that the intervention X� � x��
produces the distribution

p�x jjx��� � p�x��p�x� jx��p�x� jx��p�x	 jx��p�x
 jx�� x
�
��p�x� jx	� x

�
�� x
�

whereas the observation X� � x�� leads to

p�x jx��� � p�x��p�x� jx��p�x� jx��p�x	 jx��
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Figure ��� Illustration of causal directed acyclic graph�
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Figure ��� The intervention X� � x�� in Fig� ��� produces a causal directed
Markov 	eld with respect to the graph on the left� The observation X� � x�� pro�
duces a distribution which satis	es the chain graph Markov property with respect
to the graph to the right�

p�x�� jx�� x��p�x
 jx�� x
�
��p�x� jx	� x

�
�� x
�� ������

The modi�ed distribution P �� jXA � x�A� is again a directed causal Markov
�eld over the subgraph DV nA induced by the remaining variables� The
corresponding conditional speci�cations are just modi�ed such that

p�x� jxpa
V nA���

jjx�A� � p�x� jxpa���nA� x
�
pa����A��

Expressed in words� the causal assumption is that the conditional speci��
cations are unchanged for variables which are not used for intervention� In
the example above� where we have intervened on variable �� the only modi�
�cations of the speci�cations involve children of the intervention variables�
i�e� variables 
 and �� where we get

p�x
 jx� jjx
�
�� � p�x
 jx�� x

�
��� p�x� jx	� x
 jjx

�
�� � p�x� jx	� x

�
�� x
��

The corresponding subgraph is displayed as the graph to the left in Fig�
���� This is again to be contrasted with the e�ect of observation of variable
�� which creates a dependence structure determined by the chain graph
�Lauritzen ���
� to the right in the same �gure� This is due to the factor
p�x�� jx�� x�� creating a function depending on �x�� x�� in the factorization
������� Note that� in general� the conditional independence structure in�
duced by conditioning by observation will not be in perfect correspondence
with a chain graph�
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It is important to realize that successive conditioning operations of the
same type commute whereas intervention and observation in general cannot
be interchanged� We therefore adopt the convention that all operations are
performed from the right to the left� Thus

p�x jj y j z� � P �X � x jY � y� Z � z�

denotes the modi�ed probability obtained by �rst observing Z � z and
subsequently intervening as Y � y� whereas

p�x j z jj y� � P �X � x jZ � z� Y � y�

re�ects that the intervention is performed before the observation� As an
example� consider the graph

X Y Z

t t t� �

Intervening with X � x� and then subsequently observing Y � y leads to

p�z j y jjx�� � p�z j y��

whereas additional assumptions are to be made to predict the e�ect of the
intervention X � x� after observation of Y � y� Such assumptions could
for example be that X � Y � and Z are functionally related in a structural
equation model� see Section ���� This assumption would lead to the equality

p�z jjx� j y� � p�z j y jjx�� � p�z j y�

as then X and Z are functionally unrelated� once the value of y is known
or has been �xed�
Generally� to ensure unambiguous meaning of intervention conditioning

without introducing assumptions beyond those already made� intervention
at a node � must always be made before any variables corresponding to its
descendant nodes have been observed�

��� Assessment of treatment e�ects in sequential trials

The following example is adapted from Robins ������ and is the simplest
example where traditional approaches to assessment of treatment e�ects
give incorrect results� whereas the methods described here coincide with
those developed by Robins ���	
�� known as G�computation� and give the
correct answer�
Consider a study made in a population of AIDS patients� Let us imag�

ine the population being so large that sampling error can be ignored for
practical purposes� The study involves � binary variables� In our nota�
tion� a is the label for an initial� randomized treatment� where Xa � �
denotes that the patient has been treated with AZT� and Xa � � indi�
cates placebo� After a given period it is for each patient observed whether
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Figure ��� Graph displaying causal relationships between variables in a particular
sequential trial� The graph is only assumed causal with respect to interventions at
fa� bg� The missing arrow from a to b re
ects that b is assigned by randomization�

the patient develops pneumonia� corresponding to the variable l� where
Xl � � indicates that this is the case� We assume that all patients sur�
vive up to this point� Subsequently a secondary treatment with antibiotics
is contemplated� corresponding to the variable b� For ethical reasons� all
patients who have developed pneumonia are treated with antibiotics� i�e�
P �Xb � � jXl � �� � �� whereas the treatment is randomized for the pa�
tients with Xl � �� Finally� after a given period it is registered whether a
given patient has survived up to that time� corresponding to the variable
s� where Xs � � denotes that the patient has survived�
The question is now to assess the e�ect on survival of a combined treat�

ment with AZT and antibiotics of a new patient� In other words� we wish
to calculate

P �Xs � � jXa � �� Xb � �� � p��s jj �a� �b��

This is done in the following way� The relevant graph is displayed in Fig�
ure ���� where missing arrows re�ect the randomized allocation of treat�
ments� This graph is not fully causal as there may be unobserved variables
�confounders� that simultaneously a�ect l and r� It is only assumed causal
with respect to interventions at fa� bg�
Note that not all e�ects are estimable as there are no observations with

Xl � � and Xb � �� For example� the e�ect of treating with AZT only
cannot be assessed� We �nd

p��s jj �a� �b� �
X
xl

p��s� xl jj �a� �b�

�
X
xl

p��s jxl jj �a� �b�p�xl jj �a� �b�

�
X
xl

p��s jxl� �a� �b�p�xl j �a��

As pointed out by Robins� conventional wisdom gives ambiguous or in�
correct answers� The variable l is a�ected by the treatment and one should
therefore not adjust for it but simply use the estimate of the conditional
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probability

p��s jj �a� �b� � �p��s j �a� �b��

On the other hand� the covariate l is also a confounder for the e�ect of
the treatment on survival� Thus adjustment for l is needed and one should
rather use

p��s jj �a� �b� �
X
xl

�p��s jxl� �a� �b��p�xl��

Both answers disagree with the correct calculation as given above�
The calculation is a special case of more general situations described

by Robins� where randomized treatment allocations and intermediate re�
sponses alternate as t�� r�� t�� r�� � � � � tk� rk and where� for example� the ef�
fect of a combined treatment� �xing t�� � � � � tk� on the �nal response rk is
desired� This is then found by G�computation� involving two steps�

�� modifying the joint distribution of all variables �corresponding to a com�
plete DAG in many cases� by the intervention formula ������

�� calculating the marginal distribution of Xrk by a recursive forward com�
putation� possibly using Monte Carlo methods�

We refrain here from describing the more general situation where the sug�
gested treatment regime is allowed to depend on previous treatments and
recordings� but emphasize that this does not create essentially new prob�
lems�

��� Identi�ability of causal e�ects

This section will be concerned with the problem of identifying the e�ects
of interventions from partial observation of a causal system� expressed in
the form of a causal directed Markov �eld� It is largely based on ideas in
Pearl ����� and Pearl �����a��

	���	 The general problem

Consider as usual a �nite set of variables V � one of which is labelled t
and designated the treatment variable� and another group of variables are
considered to be the response� labelled R� We also assume that there is a
directed acyclic graph D such that the joint distribution of all the variables
V is causally Markov with respect to D�
The object of interest is the causal eect of t on the group of response

variables R� represented by the intervention distribution

P �XR � xR jXt � x�t � � p�xR jjx
�
t ��

The remaining variables are partitioned into C � V and U � V � where C
is a set of observed covariates whereas the variables in U are to remain un�
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observed� In principle one could discuss multiple treatments and responses�
but this will not be done here�

Thus from an experimental or observational study we obtain information
about the joint distribution of the observed variables� t� R and C� Ignoring
sampling error� can the causal e�ect of t on R be determined from this
information� Or� phrased in another way� which variables C are needed in
order to determine this e�ect� If the causal e�ect can be determined from
the observed distribution� then how can it be calculated� i�e� is there an
analogue of the G�computation that gives the correct answer� If the causal
e�ects cannot be precisely determined� can we at least give inequalities that
these numbers must satisfy�

To make the discussion precise� we say that C identi�es the causal e�ect
of t on R if for any pair P�� P� of distributions that are causally Markov
with respect to D it holds that

p��xt� xC � xR� � p��xt� xC � xR� � p��xR jjxt� � p��xR jjxt��

The most basic question above can now be phrased as determining whether
a given set covariates C identi�es the causal e�ect of t on r� Clearly� if
C � � C and C identi�es the e�ect of t on r� so does C �� so we are interested
in minimal sets of identifying covariates�

Generally C will not identify causal e�ects unless the conditional dis�
tributions are identi�ed by the joint distribution� Thus� throughout this
section we will assume that

p�xt� xC� � � for all combinations of xt and xC � ����
�

unless we explicitely state otherwise�

	���� Intervention graphs

When the e�ect of potential intervention are to be discussed� it is con�
venient to represent these explicitly in the associated graph of the model
considered� As also done in Pearl ����� and Spirtes et al� ������ this is
done through an intervention graph D�� which is formed by augmenting
each node representing a variable where intervention is contemplated� with
an additional parent�

We denote this additional parent of a vertex � by ��� The corresponding
random variable X�� is� when no ambiguity results� just denoted by F��
The variable F� has state space X� �f�g and the conditional distributions
of X� given its parents in the intervention graph are given by

p��x� jxpa���� f�� �

�
p�x� jxpa���� if f� � �
x��x�� if f� � x���

������
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where xy is Kronecker�s symbol

xy �

�
� if x � y
� otherwise�

A more general setup would let f� vary in the set of all �randomized�
decision policies� but here we only consider the simpler case�
This approach to the representation of causal e�ects is related to so�called

in�uence diagrams �Howard and Matheson ��	�� Shachter ��	
� Smith
��	�� Oliver and Smith ����� and taking this connection to its consequence
gives yet an alternative basis for causal interpretation of graphical models
�Heckerman and Shachter ������
Each of the variables F�� � � A� where A is the set of variables for which

intervention is contemplated� can be given an arbitrary distribution with
positive probability of all states� We then clearly have

p�x� � p��x jF� � �� � � A��

but it also holds for any subset B � A that

p�x jjx�B� � P �X � x jXB � x�B�

� P ��x jF� � x��� � � B�F� � �� � � B nA�� ����	�

since it follows from Corollary ��� that

P ��X � x jF� � x��� � � B�F� � �� � � B nA� �

P ��X � x jF� � x��� � � B�F� � �� � � B nA�

because the variables �� do not have parents� The importance of the relation
����	� is that it gives a simple connection between intervention conditioning
in the original graph and conventional conditioning in the intervention
graph�

	���� Three inference rules

The operations needed to �nd groups of identifying covariates typically in�
volve a sequence of operations that gradually transform expressions involv�
ing intervention probabilities to expressions involving ordinary conditional
probabilities� the latter being in principle accessible by empirical observa�
tion�
We are considering the simple case� where intervention at a node t is con�

templated� its e�ect on a group of variables R is studied� in a context where
XA is observed to be xA� We let �D� denote d�separation in the interven�
tion graph D� obtained by augmenting D with an intervention variable t� as
an additional parent of t� and possibly other intervention variables� if also
other interventions are contemplated� as described above� We then have
the following three inference rules�
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Neutral observation of Xt�

R�D� t jA � p�xr jxA� xt� � p�xR jxA� ������

Neutral intervention at t�

R�D� t� jA � p�xr jxA jjxt� � p�xR jxA� ������

Equivalence of observation and intervention at t�

R�D� t� j fA� tg � p�xR jxA jjxt� � p�xR jxA� xt�� ������

Each of these can be derived from the directed Markov property of P and
P � combined with the fact that intervention probabilites can be obtained
by appropriate observation conditioning in the intervention graph�
For example� to derive ������ we observe that R�D� t jA implies R�D t jA�

This holds because all trails from t to R in D are also trails in D� and if
one is blocked by A in D�� it is also blocked by A in D� Therefore the global
directed Markov property for D entails that

R�D� t jA � R�� t jA�

whereby ������ follows�
The relations ������ and ������ follow directly from the fact that inter�

vention conditioning at t in D is equivalent to observation conditioning at
t� in D�� These rules are also direct consequences of Theorem ��� of Spirtes
et al� �����
Although Pearl �����a� formulates these inference rules somewhat dif�

ferently� he conjectures that the three inference rules are complete� in the
sense that a set of covariates is identifying for the e�ect of t on R if and
only if all terms involving intervention conditioning in the expression for
the intervention distribution can be changed to terms involving observa�
tional conditioning by successive application of these three rules� We shall
see examples of this in the next subsection� where a number of classical
concepts from epidemiology will be illustrated�

	���� The back�door formulae

One of the classic conditions for a set of covariates to be identifying is cap�
tured in the theorem below� known as the back�door theorem and formula�
As earlier we contemplate the e�ect of t on a group of variables R and

plan to observe these together with a set of covariates C� whereas the re�
maining variables in the system are unobserved� Also� as above� D� denotes
the intervention graph obtained from D by augmenting with an interven�
tion variable t� as an additional parent of t and �D� denotes d�separation
in D��
We then have the following theorem� which can also be derived directly

from Theorem ��� of Spirtes et al� ������
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Theorem ���� �Back�door� Assume C � C�� where C� satis�es

�BD�� The covariates in C� are unaected by an intervention� C��D� t��

�BD�� An intervention only aects the response through the treatment it�
self� as modi�ed by the observed covariates� R�D� t� jC� � ftg�

Then C identi�es the eect of the treatment t on R as

p�xR jjx
�
t � �

X
xC�

p�xR jxC� � x
�
t �p�xC��� ������

Proof� The proof is a simple application of the inference rules� If we
partition according to XC� and then apply �rst ������ for A � C� and then
������ for R � C� and A � �� we get

p�xR jjx
�
t � �

X
xC�

p�xR jxC� jjx
�
t �p�xC� jjx

�
t �

�
X
xC�

p�xR jxC� � x
�
t �p�xC� jjx

�
t �

�
X
xC�

p�xR jxC� � x
�
t �p�xC���

�

Condition �BD�� might as well have been formulated by demanding that
none of the covariates in C� are descendants of t� This is a condition which
can then be checked in D rather than D��
Note that the positivity assumption ����
� is important for the joint

distribution to identify p�xR jxC� � x
�
t � for all combinations of its arguments�

In the formulation given� the name �back�door theorem� is not obvious�
The lemma below clari�es the reason for the name� A back�door trail from
t to R in D is a trail from t to R that does not involve an arrow emanating
from t� i�e� leaves t through the �back door�� Similarly� we let a front�door
trail from t to R be a trail that begins with an arrow emanating from t�

Lemma ���	 If no covariates in C� are descendants of t� r�D� t� jC��ftg
if and only if all back�door trails from t to R are blocked by C� in D�

Proof� Assume r�D� t� jC��ftg� Each trail from t� to R in D� corresponds
uniquely to a trail from t to R in D� Since the descendants of t are identical
in D and D� and none of these are in C�� t is blocking all trails from t� to
R in D that correspond to front�door trails and it is not blocking any trails
corresponding to back�door trails� Consequently� these are be blocked by
C� � t in D� if and only if they are blocked by C� in D� �

The condition in Lemma ���� is also phrased in terms of the original graph
D rather than the intervention graph�
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James Robins �personal communication� gives the following heuristic ar�
gument for the criterion� The treatment e�ect can be identi�ed if� condi�
tionally on C�� there is no association beyond causation� Removing arrows
out of t eliminates causation� One must thus demand that no conditional
association remains after these arrows have been removed�
The formula ������ is the classical formula which adjusts for covariates

that are not a�ected by the treatment�
Theorem ���� has a slightly more general version� extended by a recursive

argument�

Theorem ���
 �Extended back�door� Assume C � C�� where C� sat�
is�es

�EBD�� The eect of the treatment t on the covariates in C� is identi�ed
by C�

�BD�� An intervention only aects the response through the treatment it�
self� modi�ed by the observed covariates� R�D� t� jC� � ftg�

Then C identi�es the eect of the treatment t on R as

p�xR jjx
�
t � �

X
xC�

p�xR jxC� � x
�
t �p�xC� jjx

�
t �� �����

Proof� This is shown exactly as for Theorem ����� just omitting the last
step in the calculation� �

Confounding

The �rst situation to be considered in the light of the back�door theorem is
the classical case of a confounder� which in the current context is de�ned to
be an unobserved quantity that simultaneously a�ects the treatment and
the response� Thus� in a causal graph� a confounder is a common ancestor
to the treatment and response� The literature in epidemiology contains a
wealth of more or less precise de�nitions of the term�
This situation is illustrated in Figure ��
� displaying the corresponding

intervention graph and its associated moral graph� The conditional distri�
bution of Xr after intervention at t cannot be determined from the joint
distribution of �Xt� Xr��

Randomization

The next example illustrates how randomization overcomes the identi�ca�
tion problem caused by the confounder� Instead of just observing �Xt� Xr��
the treatment Xt is now allocated by a known random mechanism� possibly
depending on an observed covariate Xc� leading to the diagram described
in Figure ���� The randomization ensures that there is no arrow pointing
from u to t� i�e� the treatment Xt is conditionally independent of Xu given
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Figure ��� Intervention graph and associated moral graph for experiment with an
unobserved confounder� There is a path in the moral graph from t� to r circum�
venting t so the back�door criterion is violated and the e�ect of t on r cannot be
identi	ed from observations of t and r�
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Figure ��� Intervention graph and associated moral graph for experiment with
randomized treatment allocation� The moral graph reveals that r�D� t� j fc� tg so
the back�door criterion is satis	ed and the treatment e�ect can be assessed�

the covariates Xc� To see that �BD�� of Theorem ���� is satis�ed� we form
the ancestral set in D� generated by fc� t�g� This is equal to fc� t�� ug and the
associated moral graph has only one edge between c and u� Thus c�D� t��
The ancestral set generated by fc� t� t�� rg is equal to the full set of variables�
and the associated moral graph is also displayed in Figure ���� Clearly r is
separated from t� by fc� tg in this graph� so �BD�� is satis�ed� Note that if
u had been allowed to have an in�uence on the treatment allocation� the
corresponding arrow from u to t in the graph to the left would have induced
an edge in the moral graph between t� and u� who were common parents
of t� thus violating �BD�� and confounding the relation between t and r�

Su�cient covariate

The next situation to be considered is an observational study where we
have no control over the treatment allocation mechanism� but we are able
to �nd a su�cient set of covariates� i�e� a set of covariates which is so in�
formative about the response mechanism that the response is conditionally
independent of the unobserved variable given the treatment and the covari�
ates� The corresponding intervention graph and associated moral graph is
displayed in Figure ��	�
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Figure ��	 Intervention graph and associated moral graph for an observational
study with a su�cient covariate� The moral graph reveals that r�D� t� j fc� tg so
the back�door criterion is satis	ed and the treatment e�ect can be assessed�
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Figure ��
 Intervention graph and associated moral graph for a study with par�
tial compliance� The moral graph reveals that r�D� a� j fa� tg so the e�ect of the
treatment assignment is identi	ed� However� r is not separated from t� by t so the
e�ect of the treatment itself cannot be assessed�

The ancestral set generated by c and t� is equal to fc� t�� ug and the
associated moral graph has only one edge between c and u and thus c�D� t��
The ancestral set generated by fc� t� t�� rg is equal to the full set of variables�
and the associated moral graph is displayed in Figure ��	� Clearly r is
separated from t� by fc� tg in this graph� so �BD�� is satis�ed�

Partial compliance

The next example describes a study in which treatments are assigned com�
pletely at random to individuals� but not all individuals are complying with
the assignments so that some receive a treatment di�erent from the one as�
signed� The situation is displayed in Figure ���� where a is labelling the
assignment and t the actual treatment received� The response� treatment
assigned� and treatment received are all observed� From inspection of the
moral graph it clearly follows that r�D� a� j fa� tg so the e�ect of the treat�
ment assigned is identi�ed via the back�door formula� The corresponding
assessment is commonly referred to as �analysis by intention�to�treat��
However� r is not separated from t� by t so the e�ect of the treatment

itself is not identi�able from these observations� We shall later see how to
derive bounds for the e�ects in this particular case�



IDENTIFIABILITY OF CAUSAL EFFECTS ��

t� t c r

u

t � t � t �

t
�
�
�R

�
�
�� t

Figure ���� Intervention graph associated with a situation where Theorem ����
applies� The covariate c is capturing the way in which t is a�ecting r� possibly
modi	ed by the unobserved variable u�

	���� The front�door formula

Theorem ���� below describes yet another situation where the causal e�ect
of a treatment can be identi�ed� Here the observed covariates are to be
considered as the active agent determining the response� A basic example
to have in mind could be the e�ect of smoking on lung cancer� the active
agent being the tar content in the lungs� There could be an unobserved�
say genetic� feature that in�uenced both the response and the tendency
to smoke� The corresponding diagram is displayed in Figure ���� and the
conditions in the Theorem ���� re�ect conditional independence relations
following from the directed Markov property of this diagram�

Theorem ���� �Front�door formula� Assume that C � C�� and there
is a subset D � V n �C� � R � ftg� such that

�FD�� The variables in D are unaected by an intervention� D�D� t��

�FD�� An intervention only aects the covariate through the treatment it�
self� independently of the variables in D� C��D� �D � ft�g� j t�

�FD� An intervention only aects the response through the covariate� as
modi�ed by the variables in D� R�D� t� jC� �D�

Then C identi�es the eect of the treatment t on R as

p�xR jjx
�
t � �

X
xC�

p�xC� jx
�
t �
X
xt

p�xR jxC� � xt�p�xt�� ������

Proof� We assume without loss of generality that C � C� and D � U �
Then we have

p�xR jjx
�
t � �

X
xC �xU

p�xR jxC � xU jjx
�
t �p�xC � xU jjx

�
t �

�
X
xC �xU

p�xR jxC � xU �p�xC jxU jjx
�
t �p�xU jjx

�
t ��

where we have used �FD� together with ������ to deduce that the inter�
vention in the �rst term of the product is neutral�
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Next� �FD�� combined with the semi�graphoid properties �C�� and �C���
�which are satis�ed by the relation �D� by Lemma ����� yields

C �D� t� j �U � ftg� and C �D� U j t�

Thus ������ yields that intervention in the second term may be substi�
tuted with ordinary conditioning� and ������ that conditioning with xU
then can be ignored�
Further� �FD�� with ������ gives that the third term in the product is

independent of x�t so that we have

p�xR jjx
�
t � �

X
xU �xC

p�xR jxU � xC�p�xC jx
�
t �p�xU ��

If we now rewrite p�xU � by partioning according to xt and note that �FD�
with ������ allows further conditioning on xt in the �rst term� we get

p�xR jjx
�
t � �

X
xU �xC �xt

p�xR jxU � xC � xt�p�xC jx
�
t �p�xU jxt�p�xt�

�
X
xC

p�xC jx
�
t �
X
xt

p�xR jxC � xt�p�xt�

and the proof is complete� �

Both the formula and its name are due to Pearl �����a�� where it is given
as part of Theorem �� Pearl�s front�door conditions are formulated rather
di�erently and it is not obvious that they are equivalent to those given here�
but we believe them to be� In Pearl�s formulation �and our terminology��
the conditions are�

�FD��� All directed paths from t to R intersect C��

�FD��� All trails from t to C� in D contain an arrow out of t�

�FD�� All back�door trails from C� to R are blocked by t in D�

The justi�cation for the name is not so obvious� neither in Pearl�s for�
mulation nor in the formulation given here� Although it is true that �FD��
and �FD� together re�ect that C� blocks front�door paths from t to R�
�FD�� rather re�ects that back�door paths from t to C� are blocked�
Again we note the importance of the positivity assumption ����
�� With�

out this� we could always take c � t and satisfy all conditions in Theo�
rem ����� However� then the necessary conditional distributions would not
be identi�ed by the marginal distributions�

	���
 Additional examples

We conclude the section on identi�ability of treatment e�ects by discussing
a number of additional examples� illustrating the potential use of the front�
and back�door formulae�
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Figure ���� Intervention graph associated with an example where both of the
front�door and back�door formulae apply when l and c are observed�

Example ���� Consider the example with intervention graph displayed
in Figure ����� In the case where c and l are observed together with the
treatment t and the response r� the back�door formula applies with c as the
covariate and the front�door formula with l as the covariate� The extended
back�door theorem applies with both covariates observed� Thus it holds
that

p�xr jjx
�
t � �

X
xc

p�xr jxc� x
�
t �p�xc�

�
X
xl

p�xl jx
�
t �
X
xt

p�xr jxl� xt�p�xt�

�
X
xc�xl

p�xr jxl� xc�p�xc�p�xl jx
�
t ��

However� although the treatment e�ect can be identi�ed in all three obser�
vational situations� it is not true that the corresponding maximum likeli�
hood estimates are equally e�cient in the case where these are estimated
from data� There is clearly loss of information associated with not observing
all four variables�
To illustrate this� assume that all variables are discrete and a poten�

tial sample of n independent and identically distributed cases with counts
n�xt� xr� xl� xc� are observed� and contrast this with the corresponding in�
complete samples only giving n�xt� xr� xc� or n�xt� xr� xl��
In the �rst situation� the maximum likelihood estimate in the model

which is only restricted by satisfying the directed Markov property on the
graph is equal to

�p�xt� xr� xl� xc� �
n�xc�n�xt� xc�n�xt� xl�n�xr� xl� xc�

nn�xc�n�xt�n�xl� xc�

�
n�xt� xc�n�xt� xl�n�xr � xl� xc�

nn�xt�n�xl� xc�
�

as each of the conditional probabilities of a variable given its parents is
estimated by the corresponding observed relative frequencies �Lauritzen
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���
� Theorem ��
�� Using the extended back�door formula� i�e� the last
relation above� we therefore get

�p�xr jjx
�
t � �

X
xc�xl

�p�xr jxl� xc��p�xc��p�xl jx
�
t �

�
X
xc�xl

n�xr� xl� xc�

n�xl� xc�

n�xc�

n

n�xl� x
�
t �

n�x�t �
�

The similar expression in the back�door case� i�e� when only n�xr � xc� xt� is
observed� becomes

�p�xr jjx
�
t � �

X
xc

�p�xr jxc� x
�
t ��p�xc�

�
X
xc

�p�xr jxc� x
�
t �
n�xc�

n
�

Note that in this case it is not generally true that we have

�p�xr jxc� x
�
t � �

n�xr � xc� x
�
t �

n�xc� x�t �

because the model induces restrictions on this conditional probability� How�
ever� it is obvious that

 p�xr jjx
�
t � �

X
xc

n�xr� xc� x
�
t �

n�xc� x�t �

n�xc�

n

is still a reasonable estimate of the intervention probability� The latter
estimate is also the traditional estimate used� and it also applies in the
more general case� where the conditional independence c�� l j t is violated�
Presumably this estimate will be less e�cient if indeed the condition c�� l j t
were known to hold�
In the front�door case� when n�xr � xl� xt� is observed� we similarly have

�p�xr jjx
�
t � �

X
xl

�p�xl jx
�
t �
X
xt

�p�xr jxl� xt��p�xt�

�
X
xl

n�xl� x
�
t �

n�x�t �

X
xt

�p�xr jxl� xt�
n�xt�

n
�

where again the maximum likelihood estimate of the second conditional
probability may not be equal to the corresponding relative frequency� How�
ever� it is obvious that a reasonable estimate of the treatment e�ect is equal
to

 p�xr jjx
�
t � �

X
xl

n�xl� x
�
t �

n�x�t �

X
xt

n�xr� xl� xt�

n�xl� xt�

n�xt�

n
�

It would be interesting to compare the loss of e�ciency by not observing c
vs� not observing l� �
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Figure ���� Intervention graph associated with Example ��� with its correspond�
ing moral graph�
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Figure ���� Graphical model expressing that i is an instrumental variable� Note
the similarity with the situation of partial compliance described in Figure ���
where the assignment variable a is an instrument�

Example ��� The next example is taken from Pearl �����a� and is some�
what more complex� It is illustrated in Figure �����
As the �gure shows� l su�ces as a covariate for the front�door formula

in Theorem ���� to apply�

From the moral graph it is seen by direct inspection that observing b is
necessary but not su�cient to satisfy the back�door Theorem ����� It needs
to be supplemented with any non�empty subset of the variables a� u� v� and
d for its union with t to separate t� from r in this graph�

If� for example b� d� and l are observed together with t and r� the extended
back�door formula ����� yields that the treatment e�ect is to be estimated
from complete data counts as

�p�xr jjx
�
t � �

X
xb�xl�xd

n�xr� xb� xd� xl�n�xl� x
�
t �

n�xb� xd� xl�n�x�t �
�p�xb� xd��

where the latter probability ideally should be estimated by taking into ac�
count the relevant restrictions induced by the model� rather than using the
empirical relative frequencies directly� We leave it to the reader to consider
estimation of treatment e�ects under di�erent observational schemes� �
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Figure ��� displays the situation in which the variable i is an instru�
mental variable or instrument for assessing the e�ect of t on r� This notion
is important in econometrics �Bowden and Turkington ��	�� Angrist� Im�
bens and Rubin ���
�� An instrumental variable is one which a�ects the
treatment� but is uncorrelated with unobserved factors� An instrumental
variable can be used to derive bounds for treatment e�ects as we shall show
in Section ������ below�
But here we show an inequality which provides a good example of the

restrictions that conditional independence constraints imply for marginal
distributions� More precisely� it holds for any discrete treatment variable
t that if the independence assumptions associated with the diagram in
Figure ��� hold� then

sup
xt

Z
xr

sup
xi

f�xr� xt jxi��r�dxr� � �� ������

where f is a generic symbol for the appropriate �conditional� density� This
instrumental inequality was apparently �rst derived by Pearl �����b� and
we give the �quite simple� proof below�
The conditional independence restrictions imply that

f�xr� xt jxi� �

Z
xu

p�xt jxi� xu�f�xr jxt� xu�Pu�dxu�� ����
�

where Pu denotes the marginal distribution of Xu and the remaining enti�
ties are appropriate densities� Since the treatment variable is discrete� we
have

p�xt jxi� xu� � �

and this must also hold for its supremum

h�xt� xu� � sup
xi

p�xt jxi� xu� � ��

Now we get from ����
� that

sup
xi

f�xr� xt jxi� �

Z
xu

h�xt� xu�f�xr jxt� xu�Pu�dxu�

�

Z
xu

f�xr jxt� xu�Pu�dxu��

wherebyZ
xr

sup
xi

f�xr� xt jxi��r�dxr� �

Z
xr

Z
xu

f�xr jxt� xu�Pu�dxu��r�dxr�

�

Z
xu

Z
xr

f�xr jxt� xu��r�dxr�Pu�dxu�

� ��

and ������ follows�
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The importance of the inequality ������ is that it makes the assumption
that i is an instrument falsi�able from observations of �Xi� Xt� Xr��
Note that the discreteness of the variable t is used at a very critical point

in the proof of ������� At the time of writing it is not known whether the as�
sumption of i being an instrument is falsi�able in the general case� In other
words� given an arbitrary joint distributionQ of variables �Xi� Xt� Xr�� does
there exist a random variable Xu and a distribution P of �Xu� Xi� Xt� Xr�
which is Markov with respect to the graph in Figure ��� and has Q as
its marginal to �Xi� Xt� Xr�� In the case where Q is multivariate Gaussian�
the answer to the last question is known to be positive� i�e� such a distri�
bution always exists and �instrumentality� is therefore not falsi�able in the
Gaussian case�

�� Structural equation models

As mentioned in Section ��
� the assumption that the intervention formula
����� applies is an additional model assumption that does not follow from
the basic axioms of probability� There are di�erent ways of justifying this
assumption and in any given context� subject matter knowledge must play
an essential r�ole in this justi�cation process�
A particular modelling formulation� leading to causal Markov models�

has documented its relevance in several areas of application� Structural
equation models �Bollen ��	�� were invented in the context of genetics
�Wright ����� ���� ���� � and exploited in economics �Haavelmo ����
Wold ����� and social sciences �Goldberger ������ see for example Pearl
����	� and Spirtes� Richardson� Meek� Scheines and Glymour ����	� for
further discussion�
They were used as the main justi�cation and motivation for studying

causal Markov models in Kiiveri� Speed and Carlin ���	�� and Kiiveri and
Speed ���	��� as well as in Pearl �����a� and Pearl �������
Most commonly� structural equation models have been assumed linear

although there are important exceptions �Goldfeld and Quandt ������ Here
we consider a general structural equation system associated with a directed
acyclic graph D� More precisely we consider a system of �equations�

Xv � gv�Xpa�v�� Uv�� v � V� ������

where the assignments have to be carried out sequentially� in a well�ordering
of the directed acyclic graph D� so that at all times� when Xv is about to be
assigned a value� all variables in pa�v� have already been assigned a value�
The variables Uv� v � V are assumed to be independent� In the liter�

ature� correlation is generally allowed among the �disturbances� Uv� Also
non�recursive systems are often studied� Such systems do not correspond to
directed Markov models and they are not studied here� Conditional inde�
pendence properties for cyclic linear structural equation systems have been
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studied� for example� by Spirtes ������� Richardson ����
�� Spirtes et al�
����	�� and Koster ����
� ����a� ����b��
The term �structural equation system� is really misplaced� and �structural

assignment system� would have been much more appropriate� Much contro�
versy in the literature� in particular concerning calculation of intervention
e�ects� is due to treating the assignment systems as equation systems� �solv�
ing� them and uncritically moving variables between the right�hand side and
the left�hand side of ������� In particular� this matters when interventions
are considered�
It is an important aspect of structural equation models that they also

specify the way in which intervention is to be carried out� As is implicit
in much literature and� for example� quite explicit in Strotz and Wold
���
��� the e�ect of the intervention Xa � x�a on a variable with label a is
simply that the corresponding line in ������ is replaced with the assignment
described by the intervention� We refer to this process as intervention by
replacement� Clearly� the justi�cation that this is a reasonable assumption
in any given context is no less di�cult than the direct justi�cation of the
causal Markov assumption� since the latter follows from ������� as stated
formally below�

Theorem ���� Let X � �Xv�v�V be determined by a structural equation
system corresponding to a given directed acyclic graph D and let P denote
its distribution� If intervention is carried out by replacement� then P is
causally Markov with respect to D�

Proof� Let the vertices of D be well�ordered as v�� � � � � vn so that the
assignments in ������ are carried out in the corresponding order� As the
variables Uvi are assumed independent� we clearly have

Uvi �� �Xv� � � � � � Xvi���

and thus� from �C�� and �C�

Uv ��Xpr�v� jXpa�v��

Using ������ with �C�� gives

Xv ��Xpr�v� jXpa�v��

i�e� the distribution of X satis�es the ordered directed Markov property
�DO�� Theorem ���� now yields that P is directed Markov on D�
As intervention in a structural equation system is made by replacement�

it is clear that all conditional distributions except those involving interven�
tions are preserved� Hence the intervention formula ����� applies� �

Note that neither the functions gv nor the random discturbances Uv are
uniquely determined from the distribution P � and not even if P is known
to be causally Markov� Thus assuming a speci�c structural equation model
������ is generally stronger � in a way which is typically not empirically



POTENTIAL RESPONSES AND COUNTERFACTUALS ��

testable � than just assuming the causal Markov property� as captured in
������
Some authors seem to prefer to use a structural equation model as jus�

ti�cation for the causal Markov property� rather than taking this property
as a primitive assumption that must stand usual scienti�c testing� In view
of the above� this may not be reasonable unless speci�c subject matter
knowledge naturally leads to such equations�

���� Potential responses and counterfactuals

As mentioned� any causal Markov model for a given DAG D can be repre�
sented by a structural equation system� although this can be done in many
di�erent ways�
One type of representation deserves particular attention� Observe �rst

that in each of the equations in ������� the values of Uv do not matter
beyond what they prescribe as values for gv� for each �xed value of pos�
sible parent con�gurations xpa�v�� Taking this to its consequence� we can
introduce maps �v

�v � Xpa�v� � Xv �

Then each pair �gv� uv� in ������ determines a map �v as

�v�xpa�v�� � gv�xpa�v�� uv�

and� conversely� for each set of maps �v � we can de�ne gv as

gv�xpa�v�� �v� � �v�xpa�v���

Denoting a random map by !v � we can thus de�ne a structural equation
system by

Xv � gv�Xpa�v��!v�� v � V�

and such a system is said to have canonical form� The random variables
!v�xpa�v�� describes the potential response� i�e� the value of Xv that would
have been observed� had the parent con�guration been equal to xpa�v�� In
this sense� the sets of random variables

f!v�xpa�v�� � xpa�v� � Xpa�v�g

are counterfactual� The variables !v were calledmapping variables by Heck�
erman and Shachter �������
This approach to causal inference was for example used by Neyman

������ Rubin ������ ���	�� and Holland ���	
�� and it plays a funda�
mental r�ole in the methods developed by Robins ����
� ������ although it
is usually introduced in a slightly di�erent context� Counterfactual objects
have at all times been at the basis for causal reasoning �Lewis �����
Note that in the formulation given above� the variables !v are no more

and no less counterfactual than the � used when a random variable X is
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considered to be a deterministic function X��� of a random element �� This
has proved useful in many contexts� although it has also lead to paradoxes�
when consequences have been taken too far�
Dawid ������ argues strongly against the use of counterfactual random

variables as for any given individual it is impossible to observe more than
one of the variables !v�xpa�v��� the counterfactual variables are comple�
mentary� Thus it is dangerous to make assumptions concerning the joint
distribution of f!v�xpa�v�� � xpa�v� � Xxpa�v�g� as such distributions are
purely metaphysical� And� as it seems that all interesting results concern�
ing causal inference can be derived without counterfactuals� the pitfalls
associated with their use can be avoided�

	�	��	 Partial compliance revisited

In this section we show how to use counterfactual variables to get bounds
for treatment e�ects in the case of partial compliance� corresponding to
the situation displayed in Figure ���� Although as mentioned� the bound
can be derived without using conterfactual random variables� they seem to
yield a simple method for deriving these bounds in the present example�
With the same notation as earlier� we are interested in the intervention

probabilities

p�xr jjx
�
t � �

Z
xu

p�xr jxt� xu�Pu�dxu�� ����	�

However� only joint observations of a� t� and r are possible� Assuming that
we have an in�nite sample� we can observe all combinations of

p�xr � xt jxa� �

Z
xu

p�xr jxt� xu�p�xt jxa� xu�Pu�dxu�� ������

As neither of the back�door or front�door criterions apply� the treatment
e�ect appears not to be identi�able� but it is possible to derive bounds for
the intervention probabilities in ����	� subject to the �constraints� given in
�������
For simplicity we assume that all observed values are binary taking the

values � or �� In this case there are a total of six independent constraints�
three for each group of treatment assignment�
Bounds for the probabilities involved can be derived in many ways� For

example� the bounds ������ derived for instrumental variables apply to the
observed frequencies here since a is indeed an instrument� Thus this part of
the assumptions can and should be checked with observed data� Bounds for
treatment e�ects were also derived by Robins ���	�� and Manski �������
However� it is not always easy to check that the bounds derived are sharp
and indeed Balke and Pearl ������ ����� derive sharper bounds and show
that the bounds cannot be improved� Their argument is based upon the
use of counterfactual variables and we shall sketch their argument below�
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It may be illuminating to phrase the arguments in terms of the example
also considered by Imbens and Rubin ������ and Balke and Pearl �������
The example considered is thus the study of the e�ects on child mortality of
vitamin A supplementation in Sumatra� as described by Sommer� Tarwotjo�
Djunaedi� West� Leodin� Tilden and Mele ���	
� and Sommer and Zeger
�������
Also here the �rst part of the argument is that it is not the value or

nature of Xu that matters� but only the way in which it a�ects the two
responses t and r� Thus � as was also done by Imbens and Rubin ������
� we can without loss of generality assume that the unobserved variable
is the pair of potential responses � � ��t� �r�� where �t�xa� denotes the
treatment taken by an individual with assigned treatment xa� and �r�xt�
indicates the response of an individual with treatment xt�
Each of the potential response variables varies in a space of four elements�

so the unobserved variable � has a total of �
 possible values� The four
values of the �rst variable �t may well be called

falways taker� never taker� complier� de�erg�

so that we have always taker �xa� � �� where � denotes that vitamin A is
taken� complier �xa� � xa etc� Similarly the four values of �t may be called

falways cured� never cured� bene�cial� damagingg�

In these terms we can rewrite the equations ����	� and ������ as

p�xr jjx
�
t � �

X
�

p�xr jxt� ��p���� �����

and

p�xr � xt jxa� �
X
�

p�xr jxt� ��p�xt jxa� ��p���� �����

The di�erence between these and those above are that the conditional prob�
abilities in ����� and ����� are known and equal to one or zero� Thus the
problem of �nding bounds can be solved by linear programming methods
that also identify the best possible bounds� If we let pij�k � p�ir� jt j ka�
and qij � p�ir jj ja�� the bounds were found to be

p����
p����

p���� " p���� � p���� � p����
p���� " p���� � p���� � p����

����
���
� q�� �

����
���

�� p����
�� p����

p���� " p���� " p���� " p����
p���� " p���� " p���� " p����

and the remaining bounds are obtained by suitable index substitution�
The bounds turn out to be quite wide in the example mentioned and thus

the analysis is inconclusive in this case� Imbens and Rubin ������� make a
full Bayesian analysis of the model� by imposing prior assumptions on the
distribution of the potential responses� and thereby obtains the conclusion
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that the e�ect of vitamin A is bene�cial on average� However� such prior
assumptions are untestable and may therefore be questionable� See also
Chickering and Pearl ������ for a further discussion of this example�
As demonstrated in Balke and Pearl ������� the bounds are sometimes

tight and sharp conclusions therefore available� This holds for example for
data concerning lipids and coronary heart disease analysed by Efron and
Feldman �������

���� Other issues

	�		�	 Extension to chain graphs

The intervention calculus can be extended to more general graphical models
than those given by directed acyclic graphs� Chain graph models are given
by graphs that have both directed and undirected links� but no cycles that
can be traversed only in one direction without going against the arrows�
The chain components T of such graphs are undirected graphs that are

obtained by removing all directed arrows from a chain graph� They nat�
urally unify directed acyclic graphs and undirected graphs in that undi�
rected graphs are chain graphs with only one chain component� and di�
rected acyclic graphs are chain graphs with all chain components being
singletons� There is a corresponding set of Markov properties associated
with chain graphs �Frydenberg ����a� Lauritzen ���
�� In terms of factor�
ization� the chain graph Markov property manifests itself through an outer
factorization

f�x� �
Y
��T

f
	
x� jxpa���



� �����

where each factor further factorizes according to the graph G���� as

f
	
x� jxpa���



� Z��

	
xpa���


 Y
A�A���

�A�xA�� ����

where A��� are the complete sets in G���� and

Z
	
xpa���



�
X
x�

Y
A�A���

�A�xA��

The graph G���� is obtained from G��pa��� by dropping directions on edges
and adding edges between any pair of members of pa����
If the intervention X� � x�� is made� the corresponding intervention

formula can be argued to be

p�x jjx��� �
p�x�P

y�� �y��x
�
�

p�y�� jxpa�����

�����
x��x��

�����

where �� is the chain component including �� This formula specializes to
����� in the fully directed case and ������ in the undirected case� This
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intervention formula corresponds to the analogy with decision networks
based on chain graphs as discussed in Cowell et al� ������� Lauritzen and
Richardson ������ are investigating dynamic regimes that lead to such an
intervention calculus and their potential use as an alternative interpretation
of simultaneous equation systems�

	�		�� Causal discovery

Another and more controversial aspect of causal inference from graphical
models is associated with identifying causal relationships from data� Ever
since the appearance of Glymour� Scheines� Spirtes and Kelly ���	�� and
the �rst version of the corresponding program TETRAD� this has been the
subject of sometimes quite heated discussions �Freedman ����� Humphreys
and Freedman ���
� Robins and Wasserman ����� Glymour� Spirtes and
Richardson ����� Humphreys and Freedman ������
Basically there have been two di�erent types of approach� The constraint�

based approach �Spirtes et al� ���� is generally conceived to take place
in an ideal environment where the joint distribution P of a system X of
random variables is known completely without error� whereas the causal
graph D which has generated the distribution is unknown�
Apart from the assumption that such a causal directed acyclic graph D

exists� it is also assumed that P is faithful to D� in other words there are no
conditional independence relationships between the variables that do not
follow from the directed Markov property�

A��B jS � A�D B jS�

As previously mentioned� results of Meek ������ indicate that most distri�
butions are indeed faithful�
On the assumption above� Spirtes et al� ����� provide several algorithms

that from a relatively modest number of tests identi�es the causal graph
up to Markov equivalence� i�e� produce a graph D� with the property that
for all disjoint subsets A� B� and S of V

A�D� B jS � A�D B jS � A��B jS�

They also give variants of these algorithms that do not assume the entire
system of variables to be observed� These results are supplemented with
conditions for identi�ability of causal e�ects and give methods for identi�
fying causal e�ects that remain invariant over such an equivalence class�
Richardson and Spirtes ������ extend the approach to situations involv�

ing feedback�
Little has been done to explore the statistical properties of these and

similar methods applied to cases where knowledge about the distribution
of X is only obtained through �nite samples� Although Spirtes et al� �����
contains a small simulation study� this area deserves to be better explored�
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Another line of this research is based on a pure Bayesian approach to
learning the structure of a Bayesian network� as initiated by Cooper and
Herskovits ������ and Heckerman� Geiger and Chickering ������� This ap�
proach has been further pursued by Heckerman� Meek and Cooper �������
See Cooper ������ for an overview of the current state of the art within

this area�
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