BIOINFORMATICS CENTRE UNIVERSITY OF COPENHAGEN

BLAST, gapped BLAST and PSI-BLAST

Overview

- Quick repetition of pairwise alignment
- Statistical fundament of BLAST
- The basic BLAST algorithm
- Gapped BLAST
- PSI-BLAST

Pairwise alignment

- Global alignment
 - Needleman-Wunsch
- Local Alignment
 - Smith-Waterman
- Dynamic programming, fill out matrix
- Find optimal solution
- Time complexity: O(mn)

- Heuristic method
- Fast search through large databases
- Good but not necessarily best solution
- Skip explicit search of the entire matrix
- Extensions:
 - Faster
 - Include gaps
 - Use position-specific scoring matrices

Statistical fundament

Recall random walks and extreme value distributions

Assumption: Independet background distribution of amino acids, P_i

 s_{ij} denote the score of aligning AAs i and j

The expected score must be negative

$$\sum_{i} P_i P_j s_{ij} < 0$$

(cf. random walks – else drift to infinity)

Statistical fundament

Given P_i and s_{ij} , derive parameters λ and KLet S be the nominal score of a sequence pair. The **normalized score** in *bits* is:

$$S' = \frac{\lambda S - \ln K}{\ln 2}$$

The number *E* of **chance occurrences** of pairs giving *S*' is approximated by:

$$E = \frac{mn}{2^{S'}}$$
 or $S' = \lg\left(\frac{mn}{E}\right)$

Statistical fundament

The target frequency of aligned pairs:

$$q_{ij} = P_i P_j e^{\lambda_u s_{ij}}$$
 or $s_{ij} = \frac{\ln(q_{ij} / P_i P_j)}{\lambda_u}$

Note: Makes it possible to scale scores to fit desired frequencies q_{ii}

All this holds only when not using gaps

Expected to hold for gaps as well when costs are sufficiently large

Basic Local Alignment Search Tool

Brief repetition of basic BLAST:

Fast search for local ungapped alignments

W: Word size – find W-mers in target/query

T: Threshold – focus on pairs scoring >T

X: Drop-off – stop extending when loss >X

S: Score – the final score of segment pair

Look for high scoring words of length W Compile list L of all W-mers that score >Twith some word in query sequence Scan database for words in L When some word found: Extend alignment When score drops more than X below hitherto best score stop extension Report all words with large score S

- If W too large: Too many words in L
 - or too few
- If T too large: Too restrictive search
 - or too many extensions
- Choose cut-off for relevant hits
- High-scoring Sequence Pairs (HSPs)
- It turns out that >90% computation time is in extending hits!

The goal: Faster algorithm
Reduce number of extensions
Observation:

- HSP much longer than W
- often contains more than one word-pair

Idea: Focus on two or more words on same diagonal

How to do it:

- For each hit, remember diagonal position
 - If overlapping: Ignore
 - If distance to previous hit < A: Extend</p>
- Must lower T to get same sensitivity
 - Many more single hits
 - Only a few are extended due to diagonal constraint

Evaluation:

Generate 100,000 model HSPs

Check for hits > T

W=3, T=13

W=3, T=11, A=40

For S≥33, two-hits more sensitive

Test on real data:

15 hits with T≥13 (+)

Additional:

22 hits with T≥11 (•)

One-hit extends all 15

Two-hit extends 2 pairs

More hits, fewer extensions

How to let BLAST find gapped alignments?

Already implicit 'gapped' alignment:

When more HSPs in same sequence → assess combined result

If one HSP is missed the combined result might be missed, too

Lower T needed – large execution time

New idea: Introduce a moderate score S_q If HSP exceeds S_q start gapped extension Choose S_g to trigger ~ 1 extension per 50 sequences in database ($S_q \approx 22$ bits) Costly operation but few of them

Gapped extension based on a single HSP – we may tolerate missing more HSPs

Raise T

New algorithm:

Two-hit method: Two words of score ≥*T* trigger ungapped extension

If HSP scores $\geq S_g$, start gapped extension

Report final alignment if significant (low E-value)

How to construct gapped local alignment? Standard way:

Limit search to a banded matrix

 Gapped extension may stray outside band Instead use standard BLAST procedure:

Look in cells where the score drops no more than X_q

But how to begin...

Use central aligned pair as seed

Heuristic: Find length-11 segment with highest score. Use central pair

Extend forward and backward


```
Leghemoglobin 43 FSFLKDSAGVVDSPKLGAHAEKVFGMVRDSAVQLRATGEVV--LDGKDGS----- 90
F L + V+ +PK+ AH +KV L + GE V LD G+

Beta globin 45 FGDLSNPGAVMGNPKVKAHGKKV-------LHSFGEGVHHLDNLKGTFAALSE 90

Leghemoglobin 91 IHIQKGVLDP-HFVVVKEALLKTIKEASGDKWSEELSAAWEVAYDGLATAI 140
+H K +DP +F ++ L+ + G ++ EL A+++ G+A A+

Beta globin 91 LHCDKLHVDPENFRLLGNVLVVVLARHFGKDFTPELQASYQKVVAGVANAL 141
```

This result is not found by standard BLAST

Combined result of first and last HSP gives E-value 31

Gapped BLAST:

S=32.4 bits

E=0.54

What about spurios hits? Does that give extra work?

No: Score decays fast Small part of matrix explored

New version faster. Relative times:

	BLAST	Gapped BLAST
Overhead	8 (8%)	8 (24%)
Extend?	_	12 (37%)
Ungapped	92 (92%)	5 (15%)
Gapped	-	8 (24%)
	100	33

What about the parameters λ and K?
Cannot be estimated during execution since BLAST looks at only some sequences
No theory covers gapped alignments
Use estimations made in advance
Drawback: Cannot use arbitrary scoring systems

PSI-BLAST

Position Specific Iterated BLAST

Use sequence information to build positionspecific scoring matrices

Readers of X-Men will know that psy blasts are

something else entirely ...

PSI-BLAST

More sensitive procedure Each iteration a little slower Issues:

- i) Architecture of score matrix
- ii) Construction of multiple alignment
- iii) Sequence weights
- iv) Target frequencies and scores
- v) Applying BLAST to scoring matrices

PSI-BLAST: Architecture

Automated generation is difficult Boundaries, many motifs, subsets...

- 1) Length of query determines dimensions
- 2) No position-specific gap cost
 - No theory for deriving gap costs from M
 - Estimate statistical significance

So they build a L×20 scoring matrix

PSI-BLAST: Constructing M

Collect BLAST output with *E*<0.01 Remove similar sequences

- Sequences identical to query segments
- Only one copy of sequences >98% similarity

Local alignment → varying number of sequences per column

No true multiple alignment methods

PSI-BLAST Constructing M

Reduce M to M_C :

Treat columns independently

For each column C: Let R be the set of sequences with a residue in C

The columns of M_C :
Columns from M with
all sequences in RNow: Characters in

all positions

PSI-BLAST: Weights

Weighting needed to avoid bias Many methods, roughly same results

Voronoi, maximum entropy, position based
 Information content

N_C: Number of independent observations
 Simple estimate: Mean number of different residues in each column

PSI-BLAST: Target frequencies

Many methods for creating scoring matrices Good theoretical foundation:

$$\log(Q_i/P_i)$$

 P_i : Background. How to estimate Q_i ?

Pseudocount frequencies g_i for column C

 f_j : Observed frequency, q_{ij} : Implicit target (7)

$$g_i = \sum_{j} \frac{f_j}{P_i} q_{ij}$$

PSI-BLAST: Target frequencies

Weight observed and pseudocount freq's $\alpha = N_C - 1$ $\beta = 10$ (empirical)

Now Q_i is given as:

$$Q_i = \frac{\alpha f_i + \beta g_i}{\alpha + \beta}$$

This makes it possible to build a matrix But how to use it with BLAST...

PSI-BLAST: Application

Minor modifications to

- find words in query matrix
- find hits
- extend hits (gapped and ungapped)

But what about the parameters T and X_g ?

Test whether the scale λ_u of the matrix corresponds to the scale of s_{ij}

If similar: Probably the same scale λ_g

PSI-BLAST: Application

Test the hypothesis:

Construct matrix by BLASTing length-567 influenza A virus hemagglutinin precursor Compare to 10,000 random sequences Plot local alignment score versus count Fit best extreme value distribution

$$\lambda_g = 0.251$$
 $K_g = 0.031$

PSI-BLAST: Application

Good fit to data

Supported by other experiments

Generally: Less than 2% deviation when using precomputed parameters

Create scoring matrix for 11 families Compare to shuffled SWISS-PROT Record:

- Lowest E-value
- No. of sequences with E≤1 and E≤10

BLAST, gapped BLAST and PSI-BLAST

Within uncertainties of the theory PSI-BLAST can automate the procedure Beware of including used sequences

Protein family	SWISS-PROT	Original BLAST		Gapped I	Gapped BLAST			PSI-BLAST		
	accession no.	Low	No. of	seqs	Low	w No. of seqs		Low	No. of seqs	
	of query	E-value	with E-value		E-value	with <i>E</i> -value		E-value	with E-value	
			≤1	≤10		≤1	≤10		≤1	≤10
Serine protease	P00762	0.86	1	7	3.0	0	4	0.94	1	8
Serine protease inhibitor	P01008	3.9	0	4	0.078	1	9	1.5	0	9
Ras	P01111	3.4	0	8	3.4	0	7	1.1	0	9
Globin	P02232	2.4	0	7	2.8	0	5	8.2	0	2
Hemagglutinin	P03435	0.11	2	11	0.46	3	16	0.87	1	8
Interferon α	P05013	2.4	0	6	0.27	2	4	0.11	2	11
Alcohol dehydrogenase	P07327	1.5	0	2	0.80	1	5	1.5	0	9
Histocompatibility antigen	P10318	0.91	1	7	0.13	1	7	0.0031	2	6
Cytochrome P450	P10635	0.84	2	5	8.5	0	3	0.46	1	15
Glutathione transferase	P14942	1.0	1	10	3.3	0	3	0.30	2	9
H ⁺ -transporting ATP synthase	P20705	0.012	1	8	0.26	2	14	0.79	2	10
Average (median or mean)		1.0	0.7	6.8	0.80	0.9	7.0	0.87	1.0	8.7

Compare sensitivity and speed of

- Smith-Waterman
- Original BLAST
- Gapped BLAST
- PSI-BLAST (1 iteration)

All but one are true homologs PSI-BLAST is faster and more sensitive Other BLAST algorithms good as well

Protein family	Query	Smith-Waterman	Original BLAST	Gapped BLAST	PSI-BLAST
Serine protease	P00762	275	273	275	286
Serine protease inhibitor	P01008	108	105	108	111
Ras	P01111	255	249	252	375
Globin	P02232	28	26	28	623
Hemagglutinin	P03435	128	114	128	130
Interferon α	P05013	53	53	53	53
Alcohol dehydrogenase	P07327	138	128	137	160
Histocompatibility antigen	P10318	262	241	261	338
Cytochrome P450	P10635	211	197	211	224
Glutathione transferase	P14942	83	79	81	142
H+-transporting ATP synthase	P20705	198	191	197	207
Normalized running time		36	1.0	0.34	0.87

Conclusions

- The two-hit method improves speed
- Gapped BLAST is fast
- PSI-BLAST finds weak homologs fast
- The theory can be extended

Future work

- Gap costs: Generalized affine gap cost
- Input scoring matrices to PSI-BLAST
 - Problems with parameters
- More refined multiple alignment
 - Use most significant hits
 - Rescore and realign sequences
 - Iterate