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Preface

These lecture notes were collected over the years 2007-2011 for a course on statistics for
Master students in Bioinformatics or eScience at the University of Copenhagen. The present
introduction to statistics is a spin-off from a set of more theoretical notes on probability
theory and statistics. For the interested, they can found here:

http://www.math.ku.dk/~richard/courses/StatScience2011/notes.pdf

The present set of notes is designed directly for seven weeks of teaching, and is no more than
a commented version of slides and R-programs used in the course. The notes are supposed to
be supplemented with Peter Dalgaards book, Introductory Statistics with R (ISwR), second
edition. That book covers in detail how to use R for doing standard statistical computations.

Each chapter in the notes corresponds to a week and each section corresponds to a lecture
begining with a list of keywords and a reference to corresponding material in ISwR.
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Chapter 1

First Week

1.1 R and neuron interspike times

Keywords: Densities, Neuron interspike times, The exponential distribution, The R language.

ISwR: 1-39

1.1.1 The R language is

• a giant calculator,

• a programming language for statistics,

• a huge library of packages for statistical computations and a lot more,

• a scripting and plotting system,

• expressive and fast to develop in for small to medium sized projects.

The R language was developed specifically for statistical data analysis and is today used by
millions. It is just another interpreted language. An obvious alternative is Python, which is
the preferred interpreted language by many computer scientists.

R has become the de facto standard for statistical computing in academia and many new
methods in statistics are available for the user as R packages. There are widely accepted
standards for data structure and method interfaces, which makes it easier to expand ones
toolbox and include new methods in a computational pipeline.

You will need

• the R distribution itself, http://www.r-project.org/,

• preferably an integrated development environment (IDE), and RStudio is recommended,
http://www.rstudio.org/,

• and if you want to use Sweave or Knitr you will need a working LATEX installation.

9
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On Windows and Mac the R distribution comes with a “GUI”, which does do the job as
an IDE for some purposes. On GNU/Linux you just get the command prompt and need at
least an editor. A number of editors support the R language.

This author has used Emacs with ESS (Emacs Speaks Statistics) for the daily work for a
number of years, but it is mostly a matter of taste and habit. The recent RStudio IDE looks
as a promising alternative.

The fundamental concepts that you need to learn are:

• Data structures such as vectors, lists and data frames.

• Functions and methods in three categories:

– mathematical functions to transform data and express mathematical relations,

– statistical functions to fit statistical models to data,

– and graphical functions for visualization.

• Programming constructs.

1.1.2 R interlude: Data structures

A fundamental data structure is a vector. In fact, there is not a more fundamental data
structure. If you want just a single number stored in R it is, in fact, a vector of length 1.
This is good and bad.

x <- 1.0 ## Being explicit, we want a double, not an integer

typeof(x)

## [1] "double"

class(x)

## [1] "numeric"

is.vector(x)

## [1] TRUE

length(x)

## [1] 1

y <- 2L ## Being explicit, we want an integer, not an double

typeof(y)

## [1] "integer"
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class(y)

## [1] "integer"

is.vector(y)

## [1] TRUE

One of the advantages of R for rapid programming is that R is not a strongly typed language,
and you can do loads of things without having to worry much about types, and there is a
range of automatic type casting going on behind the scene. You can, for instance, easily
concatenate the two vectors above.

z <- c(x, y)

typeof(z)

## [1] "double"

class(z)

## [1] "numeric"

z[1] ## The first entry, equals x

## [1] 1

z[2] ## The second entry, equals y but now of class numeric.

## [1] 2

identical(z[1], x)

## [1] TRUE

identical(z[2], y) ## This is FALSE, because of the difference in class.

## [1] FALSE

length(z)

## [1] 2

All mathematical functions and arithmetic operators are automatically vectorized, which
means that they are automatically applied entry by entry when called with vectors of length
> 1 as arguments.
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z + z

## [1] 2 4

exp(z)

## [1] 2.718 7.389

cos(z)

## [1] 0.5403 -0.4161

There are many built-in functions for easy computations of simple statistics.

mean(z)

## [1] 1.5

var(z)

## [1] 0.5

For storing data you will quickly need a data frame, which can be best thought of as a
rectangular data structure where we have one observation or one case per row and each
column represents the different measurements made per case (the variables).

x <- data.frame(height = c(1.80, 1.62, 1.96),

weight = c(89, 57, 82),

gender = c("Male", "Female", "Male")

)

There is a range of methods available for accessing different parts of the data frame:

x

## height weight gender

## 1 1.80 89 Male

## 2 1.62 57 Female

## 3 1.96 82 Male

dim(x) ## Number of rows and number of columns

## [1] 3 3

x[1, ] ## First row, a data frame of dimensions (1, 3)

## height weight gender

## 1 1.8 89 Male



1.1. R and neuron interspike times 13

x[, 1] ## First column, a numeric of length 3

## [1] 1.80 1.62 1.96

x[, "height"] ## As above, but column selected by name

## [1] 1.80 1.62 1.96

x$height ## As above, but column selected using the '$' operator

## [1] 1.80 1.62 1.96

x[1:2, ] ## First two rows, a data frame of dimensions (2, 3)

## height weight gender

## 1 1.80 89 Male

## 2 1.62 57 Female

x[, 1:2] ## First two columns, a data frame of dimensions (2, 3)

## height weight

## 1 1.80 89

## 2 1.62 57

## 3 1.96 82

x[, c("height", "gender")] ## As above, but columns selected by name

## height gender

## 1 1.80 Male

## 2 1.62 Female

## 3 1.96 Male

A very useful technique for dealing with data is to be able to filter the data set and extract
a subset of the data set fulfilling certain criteria.

subset(x, height > 1.75)

## height weight gender

## 1 1.80 89 Male

## 3 1.96 82 Male

subset(x, gender == "Female")

## height weight gender

## 2 1.62 57 Female

subset(x, height < 1.83 & gender == "Male")
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## height weight gender

## 1 1.8 89 Male

What formally happens to the second argument above, the ”filter”, is a little tricky, but the
unquoted name tags height and gender refer to the columns with those names in the data
frame x. These columns are extracted from x and the logical expressions are evaluated row-
by-row. The result is a data frame containing the rows where the evaluation of the logical
expression is TRUE. An equivalent result can be obtained ”by hand” as follows.

rowFilter <- x$height < 1.83 & x$gender == "Male"

length(rowFilter)

## [1] 3

head(rowFilter)

## [1] TRUE FALSE FALSE

class(rowFilter)

## [1] "logical"

x[rowFilter, ]

## height weight gender

## 1 1.8 89 Male

x[x$height < 1.83 & x$gender == "Male", ] ## A "one-liner" version

## height weight gender

## 1 1.8 89 Male

The only benefit of subset is that you don’t have to write x$ twice. With a longer, more
meaningful, name of the data frame this is actually a benefit, and it gives a more readable
filter.

The next data structure to consider is that of lists. A list is a general data container with
entries that can be anything including other lists.

x <- list(height = list(Carl = c(1.69, 1.75, 1.80),

Dorthe = c(1.56, 1.62),

Jens = 1.96),

weight = list(Carl = c(67, 75, 89),

Dorthe = c(52, 57),

Bent = c(74, 76),

Jens = 82)

)

x[1] ## First entry in the list, a list of lists
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## $height

## $height$Carl

## [1] 1.69 1.75 1.80

##

## $height$Dorthe

## [1] 1.56 1.62

##

## $height$Jens

## [1] 1.96

x["height"] ## As above, but entry selected by name

## $height

## $height$Carl

## [1] 1.69 1.75 1.80

##

## $height$Dorthe

## [1] 1.56 1.62

##

## $height$Jens

## [1] 1.96

x[[1]] ## First entry in the list, a list

## $Carl

## [1] 1.69 1.75 1.80

##

## $Dorthe

## [1] 1.56 1.62

##

## $Jens

## [1] 1.96

x[["height"]] ## As above, but entry selected by name

## $Carl

## [1] 1.69 1.75 1.80

##

## $Dorthe

## [1] 1.56 1.62

##

## $Jens

## [1] 1.96
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1.1.3 Neuron interspike times

We measure the times between spikes of a neuron in a steady state situation.

The figure is from Cajal, S. R. (1894), Les nouvelles idées sur la structure du systéme nerveux
chez l’homme et chez les vertébrés. It illustrates five neurons in a network from the Cerebral
Cortex.

Neuron cells in the brain are very well studied and it is known that neurons transmit elec-
trochemical signals. Measurements of a cells membrane potential show how the membrane
potential can activate voltage-gated ion channels in the cell membrane and trigger an elec-
trical signal known as a spike.

At the most basic level it is of interest to understand the interspike times, that is, the times
between spikes, for a single neuron in a steady state situation. The interspike times behave in
an intrinsically stochastic manner meaning that if we want to describe the typical interspike
times we have to rely on a probabilistic description.

A more ambitious goal is to relate interspike times to external events such as visual stimuli
and another goal is to relate the interspike times of several neurons.

Neuron interspike times

What scientific objectives can the study of neuron interspike times have?

• The single observation is hard to predict and is a consequence of the combined behavior
of a complicated system – yet the combined distribution of interspike times encode
information about the system.

• Discover characteristics of the collection of measurements.

• Discover differences in characteristics that reflect underlying differences in the bio-
physics and biochemistry.
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Neuron interspike times

We attempt to model the interspike times using the exponential distribution, which is the
probability distribution on [0,∞) with density

fλ(x) = λe−λx, x ≥ 0

where λ > 0 is an unknown parameter.

The interpretation is that the probability of observing an interspike time in the interval [a, b]
for 0 ≤ a < b is

P ([a, b]) =

∫ b

a

λe−λxdx

=

There is one technical detail. The probability of the entire positive halfline [0,∞) should
equal 1. This is, indeed, the case,

∫ ∞

0

λe−λxdx = −e−λx
∣∣∣
∞

0
= 1.

For the last equality we use the convention e−∞ = 0 together with the fact that e0 = 1.

Mean

The mean of the theoretical exponential distribution with parameter λ > 0 is

µ =

∫ ∞

0

xλe−λxdx =
1

λ

The empirical mean is simply the average of the observations in a data set x1, . . . , xn

µ̂ =
1

n

n∑

i=1

xi.

Equating the theoretical mean equal to the empirical mean gives us an estimate of λ,

λ̂ =
1

µ̂
.

The derivation of the formula above for the mean is by partial integration

µ =

∫ ∞

0

xλe−λxdx

= xe−λx
∣∣∣
∞

0
+

∫ ∞

0

e−λxdx

= − 1

λ
e−λx

∣∣∣
∞

0
=

1

λ
.
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The idea of equating an empirical, observable quantity equal to a theoretical quantity and
then solve for unknowns is as old as quantitative sciences, and yet the idea is one of the
fundamental ideas in statistics. There are, however, many equations and many observables
(or quantities that are directly computable from observables), so which to choose? One of
the noble objectives of statistics is to make the ad hoc procedure less ad hoc and more
principled, and, what is more important, to give us the tools to understand the merits of
the procedure – surely, the value of the parameter we have computed is an approximation,
and estimate, but how good an approximation is it? What would, for instance, happen, if
we were to repeat the experiment?
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Figure 1.1: Histogram (left) and kernel density estimate (right) for a data set with 312
neuron interspike times. The actual data points are included as small marks at the x-axis.
The estimated density for the exponential distribution is superimposed (red). The estimate

of λ is λ̂ = 1.147

Model control

The histogram or kernel density estimate is a direct estimate, f̂ , of the density, f , of the
distribution of interspike times without a specific (parametric) model assumption.

To check if the exponential distribution is a good model we can compare the density of the
estimated exponential distribution

λ̂e−λ̂x

to the histogram or kernel density estimate f̂ .

We will see other methods later in the course that are more powerful for the comparison of
a theoretical distribution and a data set.

1.1.4 R interlude: First view on neuron data

Reading data in as a vector.
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neuron <- scan("http://www.math.ku.dk/~richard/courses/StatScience2011/neuronspikes.txt")

Printing the entire data vector is rarely useful, but it may be useful to print the head or tail
of the vector or compute some summary information.

head(neuron)

## [1] 0.08850 0.08985 0.09330 0.10650 0.13005 0.13245

tail(neuron)

## [1] 3.011 3.266 3.341 3.633 4.251 5.090

summary(neuron)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.088 0.314 0.585 0.872 1.220 5.090

length(neuron)

## [1] 312

Some technical information on the R object neuron that holds the data can also be useful.

typeof(neuron)

## [1] "double"

class(neuron)

## [1] "numeric"

The next thing to do is to try to visualize the distribution of the interspike times of neurons.
A classical plot is the histogram. Here with the actual observations added on the x-axis as
a rug-plot.

hist(neuron, prob = TRUE) ## 'prob = TRUE' makes the histogram comparable

rug(neuron) ## to a density.

An alternative to a histogram is a kernel density estimate. Here we explicitly specify the
left-most end point as 0 because interspike times cannot become negative. See Figure 1.1.

neuronDens <- density(neuron, from = 0)

plot(neuronDens, ylim = c(0, 1))

rug(neuron)
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The function plot above is a so-called generic function. What it does depends on the class
of the object it takes as first argument.

class(neuronDens)

## [1] "density"

The object is of class density, which means that an appropriate method for plotting objects
of this class is called when you call plot above. In a technical jargon this is S3 object
orientation in R. It is not something that is important for learning R in the first place,
but it does explain that plot seems to magically adapt to plotting many different ”things”
correctly.

We compute the ad hoc estimator of λ and add the resulting estimated density for the
exponential distribution to the plot of the kernel density estimate. See Figure 1.1.

lambdaHat <- 1 / mean(neuron)

plot(neuronDens, ylim = c(0, 1))

rug(neuron)

curve(lambdaHat * exp(- lambdaHat * x), add = TRUE, col = "red")

We can also turn back to the histogram and add the estimated density for the exponential
distribution to the histogram. See Figure 1.1.

hist(neuron, prob = TRUE, ylim = c(0, 1))

rug(neuron)

curve(lambdaHat * exp(- lambdaHat * x), add = TRUE, col = "red")

The histogram shows no obvious problem with the model, but using the kernel density
estimate it seems that something is going on close to 0. To get an idea about whether this
is due to problems with the fit or a peculiarity of the density estimate because we truncate
at 0 we make a simulation.

neuronSim <- rexp(n = length(neuron),

rate = lambdaHat)

plot(density(neuronSim, from = 0), ylim = c(0, 1))

rug(neuronSim)

lambdaHat2 <- 1 / mean(neuronSim)

curve(lambdaHat2 * exp(- lambdaHat2 * x), add = TRUE, col = "red")
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It does seem from this figure that even with simulated exponentially distributed data the
kernel density estimate will decrease close to 0 as opposed to the actual density.

1.2 Continuous distributions

Keywords: Continuous probability distributions, density, descriptive methods, distribution
function, frequencies, normal distribution, quantiles.

ISwR: 55-75

Exponential neuron interspike time model

With the exponential distribution as a model of the interspike times for neurons

• the parameter λ is called the intensity or rate parameter. A large λ corresponds to a
small theoretical mean of the interspike times,

• and since

P ([0, x]) = 1− e−λx

is increasing as a function of λ for fixed x the larger λ is the larger is the probability
of observing an interspike time smaller than a given x.

Thus λ controls the frequency of neuron spikes in this model.

Exponential neuron interspike time model

If two different neurons share the exponential distribution as a model but with different
values of λ, the λ parameters carry insights on the differences – the neurons are not just
different, but the difference is succinctly expressed in terms of the difference of the λ’s.
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If we estimate λ for the two neurons we can try to answer questions such as

• Which neuron is the slowest to fire?

• Are the neurons actually different, and if so how does that manifest itself in terms of
the model?

The distribution function

Recall that for the exponential distribution on [0,∞) with density λe−λx the probability of
[0, x] is, as a function of x,

F (x) =

∫ x

0

λe−λxdx = 1− e−λx.

We call F the distribution function. It is

• a function from [0,∞) into [0, 1],

• monotonely increasing,

• tends to 1 when x tends to +∞ (becomes large).
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Figure 1.2: The density (left) and the distribution function (right) for the exponential
distribution with intensity parameter λ = 1.

Empirical distribution function

For our neuron data set x1, . . . , xn we can order the observations in increasing order

x(1) ≤ . . . ≤ x(n)
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and define the empirical distribution function as

F̂ (x) =
i

n

if x(i) ≤ x < x(i+1). Thus F̂ (x) is the relative frequency of observations in the data set
smaller than or equal to x. The frequency interpretation of probabilities says that the relative
frequency is approximately equal to the theoretical probability if n is large.
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Figure 1.3: The empirical distribution function (black) for the neuron data plotted in R using
plot with type = "s" (left) and using the ecdf function (right). The estimated distribution
function for the exponential distribution is superimposed (red).

The probability model is an idealized object, whose real world manifestations are relative
frequencies. We only “see” the distribution when we have an entire data set – a single
observation will reveal almost nothing about the distribution. With a large data set we see
the distribution more clearly (the approximation becomes better) than with a small data
set.

The frequency interpretation is one interpretation of probabilities among several. The most
prominent alternative is the subjective Bayesian. We have more to say on this later in the
course. What is important to know is that, disregarding the interpretation, the mathematical
theory of probability is completely well founded and well understood. How probability models
should be treated when they meet data, that is, how we should do statistics, is a little more
tricky. There are two major schools, the frequentistic and the Bayesian. We will focus on
methods based on the frequency interpretation in this course.

Note that an alternative way to write the empirical distribution function without reference
to the ordered data is as follows:

F̂ (x) =
1

n

n∑

i=1

1(xi ≤ x).

Here 1(xi ≤ x) is an indicator, which is 1 if the condition in the parentheses holds and 0
otherwise. Thus the sum counts how many observations are smaller than x.
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Quantiles

The distribution function for the exponential distribution gives the probability of intervals
[0, x] for any x. Sometimes we need to answer the opposite question:

For which x is the probability of getting an observation smaller than x equal to 5%?

If q ∈ [0, 1] is a probability (5%, say) we need to solve the equation

1− e−λx = q

in terms of x. The solution is

xq = − 1

λ
log(1− q).

We call xq the q-quantile for the exponential distribution with parameter λ > 0.

If q = 1 we allow, in principle, for the quantile +∞, but generally we have no interests in
quantiles for the extreme cases q = 0 and q = 1.

The quantile function

We call the function

F−1(q) = − 1

λ
log(1− q)

the quantile function for the exponential distribution. It is the inverse of the distribution
function.

Empirical Quantiles

If we order the observations in our neuron interspike time data set in increasing order

x(1) ≤ x(2) ≤ . . . ≤ x(n)

with n = 312 there is a fraction of i/n observations smaller than or equal to x(i).

We will regard x(i) as an empirical approximation of the i−0.5
n -quantile for i = 1, . . . , n.

QQ-plot

A QQ-plot of the data against the theoretical exponential distribution is a plot of

(
F−1

(
i− 0.5

n

)
, x(i)

)
,

and if the data are exponentially distributed with distribution function F , these points
should be close to a straight line. Since

F−1(q) = − 1

λ
log(1− q)

changing λ only affects the slope of the line, and we typically use the plot with λ = 1.
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Figure 1.4: Neuron data model control. The PP-plot (left) and the QQ-plot (right) both show
problems with the model. On the PP-plot we see this as deviations from the straight line in
the bottom left. The QQ-plot is in itself OK in the sense that the points fall reasonably well
on a straight line, but for the exponential model the line added with slope λ̂ and intercept
0 does not match the points. We will follow up on these issues later in the course. For now,
we just note that the exponential distribution may not be a perfect fit to the data.

QQ-plots, or Quantile-Quantile plots, are very useful as a tool for visually inspecting if
a distributional assumption, such as the exponential, holds. We usually don’t plug in the
estimated λ but simply do the plot taking λ = 1. We then focus on whether the points fall
approximately on a straight line or not. This is called model control and is important for
justifying distributional assumptions. As we will see later, the parameter λ is an example
of a scale parameter. One of the useful properties of QQ-plots, as we observed explicitly
for the exponential distribution, is that if the distributional model is correct up to a scale-
and location-transformation then the points in the QQ-plot should fall approximately on a
straight line.

1.2.1 R interlude: Neuron model control.

The empirical distribution function. See Figure 1.3.

neuron <- scan("http://www.math.ku.dk/~richard/courses/StatScience2011/neuronspikes.txt")

n <- length(neuron)

lambdaHat <- 1/mean(neuron)

eq <- sort(neuron) ## Ordered observations (empirical quantiles)

plot(eq, (1:n)/n, type = "s") ## Plots a step function

curve(1 - exp(- lambdaHat*x), from = 0, add = TRUE, col = "red")

An alternative is to use the ecdf function. The resulting plot emphasizes the step nature of
the function, and the ecdf object itself is a function that can be used for other purposes.
See Figure 1.3.
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neuronEcdf <- ecdf(neuron)

plot(neuronEcdf)

curve(1 - exp(- lambdaHat*x), from = 0,

add = TRUE, col = "red")

plot(neuronEcdf, seq(1, 1.5, 0.01)) ## Zooming in

QQ- and PP-plots. See Figure 1.4

tq <- qexp((1:n - 0.5)/n) ## Theoretical quantiles

plot(tq, eq, pch = 19)

abline(0, lambdaHat)

plot((1:n - 0.5)/n, pexp(eq, rate = lambdaHat),

pch = 19, ylim = c(0,1))

abline(0, 1)

1.2.2 Transformations and simulations

Transformations and the uniform distribution

If q ∈ [0, 1] and we observe x from the exponential distribution with parameter λ > 0, what
is the probability that F (x) is smaller than q?

Since F (x) ≤ q if and only if x ≤ F−1(q), the probability equals

P ([0, F−1(q)]) = F (F−1(q)) = q.

We have derived that by transforming an exponential distributed observation using the
distribution function we get an observation in [0, 1] with distribution function

G(q) = q.

This is the uniform distribution on [0, 1].

We can observe that for q ∈ [0, 1]

G(q) =

∫ q

0

1 dx

and the function that is constantly 1 on the interval [0, 1] (and 0 elsewhere) is the density
for the uniform distribution on [0, 1].

The uniform distribution, quantiles and transformations

The process can be inverted. If u is an observation from the uniform distribution then
F−1(u) ≤ x if and only if u ≤ F (x), thus the probability that F−1(u) ≤ x equals the
probability that u ≤ F (x), which for the uniform distribution is

P ([0, F (x)]) = F (x).
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Figure 1.5: The density (left) and the distribution function (right) for the uniform distribu-
tion on the interval [0, 1].

Thus the transformed observation

− 1

λ
log(1− u)

has an exponential distribution with parameter λ > 0.

We rarely observe a uniformly distributed variable in the real world that we want to trans-
form to an exponentially distributed variable, but the idea is central to computer simulations.

Simulations

• Computer simulations of random quantities has become indispensable as a supplement
to theoretical investigations and practical applications.

• We can easily investigate a large number of scenarios and a large number of replications.

• The computer becomes an in silico laboratory where we can experiment.

• We can investigate the behavior of methods for statistical inference.

• But how can the deterministic computer generate the outcome from a probability
distribution?

Generic simulation

Two step procedure behind random simulation:

• The computer emulates the generation of variables from the uniform distribution on
the unit interval [0, 1].

• The emulated uniformly distributed variables are by transformation turned into vari-
ables with the desired distribution.
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The real problem

What we need in practice is thus the construction of a transformation that can transform
the uniform distribution on [0, 1] to the desired probability distribution.

In this course we cover two cases

• A general method for discrete distributions (next week)

• A general method for probability distributions on R given in terms of the distribution
function.

But what about ...

... the simulation of the uniformly distributed variables?

That’s a completely different story. Read D. E. Knuth, ACP, Chapter 3 or trust that R
behaves well and that runif works correctly.

We rely on a sufficiently good pseudo random number generator with the property that as
long as we cannot statistically detect differences from what the generator produces and“true”
uniformly distributed variables, then we live happily in ignorance.

Exercise: Simulations

Write a function, myRexp, that takes two arguments such that

myRexp(10, 1)

generates 10 variables with an exponential distribution with parameter λ = 1.

How do you make the second argument equal to 1 by default such that

myRexp(10)

produces the same result?

1.3 Exercises

Exercise 1.1 We saw in the lecture that the exponential distribution has density λe−λx.
The Γ-function (gamma function) is defined by the integral

Γ(λ) =

∫ ∞

0

xλ−1e−xdx

for λ > 0. The Γ-distribution with shape parameter λ > 0 has density

f(x) =
1

Γ(λ)
xλ−1e−x
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for x > 0. The density and distribution function are available in R as dgamma and pgamma,
respectively. Construct a figure showing the densities for the Γ-distribution for λ = 1, 2, 5, 10.
Construct another figure showing the distribution functions for λ = 1, 2, 5, 10

The Γ-distribution can be given a scale parameter β > 0 in which case the density becomes

f(x) =
1

βλΓ(λ)
xλ−1e−x/β

for x > 0. If λ = f/2 and β = 2 the corresponding Γ-distribution is known as a χ2-
distribution with f degrees of freedom. In R, dchisq and pchisq are the density and distri-
bution function, respectively, for this distribution.

Exercise 1.2 If P ([0, x]) denotes the probability for the exponential distribution with pa-
rameter λ > 0 of getting an observation smaller than x find the solution to the equation

P ([0, x]) = 0.5. (1.1)

The solution is called the median. Explain what the R command qexp(0.5, 10) computes.
Is it possible to solve the equation (1.1) if you replace the exponential distribution with the
Γ-distribution? How can you solve the equation numerically using qgamma? Plot the median
of the Γ-distribution against λ for λ = 1, 2, . . . , 10.
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Chapter 2

Second Week

2.1 Continuous distributions

Keywords: densities, distribution functions, empirical quantiles, generalized inverse, Gumbel
distribution, local alignment, theoretical quantiles.

ISwR: 55-65, 145-153.

2.1.1 Local alignment statistics

Local alignment - a computer science problem?

What does the two words ABBA and BACHELOR have in common?

What about BACHELOR and COUNCILLOR, or COUNCILLOR and COUNSELOR?

Can we find the “optimal” way to match the words?

And does this optimal alignment make any sense – besides being a random matching of
letters?

Local alignments

Assume that x1, . . . , xn and y1, . . . , ym are in total n+m random letters from the 20 letter
amino acid alphabet

E =
{
A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V

}
.

We want to find optimal local alignments and in particular we are interested in the score for
optimal local alignments. This is a function

h : En+m → R.

31
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Denote by
sn,m = h(x1, . . . , xn, y1, . . . , ym)

the real valued score.

A local alignment of an x- and a y-subsequence is a letter by letter match of the subse-
quences, some letters may have no match, and matched letters are given a score, positive
or negative, while unmatched letters in either subsequence are given a penalty. The optimal
local alignment can be efficiently computed using a dynamic programming algorithm.

There is an implementation in the Biostrings package for R (Biostrings is a Biocon-
ductor package). The function pairwiseAlignment implements, among other things, local
alignment.

Local alignment scores

A large value of sn,m for two sequences means that the sequences have subsequences that
are similar in the letter composition.

Similarity in letter composition is taken as evidence of functional similarity and/or homology
in the sense of molecular evolution.

How large is large?

This is a question of central importance. The quantification of what large means. Func-
tionally unrelated proteins will have an optimal local alignment score, and if we sample
functionally and evolutionary unrelated amino acid segments at random from the pool of
proteins, their optimal local alignments will have a distribution.

Local alignment score distributions

What is the distribution of sn,m?

We can in principle compute its discrete distribution from the distribution of the x- and
y-variables – futile and not possible in practice.

It is possible to rely on simulations, but it may be quite time-consuming and not a practical
solution for usage with current database sizes.

Develop a good theoretical approximation.

Normal approximation

The most widely used continuous distribution is the normal distribution with density

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (2.1)

where µ ∈ R and σ > 0 are the mean and standard deviation, respectively.
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Figure 2.1: The histogram (left) and kernel density estimate (right) for 1000 simulated
local alignment scores of two random length 100 amino acid sequences. The local alignment
used the BLOSSUM50 score matrix, gap open penalty −12 and gap extension penalty −2.
The density for the fitted normal approximation is superimposed (red). The actual local
alignment scores are integer valued and have been“jittered” in the rug plot for visual reasons.

The standard estimators of µ and σ are the empirical versions of the mean and standard
deviation

µ̂ =
1

n

n∑

i=1

xi

σ̂ =

√√√√ 1

n− 1

n∑

i=1

(xi − µ̂)2.

We will later verify that with f as in (2.1) the theoretical mean is

µ =

∫ ∞

−∞
xf(x)dx

and the theoretical variance is

σ2 =

∫ ∞

−∞
(x− µ)2f(x)dx.

Thus the estimators above are simply empirical versions of these integrals based on the
observed data rather than the theoretical density f . For the estimator of σ it is, arguably,
not obvious why we divide by n− 1 instead of n. There are reasons for this that have to do
with the fact the µ is estimated, and in this case it is generally regarded as the appropriate
way to estimate σ. For large n it does not matter, but for n = 5, say, it matters if we divide
by n = 5 or n−1 = 4. Dividing by n−1 results in a larger estimate of σ, thus the uncertainty
is estimated to be larger when dividing by n− 1 as opposed to n.
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Normal distribution function and quantiles

The distribution function for the normal distribution is

Φ(x) =

∫ x

−∞

1

σ
√

2π
e−

(y−µ)2

2σ2 dy

and the quantile function is the inverse, Φ−1.

For the alignment score data the estimates of µ and σ are

µ̂ = 38.3 and σ̂ = 7.80.

The 95% and 99% quantiles, say, for the normal distribution with mean µ̂ and standard
deviation σ̂ are

Φ−1(0.95) = 51.2 = µ̂+ σ̂ × 1.644.

Φ−1(0.99) = 56.5 = µ̂+ σ̂ × 2.33.

The empirical 95% and 99% quantiles are x(950) = 53 and x(990) = 63, which indicates
that the normal distribution is not a good fit of the right tail of the local alignment scores
distribution.

If the distribution function for the normal distribution with mean µ and standard deviation
σ is denoted Φµ,σ there are general relations

Φµ,σ(x) = Φ0,1

(
x− µ
σ

)

and
Φ−1
µ,σ(q) = µ+ σΦ−1

0,1(q).

This means that we only need to know how to compute the distribution function and the
quantile function for the standard normal distribution with µ = 0 and σ = 1. There is,
however, no simpler closed form expression for Φ0,1 than the integral representation in terms
of the density as above. Nor is there a simple closed form representation of Φ−1

0,1. This does
not mean that we cannot compute very accurate numerical approximations such as those
implemented in R as the pnorm and qnorm functions.

ISwR uses the notation Nq for the q-quantile in the standard normal distribution, thus
N0.95 = 1.644, N0.975 = 1.96 and N0.99 = 2.33.

The quantiles are useful for setting a threshold to determine how large a score needs to be
to be large. Using the normal approximation and choosing the threshold 51.2 there is only
a 5% chance of getting a local alignment score for random amino acid sequences above this
threshold value. Setting the threshold a little higher at 56.5 there is only a 1% chance of
getting a score above this threshold.

One should appreciate the subtleties in the argument above. Having observed a score of 58,
say, and this being larger than the 99% quantile (in the normal approximation), what is the
conclusion? There are two possibilities, either the score is a relatively extreme observation
compared to the distribution of observations under the random model used or the score reflects
a deviation from the random model. We may argue that the latter is a more plausible
explanation, and that the score thus represents evidence against the random model. This is,
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however, not purely a statement based on the improbability of observing a score larger than
56.5. The interval [38.241, 38.437] has probability 1% under the normal approximation to the
score distribution, yet a score of 38.3 could never with any reason be regarded as evidence
against the random model even though it falls nicely into the interval of probability 1%.

We should also note that the raw quantiles from the data are more pessimistic, and in
particular the empirical 99% quantile is as high as 63. Thus we should definitely investigate
if the normal approximation is an adequate approximation.
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Figure 2.2: The PP-plot (left) and QQ-plot (right) of the data against the theoretical values.
For the QQ-plot a line has been added to ease the interpretation; do the data points fall on
a straight line?

The density estimates as well as the PP- and QQ-plots reveal that the normal distribution
is not a perfect fit. The QQ-plot is particularly useful in revealing the main deviation –
the sample quantiles are right-skewed. In other words, the tail probabilities of the normal
distribution fall of too fast to the right and too slow to the left when compared to the data.
The skewness is observable in the histogram and for the kernel density estimate as well.

Local alignment scores and the Gumbel distribution

Under certain conditions on the scoring mechanism and the letter distribution a valid ap-
proximation, for n and m large, of the probability that sn,m ≤ x is

F (x) = exp
(
−Knme−λx

)

for parameters λ,K > 0.

With

µ =
log(Knm)

λ
and σ =

1

λ
this distribution function can be written

F (x) = exp
(
−e− x−µσ

)
.
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This is the distribution function for the Gumbel distribution with location parameter µ and
scale parameter σ.

It is important to know that the location and scale parameters in the Gumbel distribution
are not the theoretical mean and standard deviation for the Gumbel distribution. These are
hard to determine, but they will be studied in an exercise.

Exercise: Maximum of random variables

Use

tmp <- replicate(100, max(rexp(10, 1)))

to generate 100 replications of the maximum of 10 independent exponential random variables.

Plot the distribution function for the Gumbel distribution with location parameter log(10)
and compare it with the empirical distribution function for the simulated variables.

What if we take the max of 100 exponential random variables?

Quantiles for the Gumbel distribution

If q ∈ (0, 1) we solve the equation

F (x) = exp
(
−e− x−µσ

)
= q.

The solution is
xq = µ− σ log(− log(q)).

For the purpose of QQ-plots we can disregard the scale-location parameters µ and σ, that
is, take µ = 0 and σ = 1, and the QQ-plot will show points on a straight line if the Gumbel
distribution fits the data.

As above, we generally stay away from the two extreme quantiles corresponding to q = 1
and q = 0. Though they could be taken as ±∞ in the Gumbel case, we prefer to avoid these
infinite quantities.

2.1.2 R interlude: Local alignment statistics

We rely on the Biostrings package from Bioconductor, which has an implementation of
the local alignment algorithm needed. The amino acid alphabet is also available, and we can
use the sample function to generate random amino acid sequences.

require(Biostrings)

sample(AA_ALPHABET[1:20], 10, replace = TRUE)

## [1] "D" "A" "T" "T" "W" "Y" "C" "V" "V" "A"
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Figure 2.3: The QQ-plot of the local alignment scores against the Gumbel distribution. This
is a very nice QQ-plot showing a good fit of the Gumbel distribution to the local alignment
scores.

We use only the 20 amino acids (not the last three special letters in the AA_ALPHABET vector).
We generate 10 random letters and the last argument to sample makes sure that the random
sampling is done with replacement. To get a string, we need the paste function, which is
used in the function las defined below.

For the local alignment we also need a matrix of scores. BLOSUM50 is one of the standards.

file <- "ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM50"

BLOSUM50 <- as.matrix(read.table(file, check.names = FALSE))

Function for simulation of amino acid sequences and computation of local alignment score.

las <- function(n, m) {

## Simulating two random amino acid sequences

x <- paste(sample(AA_ALPHABET[1:20], n, replace = TRUE), collapse = "")

y <- paste(sample(AA_ALPHABET[1:20], m, replace = TRUE), collapse = "")

## Computing the optimal local alignment score of the two sequences

## and returning only the optimal score

s <- pairwiseAlignment(pattern = x, subject = y, type = "local",

substitutionMatrix = BLOSUM50,

gapOpen = -12, gapExtension = -2,

scoreOnly = TRUE)

return(s)

}

Simulation of 1000 random local alignment scores from two sequences of length 100 and
computations of empirical mean and standard deviation.
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alignmentScores <- replicate(1000, las(100, 100))

muHat <- mean(alignmentScores)

sigmaHat <- sd(alignmentScores)

Histograms and kernel density estimates compared to the estimated normal distribution.

hist(alignmentScores, prob = TRUE)

rug(jitter(alignmentScores, 3))

curve(dnorm(x, muHat, sigmaHat), add = TRUE, col = "red")

plot(density(alignmentScores))

rug(jitter(alignmentScores, 3))

curve(dnorm(x, muHat, sigmaHat), add = TRUE, col = "red")

The scores are integer scores. When plotting, the jitter function is useful in the rug plot
for visual distinction of the observations.

qqnorm(alignmentScores, pch = 19)

qqline(alignmentScores)

n <- length(alignmentScores)

eq <- sort(alignmentScores)

p <- pnorm(eq, muHat, sigmaHat)

plot((1:n - 0.5)/n, p)

abline(0, 1)

Using the Gumbel distribution. Please note that the parameters estimated above as muHat

and sigmaHat are not valid estimates of the corresponding location and scale parameters
in the Gumbel distribution. We will return to this in an exercise next week, but for now we
have not introduced any method for estimating these parameters. We can, however, make a
QQ-plot without estimation of these parameters.

tq <- -log(-log((1:n - 0.5)/n))

plot(tq, eq, pch = 19)

2.1.3 Continuous distributions: A summary of theory

Probability distributions, also known as probability measures, are assignments of proba-
bilities to events. If we think of the example with the neuron interspike data we could be
interested in the probability of observing an interspike time smaller than x for a given x.
We called this probability the distribution function as a function of x. The event is that
the interspike time falls in the interval [0, x]. Since the probability of observing a neuron
interspike time that is negative is 0 (it is impossible), this is technically also the probability
of the event (−∞, x].

An event is for real valued observations a subset A ⊆ R. We use the notation P (A) to denote
the probability of the event A for a given probability distribution P .

Probability distributions for a continuous observation, like the interspike time, are character-
ized by the distribution function. Knowing the distribution function, that is, the probabilities
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of the special events (−∞, x], is enough to know the distribution. We will also consider densi-
ties below as a different way to specify a continuous probability distribution. There is a close
relation between densities and distribution function. Actual computations of probabilities
typical involve the distribution function directly and only the density indirectly, whereas
computations with the density play an absolutely fundamental role in statistics through
what is known as the likelihood function. This will be elaborated on later in the course.

Distribution functions

If P is a probability distribution on R the distribution function is defined as

F (x) = P ((−∞, x])

for x ∈ R.

How does such a function look? What are the general characteristics of a distribution func-
tion?

Characterization

A distribution function F : R→ [0, 1] satisfies the following properties

(i) F is increasing.

(ii) F (x)→ 0 for x→ −∞, F (x)→ 1 for x→∞.

(iii) F is right continuous.

Important characterization: Any function F : R → [0, 1] satisfying the properties (i)-(iii)
above is the distribution function for a unique probability distribution.

Examples

The Gumbel distribution has distribution function defined by

F (x) = exp(−e−x)

The exponential distribution has distribution function

F (x) = 1− e−λx.

Densities

If f : R→ [0,∞) satisfies that ∫ ∞

−∞
f(x)dx = 1
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we call f a (probability) density function. The corresponding distribution function is

F (x) =

∫ x

−∞
f(x)dx.

The corresponding probability distribution can be expressed as

P (A) =

∫

A

f(x)dx.

If a distribution function F is differentiable then there is a density;

f(x) = F ′(x).

Example: The Gumbel distribution has distribution function F (x) = exp(−e−x). The deriva-
tive is

f(x) = exp(−x) exp(−e−x) = exp(−x− e−x),

which is thus the density for the Gumbel distribution.

Exercise: Distribution functions

Plot the graph (use plot or curve) for the function

F <- function(x) 1 - x^(- 0.3) * exp(- 0.4 * (x - 1))

for x ∈ [1,∞). Argue that it is a distribution function.

Define

f <- function(x) x^3 * exp(- x) / 6

for x ∈ [0,∞) and use integrate(f, 0, Inf) to verify that f is a density. How can you
use integrate to create the corresponding distribution function?

The normal distribution

It holds that ∫ ∞

−∞
e−x

2/2dx =
√

2π

Hence f(x) = 1√
2π

exp(−x2/2) is a density – the probability distribution is the standard

normal distribution.

The distribution function is

Φ(x) =

∫ x

−∞

1√
2π
e−y

2/2dy.
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Figure 2.4: The density (left) and the distribution function (right) for the normal distribu-
tion.

Density interpretation

A density f has the interpretation that for small h > 0

f(x) ' 1

2h
P ([x− h, x+ h]).

The frequency interpretation says that P ([x−h, x+h]) is approximately the relative frequency
of observations in [x− h, x+ h], hence

f(x) ' 1

2h

1

n

n∑

i=1

1(|x− xi| ≤ h).

The function

f̂(x) =
1

2h

1

n

n∑

i=1

1(|x− xi| ≤ h)

is one example of a kernel density estimator using the rectangular kernel – an alternative to
the histogram.

Mean and Variance

The mean and variance for a probability distribution on R with density f are defined as

µ =

∫ ∞

−∞
xf(x)dx σ2 =

∫ ∞

−∞
(x− µ)2f(x)dx

provided the integrals are meaningful.

• The exponential distribution, f(x) = λ exp(−λx) for x ≥ 0, has

µ =
1

λ
σ2 =

1

λ2
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• The normal distribution, f(x) = (2π)−1/2 exp(−x2/2), has

µ = 0 σ2 = 1.

Scale-location parameters

If F is a distribution function for a probability distribution then

G(x) = F

(
x− µ
σ

)

for µ ∈ R and σ > 0 is a distribution function.

G is called a scale-location transformation of F with scale parameter σ > 0 and location
parameter µ.

If F has density f , the density for G is g(x) = G′(x) = 1
σf
(
x−µ
σ

)
.

If F has mean µ0 and variance σ2
0 then G has mean

µ+ σµ0

and variance
σ2

0σ
2.

Empirical quantiles

Let x1, . . . , xn ∈ R be n real observations from an experiment. We order the observations

x(1) ≤ x(2) ≤ . . . ≤ x(n).

If q = i/n for i = 1, . . . , n− 1, then x ∈ R is called a q-quantile if x(i) ≤ x ≤ x(i+1).

If (i− 1)/n < q < i/n for i = 1, . . . , n the q-quantile is x(i).

Quantiles are monotone in the sense that if x is a q-quantile and y is a p-quantile with q < p
then x < y.

The definition above is the usual definition of what empirical quantiles are. They are gen-
erally uniquely defined unless q = i/n in which case anything in the interval [x(i), x(i+1)]
is a valid q-quantile. When it comes to actually computing quantile estimates, or sample
quantiles, a somewhat more liberal approach is often taken.

The quantile function in R computes a selection of sample quantiles, and by default the
minimum x(1), the maximum x(n) and the quartiles, which are the 0.25-, 0.50- and 0.75-
quantiles. However, there are 9 (nine) different types of sample quantiles that can be com-
puted as specified by the type argument, and only some are actually empirical quantiles
according to the definition above.



2.1. Continuous distributions 43

Theoretical quantiles

Definition 1. If F : R → [0, 1] is a distribution function then Q : (0, 1) → R is a quantile
function for the distribution if

F (Q(y)− ε) ≤ y ≤ F (Q(y)) (2.2)

for all y ∈ (0, 1) and all ε > 0.

The general definition of a theoretical quantile function captures the idea that that Q should
be a kind of inverse to the distribution function. If F has an inverse then this inverse is a
quantile function, and it is the only quantile function there is.

It can also be shown that if Q is a quantile function for F then

µ+ σQ

is a quantile function for G with G the scale-location transformation of F . The implication
for QQ-plots is that as long at the distribution is correct up to a scale-location transforma-
tion then the QQ-plot will show points on approximately a straight line. A scale-location
transformation will just change the slope and the intercept of the line.

Generalized inverse

Definition 2. Let F : R→ [0, 1] be a distribution function. A function

F← : (0, 1)→ R

that satisfies
y ≤ F (x) ⇔ F←(y) ≤ x (2.3)

for all x ∈ R and y ∈ (0, 1) is called a generalized inverse of F .

General simulation

We will simulate from a distribution on R having distribution function F . First find the
generalized inverse, F← : (0, 1)→ R, of F .

Then we let u1, . . . , un be generated by a pseudo random number generator that generates
uniformly distributed variables and we define

xi = F←(ui)

for i = 1, . . . , n. Then x1, . . . , xn are variables following the distribution with distribution
function F .

To see that the statement is correct, we essentially use the same argument as previously used
for the specific example with the exponential distribution. By the definition of the generalized
inverse we have that xi = F←(ui) ≤ x if and only if ui ≤ F (x), thus the probability that
xi ≤ x equals the probability that ui ≤ F (x) and since the ui is uniformly distributed the
probability of this event is F (x). This shows that the distribution of the variables xi has
distribution function F .
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Generalized inverse

• If F has a true inverse (F is strictly increasing and continuous) then F← equals the
inverse, F−1, of F .

• All distribution functions have a generalized inverse – we find it by “solving” the
inequality F (x) ≥ y. It is unique.

• F← is a quantile function. It is the quantile function for the empirical distribution
function you get from the quantile-function in R with type = 1.

2.1.4 R interlude: The normal distribution

The density for the normal distribution.

f <- function(x) exp(-x^2/2)/sqrt(2*pi)

integrate(f, -Inf, Inf)

## 1 with absolute error < 9.4e-05

F <- function(x) integrate(f, -Inf, x)$value

F(0) ## OK, but 'F' is not vectorized, does e.g. not work with 'curve'

## [1] 0.5

F <- Vectorize(F)

par(mfcol = c(1, 2))

curve(f, -4, 4)

curve(F, -4, 4)
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Of course, all these computations are builtin for the normal distribution via the functions
dnorm and pnorm.
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Computation of mean and variance using the integrate function.

mu <- integrate(function(x) x*f(x), -Inf, Inf)$value

sigmasq <- integrate(function(x) (x-mu)^2*f(x), -Inf, Inf)$value

mu

## [1] 0

sigmasq

## [1] 1

2.2 Tables, tests and discrete distributions

Keywords: χ2-test statistic, binomial distribution, dice games, discrete probability distribu-
tions, geometric distribution, patterns, tables, tandem repeats, random variables.

ISwR: Pages 145-153.

2.2.1 Tabular data, hypotheses and the χ2-test

Genetic fingerprints

Short tandem repeats (STR) are used as genetic fingerprints.

TPOX has repeat pattern AATG and is located in intron 10 of the human thyroid peroxidase
gene.

Humans are diploid organisms, data on STR repeats consist of pairs of repeat counts.

We are interested in how frequent a given repeat count occurs in a population, and we wish
to investigate if this depends on the population.

In forensic science one of the interesting problems from the point of view of molecular biology
and statistics is the ability to identify the person who committed a crime based on DNA-
samples found at the crime scene. One approach known as the short tandem repeat (STR)
analysis is to consider certain specific tandem repeat positions in the genome and count how
many times the pattern has been repeated. The technique is based on tandem repeats with
non-varying flanking regions to identify the repeat but with the number of pattern repeats
varying from person to person. These counts of repeat repetitions are useful as “genetic
fingerprints” because the repeats are not expected to have any function and the mutation of
repeat counts is therefore neutral and not under selective pressure. Moreover, the mutations
occur (and have occurred) frequently enough so that there is a sufficient variation in a
population for discriminative purposes. It would be of limited use if half the population, say,
have a repeat count of 10 with the other half having a repeat count of 11.
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Without going into too many technical details, the procedure for a DNA-sample from a crime
scene is quite simple. First one amplifies the tandem repeat(s) using PCR with primers that
match the flanking regions, and second, one extracts the sequence for each of the repeats
of interest and simply count the number of repeats. Examples of STRs used include TH01,
which has the pattern AATG and occurs in intron 1 of the human tyrosine hydroxylase gene,
and TPOX, which has the same repeat pattern but is located in intron 10 of the human
thyroid peroxidase gene.

One tandem repeat is not enough to uniquely characterize an individual, so several tandem
repeats are used. A major question remains. Once we have counted the number of repeats
for k, say, different repeat patterns we have a vector (n1, . . . , nk) of repeat counts. The
Federal Bureau of Investigation (FBI) uses for instance a standard set of 13 specific STR
regions. If a suspect happens to have an identical vector of repeat counts – the same genetic
fingerprint – we need to ask ourselves what the chance is that a “random” individual from
the population has precisely this genetic fingerprint. This raises a number of statistical
questions. First, what kind of random procedure is the most relevant – a suspect is hardly
selected completely at random – and second, what population is going to be the reference
population? And even if we can come up with a bulletproof solution to these questions, it is
a huge task and certainly not a practical solution to go out and count the occurrences of the
fingerprint (n1, . . . , nk) in the entire population. So we have to rely on smaller samples from
the population to estimate the probability. This will necessarily involve model assumptions
– assumptions on the probabilistic models that we will use.

One of the fundamental model assumptions is the classical Hardy-Weinberg equilibrium as-
sumption, which is an assumption about independence of the repeat counts at the two
different chromosomes in an individual.

TPOX repeat count

TPOX African American Caucasian Hispanic Total
8 192 (0.42) 323 (0.54) 132 (0.48) 647 (0.49)
9 92 (0.20) 72 (0.12) 29 (0.10) 193 (0.14)

10 46 (0.10) 34 (0.06) 9 (0.03) 89 (0.07)
11 113 (0.25) 147 (0.24) 77 (0.28) 337 (0.25)
12 11 (0.03) 25 (0.04) 30 (0.11) 66 (0.05)

Total 454 (1.00) 601 (1.00) 277 (1.00) 1332 (1.00)

The table shows the counts for the TPOX repeats in samples from three different populations.
We have disregarded counts of 5, 6, 7 and 13, though they occur in the original data set.
The primary reason is that the occurrence of these extreme repeat counts is rare – except
6 and to some extend 7 in the African American population. We want to focus the analysis
on potential differences between the populations in the frequently occurring repeat counts.

Some questions

• A forensic question: Do we need different reference distributions to compute the prob-
ability of a genetic fingerprint for different populations?
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• A scientific question: Has the repeat counts drifted apart since the branching of the
three populations?

In both cases we ask if there is a

detectable difference in the repeat count distributions between the populations?

The formal hypothesis

To investigate the question we formulate the hypothesis

H: The distribution of the repeat counts does not depend on the population.

Under H we can estimate the probabilities of the repeat counts as

p̂0 =
1

1332
(647, 193, 89, 337, 66) = (0.49, 0.14, 0.07, 0.25, 0.05)

The formal hypothesis can then be investigated by investigating if p̂0 adequately represents
the distributions of observed counts for the three populations.

The meaning of the formal hypothesis is that, if it is true, then if we sample random indi-
viduals from either population the distribution of the repeat counts would be approximately
the same disregarding which population we sample from. Thus, there is a common vector of
point probabilities, p0, which we estimate from the data set as above.

Compare the setup with that of local alignment. We want to quantify if the actually observed
data contain evidence against the hypothesis H, just as we sought a quantification of the
evidence in the optimal local alignment of two amino acid sequences of whether it was
anything but a random match.

The test statistic

One way to test the hypothesis is to compare the observed counts in the table with the
expected counts under the hypothesis H.

The Pearson χ2-test statistic is

X =
∑ (observed− expected)2

expected
= 63.9348.

Large values of X are critical in the sense of being stronger evidence against the hypothesis
than smaller values. But is 63.9348 large?

The definition of the χ2-test statistic above is vague and general. For an r × c-table, as in
our example, then with nij the counts in cell (i, j) of the table and

ni· =
∑

j

nij

n·j =
∑

i

nij
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the row and column sums (the marginals) of the table we see that the estimated probabilities
under the hypothesis H are

p̂0i =
ni·
n··

with n·· =
∑
i ni· =

∑
j n·j = 1332 the total number of observations in the table.

The expected value for cell (i, j) in the cell is

êij = p̂0in·j =
ni·n·j
n··

.

How large is large

Imagine that H is true and that we generate a large number of tables. What is the probability
of getting the table observed or a more extreme table?

Histogram of testDis
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There are two questions that need to be answered.

• What exactly do we mean by “generate”?

• What does “more extreme” mean?

To generate a table is usually interpreted as meaning to simulate a table using the same
sampling scheme as used for the original table. Thus, as in our case we think of the total
number of observations in each column as fixed, and we can simulate the distribution of
counts according to the estimated probabilities p̂0 in the three columns. Another sampling
scheme is to take only the total counts as fixed.

Alternatively, we could think of the total column counts as well as the total row counts (the
marginals) as fixed and try to generate new tables (randomly) with these fixed marginals. It
is an interesting fact that this distribution does not depend on any unknowns (no estimated
quantities need to be plugged into the simulation as opposed to above), but it is also a fact
that it is much more difficult to generate such new tables randomly. The Fisher’s exact test
as implemented in R as fisher.test is based on this conditional distribution.
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There are also several options when it comes to expressing “extremeness”. Given our intro-
duction of the χ2-statistic it is natural to define “more extreme” as meaning “with a larger
value of X”, and that is indeed a common choice. Note the relation to the local alignment
problem. If we look as the simulated distribution of the χ2-statistic, our observed value is
quite extreme. In fact, it is so extreme that we have not seen a single simulated table in our
simulation of 10.000 tables with that large a value of X. The probability of getting X as
large as or larger than the observed X is thus very small, but, as with local alignment, this
is not the only reason to conclude that the observed value of 63.93 of X is strong evidence
against the hypothesis H. What we also need to have in mind is that there are alternatives
to H, for instance, that each population has a distribution of repeat counts different from
the other populations, which can explain the large value of X.

An alternative to extremeness based on the χ2-statistic is to define all tables with a probabil-
ity smaller than the observed table as more extreme and then compute the total probability
of getting any of these tables. This is the approach taken in fisher.test.

The theoretical approximation

For a contingency table with r rows and c columns the χ2-statistic follows, approximately,
a χ2-distribution with (r − 1)× (c− 1) degrees of freedom (df) under the hypothesis H.

In our example, r = 5 and c = 3 hence

df = 4× 2 = 8.

If F is the distribution function for the χ2-distribution with 8 degrees of freedom the p-value
is

1− F (63.9348) = 7.835× 10−11.

The p-value is defined as the probability of observing a table under the hypothesis with
a test statistic as large as or larger than the actually observed test statistic. A small p-
value is equivalent to a large value of the test statistic, and thus the smaller the p-value
is, the stronger is the evidence against the hypothesis. The mixed blessing of p-values is
that they give us an absolute scale for measuring deviations from the hypothesis, and two
common (but arbitrary) de facto standard “thresholds” for p-values are 0.05 and 0.01. A
p-value in the range from 0.01 to 0.05 is typically interpreted as moderate evidence against
the hypothesis, and we often use the phrase that “the test is statistically significant at a 5%
level”. A p-value smaller than 0.01 is typically interpreted as strong evidence against the
hypothesis. Even though this absolute scale is convenient for automatic procedures, it is a
mixed blessing because p-values are so easily misunderstood, misused, and misinterpreted.
Most importantly, a p-value is not a probability statement about the truth-value of the
hypothesis. It is a probability statement about the data under the hypothesis.

The classical formal statistical tests, like Pearson’s χ2-test and the two-sample t-test that we
will encounter later in the course, belong in the standard curriculum of statistics. We will,
however, try to view statistics more from the model building perspective than as a theory
for drawing rigid conclusions based on formal hypothesis tests. That is, we will attempt to
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focus on the inductive process in science of going from data to model and how to deal with
and report the uncertainties involved in this business.

We can, on the other hand, not simply dismiss hypothesis tests. If I report the table above on
the repeat counts for this particular sample of individuals it is clear that there are differences
between the populations. The table is, however, of no interest if it does not generalize to other
samples and, indeed, to the entire populations. The sample is special and another sample
will be different. The main question is whether the observed differences are predominantly
due to differences at the population level or predominantly due to the randomness of the
sample. If we could compute the table for the entire populations there would, undoubtedly,
be differences between the populations, but this is of little interest and no practical value.
What is interesting is whether we can detect and with reason estimate the differences at
the population level from the sample. A formal hypothesis and corresponding test should be
viewed as a surrogate for this more important question. If we cannot detect any differences
above what is expected by randomness of the sample, the estimated differences are likely
to represent very little but the randomness. Moreover, if the randomness dominates over
the actual differences between the populations we are generally going to be better off by
estimating the simpler model as represented by the hypothesis.

The p-value 7.835 × 10−11 is ridiculously small and tells us that the observed differences
between the populations in the sample cannot be ascribed to the randomness of the sample.

To compute the p-value using the theoretical χ2-distribution above we introduced the slightly
mysterious quantity called the “degrees of freedom”. At this point you are just given the
formula above for the computation of the degrees of freedom for the table. What is worth
noticing is that while the degrees of freedom depends on the size of the table, it is the
only variable quantity that enters in the χ2-distribution. In particular, the χ2-distribution
used to evaluate the extremeness of the χ2-test statistic does not depend on the unknown
probabilities under the hypothesis.

The χ2-distribution is, however, an approximation, and it may not be accurate for tables
with few counts in some cells.

Rules of thumb and alternatives

A common rule of thumb says that the χ2-distribution is a good approximation if the ex-
pected cell count is ≥ 5 for all cells.

This is a conservative rule.

Alternatives include Fisher’s exact test, and a number of corrections to improve on the
approximation for small expected cell counts.

Though Fisher’s test in a technical sense is exact and often recommended for tables with
small cell counts, it has its own problems.

Don’t get too excited about minor differences between different procedures and do use sim-
ulation experiments extensively whenever possible.
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The discussion about the approximation of the distribution of the χ2-test statistic is a deli-
cate one. From a certain point of view it is important, and of interest to find alternatives or
corrections that yield better approximations. On the other hand, though these improvements
are, from a technical point of view, improvements, no serious conclusion about the subject
matter should be based on a minor technical adjustment as long as the overall approach is
sound.

A more specific question

We can be more specific and ask if the distribution of repeat count 8 is the same across the
three populations.

H: The distribution of repeat counts 8 does not depend on the population.

This can be investigated just as previously by collapsing the other cells in the table to a
single cell to obtain a 2× 3 table. The degrees of freedom will be 2.

A different question

You might also know a vector of proportions for repeat count 8 in the three populations and
want to compare this vector with the observed proportions.

H: The distribution of repeat counts 8 in the three populations is given by the
probabilities p = (0.41, 0.54, 0.48).

The χ2-test statistic is defined as usual, but in this case the relevant degrees of freedom is
3 and not 2.

2.2.2 R interlude: NIST analysis

Loading the data set and forming a table.

download.file("http://www.math.ku.dk/~richard/courses/StatScience2011/NIST.RData",

"NIST.RData")

load("NIST.RData")

TPOXall <- table(c(NIST[, "TPOX.1"], NIST[, "TPOX.2"]),

rep(NIST[, "population"], 2))

Subsetting the table, computation of margins and estimation of probabilities (computation
of relative frequencies).

TPOX <- TPOXall[4:8, ]

addmargins(TPOX)

##
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## African American Caucasian Hispanic Sum

## 8 192 323 132 647

## 9 92 72 29 193

## 10 46 34 9 89

## 11 113 147 77 337

## 12 11 25 30 66

## Sum 454 601 277 1332

pHat <- prop.table(TPOX, margin = 2)

Estimation of marginal probabilities (relative frequencies of the row marginal here). Com-
putation of the expected values and the χ2 statistic.

p0Hat <- prop.table(margin.table(TPOX, 1))

expect <- outer(p0Hat, margin.table(TPOX, 2), "*")

Xsq <- sum((TPOX - expect)^2/expect)

The χ2 statistic can also be computed using the chisq.test function. We return below to
the p-value and degrees of freedom (df) that the function returns.

chisq.test(TPOX)

##

## Pearson's Chi-squared test

##

## data: TPOX

## X-squared = 63.93, df = 8, p-value = 7.835e-11

We can also compare the populations in a pairwise manner.

chisq.test(TPOX[, -3]) ## Comparing African Americans and Caucasians

##

## Pearson's Chi-squared test

##

## data: TPOX[, -3]

## X-squared = 27.5, df = 4, p-value = 1.572e-05

chisq.test(TPOX[, -2]) ## Comparing African Americans and Hispanics

##

## Pearson's Chi-squared test

##

## data: TPOX[, -2]

## X-squared = 44.16, df = 4, p-value = 5.94e-09

chisq.test(TPOX[, -1]) ## Comparing Caucasians and Hispanics
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##

## Pearson's Chi-squared test

##

## data: TPOX[, -1]

## X-squared = 18.28, df = 4, p-value = 0.00109

To investigate if the computed χ2 statistic is large, we implement the generation of a new
table using the sample function. The generation is a simulation under the hypothesis that
the distribution of the repeat counts is the same for all three populations.

simTab <- function(p0, n) {

simData <- sample(as.integer(names(p0)), sum(n),

replace = TRUE, prob = p0)

simData <- data.frame(simData, rep(names(n), times = n))

table(simData[, 1], simData[, 2])

}

Then we replicate the generation of a table B = 10, 000 times, compute the χ2 test statistic,
make a histogram and compare the observed χ2 statistic for the original table with the
distribution of χ2 statistics for the generated tables.

colMarg <- colSums(TPOX)

B <- 10000

testDis <- replicate(B, chisq.test(simTab(p0Hat, colMarg))$statistic)

hist(testDis, prob = TRUE, xlim = c(0,70))

abline(v = chisq.test(TPOX)$statistic, col = "red")

curve(dchisq(x, df = 8), add = TRUE, col = "blue")

Histogram of testDis
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The observed value is very extreme in the distribution. Theory tells that the distribution
can be approximated by a χ2 distribution with 8 degrees of freedom. The density/histogram
comparison is pretty good. Lets also take a look at the QQ-plot for a different comparison
of the distributions.
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eq <- sort(testDis)

tq <- qchisq((1:B - 0.5)/B, df = 8)

plot(tq, eq, pch = 19)

0 5 10 15 20 25 30

0
5

10
15

20
25

30

tq

eq

Indeed, the suggested χ2 distribution is a very good fit to the distribution of the simu-
lated test statistics. We use the theoretical approximation to compute the p-value as the
probability of observing a table with a χ2 test statistic larger than 63.9348.

pchisq(63.9348, df = 8, lower.tail = FALSE)

## [1] 7.835e-11

The use of lower.tail = FALSE means that we compute the probability of an observation
greater than 63.9348. This is formally equivalent to

1 - pchisq(63.9348, df = 8)

## [1] 7.835e-11

but the latter may turn out numerically different for small p-values. In particular, the latter
may be numerically 0 while the former is a very small (and more accurate) non-zero number.

A more specific question. Does the distribution of repeat count 8 depend on the population?
The computation of the χ2 test statistic and corresponding p-value can be achieved using
the prop.test function, but it can also be achieved by chisq.test by collapsing rows in
the original table.

prop.test(TPOX[1, ], colSums(TPOX))

##

## 3-sample test for equality of proportions without continuity

## correction
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##

## data: TPOX[1, ] out of colSums(TPOX)

## X-squared = 13.7, df = 2, p-value = 0.00106

## alternative hypothesis: two.sided

## sample estimates:

## prop 1 prop 2 prop 3

## 0.4229 0.5374 0.4765

chisq.test(rbind(TPOX[1, ], colSums(TPOX[-1, ])))

##

## Pearson's Chi-squared test

##

## data: rbind(TPOX[1, ], colSums(TPOX[-1, ]))

## X-squared = 13.7, df = 2, p-value = 0.00106

A slightly different question is whether the observed proportions in the three populations of
repeat count 8 equals a known vector of proportions? The relevant function to use is then
prop.test.

prop.test(TPOX[1,], colSums(TPOX), p = c(0.41, 0.54, 0.48))

##

## 3-sample test for given proportions without continuity correction

##

## data: TPOX[1, ] out of colSums(TPOX), null probabilities c(0.41, 0.54, 0.48)

## X-squared = 0.3419, df = 3, p-value = 0.952

## alternative hypothesis: two.sided

## null values:

## prop 1 prop 2 prop 3

## 0.41 0.54 0.48

## sample estimates:

## prop 1 prop 2 prop 3

## 0.4229 0.5374 0.4765

2.2.3 Sequence Patterns

Biological sequence patterns

The TPOX short tandem repeat has repeat pattern AATG.

The start codon for protein coding genes is ATG.

The genome encodes biology as patterns or motifs. We search the genome for biologically
important patterns.

This is the text mining part of bioinformatics.
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Text mining

How often and where does a pattern or motif occur in a text? By complete chance? Due to
a “rule” that we want to understand and/or model??

THis is a core problem in biological sequence analysis.

Of broader relevance: Email spam detection, data mining of web pages or scientific papers.

A dice game

Throw the die until one of the patterns 1 4 3 or 2 1 4 occurs.

I win if 1 4 3 occurs. This is a winner:

4 6 2 3 5 1 3 2 4 5 1 4 3

Is this a fair game? How much should I be willing to bet if you bet 1 kroner on your pattern
to be the winning pattern?

Fairness and odds

Lets play the game n times, let p denote the probability that I win the game, and let ξ
denote my bet.

With εn the relative frequency that I win, my average gain in the n games is

εn − ξ(1− εn) ' p− ξ(1− p),

the approximation following from the frequency interpretation.

The game is fair if the average gain is 0, that is, if

ξ =
p

1− p .

The quantity ξ is called the odds of the event that I win.

The average gain is the gain per game. The total gain in n fair games may (and will) deviate
substantially from 0. This is perceived as “luck” or “being in luck”.

The odds, ξ, of an event and the probability, p, of the same event are thus linked by the
formula above. Specifying one is equivalent to specifying the other. The computation of p
can be done by simulation, see Figure 2.5.
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Figure 2.5: Relative frequency of occurrences of pattern 1 4 3 before 2 1 4 (left) and distri-
bution of number of throws before first occurrence of one of the patterns (right).

The probability of the start codon

Lets try to compute the probability of the start codon ATG.

We need

• a probability model for the single letters,

• a model of how the letters are related,

• and some notation to support the computations.

Random variables

It is useful to introduce the concept of random variables as representations of unobserved
variables.

Three unobserved DNA letters are denoted XY Z, and we want to compute

P(XY Z = ATG) = P(X = A, Y = T, Z = G)

We assume that the random variables X, Y , and Z are independent, which means that

P(X = A, Y = T, Z = G) = P(X = A)P(Y = T)P(Z = G).

We assume that X, Y and Z have the same distribution, that is

P(X = w) = P(Y = w) = P(Z = w)
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for all letters w in the DNA alphabet.

The model presented above is the loaded die model. It is like generating DNA sequences by
throwing a loaded die. It is most likely not a very accurate model, but it is a starting point
and the point of departure for learning about more complicated models.

The fundamental random mechanism that works at the molecular level is random mutation.
This is the driving dynamic force of evolution. Due to selection, biological sequences are
certainly not just randomly generated sequences – some mutations are favored over others.
Biological sequences are, on the other hand, not designed with a unique perfect fit in mind
either. There is variation, and we need distributions to describe collections of sequences.
We can attack the modeling of this variation at many levels. A birds eye perspective using
simple models may provide some qualitative knowledge and superficial understanding of
these distributions, while more detailed models may be used to more accurately deal with
specific applications.

Amino acid distributions

Proteins are amino acid sequences and a simple model as a point of departure is again
the loaded die model. The choice of point probabilities on the individual amino acids may
depend on the reference population of proteins to be considered.

On the sample space of amino acids

{
A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V

}

we can take the uniform distribution (unloaded die) with probability 1/20 for all amino
acids.

We may encounter the Robinson-Robinson point probabilities from the relative frequencies
of the occurrences of amino acids in a selection of real proteins. They read

Amino acid Probability Amino acid Probability Amino acid Probability

A 0.079 G 0.074 P 0.052
R 0.051 H 0.022 S 0.071
N 0.045 I 0.051 T 0.058
D 0.054 L 0.091 W 0.013
C 0.019 K 0.057 Y 0.032
E 0.063 M 0.022 V 0.064
Q 0.043 F 0.039

The probability of the start codon

If the point probabilities for the DNA alphabet are

A C G T

0.21 0.29 0.29 0.21

the probability of ATG under the loaded die model is

P(XY Z = ATG) = 0.21× 0.21× 0.29 = 0.013.

The probability of not observing a start codon is

P(XY Z 6= ATG) = 1− P(XY Z = ATG) = 1− 0.013 = 0.987.
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Exercise: Simulate occurrences of start codons

Use the R function sample to generate random DNA sequences of length 99 with the point
probabilities as given above.

Generate 10,000 sequences of length 99 and compute the relative frequency of sequences
with

• a start codon at any position

• a start codon in the reading frame beginning with the first letter.

2.2.4 R interlude: A dice game

A dice game function that takes three arguments. The number of games to play (N) and the
two patterns. Default patterns are the patterns from above. It returns an array containing
two rows. The first row is an indicator (0-1 variable), which is 1 if the first pattern showed up
first. The second row contains the number of dice throws before any of the patterns showed
up.

diceGame <- function(N, pattern1 = c(1, 4, 3), pattern2 = c(2, 1, 4)) {

len <- numeric(N) ## A numeric vector of length N - holds the length of the game

result <- numeric(N) ## A numeric vector of length N - holds the winner of the game

for(n in 1:N) {

test1 <- 1 ## Control variable, how many outcomes match pattern1

test2 <- 1 ## Control variable, how many outcomes match pattern2

l <- 1

while((test1 < 4) && (test2 < 4)) {

temp <- sample(1:6, 1) ## Random, uniform sampling of a

## single number between 1 and 6

if(temp == pattern1[test1]) test1 <- test1 + 1

else test1 <- 1

if(temp == pattern2[test2]) test2 <- test2 + 1

else test2 <- 1

l <- l + 1

}

len[n] <- l

result[n] <- (test1 == 4);

}

return(cbind(result, len))

}

500 replications of the dice game with results placed in the variable tmp. The relative fre-
quency (relFreq), the cumulative relative frequency (cumRelFreq) of the number of games
won by the first pattern, and a nice plot, see Figure 2.5.

tmp <- diceGame(500)

relFreq <- sum(tmp[, 1]) / 500

print(relFreq)
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## [1] 0.466

cumRelFreq <- cumsum(tmp[, 1]) / (1:500)

plot(cumRelFreq, type = "l", ylim = c(0.3, 0.7))

abline(0.5, 0, lty = 2) ## Adds horizontal line (line with slope 0 and intercept 0.5)

Odds computations

In a fair game the cumulative relative gain will stabilize around 0 but the cumulative absolute
gain will fluctuate around zero with larger and larger fluctuations as N increases.

## The (estimated) odds of pattern1 being the winning pattern

xi <- relFreq/(1 - relFreq)

xi

## [1] 0.8727

New game: Bets are fair according to the estimated odds.

tmp <- diceGame(500)

cumRelFreq <- cumsum(tmp[, 1]) / (1:500)

cumRelGain <- (1 + xi) * cumRelFreq - xi ## The cumulative, relative gain

cumGain <- seq(along = cumRelGain) * cumRelGain ## The cumulative absolute gain

par(mfcol = c(1, 2)) ## Sets up a plot with multiple subplots with two plots

## vertically and one horizontally.

plot(cumRelGain, type = "l")

abline(0, 0, lty = 2) ## Adds horizontal line (line with slope and intercept 0)

plot(cumGain, type = "l")

abline(0, 0, lty = 2)
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2.3 Exercises

Exercise 2.1 Find the quantile function for the standard Gumbel distribution with distri-
bution function

F (x) = exp(−e−x).

Implement a function in R for simulation from the standard Gumbel distribution. Modify
the implementation to simulate from the Gumbel distribution with location parameter µ
and scale parameter σ > 0.

Exercise 2.2 Compute numerically the mean µ0 and the variance σ2
0 for the standard

Gumbel distribution using the integrate function in R.

Exercise 2.3 Simulate 10,000 standard Gumbel distributed variables using Exercise 2.1
above. Compare the empirical mean and empirical variance for the data with the theoretical
mean and theoretical variance computed above.

Exercise 2.4 If x1, . . . , xn is a data set with n observations use x̄ to denote the average
(empirical mean) and s2 to denote the empirical variance (as computed by var in R). For
a general scale-location transformation of a distribution F with mean µ0 and variance σ2

0

solve the equations
µ+ σµ0 = x̄

σ2
0σ

2 = s2

in terms of µ and σ2. How can this be used to estimate the location and scale parameter?

Exercise 2.5 Use the las R function from Section 2.1.2 to generate 1000 local alignment
scores of random amino acid sequences. Use Exercise 2.4 to estimate the scale-location
parameters for a Gumbel distribution.

Exercise 2.6 Argue that the function

F (x) = 1− exp(−xβ), x ≥ 0

for β > 0 is a distribution function. It is called the Weibull distribution with parameter β.
Find the density on the interval [0,∞) for the Weibull distribution.

Exercise 2.7 Download the BUtraffic data set using read.table from the url

http://www.math.ku.dk/~richard/courses/StatScience2011/BUtraffic.txt

The data set is a data frame with three columns, time, duration and size, which give the
duration in seconds and size in bytes of internet downloads at given times at UC Berkeley.
Compute the minimum, the maximum, and the quartiles for the duration and size of the
downloads. Plot duration against size and log-duration against log-size.

Exercise 2.8 Investigate the distribution of the size of the downloads. Does a normal
distribution fit? Does a normal distribution fit log size? Estimate the mean and variance for
the model that fits best and compute the theoretical 95% and 99% quantile for the fitted
distribution of download sizes. Compare with the empirical quantiles.

Exercise 2.9 Investigate the distribution of the duration of the downloads. Does a normal
distribution fit? Does a normal distribution fit log(duration)?

Exercise 2.10 Recall the Weibull distribution with distribution function

F (x) = 1− exp(−xβ), x ≥ 0

http://www.math.ku.dk/~richard/courses/StatScience2011/BUtraffic.txt
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for β > 0. Compute the quantile function.

Exercise 2.11 Restrict attention to the durations larger than one second. Use the QQ-
plot to investigate if the Weibull distribution fits the distribution of log durations for the β
parameter in the range from 1 to 2.

Exercise 2.12 How can you estimate the unknown β parameter for the Weibull distribution
in the previous exercise? Try computing the theoretical mean in terms of β and equate it
equal to the sample mean.

Exercise 2.13 Argue that the function

F (x) = 1− xβ0x−β , x ≥ x0 > 0

for β > 0 is a distribution function on [x0,∞). It is called the Pareto distribution on the
interval [x0,∞). Compute the quantile function and the density for the Pareto distribution.



Chapter 3

Third Week

3.1 Discrete distributions

Hardy-Weinberg equilibrium

All diploid organisms like humans carry two copies of the chromosomes. For a gene occurring
in two combinations as allele A or a there are three possible genotypes: AA,Aa, aa.

We sample a random individual from a population and observe Y – the genotype – taking
values in the sample space {AA,Aa, aa}.

With Xf and Xm denoting unobservable father and mother alleles for the random individ-
ual the variable Y is a function of these. Under a random mating assumption – that is,
independence of Xm and Xf – and an equal distribution assumption in the male and female
populations:

P(Y = AA) = p2, P(Y = Aa) = 2p(1− p), P(Y = aa) = (1− p)2

with p = P(Xm = A) = P(Xf = A).

The probability of a least one start codon

We continue the exploration of independence using the die model of biological sequences but
now for longer sequences of letters. Here of length 3n to give a total of n codons. That is,
we allow only for a single reading frame, we count only the disjoint codons in this reading
frame and not the overlapping codons corresponding to different reading frames.

If we have n codons (3n DNA letters)

what is the probability of at least one start codon?

What is the probability of not observing a start codon?

63
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The codons are independent

P (no start codon) = P(XY Z 6= ATG)n = 0.987n.

and
P (at least one start codon) = 1− 0.987n.

The general rule is that if A denotes an event with probability P (A) then Ac denotes the
complementary event and

P (Ac) = 1− P (A).

If Ai denotes the event that codon i is not ATG then the intersection (joint occurrence)
A1 ∩ . . . ∩An is the event that no codons equal ATG. It is the general definition that inde-
pendence of events A1, . . . , An means that

P (A1, . . . , An) = P (A1)× . . .× P (An),

that is, the probability of the joint occurrence of independent events is the product of their
individual probabilities.

The number of codons before the first start codon

If L denotes the number of codons before the first start codon we have found that

P(L = n) = P (no start codon in n codons, start codon at codon n+ 1)

= 0.987n × 0.013.

This is the geometric distribution with success probability p = 0.013 on the non-negative
integers N0.

It has the general point probabilities

P(L = n) = (1− p)np.

It actually follows from the derivation above that

∞∑

n=0

(1− p)np = 1

because this is the sum of the probabilities that L = n for all n ≥ 0. However, it is also a
consequence of the general result on the geometric series

∞∑

n=0

sn =
1

1− s

for |s| < 1. Plugging s = 1− p into this formula yields that

∞∑

n=0

(1− p)n =
1

1− (1− p) =
1

p
,

and by multiplication of p on both sides we see that the infinite sum above is 1.
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The number of start codons

What is the probability of observing k start codons among the first n codons?

Any configuration of k start codons and n − k non-start codons are equally probable with
probability

0.013k × 0.987n−k.

With S the number of start codons

P(S = k) =

(
n

k

)
× 0.013k × 0.987n−k.

This is the binomial distribution with success probability p = 0.013. It has general point
probabilities

P(S = k) =

(
n

k

)
pk(1− p)n−k

for k ∈ {0, . . . , n}.
The combinatorial constant (

n

k

)
=

n!

k!(n− k)!

is pronounced n-choose-k. It is the number of ways to choose k objects from n objects
disregarding the order.

More complicated pattern problems

Start codons do not respect the reading frame I have chosen. More complicated motifs
involve wild cards and self-overlap. The loaded die model is not accurate. The mathematical
analysis of complicated patterns can be arbitrarily difficult and there are many unsolved
theoretical problems from a probabilistic point of view. From a practical point of view, good
approximations can often be found, as for the local alignment scores considered earlier, using
combinations of theoretical knowledge, computational experiments and statistical analysis.

3.1.1 R interlude: The geometric distribution

Still studying the dice game from previously we will investigate the distribution of the
number of throws before one pattern occurs.

diceGame2 <- function(N, pattern = c(1, 4, 3)) {

len <- numeric(N) ## Number of throws before pattern start.

patternLength <- length(pattern)

stopLength <- patternLength + 1

for(n in 1:N) {

test <- 1 ## Control variable, how many outcomes match pattern

l <- - patternLength ## To get number of throws before the pattern start.

while(test < stopLength) {

temp <- sample(1:6, 1) ## Random, uniform sampling of a

## single number between 1 and 6
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if(temp == pattern[test]) test <- test + 1

else test <- 1

l <- l + 1

}

len[n] <- l

}

return(len)

}

We illustrate the use with the simplest pattern and compare with the relevant geometric
distribution. The mean in the geometric distribution with success probability p is µ =
(1− p)/p corresponding to p = 1/(1 + µ).

tmp <- diceGame2(500, pattern = 1)

lTab <- table(tmp) ## Tabulation

barplot(lTab)

mu <- mean(tmp) ## The empirical mean

p <- 1 / (1 + mu)

par(mfcol = c(2, 1))

barplot(lTab[1:30] / 500, ylim = c(0, 0.20))

barplot(dgeom(0:29, p), names.arg = 0:29, ylim = c(0, 0.20))
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We can also use a QQ-plot.

eq <- sort(tmp)

tq <- qgeom((1:500 - 0.5) / 500, prob = p)

plot(tq, eq, pch = 19)

abline(0, 1)
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For more complicated patterns we do not find a geometric distribution exactly because of
”overlaps”, but it is not a bad approximation for small and simple patterns, in particularly
not for non-self-overlapping patterns.

tmp <- diceGame2(500)

p <- 1 / (1 + mean(tmp))

eq <- sort(tmp)

tq <- qgeom((1:500 - 0.5) / 500, prob = p)

par(mfcol = c(1, 2))

plot(tq, eq, pch = 19, xlim = c(0, 1500), ylim = c(0, 1500))

abline(0, 1)

tmp <- diceGame2(500, pattern = c(1, 1, 1))

p <- 1 / (1 + mean(tmp))

eq <- sort(tmp)

tq <- qgeom((1:500 - 0.5) / 500, prob = p)

plot(tq, eq, pch = 19, xlim = c(0, 1500), ylim = c(0, 1500))

abline(0, 1)
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3.1.2 R digression: Compiling

R is an interpreted language and the execution of calls to diceGame and diceGame2 is slow.
The kind of simple but repetitive and iterative computations they represent are generally
difficult to implement in R in a way that is competitive with compiled code in terms of
execution time. However, there is a possibility to compile the R code using a form of byte
code compiler, which can often improve on the execution times at no cost.

require(compiler)

diceGameCmp <- cmpfun(diceGame)

diceGameCmp2 <- cmpfun(diceGame2)

After the compilation the two byte code compiled functions behave and look just as the
original functions. But they execute faster.

system.time(diceGame(1000))

## user system elapsed

## 1.973 0.005 2.011

system.time(diceGameCmp(1000))

## user system elapsed

## 1.173 0.002 1.180

system.time(diceGame2(1000))

## user system elapsed

## 2.985 0.008 3.051

system.time(diceGameCmp2(1000))
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## user system elapsed

## 1.898 0.007 1.928

The improvements are not dramatic but they are noticable, and compiling is worth trying in
all cases where execution time becomes a problem. The improvements typically range from
no improvements to a factor 2-4 and in some cases perhaps a factor 5-6. All functions in the
base packages that ship with R are byte code compiled.

3.1.3 The Poisson Distribution
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Figure 3.1: The point probabilities for the Poisson distribution with λ = 5 (left) and λ = 10
(right).

Recall that the exponential function has the infinite Taylor expansion

eλ =

∞∑

n=0

λn

n!
.

The Poisson distribution

On the sample space N0 of non-negative integers the Poisson distribution with parameter
λ > 0 is given by the point probabilities

p(n) = e−λ
λn

n!

for n ∈ N0.

The expected value is
∞∑

n=0

np(n) =

∞∑

n=0

ne−λ
λn

n!
= λ
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The way to see this is as follows.

∞∑

n=0

ne−λ
λn

n!
= e−λ

∞∑

n=1

λn

(n− 1)!

= λe−λ
∞∑

n=1

λ(n− 1)

(n− 1)!

= λe−λ
∞∑

n=0

λn

n!
︸ ︷︷ ︸

eλ

= λ

where we have used the Taylor series for the exponential function.

The Poisson distribution is not derived from any simple context, as opposed to the geomet-
ric distribution and the binomial distribution. It is, however, a universal model for counting
phenomena. It holds, in particular, that if n is large and p is small then the Poisson dis-
tribution with parameter λ = np is a good approximation to the binomial distribution on
{0, . . . , n} with success probability p. The fact is that the Poisson distribution is quite widely
applicable way beyond being just an approximation of the binomial distribution.

Exercise: Distribution of patterns

Use sample as previously to generate random DNA sequences. This time of length 1,000.

Find the distribution of the number of occurrences of the pattern AATG using the R function
gregexpr.

Compare the distribution with the Poisson distribution.

3.1.4 R interlude: The Poisson distribution

Point probabilities for the Poisson distribution with parameter λ = 3.

poispoint <- dpois(0:20, lambda = 3)

poispoint

## [1] 4.979e-02 1.494e-01 2.240e-01 2.240e-01 1.680e-01 1.008e-01 5.041e-02

## [8] 2.160e-02 8.102e-03 2.701e-03 8.102e-04 2.210e-04 5.524e-05 1.275e-05

## [15] 2.732e-06 5.463e-07 1.024e-07 1.808e-08 3.013e-09 4.757e-10 7.135e-11

A barplot using various plotting parameter tricks to set a wide linewidth (lwd), to set the
ends of the lines to be ”butted” (lend = 2) and not rounded (default) and to get a nice gray
color instead of a massive black. See help(par) for information in plotting parameters
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plot(0:20, poispoint, type = "h",

lwd = 10, lend = 1, col = gray(0.7))

Or use the barplot function. See Figure 3.1

barplot(poispoint, names.arg = 0:20,

main = "Poisson point probabilities with lambda=3",

xlab = "n", ylab = "point probabilities")

3.2 Means and differences: The normal model

Keywords: confidence intervals, gene expression, standard error of the mean, t-tests, Wilcoxon
test.

ISwR: 93-107

Throughout this lecture we will consider data from a microarray experiment. It is the so-
called ALL data set (Chiaretti et. al., Blood, vol. 103, No. 7, 2004). It consists of samples
from patients suffering from Acute Lymphoblastic Leukemia. We will consider only those
patients with B-cell ALL, and we will group the patients according to presence or absence
of the BCR/ABL fusion gene.

Histograms
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Figure 3.2: Examples of histograms for the log (base 2) expression levels for a random subset
of six genes from the ALL data set (non BCR/ABL fusion gene).

Scientific questions
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Is there a difference between the two groups in the gene expression example w.r.t. the
expression measured for 1635 at?

Are there any genes for which the expression level differ between the two groups? In the
confirmatory case, which?

3.2.1 The t-tests and friends

The two group normal model

For the gene expression example with 2 groups we consider the model of the log-expression
xi,j for i = 1 and j = 1, . . . , 37, i = 2 and j = 1, . . . , 42 that xi,j follows a normal distribution
N(µi, σ

2
i ).

That is, xi,j is the j’th log-expression measurement in group i and the within-group distri-
bution is a normal distribution.

The estimators of µ1 and µ2 are

µ̂1 = x̄1 =
1

n1

n1∑

j=1

x1,j µ̂2 = x̄2 =
1

n2

n2∑

j=1

x2,j

with n1 = 37 and n2 = 42 is our example.

Standard error of the mean

The distribution of the average x̄1 is, under the model assumptions above,

x̄1 ∼ N(µ1,
σ2

1

n1
)

The standard deviation of the average is the standard error of the mean (SEM),

SEM =
σ1√
n1
.

We usually estimate σ1 as

σ̂1 =

√√√√ 1

n1 − 1

n1∑

j=1

(x1,j − x̄1)2

and thus SEM as σ̂1/
√
n1.

Confidence interval

If we know σ2, and thus SEM, then

x̄1 − µ1

SEM
∼ N(0, 1)
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and there is approximately 95% probability that the interval

[x̄1 − 1.96× SEM, x̄1 + 1.96× SEM]

contains the mean µ1.

We don’t know SEM but estimate it from data, in which case

t =
x̄1 − µ1

SEM

has a t-distribution with n1 − 1 degrees of freedom.

With t0.975 the 0.975-quantile for this t-distribution the interval

[x̄1 − t0.975 × SEM, x̄1 + t0.975 × SEM]

is a 95% confidence interval for µ1.

Note, the probability statement about the confidence interval is a probability statement
about the random interval, not about the parameter µ1. If we repeat the experiment the
95% confidence interval will contain the mean in 95% of the cases and miss the mean in 5%
of the cases.

The practical difference between using 1.96 and t0.975 in the construction of 95% confidence
intervals is little unless n1 is very small.

In the remaining part of this section we till consider a single gene only out of the total of
12625 measured.

Estimates

BCR/ABL present BCR/ABL not present

x̄1 = 1
37

∑37
j=1 x1,j = 8.54 x̄2 = 1

42

∑42
j=1 x2,j = 7.33

σ̂2
1 = 1

36

∑37
i=1(x1,j − x̄1)2 = 0.677 σ̂2

2 = 1
41

∑42
i=1(x2,j − x̄2)2 = 0.414

Confidence intervals for the means are

8.54± 2.028×
√

0.677√
37

= [8.27, 8.81]

and

7.33± 2.020×
√

0.414√
42

= [7.13, 7.53]

Here we used the 0.975-quantiles for the t-distribution with 36 and 41 degrees of freedom,
which are 2.028 and 2.020, respectively.
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Difference of means

Under the stated model, the distribution of the difference of the means is

x̄1 − x̄2 ∼ N

(
µ1 − µ2,

σ2
1

n1
+
σ2

2

n2

)
.

The difference µ1 − µ2 is the parameter of interest and x̄1 − x̄2 is the estimator of this
parameter.

The standard error of the difference of means (SEDM) is
√
σ2

1

n1
+
σ2

2

n2
.

It quantifies the order of magnitude of the random error in the estimate x̄1 − x̄2 of µ1 − µ2.

A hypothesis

We ask if µ1 = µ2 – this is the scientific hypothesis about equal mean log-expression level
in the two groups.

We use the test statistic x̄1 − x̄2 to quantify the observed difference.

We use the distribution

N

(
0,
σ2

1

n
+
σ2

2

m

)

of the test statistics under the hypothesis to decide if the observed quantification is unrea-
sonably large if the hypothesis is true. We reject the hypothesis if this is the case.

Statistical Tests - formalization

We consider a parameter of interest θ and two nested models, i.e. parameter sets

Θ0 ⊆ Θ.

We ask for a procedure – a statistical test – such that we, for a given observation, can decide
whether the parameter θ is in Θ0 or whether it is in Θ\Θ0.

Formalized: We call the assumption that θ ∈ Θ0 the hypothesis and write

H : θ ∈ Θ0.

Sometimes, the hypothesis is referred to as the null-hypothesis and Θ\Θ0 as the alternative
hypothesis.

In the previous example, the parameter sets are

Θ = {(µ1, µ2) | µ1, µ2 ∈ R}
and Θ0 = {(µ1, µ2) ∈ Θ | µ1 = µ2}.
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Statistical Tests

A test consists of a division of the sample space into disjoint events A and R with A called
the acceptance region and R the rejection region.

We reject the hypothesis if our observation fall in R and we accept the hypothesis if the
observation falls in A. The level of the test is

α = max
θ∈Θ0

Pθ(R),

which is the largest probability of (wrongly) rejecting the test under the hypothesis. The
power for θ ∈ Θ of the test is

β(θ) = Pθ(R).

The power for θ ∈ Θ\Θ0 is the probability of correctly rejecting the hypothesis under the
specific alternative θ.

A good test has small level α and large power β(θ) for all θ ∈ Θ\Θ0. However, these two
interests pull in different directions, and if we enlarge the acceptance set, say, the level as
well as the power goes down.

Returning to our gene expression example, we assume for the moment that the variances
are known to both be equal to 1, and we will construct rejection regions as subsets of the
79-dimensional sample space with a large numerical difference between the empirical means
in the two groups. It plays a central role that the distribution of the difference is known to
be a N(0, 1/37 + 1/42)-distribution under the hypothesis of equal means.

Difference in group means

If we know both variances σ2
1 = σ2

2 = 1 and have n1 = 37 and n2 = 42 the 0.975 quantile
for the N(0, 1/37 + 1/42) = N(0, 0.051) distribution is 0.442.

The normal distribution is symmetric – the probability of getting an observed difference
≥ 0.442 or ≤ −0.442 becomes 0.05.

A level 5% test when assuming σ2
1 = σ2

2 = 1 is given by the rejection region

R = {x ∈ R79 | |x̄1 − x̄2| ≥ 0.442}.

We have estimated variances σ̂2
1 = 0.677 and σ̂2

2 = 0.414, which gives an approximate level
5% test with rejection region

R = {x ∈ R79 | |x̄1 − x̄2| ≥ 0.329}.

The estimated difference for the data set is |8.54− 7.33| = 1.21, and the conclusion is that
the hypothesis is rejected. The approximation above ignores the fact that the variances are
estimated. For small samples the approximation is not that good.
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Two sample t-test with equal variances

If σ1 = σ2 = σ we estimate σ2 by the pooled variance estimator defined as

σ̂2 =
1

n1 + n2 − 2




n∑

j=1

(x1,j − x̄1)2 +

m∑

j=1

(x2,j − x̄2)2


 .

With this setup we introduce the t-test statistic

t =

√
n1+n2

n1n2
(x̄1 − x̄2)

σ̂
.

Under the hypothesis that µ1 = µ2 the distribution of t is a t-distribution with n1 + n2 − 2
degrees of freedom. The test is carried out by rejecting the hypothesis for large values of |t|.

Two sample t-test without equal variances

If we don’t assume equal variances then

t =
x̄1 − x̄2√
σ̂2

n + σ̂2

m

where

σ̂2
1 =

1

n1 − 1

n1∑

j=1

(x1,j − x̄1)2 σ̂2
2 =

1

n2 − 1

n2∑

j=1

(X2,j − x̄2)2

Under the hypothesis that µ1 = µ2 the distribution of t is approximated by a t-distribution.
We reject at level α if

|x̄1 − x̄2| ≥ SEDM× t1−α/2
where SEDM is the estimated standard error of the difference of the means and t1−α/2 is
the 1− α/2 quantile for the appropriate t-distribution.

Note that when assuming equal variances there is a simple formula for the computation of
the degrees of freedom and the results are exact under the stated model assumptions. When
we don’t assume equal variances the t-distribution is an approximation and the relevant
degrees of freedom is given by a complicated formula. The latter is referred to as the Welch
t-test.

Confidence interval

An alternative to reporting a conclusion from a test as “reject” or “accept” is to report a
confidence interval.

A 95% confidence interval for the difference µ1 − µ2 is found as

(x̄1 − x̄2)± SEDM× t0.975.

The test is rejected at level 5% if and only if the 95% confidence interval does not contain
0. The confidence interval contain more information on the actual difference.



78 3.2. Means and differences: The normal model

Note that the biggest problem with a difference in variance is not a formal problem with
the computation of the test statistic or its distribution. The biggest problem lies in the
interpretation. Differences in mean expression level and the variance of the gene at the same
time gives a less clear cut interpretation about up- or down-regulation.

Wilcoxon test

The Wilcoxon signed rank test is an alternative to the one-sample t-test for testing if a
sample has a specific mean.

The two-sample Wilcoxon test is an alternative to the two-sample t-test for testing if the
mean in two groups are equal.

Both test make minimal distributional assumptions and are thus robust to deviations from
the normality assumption.

Neither test produce confidence intervals.

These tests are sometimes referred to as non-parametric or distribution free. Their main
justification is that they can be used without worrying too much about distributional as-
sumptions – and perhaps even without giving the distribution much thought. Though the
intention is fine, their use may so easily reduce modeling of data to an exercise in formalities
and p-value computations.

The two-sample t-test is reasonably robust to deviations from distributional assumptions,
and an analysis with a reasonable (graphical) justification of the normality assumption, a
t-test and a confidence interval for the difference in means is a much stronger analysis than a
two-sample Wilcoxon p-value. However, the t-test (and the estimates of mean and variance)
may be sensitive to outliers, and outliers would typically have to be removed from the
analysis after identification. For automatic procedures that are supposed to be reasonably
robust to outliers the Wilcoxon test may be a suitable alternative to the t-test.

3.2.2 Multiple testing

Multiple testing

name t-test statistics p-value

1636 g at −9.26 3.76e− 14
39730 at −8.69 4.79e− 13
1635 at −7.28 2.45e− 10
1674 at −6.90 1.28e− 09

40504 at −6.57 5.27e− 09
37015 at −6.19 2.74e− 08
40202 at −6.18 2.79e− 08
32434 at −5.78 1.54e− 07
37027 at −5.65 2.60e− 07

39837 s at −5.50 4.74e− 07

The top 10 t-test statistics for all 12625 tests ordered according to p-value.
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There are a total of 12625 genes represented on the array. We can do a t-test for each gene
where we test if there is a difference in the mean value between those with the BCR/ABL
fusion gene and those without. The tests are carried out under the assumption of equal
variances, which means that a single t-distribution is used for all p-value computations.

We find our earlier considered gene, 1635 at, as number three from the top on this list. Our
earlier conclusions may be problematic if the gene was considered because of its position as
number three on this list.

Problems with multiple tests

If gene 1635 at was selected due to its position in the list there are two problems we need
to address.

• The difference in gene expression may simply be a random artifact and not a real
biological difference – among many genes with no differences, some will show large
random differences in a sample.

• Even if there is a difference, the estimated difference may likely be biased upwards.

The problem with multiple statistical testing is that even though the individual tests are
all sound the selection of tests based on p-value, say, introduces a selection bias in our
conclusions. If we make a statistical test at a 5%-level there is 5% chance the we by mistake
reject the hypothesis even though it is true. This is not a completely negligible probability
but 5% has caught on in the literature as a suitable level. The problem is that if we carry
out 100 tests at a 5%-level then we expect that 1 out of 20 tests, that is, 5 in total, reject
the hypothesis even if it is true in all the 100 situations. What is perhaps even worse is that
the probability of rejecting at least one of the hypothesis is in many cases rather large. If
all the tests are independent, the number of tests we reject follows a binomial distribution
with parameters n = 100 and p = 0.05, in which case the probability of rejecting at least
one hypothesis if they are all true is 1− (1− 0.05)100 = 99.4%.

A binomial computation

If we make n independent tests at level α the number of tests we reject follows a binomial
distribution with parameters (n, α).

The probability of rejecting at least one test assuming that the hypothesis of no mean
difference is true for all cases is

1− (1− α)n.

This is called the family wise error rate, and if we want to control this at level 0.05, say, we
solve for α and get

α = 1− (0.95)1/n.

With n = 12625 we get
α = 1− (0.95)1/12625 = 4.06e− 06.
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The procedure above for correcting the level of the individual tests to achieve control over the
probability of wrongly rejecting a single test is known as the Sidak correction. The correction
is valid if the tests are independent. This is sometimes a questionable assumption. A widely
used correction, presented here to achieve a 5% family wise error rate, is the Bonferroni
correction, which is simply

α = 0.05/n = 0.05/12625 = 3.96e− 06.

The Bonferroni correction is always more conservative than the Sidak correction (it yields
a smaller α), but in this case the difference is quite small. In either case, the resulting
procedure can be very conservative.

If we carry out 100 two-sample t-tests on different data sets and find that at a 5% level we
rejected in 4 cases the hypothesis that the means are equal, does this support a conclusion
that the means are actually different in those 4 cases? No, it does not. If we reject in 30 out
of the 100 cases we are on the other hand likely to believe that for a fair part of the 30 cases
the means are actually different. The binomial probability of getting more than 10 rejections
is 1.1% and getting more than 20 rejections has probability 2.0 × 10−8. But for how many
and for which of the 30 cases can we conclude that there is a difference? A natural thing is
to order (the absolute value of) the test statistics

|t(1)| ≤ . . . ≤ |t(100)|

and then take them from the top and down.

Instead of a formal procedure, consider the QQ-plot of the computed t-test statistics against
the t-distribution with 77 degrees of freedom or the histogram of the p-values.
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Figure 3.3: QQ-plot of the 12,625 t-test statistics for the ALL dataset (left) and histogram
of the corresponding p-values.

The QQ-plot bends in a way that indicates that there are too many large and small values
in the sample. This is confirmed by the histogram of p-values, which shows that there are in
the order of several hundred p-values too many in the range from 0 to 0.01.
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The conclusion in the example above is that there are a number of the cases where we should
reject the hypothesis – even in the light of the fact that we do 12625 tests. The real question
is that if we continued the list above, when should we stop? What should the threshold for
the t-test statistic be in the light of the multiple tests carried out?

Current research suggests that for large, multiple testing problems focus should change from
the family wise error rate to other quantities such as the false discovery rate, which is the
expected relative number of falsely rejected hypotheses out of the total number of rejected
hypotheses. The book Multiple testing procedures with applications to genomics by Dudoit
and van der Laan (Springer, 2008) treats this and a number of other issues in relation to
multiple testing problems.

3.2.3 R interlude: ALL microarray analysis

The data used are in the Bioconductor package ALL that can be installed from the Biocon-
ductor repository. We extract the subset with B-cell ALL.

require(ALL)

data(ALL)

subset <- grep("B", as.character(pData(ALL)$BT))

exNEG <- exprs(ALL)[, intersect(which(pData(ALL)$mol.b == "NEG"), subset)]

exBCR <- exprs(ALL)[, intersect(which(pData(ALL)$mol.b == "BCR/ABL"), subset)]

Investigation of one particular gene:

mu1 <- mean(exBCR["1635_at", ])

mu2 <- mean(exNEG["1635_at", ])

sd1 <- sqrt(var(exBCR["1635_at", ]))

sd2 <- sqrt(var(exNEG["1635_at", ]))

A normal model.

x <- seq(5, 11, 0.001)

y1 <- dnorm(x, mu1, sd1)

y2 <- dnorm(x, mu2, sd2)

plot(x, y1, ann = FALSE, ylim = c(0,0.65), lwd = 2, type = "l")

lines(x, y2, ann = FALSE, lwd = 2)

lines(c(mu1, mu1), c(0, dnorm(mu1, mu1, sd1) - 0.02))

lines(c(mu2, mu2), c(0, dnorm(mu2, mu2, sd2) - 0.02))
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One-sample t-tests for each group. Formally tests the hypothesis that the mean is equal to
0 and computes 95% confidence intervals

t.test(exBCR["1635_at", ])

##

## One Sample t-test

##

## data: exBCR["1635_at", ]

## t = 63.11, df = 36, p-value < 2.2e-16

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## 8.262 8.811

## sample estimates:

## mean of x

## 8.536

t.test(exNEG["1635_at", ])

##

## One Sample t-test

##

## data: exNEG["1635_at", ]

## t = 73.88, df = 41, p-value < 2.2e-16

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## 7.133 7.534

## sample estimates:

## mean of x

## 7.334

Formal t-tests without and with the assumption of equal variances.
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t.test(exBCR["1635_at", ], exNEG["1635_at", ])

##

## Welch Two Sample t-test

##

## data: exBCR["1635_at", ] and exNEG["1635_at", ]

## t = 7.168, df = 67.92, p-value = 7.103e-10

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## 0.8679 1.5375

## sample estimates:

## mean of x mean of y

## 8.536 7.334

t.test(exBCR["1635_at", ], exNEG["1635_at", ],

var.equal = TRUE)

##

## Two Sample t-test

##

## data: exBCR["1635_at", ] and exNEG["1635_at", ]

## t = 7.28, df = 77, p-value = 2.446e-10

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## 0.8737 1.5317

## sample estimates:

## mean of x mean of y

## 8.536 7.334

By hand computation of the 95% confidence interval for the difference of the means with
the equal variance assumption.

SEDM <- sqrt((37 + 42) / (37 * 42)) * sqrt((36 * sd1^2 + 41 * sd2^2)/(36 + 41))

mu1 - mu2 + qt(0.975, 77) * c(-1, 1) * SEDM

## [1] 0.8737 1.5317

Computations of all t-tests for the 12625 genes. The results are stored in a list.

tTestList <- list()

for(i in 1:dim(exBCR)[1])

tTestList[[i]] <- t.test(exBCR[i, ], exNEG[i, ], var.equal = TRUE)

Extraction of mean differences, test-statistics and p-values from the list of t-test objects.

meanDiff <- sapply(tTestList, function(t) t$estimate[1] - t$estimate[2])

tTests <- sapply(tTestList, function(t) t$statistic)

pValues <- sapply(tTestList, function(t) t$p.value)

A vulcano plot may be a useful visualization of the result. You can see the relation between
large estimated differences and large absolute values of the test statistic.
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QQ-plots and histograms of p-values are useful to get an idea about how many genes actually
show a difference in expression value between the two cases. The QQ-plot is against the
theoretical t-distribution with 77 degrees of freedom.

eq <- sort(tTests)

tq <- qt((1:length(tTests) - 0.5)/length(tTests), 77)

par(mfcol = c(1, 3))

plot(meanDiff, abs(tTests), pch = 19, main = "Vulcano plot")

plot(tq, eq, pch = 19, main = "QQ-plot")

abline(0, 1) ## There are no parameters involved here.

hist(pValues, breaks = 40)
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Top 10 genes ordered according to absolute value of t-test statistic.

top10 <- order(abs(tTests), decreasing = TRUE)[1:10]

top10table <- data.frame(geneid = rownames(exBCR)[top10],

meanDiff = meanDiff[top10],

tTest = tTests[top10],

pValue = pValues[top10]

)

top10table

## geneid meanDiff tTest pValue

## 1 1636_g_at 1.1000 9.261 3.762e-14

## 2 39730_at 1.1525 8.688 4.792e-13

## 3 1635_at 1.2027 7.280 2.446e-10

## 4 1674_at 1.4272 6.901 1.281e-09

## 5 40504_at 1.1810 6.574 5.265e-09

## 6 37015_at 1.0327 6.188 2.740e-08

## 7 40202_at 1.7794 6.184 2.785e-08

## 8 32434_at 1.6786 5.776 1.536e-07

## 9 37027_at 1.3487 5.648 2.601e-07

## 10 39837_s_at 0.4757 5.502 4.741e-07

Note that if we use the Welch t-test instead of the equal variance t-test as above, the
degrees of freedom will change from gene to gene. We could extract this number from the
t-test objects, but in principle the computed test statistics should be compared to different t-
distributions and the QQ-plot is no longer sensible. However, the t-distributions will resemble
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normal distributions with mean 0 and variance 1, and we could use this distribution as a
surrogate. First we do this for the t-tests with the equal variance assumption.

qqnorm(tTests, pch = 19)

abline(0, 1) ## Preferable over 'qqline' here.

Try to repeat the computations above, but without the equal variance assumption. The
difference is small. The list of top 10 genes is almost unchanged in this case.

We can also compare with the non-parametric Wilcoxon test. The wilcox.test function
will warn against non being able to compute exact p-values with ties.

tTestList <- list()

wTestList <- list()

for(i in 1:dim(exBCR)[1]) {

wTestList[[i]] <- wilcox.test(exBCR[i, ], exNEG[i, ])

tTestList[[i]] <- t.test(exBCR[i, ], exNEG[i, ], var.equal = TRUE)

}

pValues <- sapply(wTestList, function(w) w$p.value)

pValuesT <- sapply(tTestList, function(t) t$p.value)

par(mfcol = c(2, 2))

hist(pValues, breaks = 40)

hist(pValuesT, breaks = 40)

plot(pValues, pValuesT)

plot(pValues, pValuesT,

xlim = c(0, 0.01), ylim = c(0, 0.01)

)



86 3.2. Means and differences: The normal model

Histogram of pValues

pValues

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Histogram of pValuesT

pValuesT

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pValues

pV
al

ue
sT

0.000 0.002 0.004 0.006 0.008 0.010

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

pValues

pV
al

ue
sT

The top 10 genes according to the Wilcoxon test.

top10 <- order(abs(pValues))[1:10]

top10table <- data.frame(geneid = rownames(exBCR)[top10],

pValue = pValues[top10],

pValueT = pValuesT[top10]

)

top10table

## geneid pValue pValueT

## 1 1636_g_at 8.306e-13 3.762e-14

## 2 39730_at 2.158e-12 4.792e-13

## 3 40504_at 1.830e-09 5.265e-09

## 4 1635_at 2.310e-09 2.446e-10

## 5 1674_at 3.390e-09 1.281e-09

## 6 37015_at 4.802e-08 2.740e-08

## 7 35162_s_at 8.739e-08 2.993e-06

## 8 40202_at 1.291e-07 2.785e-08

## 9 32434_at 3.749e-07 1.536e-07

## 10 39837_s_at 4.780e-07 4.741e-07
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3.3 Exercises

For the following two exercises we consider the BUtraffic data set

http://www.math.ku.dk/~richard/courses/StatScience2011/BUtraffic.txt

introduced in Exercise 2.7.

Exercise 3.1 Compute a 95% confidence interval for the mean of the log size of the down-
loads.

Exercise 3.2 Break the data into two groups according to whether the time of observation
is smaller or larger than 972500. Use the t-test to compare the means of the log size for the
two groups. Does it make a difference in the comparison above whether we assume equal
variances in the two groups or not.

http://www.math.ku.dk/~richard/courses/StatScience2011/BUtraffic.txt
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Chapter 4

Fourth Week

4.1 Molecular evolution

Keywords: conditional distribution, likelihood function, maximum-likelihood estimator, molec-
ular evolution.

Principled modeling

Up to this point we have considered:

• Ad hoc methods for the estimation of parameters – equating empirical and theoretical
quantities.

• Ad hoc test statistics and confidence interval constructions for specific cases.

We have introduced workhorse methods like:

• Estimation of mean, variance or location, scale parameters.

• Estimating proportions (probabilities).

• Comparing proportions (tables, χ2-tests).

• Comparing means (t-test).

Is there a unified, principled approach behind those methods?

The importance of a principled approach is not so much to “be able to follow the right path
for the true believers”, as it is to provide a reasonably general, powerful tool that can be
adapted for new problems. Up to this point in the course you have learned a limited number
of special case tools, which can be used to solve special problems.

As a case for the introduction of principled approach to statistical analysis we introduce a
few models of molecular evolution.

89
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The simplest models we are going to consider regard each nucleic acid in the DNA-sequence
as evolving independently according to a dynamic model that depends upon the time between
observations.

Sequences evolve according to a complicated interaction of random mutations and selection,
where the random mutations can be single nucleotide substitutions, deletions or insertions,
or higher order events like inversions or crossovers. We will only consider the substitution
process. Thus we consider two DNA sequences that are evolutionary related via a number
of nucleotide substitutions. We will regard each nucleotide position as unrelated to each
other, meaning that the substitution processes at each position are independent. We are
interested in a model of these substitution processes. We are especially interested in how the
evolutionary distance – measured, for instance, in calendar time – enters into the models.

The models will from a biological point of view be very simplistic and far from realistic as
models of real sequence evolution processes. However, they form the starting point for more
serious models, if one, for instance, wants to enter the area of phylogenetics, and they are
well suited to illustrate and train the fundamental concepts of a statistical models and the
methods of statistical inference.

Obtaining data is also a little tricky, since we can rarely go out and read of evolutionary
related sequences where we know the relation “letter by letter” – such relations are on the
contrary established computationally using alignment programs. However, in some special
cases, one can actually observe real evolution as a number of substitutions in the genome.
This is for instance the case for rapidly evolving RNA-viruses.

Such a data set was obtained for the H strain of the Hepatitis C virus (HCV) (Ogata et
al., Proc. Natl. Acad. Sci., 1991 (88), 3392-3396). A patient, called patient H, was infected
by HCV in 1977 and remained infected at least until 1990 – for a period of 13 years. In
1990 a research group sequenced three segments of the HCV genome obtained from plasma
collected in 1977 as well as in 1990. The three segments, denoted segment A, B and C, were
all directly alignable without the need to introduce insertions or deletions. The lengths of
the three segments are 2610 (A), 1284 (B) and 1029 (C) respectively.

Molecular evolution

Position 42 275 348 447 556 557 594 652 735 888 891 973 979 1008 1011 1020 1050 1059 1083 1149 1191 1195 1224 1266

H77 G C C A G C C C T C T G G C G C T T C T T T T A

H90 A T T G A T T T C T C A A T A T A C T C C A C G

Table 4.1: The segment position and nucleotides for 24 mutations on segment A of the
Hepatitis C virus.

H90

H77

A C G T

A 1 11 1
C 4 1 20
G 13 3 1
T 3 19 1

segment A

H90

H77

A C G T

A 0 5 0
C 1 0 8
G 1 1 1
T 2 6 0

segment B

H90

H77

A C G T

A 1 2 0
C 1 2 5
G 4 0 0
T 1 3 1

segment C

Table 4.2: Tabulation of all mutations in the three segments A, B and C of the hepatitis C
virus genome from the 1977 H strain to the 1990 H strain.

In Table 4.1 we see the position for the first 24 mutations as read from the 5’-end of segment
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A out of the total of 78 mutations on segment A. In Table 4.2 we have tabulated all the
mutations in the three segments.

Example

Consider the sample space
{A,C,G, T} × {A,C,G, T},

and let X and Y denote random variables representing two evolutionary related nucleic acids
in a DNA sequence.

Let the joint distribution of X and Y have point probabilities

A C G T
A 0.1272 0.0063 0.0464 0.0051
C 0.0196 0.2008 0.0082 0.0726
G 0.0556 0.0145 0.2151 0.0071
T 0.0146 0.0685 0.0069 0.1315

Independence and point probabilities

Definition 3. The discrete random variables X and Y are independent if

P(X = x, Y = y) = P(X = x)P(Y = y).

In words: The random variables are independent if and only if the point probabilities for
their joint distribution factorize as a product of the point probabilities for their marginal
distributions.

Example

Y

X

A C G T
A 0.1272 0.0063 0.0464 0.0051 0.1850
C 0.0196 0.2008 0.0082 0.0726 0.3012
G 0.0556 0.0145 0.2151 0.0071 0.2923
T 0.0146 0.0685 0.0069 0.1315 0.2215

0.2170 0.2901 0.2766 0.2163

Same example as above but with the point probabilities for the marginal distributions. Note
that X and Y are not independent! For instance

0.1272 = P((X,Y ) = (A,A))

6= P(X = A)× P(Y = A) = 0.1850× 0.2170 = 0.0401
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Example

Y

X

A C G T
A 0.0401 0.0537 0.0512 0.0400 0.1850
C 0.0654 0.0874 0.0833 0.0651 0.3012
G 0.0634 0.0848 0.0809 0.0632 0.2923
T 0.0481 0.0643 0.0613 0.0479 0.2215

0.217 0.2901 0.2766 0.2163

Same marginals as above but X and Y are independent in this example.

Conditional distributions

Definition 4. The conditional distribution of Y given that X ∈ A is defined as

P(Y ∈ B|X ∈ A) =
P(Y ∈ B,X ∈ A)

P(X ∈ A)

provided that P(X ∈ A) > 0.

If X and Y are discrete we can condition on events X = x and get conditional distributions
in terms of point probabilities

p(y|x) = P(Y = y|X = x) =
P(Y = y,X = x)

P(X = x)
=

p(x, y)∑
y p(x, y)

where p(x, y) are the joint point probabilities.

Example

Using

P(Y = y|X = x) =
P(X = x, Y = y)

P(X = x)
=

p(x, y)∑
y∈E p(x, y)

.

we have to divide by precisely the row sums to get the matrix of conditional distributions:

Y

X

A C G T
A 0.6874 0.0343 0.2507 0.0276
C 0.0649 0.6667 0.0273 0.2411
G 0.1904 0.0495 0.7359 0.0242
T 0.0658 0.3093 0.0311 0.5938

The row sums above equal 1 and this is an example of a matrix of transition probabilities.
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The Jukes-Cantor model

With t ≥ 0 denoting time from the observation of the (discrete) variable X to the observation
of the variable Y we specify the conditional distribution, P t, of Y = y given X = x by

P t(x, x) = 0.25 + 0.75× exp(−4αt)

P t(x, y) = 0.25− 0.25× exp(−4αt), if x 6= y,

with α ≥ 0 a parameter.

In molecular evolution with sample space {A,C,G, T} this model is known as the Jukes-
Cantor model.

4.1.1 The Jukes-Cantor model

We want to consider pairs of nucleotides (Xi, Yi) from the sample space {A,C,G, T} ×
{A,C,G, T} that are evolutionary related. We assume that the pairs are identically dis-
tributed, that is

P(Xi = x, Yi = y) = p(x)P t(x, y)

=

{
p(x)(0.25 + 0.75× exp(−4αt)) if x = y
p(x)(0.25− 0.25× exp(−4αt)) if x 6= y

.

The unknown parameters are α > 0 and the four-dimensional probability vector p. Perhaps
t is also an unknown parameter.

We assume that (X1, Y1), . . . , (Xn, Yn) are independent with

Pt,p,α((Xi, Yi) = (x, y)) = Pt,p,α(x, y) = p(x)P tα(x, y).

where p is a vector of point probabilities on {A,C,G, T} and P tα(x, y) is the conditional
probability that x mutates into y in time t.

The probability of observing the data z = ((x1, y1), . . . , (xn, yn)) is

P((X1, Y1) = (x1, y1), . . . , (Xn, Yn) = (xn, yn))

=

n∏

i=1

Pt,p,α(xi, yi)

=

n∏

i=1

p(xi)P
t
α(xi, yi).

The argument behind the product formula above is that the pairs of nucleotides are assumed
independent. Thus the joint probability factorizes as a product of the marginal probabilities.
Moreover, the pairs of nucleotides are assumed identically distributed, which means that each
factor is from the same distribution.
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The likelihood function

Inverting the point of view on the probability computed above as a function of the unknown
parameter we get the likelihood function

Lz(t, p, α) =

n∏

i=1

Pt,p,α(xi, yi) =

n∏

i=1

p(xi)P
t
α(xi, yi).

Definition 5. The maximum-likelihood estimator (MLE) of the unknown parameter(s) is
the maximizer of the likelihood function.

We may encounter situations in practice, where there is no MLE.

For practical as well as theoretical reasons we often compute the log-likelihood or the minus-
log-likelihood. Finding the MLE is equivalent to finding the maximum of the log-likelihood
function or the minimum of the minus-log-likelihood.

The minus-log-likelihood function is

lz(t, p, α) = − log Lz(t, p, α) = −
n∑

i=1

log p(xi)−
n∑

i=1

logP tα(xi, yi).

Observe that the first term depends upon p only and the second term on (t, α) only. To find
the MLE we can minimize each term separately over the separate parameters.

Introducing n(x, y) as the number of observed mutations of x to y, we can rewrite

l̃z(α) = −
n∑

i=1

logP tα(xi, yi) = −
∑

x,y

n(x, y) logP tα(x, y).

To estimate α (and t?) using MLE we need to minimize this function as a function of α (and
t).

The last rewriting of the likelihood function is a typical tabulation for discrete observations.
We see that the likelihood function only depends on the data through the table of observed
mutations.

Finding the MLE

We can use calculus to find the MLE. It holds that α̃ is a local minimizer for l̃z(α) if

dl̃z
dα

(α̃) = 0 and

d2 l̃z
dθ2

(α̃) > 0.

The global minimizer of lz is found among the local minimizers unless lz attains the global
minimum at the boundary of the parameter space or “misbehaves” when the boundary is
approached.
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For the parameter α in the open interval (0,∞) it holds that if there is a unique stationary
point α̃ ∈ (0,∞), which is also a minimum, then α̃ is the global minimizer.

For the Jukes-Cantor model we have that

P tα(x, x) = 0.25 + 0.75× exp(−4αt)

P tα(x, y) = 0.25− 0.25× exp(−4αt), if x 6= y.

We consider the case with fixed and known t > 0 and α ≥ 0 the unknown parameter.
Introducing

n1 =
∑

x

n(x, x) and n2 =
∑

x 6=y

n(x, y)

we find that

l̃z(α) = −n1 log(0.25 + 0.75× exp(−4αt))

−n2 log(0.25− 0.25× exp(−4αt)).

The derivative is

dl̃z
dα

(α) = 4t exp(−4αt)

(
3n1

1 + 3 exp(−4αt)
− n2

1− exp(−4αt)

)

and the likelihood equation dl̃z
dα (α) = 0 is therefore equivalent to the equation

3n1(1− exp(−4αt)) = n2(1 + 3 exp(−4αt)).

This equation has a (unique) solution if and only if 3n1 > n2 in which case

α̂ =
1

4t
log

3(n1 + n2)

3n1 − n2
=

1

4t
log

3n

3n1 − n2

is the maximum likelihood estimator.

There is some intuition behind the formula. The conditional probability P t(x, x) is the
probability that a nucleotide does not change over the time period considered. For the
Hepatitis C virus data set, Table 4.2 shows that out of the 2610 nucleotides in segment A
there are 78 that have mutated over the period of 13 years leaving 2532 unchanged. With
reference to the frequency interpretation we can estimate α in the Jukes-Cantor model by
equating the formula for P t(x, x) equal to 2532/2610. In general terms this gives that we
should solve for α in the equation

0.25 + 0.75× exp(−4αt) =
n1

n1 + n2
,

which is solved by the formula above whenever 3n1 > n2. For the particular example this
gives

α̂ = − log(( 2532
2610 − 1

4 ) 4
3 )

4× 13
= 7.8× 10−4.

However, the important point is that deriving an estimator based on the likelihood function
is an general and principled method. That the result is interpretable and intuitive gives
credit to the method.
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Working with the minus-log-likelihood, and in particular differentiation in the α-parametrization,
is principled but hideous. It is much easier to make a reparametrization by

γ = γ(α) = 0.25− 0.25 exp(−4αt)

such that

α = α(γ) =
1

4t
log(1− 4γ)

for γ ∈ (0, 0.25). In the γ-parameter the minus-log-likelihood becomes

lz(γ) = −n1 log(1− 3γ)− n2 log γ

for γ ∈ (0, 0.25). The differentiation is easier yielding the derivative

l′z(γ) =
3n1

1− 3γ
− n2

γ
,

and solving the likelihood equation is always possible for γ ∈ (0, 1/3) and gives

γ̂ =
n2

3n
.

The solution is in (0, 0.25) if and only if 3n1 > n2 in which case we get

α̂ = α(γ̂) =
1

4t
log
(

1− 4
n2

3n

)
=

1

4t
log

3n

3n1 − n2
.

Hepatitis C example

Segment
A B C A+B+C

n1 2532 1259 1009 4800
n2 78 25 20 123
α̂ 7.8× 10−4 5.0× 10−4 5.0× 10−4 6.5× 10−4

Estimated mutation rates for the three segments separately and combined.

4.1.2 R interlude: Hepatitis C virus evolution

Load the data.

HepCevol <- read.table("http://www.math.ku.dk/~richard/courses/StatScience2011/HepCevol.txt")

The following implementation is a little fancier than needed, but can perhaps illustrate some
quite nifty things in R.

First we write a function that, given an α parameter and time value, returns the matrix of
transition probabilities. The default is time = 1 to make the function work even if we don’t
specify time.
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Figure 4.1: The minus-log-likelihood functions and corresponding MLE for the Hepatitis C
example.

tpJC <- function(alpha, time = 1) {

z <- -4 * alpha * time

xx <- 0.25 + 0.75 * exp(z)

xy <- 0.25 - 0.25 * exp(z)

tp <- matrix(xy, ncol = 4, nrow = 4)

diag(tp) <- xx

return(tp)

}

Then we implement the computation of the minus-log-likelihood function from a tabulation
of the number of transitions as presented in the lecture. Note that this is a one-line im-
plementation of a generic likelihood computation, where the transition probabilities can be
given as any function of any (univariate or multivariate) parameter theta. The default is
that tp are computed using tpJC as implemented above.

mll <- function(theta, x , tp = tpJC, ...)

- sum(log(tp(theta, ...)) * x)

We implement the computation of the MLE for the JC-model based on a tabulation of the
transitions.

alphahat <- function(x, t){

n1 <- sum(diag(x))

n2 <- sum(x) - n1

if(3 * n1 > n2) {
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alpha <- log(3 * (n1 + n2)/(3 * n1 - n2)) / (4 * t)

} else {

alpha <- Inf

}

return(alpha)

}

Then we tabulate our data for the three segments and compute the MLEs.

xSegA <- table(HepCevol[HepCevol$segment == "A", c(4, 3)])

diag(xSegA) <- c(470, 761, 746, 555)

xSegB <- table(HepCevol[HepCevol$segment == "B", c(4, 3)])

diag(xSegB) <- c(252, 389, 347, 271)

xSegC <- table(HepCevol[HepCevol$segment == "C", c(4, 3)])

diag(xSegC) <- c(230, 299, 282, 198)

alphaHat <- c(alphahat(xSegA, 13),

alphahat(xSegB, 13),

alphahat(xSegC, 13))

And finally we make a plot, see Figure 4.1. The explicit vectorization in theta is needed for
the plotting using curve.

mll <- Vectorize(mll, "theta")

curve(mll(x, xSegA, time = 13), 0, 0.003, ylim = c(90, 600),

ylab = "Minus-log-likelihood", xlab = expression(alpha)

)

curve(mll(x, xSegB, time = 13), 0, 0.003, col = "red", add = TRUE)

curve(mll(x, xSegC, time = 13), 0, 0.003, col = "blue", add = TRUE)

legend(0.0015, 400,

legend = c("Segment A", "Segment B", "Segment C"),

col = c("black", "red", "blue"),

lty = c(1, 1, 1)

)

points(alphaHat,

c(mll(alphaHat[1], xSegA, time = 13),

mll(alphaHat[2], xSegB, time = 13),

mll(alphaHat[3], xSegC, time = 13)),

pch = 19)

4.2 Likelihood

Keywords: Analytic optimization, exponential distribution, Gumbel distribution, log-likelihood
function, Newton-Raphson algorithm, normal distribution, profile log-likelihood function.
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4.2.1 The exponential distribution

Neuronal interspike times

We measure the times between spikes of a neuron in a steady state situation.

We attempt to model the interspike times using the exponential distribution, which is the
probability distribution on [0,∞) with density

fλ(x) = λ exp(−λx), x ≥ 0

where λ > 0 is an unknown parameter.

Exponential distribution

The sample space for a single observation is [0,∞), the parameter space is (0,∞).

We want a probability distribution Pλ of n independent and identically (i.i.d.) exponentially
distributed random variables X1, . . . , Xn with intensity parameter λ.

The distribution of Xi has density

fλ(x) = λ exp(−λx)

for x ≥ 0. The probability distribution Pλ has density

fλ(x1, . . . , xn) = λ exp(−λx1) · . . . · λ exp(−λxn)

= λn exp(−λ(x1 + . . .+ xn)).

With (0,∞) the parameter space, the family (Pλ)λ∈(0,∞) of probability distributions is a
statistical model.

The concept of a multivariate density as the product of univariate densities may be a little
difficult to grasp. It means that the joint distribution of X1, . . . , Xn can be expressed using
multivariate integrals

P(X1 ∈ A1, . . . , Xn ∈ An) =

∫

A1

. . .

∫

An

fλ(x1, . . . , xn)dxn . . . dx1.

It is often impossible to compute these integrals, but it is nevertheless a way to specify the
joint probability. The most important part to take note of is that the joint density is given
as a product of the marginal densities if the variables are independent. Thus the density is
in itself computable.

Exponential distribution

Consider n i.i.d. exponentially distributed random variables with parameter λ whose joint
distribution Pλ has density

fλ(x1, . . . , xn) = λn exp

(
−λ

n∑

i=1

xi

)
= Lx(λ)
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for x1, . . . , xn ≥ 0 and λ > 0.

The likelihood function is Lx(λ) and the minus-log-likelihood function is

lx(λ) = − log Lx(λ) = λ

n∑

i=1

xi − n log λ.

Exercise: Find the MLE (the minimizer of `x(λ).

Exponential distribution – location-scale model

Introducing a location parameter in the expontial distribution and making n i.i.d. observa-
tions the likelihood becomes

Lx(µ, λ) =

{
λne−λ

∑n
i=1(xi−µ) µ ≤ min{x1, . . . , xn}

0 otherwise

Fixing µ ∈ [0,min{x1, . . . , xn}] the (unique) maximizer in λ is

λ̂(µ) =
n∑n

i=1(xi − µ)

The profile likelihood function is

Lx(µ, λ̂(µ)) = λ̂(µ)ne−n =

(
n∑n

i=1(xi − µ)

)n
e−n

which is monotonely increasing in µ. Thus, µ̂ = x(1) = min{x1, . . . , xn}.
One has to be a little careful with the formalities. If n = 1 (there is only one observation),
then there is no maximizer in λ for µ = x1, nor is there a maximizer if n > 1 and all
the observations are equal. However, whenever you have at least two different observations
there is a maximizer in λ for µ = x(1) and this is the MLE of λ and the MLE of µ is x(1)

(the smallest observation). This is a quite problematic estimator in several respects, or one
should perhaps say that the resulting model is quite problematic. Can you think of why?

Finding the MLE in general

For continuous multivariate parameters we can in principle use calculus and results on mul-
tivariate optimization.

In general, for univariate and in particular for multivariate parameters, we cannot solve the
likelihood equation let alone justify that a solution is a global minimum of lx.

Numerical methods are needed. All methods start with an initial guess and iteratively im-
prove on that guess. The Newton-Raphson algorithm attempts to solve the likelihood equa-
tion. optimize and optim in R can do numerical optimization in the univariate and the
multivariate case, respectively.

In general, there is no way we can tell for sure if an algorithm has converged to the global
minimum.
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4.2.2 The normal distribution

Let X1, . . . , Xn be n i.i.d. random variables with the N(µ, σ2) distribution. The statistical
model is given by the sample space Rn, the parameter space R × (0,∞), the parameter
θ = (µ, σ2) and Pθ the probability distribution given by a density. The minus-log-likelihood
function when observing x = (x1, . . . , xn) is

lx(µ, σ2) =
1

2σ2

n∑

i=1

(xi − µ)2 +
n

2
log σ2 + n log

√
2π.

The minimization is a two-step procedure. Fix σ2 and minimize over µ, then minimize over
σ2. The result is

µ̂ =
1

n

n∑

i=1

xi σ̂2 =
1

n

n∑

i=1

(xi − µ̂)2.

Normal minus-log-likelihood - simulated
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The minus-log-likelihood function (left) and a contour plot (right) for the scale-location
parameters (µ, σ2) based on n = 100 simulations of i.i.d. N(0, 1)-distributed variables. The
MLE is µ̂ = 0.063 and σ̃2 = 0.816. The profile minus-log-likelihood function of σ2 is given by
evaluating the minus-log-likelihood function along the straight line, as shown on the contour
plot, given by µ = µ̂.

Theoretical optimization

Fixing σ2 we differentiate w.r.t. µ

d

dµ
lx(µ, σ2) = − 2

2σ2

n∑

i=1

(xi − µ) =
1

σ2
(nµ−

n∑

i=1

xi),

and if we equate this equal to 0 there is a unique solution µ̂ = 1
n

∑n
i=1 xi. A second differen-

tiation shows that this is a local minimum and since it is the unique solution, it is a global
minimum in µ for fixed σ2.

min
µ,σ2

lx(µ, σ2) = min
σ2

min
µ
lx(µ, σ2) = min

σ2
lx(µ̂, σ2)

= min
σ2

1

2σ2

n∑
i=1

(xi − µ̂)2 +
n

2
log σ2 + n log

√
2π.
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Differentiation w.r.t. σ2 of this profile minus-log-likelihood function yields that there is a unique
minimizer being

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2.

4.2.3 The Gumbel distribution

Scale-location in the Gumbel distribution

Sample space Rn, parameter space R × (0,∞), and parameters θ = (µ, σ). The probability
distribution Pθ has density

fµ,σ(x1, . . . , xn) =

n∏

i=1

1

σ
exp

(
−xi − µ

σ
− exp

(
−xi − µ

σ

))
.

The minus-log-likelihood function for observing x = (x1, . . . , xn) is

lx(µ, σ) = n log σ +

n∑

i=1

xi − µ
σ

+

n∑

i=1

exp

(
−xi − µ

σ

)
. (4.1)

This is the scale-location model for the Gumbel distribution.

Reparametrized minus-log-likelihood

lx(µ, σ) = n log σ +

n∑
i=1

xi − µ
σ

+

n∑
i=1

exp
(
−xi − µ

σ

)
.

Useful trick; reparametrize

(η, ρ) =

(
µ

σ
,

1

σ

)
∈ R× (0,∞).

lx(η, ρ) =

n∑

i=1

(ρxi − η) +

n∑

i=1

exp (−ρxi + η)− n log ρ

= ρ

n∑

i=1

xi + exp(η)

n∑

i=1

exp(−ρxi)− nη − n log ρ

= ρnx+ exp(η)

n∑

i=1

exp(−ρxi)− nη − n log ρ

x = 1
n

∑n
i=1 xi

Minimization over η

The likelihood equation

dlx
dη

(η, ρ) = exp(η)

n∑

i=1

exp(−ρxi)− n = 0
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Figure 4.2: The minus-log-likelihood function (left) and a contour plot (right) for the (η, ρ)
reparametrization of the scale-location model based on n = 100 simulations of i.i.d. Gumbel
distributed variables. The MLE is η̂ = 0.025 and ρ̂ = 0.944. The profile minus-log-likelihood
function of ρ is given by evaluating the minus-log-likelihood function along the curved line,
as shown on the contour plot.

has solution

η̂(ρ) = − log

(
1

n

n∑

i=1

exp(−ρxi)
)
.

Second differentiation shows that this is a unique, global minimum for each fixed ρ > 0.

The profile minus-log-likelihood function

lx(µ, σ) = n log σ +

n∑
i=1

xi − µ
σ

+

n∑
i=1

exp
(
−xi − µ

σ

)
η̂(ρ) = − log

(
1

n

n∑
i=1

exp(−ρxi)

)
.

lx(η̂(ρ), ρ) = ρnx+ n+ n log

(
1

n

n∑

i=1

exp(−ρxi)
)
− n log ρ,

The (profile) likelihood equation becomes

eq : gumbellikeeq

∑n
i=1 xi exp(−ρxi)∑n
i=1 exp(−ρxi)

+
1

ρ
= x (4.2)

We note that for ρ approaching 0, the left hand side behaves as x + 1/ρ > x and for ρ
approaching ∞ the left hand side behaves as min{x1, . . . , xn}. If there are at least two
different observations the latter is strictly smaller than x and since the left hand side is
continuous in ρ there is in this case always a solution to the equation.
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Figure 4.3: The profile minus-log-likelihood function for ρ with 100 simulated Gumbel vari-
ables.

A second differentiation of the profile minus-log-likelihood function, and some algebraic
manipulations, give

d2lx
dρ2

(η̂(ρ), ρ) = n

n∑

i=1

(
xi −

∑n
i=1 xi exp(−ρxi)∑n
i=1 exp(−ρxi)

)2
exp(−ρxi)∑n
i=1 exp(−ρxi)

+
n

ρ2
> 0.

Since this shows that the derivative is strictly increasing there can be only one solution to
the equation above.

The conclusion of our analysis is, that if n ≥ 2 and at least two of the observations are
different there is precisely one solution to the equation above, hence there is a unique global
minimum for the profile minus-log-likelihood function, and consequently there is a unique
global minimizer for the full minus-log-likelihood function.

From a practical point of view we need to solve (numerically) the equation (??) and then
plug this solution into η̂(ρ). This gives the maximum likelihood estimate of (η, ρ).

Conclusions

The second derivative of lx(η̂(ρ), ρ) is strictly positive, hence there can only be one solution
to the (profile) likelihood equation in ρ – but if there are at least two different observations
there will be a solution.

If there are at least two different observations there will be a unique maximum of the
likelihood function, which can be found by solving the univariate (non-linear) equation in ρ
numerically.

We still need to solve the non-linear profile likelihood equation, which does not have an
explicit analytic expression. The Newton-Raphson algorithm is a possible choice.
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The Newton-Raphson algorithm

Likelihood equation:

dlx
dθ

(θ) = 0.

First order Taylor expansion

dlx
dθ

(θ) ' dlx
dθ

(θ0) +
d2lx
d2θ

(θ0)(θ − θ0).

Solve for θ0 ∈ Θ the linear equation

dlx
dθ

(θ0) +
d2lx
d2θ

(θ0)(θ − θ0) = 0.

With initial guess θ0 the iterative solutions

θn = θn−1 −
(

d2lx
d2θ

(θn−1)

)−1
dlx
dθ

(θn−1)

give the Newton-Raphson algorithm.

Newton-Raphson for the profile likelihood equation

ρn = ρn−1 −
d2lx
dρ2

(η̂(ρn−1), ρn−1)−1 dlx
dρ

(η̂(ρn−1), ρn−1)

for n ≥ 1 and an initial guess ρ0.

4.2.4 R interlude: Likelihood and optimization

Neuron exponential model minus-log-likelihood

neuron <- scan("http://www.math.ku.dk/~richard/courses/StatScience2011/neuronspikes.txt")

mllExp <- function(lambda, x)

lambda * sum(x) - length(x) * log(lambda)

Alternatively, the minus-log-likelihood is sometimes normalized by the number of observa-
tions. It’s the same function but a different scale on the y-axis.

mllExp2 <- function(lambda, x)

lambda*mean(x) - log(lambda)

par(mfcol = c(1, 2))

curve(mllExp(x, neuron), 0, 4)

curve(mllExp2(x, neuron), 0, 4)
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Gumbel numerical optimization

Download the simulated local alignment scores data set.

alignmentScores <- scan("http://www.math.ku.dk/~richard/courses/StatScience2011/alignmentScores.txt")

The minus-log-likelihood divided by n (mean replaces sum). This is sometimes preferable in
practice. It makes the absolute size of the likelihood less dependent upon the number of
observations.

mllGumbel <- function(mu, sigma, x)

log(sigma) + (mean(x) - mu) / sigma + mean(exp(- (x - mu) / sigma))

Optimization (minimization) of the minus-log-likelihood function. Note that optim requires
that the function to be optimized takes the parameters as a vector and that starting values
are provided.

mllToBeOptimized <- function(par)

mllGumbel(par[1], par[2], alignmentScores)

mle <- optim(c(40, 10), mllToBeOptimized)$par

The contraint σ > 0 is not strictly enforced by the optimization above. The minus-log-
likelihood will, however, complain if the optim function attempts to evaluate the function
in a non-positive σ. It is possible to enforce parameter constraints of box-type in optim. See
the help page.

We compare the histogram to the estimated density.

dgumbel <- function(x, mu = 0, sigma = 1) {

x <- (x - mu)/sigma

exp(- x - exp(- x)) / sigma

}
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hist(alignmentScores, probability = TRUE)

curve(dgumbel(x, mle[1], mle[2]), col = "blue", add = TRUE)

Histogram of alignmentScores
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As an alternative to the generic optim we can implement the semianalytic solution that relies
on a one-dimensional Newton-Raphson solver. This is done in the reparametrized model

(η, ρ) = (µ/σ, 1/σ).

etaHat <- function(rho, x) - log(mean(exp(- rho * x)))

The Newton-Raphson update for minimizing the profile minus-log-likelihood in the ρ pa-
rameter.

rhoUpdate <- function(rho0, x) {

tmp <- sum(x * exp(- rho0 * x)) / sum(exp(- rho0 * x))

d2rho0 <- sum((x - tmp)^2 * exp(- rho0 * x)) / sum(exp(- rho0 * x)) + 1 / rho0^2

d1rho0 <- mean(x) - tmp - 1 / rho0

rho0 - d1rho0 / d2rho0

}

The function that actual computes the ρ estimate.

rhoHat <- function(x, rho0 = 1) {

rho1 <- rhoUpdate(rho0, x)

while(abs(rho1 - rho0) > 1e-10) { ## a simple convergence criteria

rho0 <- rho1

rho1 <- rhoUpdate(rho0, x)

}

return(rho1)

}

Combined function for the complete computation of the MLE. The function uses the ad hoc
estimate of ρ0 from Exercise 2.5 for initialization. The raw Newton-Raphson can be quite
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sensitive to the choice of initial value and a sensible initial value from a simple estimator is
often preferable for numerical stability.

rhoetaHat <- function(x) {

rho0 <- pi / (sd(x) * sqrt(6))

rhoHat <- rhoHat(x, rho0 = rho0)

etaHat <- etaHat(rhoHat, x)

return(c(eta = etaHat, rho = rhoHat))

}

The resulting MLE for the data set is computed and compared with the one found using
optim.

rhoetaHat(alignmentScores)

## eta rho

## 5.7041 0.1653

c(eta = mle[1] / mle[2], rho = 1 / mle[2]) ## From 'optim'

## eta rho

## 5.7048 0.1653

Is the MLE estimate better than that obtained from Exercise 2.5? It may be or it may not
be for this particular data set. The crux of the matter is that as a general method the MLE
will be among the most accurate estimators, and for this reason, and because it takes the
arbitrariness out of choosing a method for estimation, it is the preferable and recommended
standard estimator. There may be reasons to modify the estimator in cases where we have
prior information or can make assumptions about the value of the parameters, but this is
beyond the scope of this course.

4.3 Exercises

Exercise 4.1 The density for the inverse Gaussian distribution is

fµ,λ(x) =

[
λ

2πx3

]1/2

exp

(
−λ(x− µ)2

2µ2x

)

for x > 0 with two parameters µ, λ > 0. Given that we observe x1, . . . , xn as realizations of
i.i.d. random variables with the inverse Gaussian distribution find the minus-log-likelihood
function lx(µ, λ) and implement a function in R that computes the minus-log-likelihood
function.

Exercise 4.2 Use the optim function in R to find the maximum-likelihood estimate for this
model of µ and λ for the neuron interspike data set from the lectures. Investigate the model
fit.

Exericse 4.3 Find an analytic expression for the MLE. Compare the results for the neuron
interspike data set with the numerical solution found above.
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Hint: First, find the MLE of µ for fixed λ > 0, plug this into the minus-log-likelihood to get
the profile minus-log-likelihood and find the MLE of λ.

Exercise 4.4 Color blindness is a so-called X-linked recessive trait. This means that the gene
responsible for color blindness is located on the X chromosome and that color blindness is
recessive. Females who have two X chromosomes are thus color blind if the allele resulting in
color blindness (the CB-allele in the following) is present on both X chromosomes whereas
males, who have only a single X chromosome, are color blind whenever the CB-allele is
present on their X chromosome.

We denote the proportion of males in a population that have the CB-allele by p ∈ (0, 1).
This is the parameter we want to estimate.

We assume in the following that we have observations from m randomly selected males,
x1, . . . , xm ∈ {0, 1}, such that xi = 1 if male number i is color blind (has the CB-allele). We
assume that the observations are independent.

Argue that the probability of observing x = (x1, . . . , xm) equals

pmb(1− p)mB

where mb =
∑m
i=1 xi is the number of males with the CB-allele and mB = m − mb is

the number of males without the CB-allele, find the likelihood function and the minus-log-
likelihood function for p and show that the MLE equals

p̂ =
mb

m
.

Exercise 4.5 Assume in addition that we have observations from f randomly selected
females, y1, . . . , yf ∈ {0, 1}, where yi = 1 if female number i is color blind, that is, if she has
two CB-alleles. We will assume that the allele distribution in the total population satisfies
the Hardy-Weinberg equilibrium, which means that the proportion of females with 2 CB-
alleles is p2, the proportion with 1 is 2p(1 − p) and the proportion with 0 is (1 − p)2. We
assume that the observations are independent and also independent of the male observations
above.

Argue that the probability that yi = 1 equals p2 and the probability that yi = 0 equals
2p(1− p) + (1− p)2 = (1− p)(1 + p). Letting y = (y1, . . . , yf ) argue that the probability of
observing (x, y) equals

pmb+2fb(1 + p)fB (1− p)mB+fB

where fb =
∑f
i=1 yi is the number of females with two CB-alleles (that are color blind) and

fB = f − fb is the number of females with at most one CB-allele.

Exercise 4.6 In the setup above, having the combined observation (x, y) of males and
females, find the likelihood function and the minus-log-likelihood function for p and show
that the MLE equals

p̂ =
−mB +

√
m2
B + 4n(mb + 2fb)

2n

where n = 2(fb + fB) + mb + mB = 2f + m is the total number of X chromosomes in
the sample of males and females. In a study we find fb = 40, fB = 9032, mb = 725 and
mB = 8324. Compute the MLE of p.

Exercise 4.7 Read the following data set into R

read.table("http://www.math.ku.dk/~richard/courses/StatScience2011/Ceriodaphnia.txt", header = TRUE)
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It is a plain text file with two columns, containing the data from a small experiment where
Ceriodaphnia where exposed to different doses of a compund that impairs reproduction. The
dataset consists of the counts of organisms combined with the concentration in grams per
liter of the compound. Plot the organisms and log(organisms) against the concentration.

In the following exercises we will build and analyse a model suitable for modeling the count
of organisms as a function concentration.

Exercise 4.8 For this and following exercises we consider n independent random variables
X1, . . . , Xn and we assume that the distribution of Xi is the Poisson distribution with mean
value parameter

λi = eβyi+α

where y1, . . . , yn ∈ R are known but α, β ∈ R are unknown. We have the observation
x = (x1, . . . , xn) ∈ Nn0 and the objective is to estimate α, β.

Show that the minus-log-likelihood function is

lx(α, β) =
n∑

i=1

eβyi+α − βxiyi − αxi + log xi!

Exercise 4.9 Fix β and show that for fixed β the minimum of the minus-log-likelihood
function in α is

α̂(β) = log

∑n
i=1 xi∑n
i=1 e

βyi
.

Exercise 4.10 Show that the profile minus-log-likelihood function in β is

lx(α̂(β), β) =

n∑

i=1

xi − βxiyi − log

( ∑n
j=1 xi∑n
j=1 e

βyj

)
xi + log xi!

and that the minimizer of the profile minus-log-likelihood solves the equation

∑n
i=1 yie

βyi

∑n
i=1 e

βyi
=

∑n
i=1 xiyi∑n
i=1 xi

.

Exercise 4.11 Implement the Newton-Raphson algorithm for solving the equation above
in β and implement a function for estimation of (α, β) for a given dataset x1, . . . , xn and
y1, . . . , yn.

Exercise 4.12 Fit the Poisson model, that is, estimate the α and β parameters in the model
above, to the Ceriodaphnia data.
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Fifth Week

5.1 Likelihood ratio tests and confidence intervals

Keywords: Confidence intervals, likelihood ratio tests, profile likelihood.

ISwR: 109-125

The general setup for this lecture is a statistical model consisting of a parametrized collection
Pθ of probability distributions on some sample space and a parameter space Θ such that the
parameters θ are in Θ.

5.1.1 The likelihood ratio test

X is a random variable representing our data set with distribution Pθ for some θ ∈ Θ0, and
we have a likelihood function Lx(θ) for θ ∈ Θ when observing X = x.

Definition 6. Observing X = x then

Q(x) =
maxθ∈Θ0

Lx(θ)

maxθ∈Θ Lx(θ)

is called the likelihood ratio test statistic.

Since Θ0 ⊆ Θ, we have Q(x) ∈ (0, 1]. Small values of Q(x) are critical.

The distribution of the likelihood ratio test statistic

Theorem 7. If Θ is a d-dimensional parameter space and Θ0 d0-dimensional the distribu-
tion of

−2 logQ(X)

can be approximated by a χ2-distribution with d − d0 degrees of freedom. Large values of
−2 logQ(x) are critical.

111
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The theorem is not accurate and not true in general – it is true with a suitable set of
mathematical regularity assumptions, and it is the working horse for practical statistical
hypothesis testing.

5.1.2 Molecular evolution

To illustrate the use of the likelihood ratio test we introduce the Kimura model of molecular
evolution. It is a 2-parameter model and we will compare it with the 1-parameter Jukes-
Cantor model.

The Kimura model

P t(x, x) = 0.25 + 0.25 exp(−4βt) + 0.5 exp(−2(α+ β)t)

P t(x, y) = 0.25 + 0.25 exp(−4βt)− 0.5 exp(−2(α+ β)t), for a transition

P t(x, y) = 0.25− 0.25 exp(−4βt), for a transversion.

We regard t as fixed and (α, β) ∈ [0,∞)× [0,∞) as the unknown parameters.

If we introduce the three quantities

n1 = nz(A,A) + nz(C,C) + nz(G,G) + nz(T, T )

n2 = nz(A,G) + nz(C, T ) + nz(G,A) + nz(T,C)

n3 = n− n1 − n2

being the number of nucleotide pairs with no mutations, the number of transitions and the
number of transversions, respectively, then the minus-log-likelihood function becomes

l̃z(α, β) = −n1 log(0.25 + 0.25 exp(−4βt) + 0.5 exp(−2(α+ β)t))

−n2 log(0.25 + 0.25 exp(−4βt)− 0.5 exp(−2(α+ β)t))

−n3 log(0.25− 0.25 exp(−4βt)).

The Kimura model for the Hepatitis C example

Segment
A B C

n1 2532 1259 1009
n2 63 20 14
n3 15 5 6
α̂ 1.9× 10−3 1.2× 10−3 1.2× 10−3

β̂ 2.2× 10−4 1.5× 10−4 2.3× 10−4

The estimates above are found using numerical minimization of the minus-log-likelihood
function.
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Figure 5.1: Two examples of transition and transversion probabilities for the Kimura model
as a function of evolutionary distance in units of time.

Is the Jukes-Cantor model adequate?

In the Kimura model we have two parameters α and β that give the rates of transitions and
transversions, respectively.

The hypothesis

H0 : α = β

is equivalent to the Jukes-Cantor model.

We test the hypothesis for Segment A and find

−2 logQ(x) = 74.21,

which is to be compared to the χ2-distribution with 1 degrees of freedom. The p-value is
7.0× 10−18 – we reject the hypothesis, and the Jukes-Cantor model is not adequate.

Using R, the p-value is computed as follows.

alphaHat <- 1.9e-3

betaHat <- 2.2e-4

t <- 13

mllKim <- -2532 * log(0.25 + 0.25 * exp(-4 * betaHat * t) +

0.5 * exp(-2 * (alphaHat + betaHat) * t)) -

63 * log (0.25 + 0.25 * exp(-4 * betaHat * t) -

0.5 * exp(- 2 * (alphaHat + betaHat) * t)) -

15 * log(0.25 - 0.25 * exp(- 4 * betaHat * t))

alphaHat <- 7.8e-4

mllJC <- - 2532 * log(0.25 + 0.75 * exp(- 4 * alphaHat * t)) -

78 * log(0.25 - 0.25 * exp(- 4 * alphaHat * t))

m2logQ <- 2 * (mllJC - mllKim)

m2logQ
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## [1] 74.21

pchisq(m2logQ, df = 1, lower.tail = FALSE)

## [1] 7.007e-18

Exercise

Use the inverse Gaussian distribution as a model for the neuron interspike data and use the
likelihood ratio test to test the hypothesis

H : µ = 1

Hint: Use the formula derived from the exercise session to estimate λ under the hypothesis.

5.1.3 Tables

For an rc cross-classification table n = (nij) the likelihood is proportional to

Ln(p) =
∏

ij

p
nij
ij .

Here we assume a sampling scheme where the total

n·· =
∑

i,j

nij

is fixed. It can be shown that the MLE is

p̂ij =
nij
n··

.

Under the independence hypothesis

H : pij = piqj

the MLE is
p̂i =

ni·
n··

q̂j =
n·j
n··

.

Likelihood ratio and the χ2-statistic

The likelihood ratio test statistic of H is

Q =
∏

ij

(
ni·n·j
nijn··

)nij
.

Thus
−2 logQ = 2

∑

ij

nij log
nijn··
ni·n·j

.
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Under the full model there are rc− 1 free parameters and under the hypothesis H there are
r + c− 2 free parameters, thus −2 logQ follows approximately a χ2-distribution with

rc− 1− (r + c− 2) = (r − 1)(c− 1)

degrees of freedom.

Note that −2 logQ can be written as

−2 logQ = 2
∑

observed log

(
observed

expected

)
.

By a second order Taylor expansion of 2 log z around 1

2 log z ' 2(z − 1) + (z − 1)2

and assuming that observed ' expected we arrive at the approximation

2
∑

observed log

(
observed

expected

)
'

∑
expected

(
2

observed− expected

expected
+

(observed− expected)
2

expected2

)

=
∑

2(observed− expected) +X2

with X2 the χ2-test statistic. It happens so (check) that for the tables the first sum is 0,
hence the χ2-test statistic can be seen as an approximation to −2 logQ.

5.1.4 Likelihood and confidence intervals

Profile likelihood

We are more interested in confidence intervals than formal hypothesis tests.

If τ is a parameter of interest and Θτ0 the subset of the full parameter space where τ = τ0
we form the profile likelihood

Lx(τ) = max
θ:θ∈Θτ

Lx(θ)

and the likelihood ratio for testing the hypothesis

H : τ = τ0 (θ ∈ Θτ0),

Qτ0(x) =
Lx(τ0)

maxθ Lx(θ)
=
Lx(τ0)

Lx(θ̂)

with θ̂ the MLE.

Likelihood intervals

Definition 8. A likelihood interval for the parameter of interest τ is

{τ0 | Qτ0(x) ≥ c}
= {τ0 | −2 logQτ0(x) ≤ −2 log(c)}
= {τ0 | 2(logLx(θ̂)− logLx(τ0)) ≤ −2 log(c)}
= {τ0 | 2(logLx(τ̂)− logLx(τ0)) ≤ −2 log(c)}
= {τ0 | 2(lx(τ0)− lx(τ̂)) ≤ −2 log(c)}
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If τ is one-dimensional and −2 log(c) = qα is the 1 − α quantile for the χ2-distribution
with one degrees of freedom, the likelihood interval is the set of τ0 for which the hypothesis
H : τ = τ0 will not be rejected at level α.

For any threshold c the likelihood interval is always interpretable as the values of the param-
eter τ that are best in agreement with the observed data. The question is how to choose c to
reflect the uncertainty. The derivation shows that based on the approximating distribution
of the −2 logQ test statistic, the likelihood interval with threshold −2 log(c) = qα will with
probability 1− α contain the true parameter value under the assumed model.

Quadratic approximations

If we have a quadratic approximation

2(lx(τ0)− lx(τ̂)) '
(
τ0 − τ̂

se

)2

we can solve for τ0 and compute the likelihood interval explicitly.

{τ0 |
(
τ0 − τ̂

se

)2

≥ qα} = [τ̂ − se
√
qα, τ̂ − se

√
qα]

Note that for α = 0.05 the 95% quantile for the χ2-distribution with one degrees of freedom
is q0.05 = 3.841459 = z2

0.975 where z0.975 = 1.959964 is the 97.5% quantile for the standard
normal distribution.

The likelihood interval is computable from the “raw” profile minus-log-likelihood function
where we typically need to solve the equation

lx(τ0)− lx(τ̂) = − log(c)

in terms of τ0. There will typically be two solutions and the likelihood interval is the set
of τ0’s between those two solutions. In the alternative, by a second order Taylor expansion
around the MLE τ̂ (which is a solution to l′x(τ̂) = 0)

2(lx(τ0)− lx(τ̂)) ' 2(lx(τ̂) + l′x(τ̂)(τ0 − τ̂) +
1

2
l′′x(τ̂)(τ0 − τ̂)2 − lx(τ̂))

= l′′x(τ̂)(τ0 − τ̂)2

=

(
τ0 − τ̂√
l′′x(τ̂)−1

)2

From this we get a quadratic approximation with

se =
√
l′′x(τ̂)−1.

There may be other ways to achieve a quadratic approximation, but the quantity se is
generally regarded as an estimate of the standard error, that is, the standard deviation
for the distribution of the estimator τ̂ . The quantity l′′x(τ̂) is called the observed Fisher
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information, and this estimate of the standard error is thus the square root of the inverse of
the observed Fisher information.

If we have an estimator of the standard error for any given estimator of τ (not necessarily
the MLE), we can proceed in a slightly different manner and get similar standard confidence
intervals.

The standard confidence interval

We consider a real valued parameter of interest τ and corresponding estimator τ̂ . The fun-
damental approximation under the hypothesis H : τ = τ0 is

τ̂ − τ0 approx∼ N(0, se2)

If we plug in an estimate ŝe of se we accept the test at level α for

τ0 ∈ [τ̂ − ŝezα, τ̂ + ŝezα]

with zα the (1− α/2)-quantile in the N(0, 1) distribution.

Definition 9. The standard (1− α)-confidence interval for the parameter of interest τ is

[τ̂ − ŝezα, τ̂ + ŝezα].

How to estimate the standard error of an estimator?

We have a parameter of interest τ(θ), an estimator τ̂ and an estimator θ̂ of θ.

• Somebody provided a formula se(θ) and we use the plug-in principle

se(θ̂).

• You used the MLE for θ and the Fisher information or the observed Fisher information
to obtain estimates of the standard error.

• You simulate B new data sets using Pθ̂, reestimate τ and use the empirical standard
deviation for the B estimates as an estimate of se(θ).

The last bullet point is parametric bootstrapping and is a simulation based implementation
of bullet point 1.

5.1.5 R interlude: Confidence intervals

We consider the neuron interspike data and use the exponential distribution as a model.

We investigate the second order Taylor approximation of the minus-log-likelihood

lx(λ) ' lx(λ̂) +
1

2
l′′x(λ̂)(λ− λ̂)2

around the MLE (explain why there is no first order term?). The second derivative is

l′′x(λ̂) = 1/λ2.
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neuron <- scan("http://www.math.ku.dk/~richard/courses/StatScience2011/neuronspikes.txt")

mllExp <- function(lambda, x)

lambda * sum(x) - length(x) * log(lambda)

mllExpApprox <- function(lambda, x) {

lambdaHat <- 1 / mean(x)

mllExp(lambdaHat, x) + length(x) * (lambda - lambdaHat)^2 / (2 * lambdaHat^2)

}

We want to compute likelihood intervals based on the likelihood function and on the ap-
proximation. The interval is directly computeable based on the quadratic approximation.

lambdaHat <- 1 / mean(neuron)

qalpha <- qchisq(0.95, 1)

likeIntApprox <- lambdaHat + c(-1, 1) * sqrt(qalpha) * lambdaHat / sqrt(length(neuron))

likeIntApprox ## Standard confidence interval

## [1] 1.020 1.274

To find the likelihood interval for the actual likelihood is a little more complicated. We need
to solve two equations.

mll0 <- function(lambda)

mllExp(lambda, neuron) - mllExp(lambdaHat, neuron) - qalpha / 2

lo <- uniroot(mll0, c(0.5, 1.1))$root

up <- uniroot(mll0, c(1.1, 1.8))$root

likeInt <- c(lo, up)

likeInt ## Likelihood interval

## [1] 1.024 1.279

curve(mllExp(x, neuron), 1, 1.3)

curve(mllExpApprox(x, neuron), add = TRUE, col = "blue")

abline(h = mllExp(lambdaHat, neuron) + qalpha / 2)

abline(v = likeIntApprox[1], col = "blue")

abline(v = likeIntApprox[2], col = "blue")

abline(v = likeInt[1])

abline(v = likeInt[2])
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One can interpret the quantity lambdaHat^2 / length(neuron) as an approximation of
the variance of the estimator of lambda. Let’s estimate that variance using simulations.

lambdaHat <- 1 / mean(neuron)

n <- length(neuron)

lambdaDist <- replicate(1000, {x <- rexp(n, lambdaHat); 1 / mean(x)})

var(lambdaDist)

## [1] 0.004624

lambdaHat^2 / length(neuron)

## [1] 0.004216

R provides some support in the stats4 package and with the mle function for likelihood
computations, in particular, more automatic computation of maximum-likelihood estimation
and (profile) likelihood intervals.

require(stats4)

neuronMle <- mle(function(lambda) mllExp(lambda, neuron), start = list(lambda = 1))

confint(neuronMle)

## Profiling...

## 2.5 % 97.5 %

## 1.024 1.279

It is more impressive if we work with multiple parameters. Lets take a look at the inverse
Gaussian distribution from last lecture.

mllIg <- function(lambda, mu, x) {

n <- length(x)
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- n * log(lambda)/2 + lambda * sum((x - mu)^2 / x) / (2 * mu^2)

}

neuronMle <- mle(function(lambda, mu) {

ifelse(lambda > 0 & mu > 0, mllIg(lambda, mu, neuron), Inf)

},

start = list(lambda = 1, mu = 1))

coef(neuronMle)

## lambda mu

## 0.8680 0.8719

confint(neuronMle)

## Profiling...

## 2.5 % 97.5 %

## lambda 0.7388 1.0114

## mu 0.7844 0.9814

par(mfcol = c(2, 1))

plot(profile(neuronMle))
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Check help(plot.profile, "MASS") for information about the plot. Note the asymmetry
in the intervals for the µ parameter.

5.2 Regression

ISwR Example

Relation between ventricular shortening velocity and blood glucose for type 1 diabetic pa-



5.2. Regression 121

tients.

Yi the velocity – 24 observations, i = 1, . . . , 24.

xi the blood glucose i = 1, . . . , 24.

Model:

Yi = α+ βxi + σεi

with εi i.i.d. N(0, 1) for i = 1, . . . , 24.

Parameters (α, β, σ2) ∈ R2 × (0,∞).

General regression model

A model of real valued variables Y1, . . . , Yn

Yi = gβ(xi) + σεi

where ε1, . . . , εn are i.i.d., x1, . . . , xn are the regressors and gβ transforms the regressors into
R.

Parameters β ∈ Rd and σ2 ∈ (0,∞).

In this model the observables are assumed independent but not identically distributed.

The value of xi dictates through gβ the mean value of Yi.

5.2.1 The MLE, the normal distribution and least squares

The likelihood function

Due to independence the joint density for the distribution of Y1, . . . , Yn is

fβ,σ(y1, . . . , yn) =

n∏

i=1

1

σ
f

(
yi − gβ(xi)

σ

)
. (5.1)

with f the density for the distribution of the εi’s.

The minus-log-likelihood function

ly(β, σ) = n log σ −
n∑

i=1

log f

(
yi − gβ(xi)

σ

)
. (5.2)
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Normal distribution

If εi ∼ N(0, 1) then

ly(β, σ) = n log σ +
1

2σ2

n∑

i=1

(yi − gβ(xi))
2

︸ ︷︷ ︸
RSS(β)

+n log
√

2π.

The minimizer over β is the minimizer of the residual sum of squares

RSS(β) =

n∑

i=1

(yi − gβ(xi))
2, (5.3)

and if there is a unique minimizer β̂ then

σ̃2 =
1

n
RSS(β̂)

is the MLE of the variance.

Variance estimation

The MLE of σ2,

σ̃2 =
1

n
RSS(β̂),

generally underestimates σ2 by a factor n−d
n .

Therefore the variance is always estimated by

σ̂2 =
1

n− dRSS(β̂)

where d is the dimension of the parameter space for β.

5.2.2 Linear regression

The linear regression model is obtained by

gα,β(x) = α+ βx

where d = 2. There is a unique and explicit minimizer of RSS(α, β).

The estimators are computed in R using lm (for linear model).

The result is nicely formatted by the summary function of the resulting object.

For the interested it is possible to theoretically minimize RSS for linear regression. Here
we derive the solution geometrically. We denote by y ∈ Rn our vector of observations, by
x ∈ Rn the vector of regressors and by 1 ∈ Rn a column vector of 1’s. The quantity RSS(β)
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is the length of the vector y− β01− β1x in Rn. This length is minimized over β0 and β1 by
the orthogonal projection of y onto the space in Rn spanned by x and 1.

One can find this projection if we know an orthonormal basis, and such a one is found by
setting a = 1/

√
n (so that a has length 1) and then replacing x by

b =
x− (xTa)a√∑n
i=1(xi − x̄)2

.

Both a and b have unit length and they are orthogonal as aT b = 0. Note that (xaT )a = x̄1
where x̄ = 1

n

∑n
i=1 xi. We have to assume that at least two of the xi’s differ or the sum in the

denominator above is 0. If all the xi’s are equal, the vector x and 1 are linearly dependent,
they span a space of dimension one, and β0 and β1 are not both identifiable. Otherwise the
vectors span a space of dimension two.

The projection of y onto the space spanned by a and b is

(yTa)a+ (yT b)b =

(
ȳ − x̄ yTx− nx̄ȳ∑n

i=1(xi − x̄)2

)

︸ ︷︷ ︸
β̂0

1 +
yTx− nx̄ȳ∑n
i=1(xi − x̄)2

︸ ︷︷ ︸
β̂1

x.

Thus the theoretical solution to the minimization problem can be written

β̂1 =
yTx− nx̄ȳ∑n
i=1(xi − x̄)2

β̂0 = ȳ − x̄β̂1.

Residuals

The fitted values are defined as
ŷi = α̂+ β̂xi

and the residuals as
ei = yi − ŷi = yi − α̂− β̂xi.

The residual ei is an approximation of the error variable σεi.

Leverage and standardized residuals

The error variables σεi for i = 1, . . . , n are i.i.d. and have variance σ2.

The residuals ei for i = 1, . . . , n are mildly dependent and the variance of ei is σ2(1− hii)2

where hii is known as the leverage of the i’th observation.

The standardized residuals are
ri =

ei

σ̂
√

1− hii
.

The formula for the leverage for linear regression is

hii =
1

n
+

(xi − x̄)2

∑n
j=1(xj − x̄)2

and x̄ = 1
n

∑n
i=1 xi.
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Standard confidence intervals

Estimates of standard errors of α and β are computable and reported by R.

Standard 95% confidence intervals are

α̂± tn−2ŝe(α) and β̂ ± tn−2ŝe(β)

with tn−2 the 0.975-quantile for the t-distribution with n− 2 degrees of freedom where n is
the number of observations.

Model diagnostic

The model assumptions are investigated via the residuals or standardized residuals.

• Is the model, α+ βx, of the mean value adequate? Plot the residuals ei against xi or
against the fitted values ŷi.

• Is the assumption of a constant variance σ2 reasonable? Plot the standardized residuals
ri – or as done in R,

√
|ri| – against the fitted values ŷi.

• Is the error distribution normal? Do a QQ-plot of the residuals against the normal
distribution.

• Are the outliers and/or influential observations. Look in the residual plots. Plot the
standardized residuals against the leverage.

Pearson correlation

The empirical (Pearson) correlation of two variables is

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n
i=1(yi − ȳ)2

.

If β̂ is the regression coefficient (regressing y on x) then

r = β̂

√∑n
i=1(yi − ȳ)2

∑n
i=1(xi − x̄)2

.

The last factor can be interpreted as a ratio of the empirical standard deviation of the y and
the empirical standard deviation of the x variable.

Linear regression example

The Berkeley University internet traffic data set consists of 4161 observations of size and
durations of internet downloads.

We suggest the following linear regression model

Yi = α+ βxi + σεi

where Yi = log(durationi) is the log-duration and xi = log(sizei) is the log-size.
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Figure 5.2: Internet download data including the regression line, a 95% confidence interval
and and 95% prediction interval.

That is
durationi = sizeβi e

αeσεi .

BU internet traffic data

The fitted model:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.7661 0.0965 -28.68 0.0000

log(size) 0.3573 0.0113 31.74 0.0000

The figure includes a 95% confidence band for the regression line as well as a 95% prediction
band. The confidence band gives how accurate the mean of log-duration is estimated for a
given value of log-size. The prediction band gives the interval into which new observations
will fall with probability 95% taking into account the uncertainty in the estimation of the
regression line.

We should note a skewness in the actual distribution of the data that is not taken into
account.

The main conclusions from the diagnostic plots are that

• the linear model is a reasonable fit

• there is a tendency of an increasing variance with the fitted value, and thus with the
size
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Figure 5.3: Plots to support model control for the Berkeley internet data.

• there is a clear deviation from the normal distribution for the residuals, and the devi-
ation is in the direction of a right-skewed distribution

• there are no clear outliers or influential observations

Some conclusions for the BU data set

• The linear model of the mean of log-duration in terms of log-size is OK, and we can
rely on the fitted model as reasonably accurate w.r.t. the mean.

• However, the model based on a homogeneous variance and normality underestimates
the fraction of large durations (the residual distribution is not normal) across the whole
range of size, and it also seems to underestimate the variance for large values of size.

5.2.3 R interlude: Linear regression

We first consider the data set from ISwR (PD’s book).

require(ISwR)

data(thuesen)

A linear model is fitted using lm.
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thuesenLm <- lm(short.velocity ~ blood.glucose, data = thuesen)

summary(thuesenLm)

##

## Call:

## lm(formula = short.velocity ~ blood.glucose, data = thuesen)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.401 -0.148 -0.022 0.030 0.435

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.0978 0.1175 9.34 6.3e-09 ***

## blood.glucose 0.0220 0.0105 2.10 0.048 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.217 on 21 degrees of freedom

## (1 observation deleted due to missingness)

## Multiple R-squared: 0.174,Adjusted R-squared: 0.134

## F-statistic: 4.41 on 1 and 21 DF, p-value: 0.0479

plot(short.velocity ~ blood.glucose, data = thuesen)

abline(thuesenLm)
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The information in the summary above is quite well explained in ISwR, Section 6.1. What
we should note, in particular, is that there is an estimated standard error reported for each
estimated parameter (and a formal test of whether the parameter is significantly different
from 0). You can extract these standard errors as follows:

summary(thuesenLm)$coefficients[, 2]
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## (Intercept) blood.glucose

## 0.11748 0.01045

and it is possible to compute standard 95% confidence intervals using the t-distribution with
21 degrees of freedom to determine the relevant quantile.

sumThLm <- summary(thuesenLm)

sumThLm$coefficients[2, 1] +

c(-1, 1) * qt(0.975, 21) * sumThLm$coefficients[2, 2] ## for the regression coef.

## [1] 0.0002231 0.0437019

Of course, there is a convenience wrapper function for doing this.

confint(thuesenLm)

## 2.5 % 97.5 %

## (Intercept) 0.8534994 1.3421

## blood.glucose 0.0002231 0.0437

Standard graphical model diagnostics are available using the plot function

par(mfcol = c(2,2))

plot(thuesenLm)
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These are, residuals versus fitted values (is the linear model reasonable?). The square root
of the standardized residuals (is a homogeneous variance assumption reasonable?). A QQ-
plot against the normal distribution (is it reasonable to assume that the errors are normally
distributed?). And finally a slightly more technical plot on whether there are any very
influential observations (possible outliers).

cor(thuesen[, 1], thuesen[, 2], use = "complete.obs")^2

## [1] 0.1737

This is the squared correlation, which is reported by the summary function as the R2 value.
Note that we have to be explicit above on how to handle the missing observation.

Then we turn to the internet traffic data.

BUtraffic <- read.table("http://www.math.ku.dk/~richard/courses/StatScience2011/BUtraffic.txt")

## BUtraffic <- BUtraffic[sample(dim(BUtraffic)[1], 40), ]

It can be interesting to see the effect of the size of the data set on the uncertainty in the
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obtained results by subsampling a smaller data set. Try uncommenting the code above to
see the effect.

cor(BUtraffic[, c(2,3)])

## duration size

## duration 1.0000 0.2669

## size 0.2669 1.0000

BUtrafficLm <- lm(log(duration) ~ log(size), data = BUtraffic)

summary(BUtrafficLm)

##

## Call:

## lm(formula = log(duration) ~ log(size), data = BUtraffic)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.418 -0.673 -0.230 0.517 5.027

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -2.7661 0.0965 -28.7 <2e-16 ***

## log(size) 0.3573 0.0113 31.7 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.01 on 4159 degrees of freedom

## Multiple R-squared: 0.195,Adjusted R-squared: 0.195

## F-statistic: 1.01e+03 on 1 and 4159 DF, p-value: <2e-16

Computations of confidence intervals for the estimated parameters and a confidence band.

confint(BUtrafficLm)

## 2.5 % 97.5 %

## (Intercept) -2.9552 -2.5770

## log(size) 0.3353 0.3794

newSizes <- data.frame(size = exp(3:16))

BUpred <- predict(BUtrafficLm, newdata = newSizes,

interval = "confidence")

The regression line is very well determined, see Figure 5.2. When it comes to predictions
there is, however, still a considerable uncertainty.

BUpred2 <- predict(BUtrafficLm, newdata = newSizes,

interval = "prediction")

plot(log(duration) ~ log(size), data = BUtraffic, pch = 20,

xlim = c(3, 16), ylim = c(-3, 7))
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abline(BUtrafficLm, col = "blue", lwd = 2)

lines(log(newSizes$size), BUpred[, "lwr"], col = "blue", lty = 2)

lines(log(newSizes$size), BUpred[, "upr"], col = "blue", lty = 2)

lines(log(newSizes$size), BUpred2[, "lwr"], col = "blue", lty = 3)

lines(log(newSizes$size), BUpred2[, "upr"], col = "blue", lty = 3)

5.3 Exercises

In the following exercises we consider the Ceriodaphnia data from Exercises 4.7-4.12.

Exercise 5.1 Within the setup of Exercise 4.8 we will investigate the hypothesis

H : β = 0.

Use the result in Exercise 4.10 to compute an expression for −2 logQ(x).

Exercise 5.2 Test H for the Ceriodaphnia data.

Exercise 5.3 Simulate the distribution of −2 logQ(x) under H and compare this resulting
distribution with the theoretical approximation.

Exercise 5.4 Fit a linear regression model of log(organisms) regressed on concentration.
Investigate the model fit and compare the model with the one from Exercise 4.12.
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Chapter 6

Sixth Week

6.1 Multiple linear regression

Keywords: design matrices, interactions, linear models, polynomial regression.

ISwR: 185-190, 195-206

We consider in some detail the cystic fibrosis example from ISwR, Chapter 11, and introduce
various concepts in multiple linear regression. Most notably how the design matrix (or model
matrix in R jargon) reflects a given choice of parametrization.

6.1.1 Cystic fibrosis

Cystic fibrosis data

pemax weight height sex
1 95 13.10 109 0
2 85 12.90 112 1
3 100 14.10 124 0
4 85 16.20 125 1
. . . . .
. . . . .

24 95 51.10 175 0
25 195 71.50 179 0

and we will consider the following regression model

Yi = αsex + βsex × weighti + εi

where the response variable Yi is pemax.

The design matrix

133
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The parametrization αmale, αfemale, βmale, βfemale corresponds to the design matrix




1 0 13.1 0.0
0 1 0.0 12.9
1 0 14.1 0
0 1 0.0 16.2
...

...
...

...
1 0 51.1 0.0
1 0 71.5 0.0




Y1 = αmale + βmale × 13.1 + ε1

Y2 = αfemale + βfemale × 12.9 + ε2
...

...
...

Y25 = αmale + βmale × 71.5 + ε25

Reparametrization

The typical model specification is in the parametrization

β0 = αmale, β1 = αfemale − αmale, β2 = βmale, β3 = βfemale − βmale.

With design matrix




1 0 13.1 0.0
1 1 12.9 12.9
1 0 14.1 0.0
1 1 16.2 16.2
...

...
...

...
1 0 51.1 0.0
1 0 71.5 0.0




=
[

1 efemale weight efemale : weight
]

Y2 = β0 + β1 + β2 × 12.9 + β3 × 12.9 + ε2

= αfemale + βfemale × 12.9 + ε2

We have used the notation

1 = [1, . . . , 1]T , efemale = [0, . . . , 0, 1, . . . , 1]T

and weight is the vector of weights. The notation efemale : weight is used for the ’interaction
term’ in the R-terminology. It is effectively the coordinatewise multiplication of the vectors
efemale and weight.
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Hypotheses

In the second parametrization differences are expressible as parameters being non-zero;

H : β1 = 0 is H : αmale = αfemale

or

H : β3 = 0 is H : βmale = βfemale

From the full model with 4 free parameters there are 9 submodels and many different nested
model comparisons.

Model diagram

●

αmale=αfemale

��

βmale=βfemale //βmale=βfemale //
●

αmale=αfemale

��
αmale=αfemale

��

βmale=βfemale=0//βmale=βfemale=0//
●

αmale=αfemale

��

●

αmale=αfemale=0
��

βmale=βfemale //
●

αmale=αfemale=0
��

βmale=βfemale=0//
●

●

βmale=βfemale //
●

ANOVA, nested models and F -tests

Under the assumption that the errors εi are i.i.d. with the N(0, σ2)-distribution it is possible
to compute the likelihood ratio test statistic for the comparison of two nested models, count
degrees of freedom and use the approximate χ2-distribution of −2 logQ.

It is, however, possible to obtain exact results, which are prefered and reported in terms of
the F -test, which is equivalent to the likelihood ratio test.

The F -tests are effectively comparisons of variance estimates in nested models – known as
ANOVA= ANalysis Of VAriance.

Two sequences of nested models

From the model diagram we can for instance pursue two directions of nested model testing.
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β3 = 0 (βmale = βfemale)

β2 = 0 (αmale = αfemale)

β1 = 0 (βmale = βfemale = 0)

Or

β3 = 0 (βmale = βfemale)

β1 = 0 (βmale = βfemale = 0)

β2 = 0 (αmale = αfemale)

6.1.2 Polynomial regression

If we focus on regressing pemax on height we might be satisfied with the linear regression
model, but we might also speculate if we can get a better model fit if we allow for a more
flexible (non-linear) model of the relation between the two variables.

In the subsequent section we consider non-linear regression models, but an alternative is to
write the relation as a polynomial in height, e.g.

pemax = β0 + β1 × height + β2 × height2 + ε

This would be a multiple linear regression model in the variables height and height2.

In general, with f1, . . . , fd known functions we can formulate the multiple linear regression
model

yi = β0 + β1f1(xi) + . . .+ βd+1fd(xi) + εi.

This model corresponds to a design matrix with the i’th row being

[1 f1(xi) . . . fd(xi)].

With fk(x) = xk we get polynomial regression.

The fact that we can transform the x-variables with known functions, and in this way
computed derived variables for the regression, makes multiple linear regression an extremely
powerful and flexible tool. The flexibility does not come without any costs, though. There is
a risk of overfitting the model to data if you search through a lot of possible transformations,
which will make the model fit the observed data very well but it will fit future data poorly.

6.1.3 R interlude: More linear regression

We use the small example data set on cystic fibrosis from ISwR, see Chapter 11.

require(ISwR)

data(cystfibr)

?cystfibr
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A so-called scatter plot matrix is produced when ”plotting” a data frame.

plot(cystfibr)
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As described in ISwR, page 186, this is actually a call of the pairs function and for help on
the setting of plotting parameters see help(pairs).

One should note the clear correlation between the age, height and weight variables. This is
to be expected (the data is on children and young adults).

print(cor(cystfibr), digits = 2)

## age sex height weight bmp fev1 rv frc tlc pemax

## age 1.00 -0.167 0.93 0.91 0.38 0.29 -0.55 -0.64 -0.469 0.61

## sex -0.17 1.000 -0.17 -0.19 -0.14 -0.53 0.27 0.18 0.024 -0.29

## height 0.93 -0.168 1.00 0.92 0.44 0.32 -0.57 -0.62 -0.457 0.60

## weight 0.91 -0.190 0.92 1.00 0.67 0.45 -0.62 -0.62 -0.418 0.64

## bmp 0.38 -0.138 0.44 0.67 1.00 0.55 -0.58 -0.43 -0.365 0.23

## fev1 0.29 -0.528 0.32 0.45 0.55 1.00 -0.67 -0.67 -0.443 0.45

## rv -0.55 0.271 -0.57 -0.62 -0.58 -0.67 1.00 0.91 0.589 -0.32
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## frc -0.64 0.184 -0.62 -0.62 -0.43 -0.67 0.91 1.00 0.704 -0.42

## tlc -0.47 0.024 -0.46 -0.42 -0.36 -0.44 0.59 0.70 1.000 -0.18

## pemax 0.61 -0.289 0.60 0.64 0.23 0.45 -0.32 -0.42 -0.182 1.00

The response variable is pemax, the maximum expiratory pressure (a measure of strength
of respiratory muscles when exhaling). The variables age, height and weight have the
largest (marginal) correlation with the response variable, but they are also highly correlated
themselves.

The first model we will investigate is a linear model of pemax regressed against weight.

cystLm1 <- lm(pemax ~ weight, data = cystfibr)

summary(cystLm1)

##

## Call:

## lm(formula = pemax ~ weight, data = cystfibr)

##

## Residuals:

## Min 1Q Median 3Q Max

## -44.31 -22.69 2.23 15.91 48.41

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 63.546 12.702 5.00 4.6e-05 ***

## weight 1.187 0.301 3.94 0.00065 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 26.4 on 23 degrees of freedom

## Multiple R-squared: 0.404,Adjusted R-squared: 0.378

## F-statistic: 15.6 on 1 and 23 DF, p-value: 0.000646

par(mfcol = c(2, 2))

plot(cystLm1) ## Model control
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It is a small data set, but there is a tendency of an increased variance for large fitted values,
thus variance heterogeneity.

newdata <- data.frame(weight = seq(10, 80, 1))

cystPred1 <- predict(cystLm1, newdata, interval = "conf")

plot(pemax ~ weight, data = cystfibr)

matlines(newdata$weight, cystPred1, lty = c(1, 2, 2), col = "black")
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We are interested in investigating if there is a gender specific relation between the maximum
expiratory pressure and the weight. First, we introduce a gender specific intercept only.

cystLm2 <- lm(pemax ~ weight + sex, data = cystfibr)

summary(cystLm2)

##

## Call:

## lm(formula = pemax ~ weight + sex, data = cystfibr)

##

## Residuals:

## Min 1Q Median 3Q Max

## -47.39 -16.85 0.07 13.17 43.75

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 70.972 14.464 4.91 6.6e-05 ***

## weight 1.125 0.306 3.68 0.0013 **

## sex -11.478 10.796 -1.06 0.2993

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 26.3 on 22 degrees of freedom

## Multiple R-squared: 0.433,Adjusted R-squared: 0.381

## F-statistic: 8.39 on 2 and 22 DF, p-value: 0.00196

par(mfcol = c(2, 2))

plot(cystLm2) ## Model control
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It does not really improve on the model fit, and the conclusion from the summary table
above is that the effect of including the sex variable is not statistically significant. That is,
the coefficient estimated for the difference between the two genders (coded as 1 = female,
meaning that the estimated parameter of −11.48 is the estimated difference of the intercept
for females compared to males) is not significantly different from 0.

An interaction model is one where the slope depends on the gender as well, and can be fitted
as follows.

cystLm3 <- lm(pemax ~ sex * weight, data = cystfibr)

summary(cystLm3)

##

## Call:

## lm(formula = pemax ~ sex * weight, data = cystfibr)

##

## Residuals:

## Min 1Q Median 3Q Max

## -50.5 -14.6 -2.1 14.2 43.0

##
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## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 61.360 15.934 3.85 0.00093 ***

## sex 22.091 27.292 0.81 0.42736

## weight 1.357 0.347 3.91 0.00081 ***

## sex:weight -0.924 0.692 -1.33 0.19619

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 25.8 on 21 degrees of freedom

## Multiple R-squared: 0.477,Adjusted R-squared: 0.402

## F-statistic: 6.39 on 3 and 21 DF, p-value: 0.00303

The effect of sex is not significant. The conclusion is that for this very small data set, we
cannot detect a difference in slope between the two genders either.

The design matrix corresponding to the interaction model above can be obtained as:

model.matrix(cystLm3)

## (Intercept) sex weight sex:weight

## 1 1 0 13.1 0.0

## 2 1 1 12.9 12.9

## 3 1 0 14.1 0.0

## 4 1 1 16.2 16.2

## 5 1 0 21.5 0.0

## 6 1 0 17.5 0.0

## 7 1 1 30.7 30.7

## 8 1 1 28.4 28.4

## 9 1 0 25.1 0.0

## 10 1 1 31.5 31.5

## 11 1 0 39.9 0.0

## 12 1 1 42.1 42.1

## 13 1 0 45.6 0.0

## 14 1 1 51.2 51.2

## 15 1 1 35.9 35.9

## 16 1 1 34.8 34.8

## 17 1 0 44.7 0.0

## 18 1 1 60.1 60.1

## 19 1 0 42.6 0.0

## 20 1 1 37.2 37.2

## 21 1 0 54.6 0.0

## 22 1 0 64.0 0.0

## 23 1 0 73.8 0.0

## 24 1 0 51.1 0.0

## 25 1 0 71.5 0.0

## attr(,"assign")

## [1] 0 1 2 3

If we compute confidence intervals, say, for the estimated parameters, we will get the confi-
dence intervals for the parametrization corresponding to the design matrix.
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confint(cystLm3)

## 2.5 % 97.5 %

## (Intercept) 28.2247 94.4959

## sex -34.6668 78.8479

## weight 0.6354 2.0791

## sex:weight -2.3635 0.5154

This is not always desirable. One possibility is to force a particular parametrization. In the
next analysis we explicitly cast the sex variable as a factor to get the desired parametrization.

cystLm3mod <- lm(pemax ~ sex + sex:weight - 1,

data = transform(cystfibr, sex = as.factor(sex)))

summary(cystLm3mod)

##

## Call:

## lm(formula = pemax ~ sex + sex:weight - 1, data = transform(cystfibr,

## sex = as.factor(sex)))

##

## Residuals:

## Min 1Q Median 3Q Max

## -50.5 -14.6 -2.1 14.2 43.0

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## sex0 61.360 15.934 3.85 0.00093 ***

## sex1 83.451 22.158 3.77 0.00113 **

## sex0:weight 1.357 0.347 3.91 0.00081 ***

## sex1:weight 0.433 0.599 0.72 0.47745

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 25.8 on 21 degrees of freedom

## Multiple R-squared: 0.957,Adjusted R-squared: 0.949

## F-statistic: 116 on 4 and 21 DF, p-value: 5.25e-14

model.matrix(cystLm3mod)

## sex0 sex1 sex0:weight sex1:weight

## 1 1 0 13.1 0.0

## 2 0 1 0.0 12.9

## 3 1 0 14.1 0.0

## 4 0 1 0.0 16.2

## 5 1 0 21.5 0.0

## 6 1 0 17.5 0.0

## 7 0 1 0.0 30.7

## 8 0 1 0.0 28.4

## 9 1 0 25.1 0.0

## 10 0 1 0.0 31.5
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## 11 1 0 39.9 0.0

## 12 0 1 0.0 42.1

## 13 1 0 45.6 0.0

## 14 0 1 0.0 51.2

## 15 0 1 0.0 35.9

## 16 0 1 0.0 34.8

## 17 1 0 44.7 0.0

## 18 0 1 0.0 60.1

## 19 1 0 42.6 0.0

## 20 0 1 0.0 37.2

## 21 1 0 54.6 0.0

## 22 1 0 64.0 0.0

## 23 1 0 73.8 0.0

## 24 1 0 51.1 0.0

## 25 1 0 71.5 0.0

## attr(,"assign")

## [1] 1 1 2 2

## attr(,"contrasts")

## attr(,"contrasts")$sex

## [1] "contr.treatment"

confint(cystLm3mod)

## 2.5 % 97.5 %

## sex0 28.2247 94.496

## sex1 37.3701 129.531

## sex0:weight 0.6354 2.079

## sex1:weight -0.8122 1.679

It is possible to compare the interaction model with the model without any effect of sex.
The test belongs to the family of tests of linear model restrictions within the framework
of linear regression models with normally distributed errors. The analysis of such models
and hypotheses is known as analysis of variance – or ANOVA – because it boils down to
comparisons of residual variance estimates.

anova(cystLm1, cystLm3)

## Analysis of Variance Table

##

## Model 1: pemax ~ weight

## Model 2: pemax ~ sex * weight

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 23 16005

## 2 21 14033 2 1973 1.48 0.25

This is technically a test of a hypothesis about two parameters being 0, that is a drop from
a model with 4 parameters to a model with 2 parameters. The anova function computes
a test-statistic called the F -test, which is equivalent to the likelihood ratio test statistic
under the normal error model assumptions. However, in this particular case, there is no
need for approximative results based on χ2-distributions. Instead, the F -test has exactly
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an F -distribution under the model assumptions. Above, the p-value is computed to 0.2513,
thus the conclusion is still that we cannot detect any effect of including sex in the model.

The linear models are, in fact, quite versatile when combined with transformations of the
variables. It can be something of an art to find the correct transformations, but they may
sometimes be given by subject matter reasons (equations that describe relations between
variables may be known in certain cases).

However, sometimes we need a non-linear relation, which is not obviously known, but perhaps
approximated reasonably by a low-order polynomial.

cystLm4 <- lm(pemax ~ height + I(height^2), data = cystfibr)

Note the use of the I wrapper of the square term. The technical reason for this is that the
^ operator has a special meaning in formulas, e.g.

(a + b + c)^2 = (a + b + c) * (a + b + c) = a + b + c + a:b + b:c + a:c

That is, it can be used to specify complicated models involving interactions among different
terms. Therefore, there is a special way to specify that ^ has to be interpreted as ”squaring”
in the formula, and this is done with the wrapper function I.

summary(cystLm4)

##

## Call:

## lm(formula = pemax ~ height + I(height^2), data = cystfibr)

##

## Residuals:

## Min 1Q Median 3Q Max

## -51.41 -14.93 -2.29 12.79 44.93

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 615.3625 240.9558 2.55 0.018 *

## height -8.0832 3.3205 -2.43 0.023 *

## I(height^2) 0.0306 0.0113 2.72 0.012 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 24.2 on 22 degrees of freedom

## Multiple R-squared: 0.52,Adjusted R-squared: 0.477

## F-statistic: 11.9 on 2 and 22 DF, p-value: 0.000308

par(mfcol = c(2, 2))

plot(cystLm4) ## Model control
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The model seems to fit decently, and we can read of directly from the summary table that
the coefficient for the quadratic term looks statistically significantly different from 0 with a
p-value of 1.25%.

We can compare this model with a corresponding model without the quandratic term in
terms of the fitted functional relation (predictions).

cystLm5 <- lm(pemax ~ height, data = cystfibr)

newdata <- data.frame(height = seq(100, 190, 1))

cystPred4 <- predict(cystLm4, newdata, interval = "conf")

cystPred5 <- predict(cystLm5, newdata, interval = "conf")

plot(pemax ~ height, data = cystfibr)

matlines(newdata$height, cystPred4, lty = c(1, 2, 2), col = "black")

matlines(newdata$height, cystPred5, lty = c(1, 2, 2), col = "red")
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A model including all variables in the data set is also possible

cystLm6 <- lm(pemax ~ ., data = cystfibr)

summary(cystLm6)

##

## Call:

## lm(formula = pemax ~ ., data = cystfibr)

##

## Residuals:

## Min 1Q Median 3Q Max

## -37.34 -11.53 1.08 13.39 33.41

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 176.058 225.891 0.78 0.45

## age -2.542 4.802 -0.53 0.60

## sex -3.737 15.460 -0.24 0.81

## height -0.446 0.903 -0.49 0.63

## weight 2.993 2.008 1.49 0.16

## bmp -1.745 1.155 -1.51 0.15

## fev1 1.081 1.081 1.00 0.33

## rv 0.197 0.196 1.00 0.33

## frc -0.308 0.492 -0.63 0.54

## tlc 0.189 0.500 0.38 0.71

##

## Residual standard error: 25.5 on 15 degrees of freedom

## Multiple R-squared: 0.637,Adjusted R-squared: 0.42

## F-statistic: 2.93 on 9 and 15 DF, p-value: 0.032

One should note that none of the variables have parameters significantly different from 0, but
that this is a conclusion based on models where all other variables are included. A combined
test of the model with all variables included against the model with only the intercept can
be computed.
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anova(lm(pemax ~ 1, data = cystfibr), cystLm6)

## Analysis of Variance Table

##

## Model 1: pemax ~ 1

## Model 2: pemax ~ age + sex + height + weight + bmp + fev1 + rv + frc +

## tlc

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 24 26833

## 2 15 9731 9 17101 2.93 0.032 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This is marginally significant suggesting that not all variables can be dropped. Formal model
search procedures may be able to produce reasonable models for prediction, though there
are better methods than the step-wise procedure considered in ISwR (this is a whole new
course in statistical learning or machine learning). The analysis of the data set suggests,
in particular, a relation between pemax and ”bodysize” as measured by one of the variables
age, weight or height. Which one to choose and the precise formulation of the model are
typically specific to the subject matter. General ”rules” are hard to make. Formal statistical
procedures can typically not distinguish between highly correlated regressors in a data set.

6.2 Non-linear regression

Keywords: curve fitting, ELISA, non-linear regression.

ISwR: 275-288

ELISA and DNase

ELISA is an assay where we measure the concentration of a protein/antibody indirectly by
a measure of “optical density” (OD-value).

For all experiments we are interested in estimating a standard curve relating concentration
and observed OD-value.

Using a known dilution series we can try linear regression of the log-OD on the log-concentration.

The model is mildly misspecified – consequence; the error variance is overestimated as it has
to capture the model misspecification too.

In this lecture we will also consider estimation using the least squares method of the regres-
sion model of the form

Yi = gβ(xi) + σεi.

This is the maximum-likelihood method if the εi-terms are normally distributed. In the world
of regression this is often referred to as non-linear least squares. We can in general not expect
to find closed form solutions to these minimization problems and must rely on numerical
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optimization. A word of warning is appropriate here. We cannot expect that the numerical
optimization always goes as smoothly as desirable. To find the correct set of parameters
that globally minimizes the residual sum of squares we may need to choose appropriate
starting values for the algorithm to converge, and it may very easily be the case that there
are multiple local minima, that we need to avoid.

For non-linear regression there are generalizations of many of the concepts from linear re-
gression. The fitted values are defined as

x̂i = gβ̂(yi)

and the residuals are
ei = xi − x̂i = xi − gβ̂(yi).

To check the model we make residual plots of the residuals against either the regressors yi or
the fitted values x̂i and we look for systematic patterns that either indicate that the model
of the mean via the function gβ̂ is inadequate or that the constant variance assumption is
problematic. Moreover, we can compare the empirical distribution of the residuals to the
normal distribution via a QQ-plot. We don’t have a simple leverage measure, nor do we
have a formula for the variance of the residuals. So even though the residuals may very well
have different variances it is not as easy to introduce standardized residuals that adjust for
this. In the context of non-linear regression the term standardized residual often refers to
ei/σ̂ where we simply divide by the estimated standard deviation.

The four parameter logistic model

A non-linear regression model with

gβ(y) =
β2 − β1

1 + exp(β4(y − β3))
+ β1,

β = (β1, β2, β3, β3) ∈ R4 with β1 < β2 for identifiability.

Applied a lot to dosis-response modeling and assay standard curve esimation, parameters
estimated in R using non-linear least-squares regression with nls.

Other models

The functional form of gβ is, in principle, only limited by our fantasy, but practice renders
it difficult to estimate very complicated functions. Examples include

• the Gompertz (growth) model with

gβ(x) = α exp
(
−βe−γx

)

• the Weibull (growth) model

gβ(x) = α0 − α1 exp
(
−βx−γ

)

• the Michaelis-Menten rate equation

gβ(x) =
αx

β + x
.
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Figure 6.1: The data and estimated Michaelis-Menten rate curve for ethanol conversion.

6.2.1 Michaelis-Menten

Enzymes work as catalysts in the conversion of a substrate into a product. The enzyme
alcohol dehydrogenase catalyzes the conversion of ethanol (the substrate) to acetaldehyde
(the product). The data below are from Bendinskas et al. Journal of Chemical Education,
82(7), 1068 (2005). The Michaelis-Menten rate equation states that the rate, r, for the
conversion is related to the concentration x of the substrate via

r =
β1x

β2 + x
. (6.1)

With β = (β1, β2) the two unknown parameters and measurements r1, . . . , rn of the conver-
sion rate for different substrate concentrations x1, . . . , xn we set up a non-linear regression
model

R = gβ(x) + σε

where gβ(x) = β1x
β2+x . We assume in this model that the measurement noise, σε, of the

conversion rate enters additively.

Substrate concentration Conversion rate
0.007 0.06
0.015 0.11
0.031 0.16
0.068 0.21
0.100 0.23
0.200 0.28
0.300 0.29
0.400 0.28
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Using the R function nls we can fit the model and get the following summary result:

Formula: rate ~ beta1 * conc/(beta2 + conc)

Parameters:

Estimate Std. Error t value Pr(>|t|)

beta1 0.309408 0.006420 48.19 5.35e-09 ***

beta2 0.029391 0.002503 11.74 2.30e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.00807 on 6 degrees of freedom

Number of iterations to convergence: 8

Achieved convergence tolerance: 5.363e-06

6.2.2 R interlude: Standard curves

require(nlme) ## Just to get the dataset

data(DNase)

The data set DNase contains data from 11 runs. We select run 1 for this illustration. We do
the linear regression estimation, compute the summary and add the estimated straight line
to the plot.

myDNase <- DNase[DNase$Run == 1, ]

par(mfcol = c(1, 2))

plot(density ~ conc, myDNase)

plot(log(density) ~ log(conc), myDNase)

DNaseLm <- lm(log(density) ~ log(conc), myDNase)

summary(DNaseLm)

##

## Call:

## lm(formula = log(density) ~ log(conc), data = myDNase)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.608 -0.201 0.178 0.250 0.273

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1.0510 0.0843 -12.5 5.7e-09 ***

## log(conc) 0.8001 0.0487 16.4 1.5e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.337 on 14 degrees of freedom

## Multiple R-squared: 0.951,Adjusted R-squared: 0.947

## F-statistic: 270 on 1 and 14 DF, p-value: 1.51e-10
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abline(reg = DNaseLm)
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The four standard diagnostic plots. The residual plot shows that the model does not quite
fit the data.

par(mfcol = c(2, 2))

plot(DNaseLm)
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We turn to a non-linear regression model.

DNaseNls <- nls(density ~ beta2/(1 + exp(beta4*(log(conc) - beta3))),

data = myDNase,

start = list(beta2 = 2, beta3 = 1, beta4 = -1.5))

summary(DNaseNls)

##

## Formula: density ~ beta2/(1 + exp(beta4 * (log(conc) - beta3)))

##

## Parameters:

## Estimate Std. Error t value Pr(>|t|)

## beta2 2.3452 0.0782 30.0 2.2e-13 ***

## beta3 1.4831 0.0814 18.2 1.2e-10 ***

## beta4 -0.9602 0.0298 -32.3 8.5e-14 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.0192 on 13 degrees of freedom

##

## Number of iterations to convergence: 5
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## Achieved convergence tolerance: 8.77e-07

plot(density ~ conc, myDNase)

newdata <- data.frame(conc = seq(0, 13, 0.1))

densPred <- predict(DNaseNls, newdata)

lines(newdata$conc, densPred)

0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

conc

de
ns

ity

## Residual plot

plot(DNaseNls)
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It may not be easy to find good stating values. The error message produced below is inten-
tional.
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DNaseNls <- nls(density ~ beta2/(1 + exp(beta4*(log(conc) - beta3))),

data = myDNase,

start = list(beta2 = 0, beta3 = 0, beta4 = 0))

## Error: singular gradient matrix at initial parameter estimates

Starting values can be obtained by visual inspection of the graph, or ad hoc estimators.
This can sometimes be formalized so that a sensible set of starting values are provided
automatically. For the 3-parameters logistic model this is implemented in the SSlogis

DNaseNls2 <- nls(density ~ SSlogis(log(conc), beta, gamma, delta),

data = myDNase)

summary(DNaseNls2)

##

## Formula: density ~ SSlogis(log(conc), beta, gamma, delta)

##

## Parameters:

## Estimate Std. Error t value Pr(>|t|)

## beta 2.3452 0.0782 30.0 2.2e-13 ***

## gamma 1.4831 0.0814 18.2 1.2e-10 ***

## delta 1.0415 0.0323 32.3 8.5e-14 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.0192 on 13 degrees of freedom

##

## Number of iterations to convergence: 0

## Achieved convergence tolerance: 3.28e-06

Note that the parametrization is

f(x) = β/(1 + exp((γ − x)/δ))

when using the built in self starting model. Hence β = β2, γ = β3 and δ = −1/β4.

There is an extension, called the four-parameter logistic model. It’s parametrized as

f(x) = α+ (β − α)/(1 + exp((γ − x)/δ))

DNaseNls3 <- nls(density ~ SSfpl(log(conc), alpha, beta, gamma, delta),

data = myDNase)

summary(DNaseNls3)

##

## Formula: density ~ SSfpl(log(conc), alpha, beta, gamma, delta)

##

## Parameters:
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## Estimate Std. Error t value Pr(>|t|)

## alpha -0.0079 0.0172 -0.46 0.65

## beta 2.3772 0.1095 21.71 5.4e-11 ***

## gamma 1.5074 0.1021 14.77 4.6e-09 ***

## delta 1.0626 0.0570 18.64 3.2e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.0198 on 12 degrees of freedom

##

## Number of iterations to convergence: 0

## Achieved convergence tolerance: 2.52e-07

confint(DNaseNls3)

## Waiting for profiling to be done...

## 2.5% 97.5%

## alpha -0.04883 0.02796

## beta 2.17311 2.68247

## gamma 1.31337 1.78354

## delta 0.94754 1.20632

confint.default(DNaseNls3)

## 2.5 % 97.5 %

## alpha -0.04161 0.02581

## beta 2.16259 2.59189

## gamma 1.30733 1.70748

## delta 0.95087 1.17429

The conclusion from this is that there is no reason to include the extra parameter. We
investigate the profile ”likelihood” (sum of squares). Note the clear curvature for some of the
parameters.

par(mfcol = c(2, 2))

plot(profile(DNaseNls3))
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Microarray data are similar to the data from the ELISA experiment. We have different
concentrations and measure a corresponding light intensity. In the following example we
consider a so-called spike-in experiment with known concentrations.

We need some bioconductor packages for the data and the extraction of data.

require("SpikeInSubset")

data("spikein95")

spikeIn95 <- as.vector(pm(spikein95, names(pData(spikein95))))

spikeIn95 <- cbind(intensity = spikeIn95,

data.frame(conc = rep(as.numeric(t(as.matrix(pData(spikein95)))),

each = 16)))

spikeIn95 <- spikeIn95[spikeIn95$conc != 0, ]

We analyse a four-parameter logistic model.

spikeIn95Nls <- nls(log2(intensity) ~ SSfpl(log2(conc), alpha, beta, gamma, delta),

data=spikeIn95

)
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summary(spikeIn95Nls)

##

## Formula: log2(intensity) ~ SSfpl(log2(conc), alpha, beta, gamma, delta)

##

## Parameters:

## Estimate Std. Error t value Pr(>|t|)

## alpha 7.7950 0.0606 128.7 <2e-16 ***

## beta 12.6808 0.1218 104.2 <2e-16 ***

## gamma 5.8037 0.0943 61.5 <2e-16 ***

## delta 1.0484 0.0880 11.9 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.29 on 1388 degrees of freedom

##

## Number of iterations to convergence: 10

## Achieved convergence tolerance: 5.2e-06

plot(log2(intensity) ~ jitter(log2(conc)),

data = spikeIn95,

pch = 20,

ylab = "Log-intensity (base 2)",

xlab="Log-concentration (base 2)"

)

ord <- order(log2(spikeIn95$conc))

lines(spline(log2(spikeIn95$conc)[ord],

predict(spikeIn95Nls)[ord]),

col = "red", lwd = 3)

Some more model control, residual plots and QQ-plots.

par(mfcol=c(1, 2))

plot(jitter(fitted(spikeIn95Nls), amount = 0.1),

residuals(spikeIn95Nls,type="pearson"), pch = 20)

abline(c(0, 0))

qqnorm(residuals(spikeIn95Nls), pch = 20)

qqline(residuals(spikeIn95Nls))

plot(density(residuals(spikeIn95Nls)))

hist(residuals(spikeIn95Nls), probability = TRUE, add = TRUE)

This shows that the model does not fit perfectly. In particular, the (technical) variance
increases with concentration and the residuals seem to have a left skewed distribution.

6.3 Exercises

In an ELISA experiment we consider a standard dilution series and the corresponding mea-
sured OD-values:
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Standard dilution

c 100 100 200 200 400 400 800 800 1600 1600
OD 1.04 1.11 0.710 0.720 0.350 0.380 0.190 0.260 0.090 0.110

In the following you are going to investigate polynomial regression for fitting the relationship
between the dilution factor 1/c and the OD-values. Thus our model setup is that

ODi = β0 + β11/ci + β2(1/ci)
2 + . . .+ βd(1/ci)

d + εi

where we can assume that ε1, . . . , ε10 are i.i.d. and have distribution N(0, σ2) for some
σ2 > 0.

Exercise 6.1 Estimate the β-parameters in the three cases d = 1, 2, 3. Which of the models
seems most appropriate?

We will be interested in the mean value of OD given that c = 500. Given estimates of
our parameters β0, . . . , βd we can compute this mean value form the regression formulation
above.

Exercise 6.2 Compute in the three cases d = 1, 2, 3 the estimate of mean OD when c = 500.

The mean value of OD when c = 500 is in the following our parameter of interest. We want
to compute a confidence interval for this parameter.

Exercise 6.3 Take d = 2, compute the estimate of σ2 and use parametric bootstrapping to
compute a 95% confidence interval for the parameter of interest – the mean OD value given
that c = 500.

Exercise 6.4 Take instead d = 1, compute the estimate of σ2 and use parametric boot-
strapping to compute a 95% confidence interval for the parameter of interest – the mean
OD value given that c = 500. Compare with the interval obtained above when d = 2. Can
you explain the difference?

Exercise 6.5 Show that the Michaelis-Menten rate equation (6.1) can be rephrased as

1

r
=
β2

β1

1

y
+

1

β1
.

Argue that this formula suggests a linear regression model for the inverse of the rate regressed
on the inverse of the substrate concentration. Estimate the parameters using this linear
regression model and compare with the example above.



160 6.3. Exercises



Chapter 7

Seventh Week

7.1 Logistic regression

Keywords: bootstrapping, dosis-response, flies, LD50, logistic regression, odds

ISwR: 227-247

7.1.1 Flies

Dosis-response experiments

”Alle Dinge sind Gift und nichts ist ohne Gift; allein die Dosis macht, dass ein Ding kein
Gift ist.”

Theophrastus Phillipus Auroleus Bombastus von Hohenheim (1493-1541). All compounds
are toxic in the right dose – the question is just what the dose is.

In an experiment, carried out by Jørgen Jespersen at Statens Skadedyrslaboratorium, 260
flies (Musca domestica) were exposed to the insecticide dimethoat in varying concentrations.
The experiment was organized with 13 groups of 20 flies, and flies in the same group were
given the same concentration.

Fly death

161
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Concentration log(concentration) Deaths Survivors
0.016 −4.135 0 20
0.0226 −3.790 0 20
0.032 −3.442 0 20
0.0453 −3.094 0 20
0.064 −2.749 5 15
0.0905 −2.402 4 16
0.128 −2.056 5 15
0.181 −1.709 15 5
0.256 −1.363 14 6
0.362 −1.016 18 2
0.515 −0.664 20 0
0.724 −0.323 20 0
1.024 0.024 20 0

The number of surviving flies depending on the concentration of the insecticide dimethoat.

This is a quite classical situation with a dichotomous dose-response experiment. The response
is a 0-1 variable, like dead/alive or red/green, but the probability of the variable depends
upon a continuous dose, for instance the concentration of a toxic compound, pesticide or
insecticide.

Logistic regression

Fly-death is a 0-1-variable (a Bernoulli variable), whose distribution depends upon the log-
concentration x of the insecticide. We introduce the point probability that a fly dies (yi = 1)
as

p(x) =
exp(α+ βx)

1 + exp(α+ βx)
,

where p(x) ∈ (0, 1) and α, β ∈ R. This is the logistic regression model.

The log-odds

log
p(x)

1− p(x)
= α+ βx

is linear in x.

What is the difference between a probability of p = 0.5 and q = 0.1 of an event (fly death,
say)? How should we interpret such a difference?

What is the difference between between p = 0.01 and q = 0.00112?

The absolute difference is in the former case 0.4 and in the latter case 0.00888. The relative
difference is in the former case 5 and in the latter case 8.93.

If I were to gamble on the event occurring (I bet on the fly dying!) and bet 1 kroner when
p = 0.5 I expect to be paid 1 kroner in a fair bet if the fly dies. If somebody changes the
game by changing the dose so that the probability goes down to 0.1, I expect that I should
be paid 9 kroner instead if the fly dies (still betting 1 kroner that it dies). This is because
the odds are now

q

1− q = 1/9.



7.1. Logistic regression 163

The difference in terms of the odds is an odds ratio of 9 – if q is the probability instead of
p I should get 9 times the payback if the fly dies.

In the second case the difference in odds – the odds-ratio – is

0.01/0.99

0.00112/0.99888
= 9.0.

Thus the same as in the first case. From a gambling point of view a change of probability
from 0.5 to 0.1 or from 0.01 to 0.00112 has the same consequence that the payback should
be increased by a factor 9.

The odds interpretation

The odds, p/(1− p) is a quantification of the probability p of an event (fly death).

With q a different probability of the same event, the odds-ratio is

p/(1− p)
q/(1− q) =

p(1− q)
q(1− p)

and quantifies, in terms of the odds, how much more probable the event is when p is the
probability than when q is the probability.

The relative risk is the ratio

p

q

(
' p(1− q)
q(1− p) if p, q � 1

)

which approximately equals the odds-ratio if p and q are small.

Interpretation of β

The parameter β corresponds to a unit change of x,

β = β(x+ 1)− βx
= α+ β(x+ 1)− (α+ βx)

= log
p(x+ 1)

1− p(x+ 1)
− log

p(x)

1− p(x)

= log
p(x+ 1)(1− p(x))

p(x)(1− p(x+ 1))
.

Thus β is the log-odds-ratio of a unit change in x and

exp(β) =
p(x+ 1)(1− p(x))

p(x)(1− p(x+ 1))

is the odds-ratio (often the parameter of interest) of a unit change in x.

The logistic regression model is particularly popular in so-called retrospective studies. A
retrospective study corresponds to a study where we take a group of 100 dead flies and
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measure the dose of dimethoat that they were exposed to and take another group of 100
alive flies and measure the dose of dimethoat that they were exposed to. With such a sampling
scheme there is no hope of estimating the probability of dying for a given dose. However, the
logistic regression model allows us to estimate the odds-ratio between two different doses
even with a retrospective study.

Exercise

Write an R function that takes an x-vector and two parameters α and β and simulates the
Bernoulli variables with probabilities given by the logistic regression model.

With α = 5.137 and β = 2.706 and the x-vector the log-concentrations from the fly data set
simulate a new data set.

Generalized linear models

A Bernoulli variable with probability p of success (being 1) has mean value

1× p+ 0× (1− p) = p.

The function

p 7→ log
p

1− p = logit(p)

is called the logistic function (or logit for short).

The regression model we consider is a binomial model with the logit of the mean being a
linear function of the regressor

logit(p(y)) = α+ βy.

It is in the class of generalized linear models with logit link function, ML-estimation and
other statistical analyses are done in R with the glm function with argument

family = binomial("logit")

Logistic regression curve - fly-death
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Lethal dose 50

For the logistic regression model the log odds equals 0 precisely when p(x) = 1/2 and this
happens when x = −α/β.

The value of x where p(x) = 1/2 is called LD50, which means the Lethal Dose for 50% of
the subjects considered.

In terms of the parameters in our logistic regression model

LD50 = −α
β
.

Often LD50 is the parameter of interest and it is used to summarize the toxicity level of the
insecticide.

In other contexts LD50 is referred to as MD50 instead, which means Median Effective Dose.
It has the same interpretations.

7.1.2 Bootstrapping

Confidence intervals and bootstrapping

One practical problem is how to compute a sensible confidence interval (or make a formal
test) on derived parameters like LD50 = −α/β .

One solution is to use profiling methods, but it requires, in principle, a reparametrization in
terms of the derived parameter.

Simulation based bootstrapping is a different idea that can be implemented with little analytic
skills at the expense of computer time.
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The basic idea in bootstrapping for constructing confidence intervals for a parameter of
interest τ , as a derived parameter τ = τ(θ) of the full parameter θ, when we have an
estimator τ̂ of τ is to find an approximation of the distribution of τ̂ − τ(θ0). We don’t know
“the true” parameter θ0, and the approximation is usually done by simulations that depend
upon the observed data set. What we attempt is to approximate the distribution of

τ̂ − τ(θ0),

by the distribution of

τ̂ − τ̂(x),

which depends on the data set x but not the unknown parameter. Since the distribution is
allowed to depend upon the concrete observation x the construction of the resulting confi-
dence set – that provides information about the uncertainty of the estimate τ̂(x) – depends
upon the data itself. Hence what we suggest is to pull information about the uncertainty
of an estimate out from the very same data used to obtain the estimate, and for this rea-
son the method is known as bootstrapping. Supposedly one of the stories in The Surprising
Adventures of Baron Munchausen by Rudolf Erich Raspe (1736 - 1794) contains a passage
where the Baron pulls himself out of a deep lake by pulling his own bootstraps. Such a
story is, however, not to be found in the original writings by Raspe, but the stories of Baron
Munchausen were borrowed and expanded by other writers, and one can find versions where
the Baron indeed did something like that. To bootstrap is nowadays, with reference to the
Baron Munchausen story, used to describe various seemingly paradoxical constructions or
actions. To boot a computer is for instance an abbreviation of running a so-called bootstrap
procedure that gets the computer up and running from scratch.

The computation of the distribution of τ̂ − τ̂(x) is usually done by letting the computer
generate a large number of new data sets x1, . . . , xB and relevant derived quantities such as
quantiles for the distribution of τ̂ − τ̂(x) or the standard deviation of τ̂ are estimated from
the simulated data.

The bootstrap for confidence interval construction

With x the data set, θ̂ = θ̂(x) the estimated full parameter and τ̂ = τ̂(x) the estimated pa-
rameter of interest the parametric bootstrap algorithm for producing a level (1−α)-confidence
interval:

• Simulate B new independent, identically distributed data sets, x1, . . . , xB , from the
estimated model with parameter θ̂.

• Compute, for each dataset xi, i = 1, . . . , B, new estimates τ̂(xi) using the estimator
τ̂ .

• Compute ẑα and ŵα as the α/2 and 1 − α/2 quantiles for the sample τ̂(xi) − τ̂(x),
i = 1, . . . , B.

• Define I(x) = [τ̂(x)− ŵα, τ̂(x)− ẑα].

The bootstrap for confidence interval construction

A minor modification of the algorithm is given by replacing the last two bullet points by
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• Simulate B new independent, identically distributed datasets, x1, . . . , xB , from the
estimated model with parameter θ̂.

• Compute, for each dataset xi, i = 1, . . . , B, new estimates τ̂(xi) using the estimator
τ̂ .

• Compute the empirical mean τ = 1
B

∑B
i=1 τ̂(xi) and the empirical standard deviation

ŝe =

√√√√ 1

B − 1

B∑

i=1

(τ̂(xi)− τ)2

• Define I(x) = [τ̂(x) − ŝezα, τ̂(x) + ŝezα] where zα is the 1 − α/2 quantile for the
N(0, 1)-distribution.

7.1.3 Logistic regression likelihood

Likelihood A

Fly-death is a 0-1-variable (a Bernoulli variable), whose distribution depends upon the log-
concentration, x, of the insecticide. Let p(x) denote the probability of fly death as a function
of dose.

The likelihood is

Lx,y =

260∏

i=1

p(xi)
yi(1− p(xi))1−yi

and the log-likelihood function becomes

lx,y =

260∑

i=1

yi log

(
p(xi)

1− p(xi)

)
− log(1− p(xi)),

Likelihood B

Fly-death is a binomial(p(x), 20) variable, whose distribution depends upon the log-concentration,
x, of the insecticide.

The likelihood is

Lx,y =

13∏

i=1

(
20

yi

)
p(xi)

yi(1− p(xi))20−yi

and the log-likelihood function becomes

lx,y =

13∑

i=1

yi log

(
p(xi)

1− p(xi)

)
− log(1− p(xi)) + log

(
20

yi

)
,
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The minus-log-likelihood

The two minus-log-likelihoods (A and B) are identical up to a constant that does not depend
upon the parameters when the dose within groups is constant. The general likelihood function
is

Lx,y(α, β) =

n∏

i=1

p(xi)
yi(1− p(xi))1−yi =

n∏

i=1

exp(αyi + βxiyi)

1 + exp(α+ βxi)

and the minus-log-likelihood function becomes

lx,y(α, β) =

n∑

i=1

log(1 + exp(α+ βxi))− αS − βSS,

where

S =

n∑

i=1

yi and SS =

n∑

i=1

yixi.

Minus-log-likelihood function
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7.1.4 R interlude: Flies

Downloading the flies data (the data is in the data frame fly.death).

download.file("http://www.math.ku.dk/~richard/download/courses/binf_2008/flies.RData",

"flies.RData")

load("flies.RData")

Tabulation and various plots.
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flyDeathTable <- table(fly.death)

barplot(flyDeathTable[, 2] / 20)
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flyDeath <- as.data.frame(flyDeathTable)

flyDeath <- data.frame(conc = as.numeric(as.character(flyDeath$conc[1:13])),

alive = flyDeath$Freq[1:13],

dead = flyDeath$Freq[14:26]

)

flyDeath$conc <- as.numeric(as.character(flyDeath$conc))

par(mfcol = c(1, 2))

plot(dead / 20 ~ conc, flyDeath, type = "b")

plot(dead / 20 ~ log(conc), flyDeath, type = "b")
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It is often found that it is better to regress on log-concentration than concentration. Conse-
quently the experiment is designed with equidistant log-concentrations.

MLE computation and further statistical analysis are based on the glm function.

flyGlm <- glm(dead ~ log(conc),

family = binomial("logit"),

data = fly.death,

)

summary(flyGlm)

##

## Call:

## glm(formula = dead ~ log(conc), family = binomial("logit"), data = fly.death)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.2260 -0.2778 -0.0686 0.2655 2.1888

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 5.140 0.674 7.62 2.5e-14 ***

## log(conc) 2.707 0.335 8.07 7.1e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 359.19 on 259 degrees of freedom

## Residual deviance: 138.69 on 258 degrees of freedom

## AIC: 142.7

##

## Number of Fisher Scoring iterations: 6

confint(flyGlm) ## Profile based confidence intervals
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## Waiting for profiling to be done...

## 2.5 % 97.5 %

## (Intercept) 3.943 6.607

## log(conc) 2.115 3.440

Standard confidence intervals based on the estimated standard error can be computed by
calling confint.default explicitly.

confint.default(flyGlm)

## 2.5 % 97.5 %

## (Intercept) 3.818 6.462

## log(conc) 2.049 3.364

Formal likelihood ratio based test of H : β = 0.

anova(flyGlm, test = "Chisq")

## Analysis of Deviance Table

##

## Model: binomial, link: logit

##

## Response: dead

##

## Terms added sequentially (first to last)

##

##

## Df Deviance Resid. Df Resid. Dev Pr(>Chi)

## NULL 259 359

## log(conc) 1 220 258 139 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The model can also be fitted based on the tabular data. This gives an identical model fit,
but different values for the Null and Residual deviances.

flyGlm2 <- glm(cbind(dead, alive) ~ log(conc),

family = binomial("logit"),

data = flyDeath,

)

summary(flyGlm2)

##

## Call:

## glm(formula = cbind(dead, alive) ~ log(conc), family = binomial("logit"),

## data = flyDeath)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max
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## -1.373 -0.781 -0.252 0.747 2.080

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 5.140 0.674 7.62 2.5e-14 ***

## log(conc) 2.707 0.335 8.07 7.1e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 234.255 on 12 degrees of freedom

## Residual deviance: 13.755 on 11 degrees of freedom

## AIC: 36.2

##

## Number of Fisher Scoring iterations: 5

Formal likelihood ratio based test of H : β = 0 gives the same result as above. The difference
between the deviances is the same.

anova(flyGlm2, test = "Chisq")

## Analysis of Deviance Table

##

## Model: binomial, link: logit

##

## Response: cbind(dead, alive)

##

## Terms added sequentially (first to last)

##

##

## Df Deviance Resid. Df Resid. Dev Pr(>Chi)

## NULL 12 234.3

## log(conc) 1 220 11 13.8 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The results computed above can also be computed using the generic tools from the stats4

package.

Note that the defaults below makes it possible to just call mle without specifying initial
values for the algorithm.

require(stats4)

x <- log(fly.death[, 1])

y <- fly.death[, 2]

S = sum(y)

SS = sum(y * x) ## y %*% x

mll <- function(alpha = 0, beta = 0)

sum(log(1 + exp(alpha + beta * x))) - alpha * S - beta * SS
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flyMle <- mle(mll)

summary(flyMle)

## Maximum likelihood estimation

##

## Call:

## mle(minuslogl = mll)

##

## Coefficients:

## Estimate Std. Error

## alpha 5.140 0.6744

## beta 2.707 0.3354

##

## -2 log L: 138.7

confint(flyMle)

## Profiling...

## 2.5 % 97.5 %

## alpha 3.943 6.607

## beta 2.115 3.440

One benefit of this procedure is that we have full control over the parametrization. If we
wish to use the parametrization in terms of LD50 (γ below) and β (to obtain profile based
confidence intervals for LD50, say), we are free to do so.

mll2 <- function(gamma = 0, beta = 0) mll(- gamma * beta, beta)

flyMle2 <- mle(mll2)

summary(flyMle2)

## Maximum likelihood estimation

##

## Call:

## mle(minuslogl = mll2)

##

## Coefficients:

## Estimate Std. Error

## gamma -1.899 0.0802

## beta 2.707 0.3354

##

## -2 log L: 138.7

confint(flyMle2)

## Profiling...

## 2.5 % 97.5 %

## gamma -2.057 -1.74

## beta 2.115 3.44
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7.1.5 R interlude: Bootstrapping flies

fit <- function(myData) {

theFit <- glm(dead ~ log(conc),

family = binomial,

data = myData) ## Using glm to fit the logistic regression model

return(coefficients(theFit))

}

Warning, the following is not recommended for production usage. The repeated calls of glm
is way to slow, and can be replaced by calls of glm.fit, which is faster, but less user friendly
for interactive usage. For the present purpose the following implementation works just fine.

boot <- function(myData, B = 999) {

## Initial fit

fitted <- glm(dead ~ log(conc),

family = binomial,

data = myData)$fitted

bootPar <- data.frame(alpha = numeric(B), beta = numeric(B))

## The actual bootstrapping

for(i in 1:B){

bootData <- data.frame(conc = myData$conc,

dead = rbinom(length(fitted), 1, fitted))

bootPar[i, ] <- fit(bootData)

}

return(as.data.frame(bootPar))

}

We do 999 bootstrap replications.

parDist <- boot(fly.death)

We compute confidence intervals based on two different methods.

For the normal approximation the estimate of the standard error is taken from the bootstrap
procedure.

flyFit <- glm(dead ~ log(conc),

family = binomial,

data = fly.death)

alphaHat <- coefficients(flyFit)[1]

betaHat <- coefficients(flyFit)[2]

alphaHat + 1.96 * sqrt(var(parDist$alpha)) * c(-1, 1)

## [1] 3.805 6.474

betaHat + 1.96 * sqrt(var(parDist$beta)) * c(-1, 1)

## [1] 2.032 3.381
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## and LD50

-alphaHat/betaHat + 1.96 * sqrt(var(- parDist$alpha / parDist$beta)) * c(-1, 1)

## [1] -2.050 -1.749

We can also use bootstrap quantiles directly so that the confidence intervals do not rely on
the normal approximation.

2 * alphaHat - quantile(parDist$alpha, c(0.975, 0.025))

## 97.5% 2.5%

## 3.506 6.191

2 * betaHat - quantile(parDist$beta, c(0.975, 0.025))

## 97.5% 2.5%

## 1.832 3.206

## and LD50

-2 * alphaHat / betaHat - quantile(-parDist$alpha / parDist$beta, c(0.975, 0.025))

## 97.5% 2.5%

## -2.042 -1.742

Compare the two previous confidence intervals with the confidence interval computed above
for the γ parameter but based on the profile likelihood method.

7.2 Poisson regression

Keywords: log-linear model, MEF2, motif occurrences, Poisson regression

ISwR: 259-270

Motivating question – miRNA co-occurrences

In a thesis project at binf a central question was

Do putative target sites for miRNA in human 3’UTR’s co-occur?

The scientific objective is to understand the function of miRNA and whether different miR-
NAs collaboratively target genes.

Computationally determined target sites have many false positives or a pour sensitivity.

Statistical challenge: Find a sound measure of co-occurrence that will detect pairs of
miRNAs that have a tendency to co-occur.
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Note that we do not try to pinpoint the target sites where the miRNAs may co-bind in the
3’UTRs. We only try to justify if certain miRNAs have putative target sites that co-occur
beyond expectations.

Solution and problems

The easy solution is to tabulate and test for independence. That is, for each 3’UTR sequence
register which target sites are present, cross-tabulate the result, and test for independence
using a χ2-test.

Problems:

• The 3’UTR’s are of different lengths.

• The nucleotide composition in the 3’UTR’s is heterogeneous.

Both of the problems above lead to different probabilities of a random co-occurrence of target
sites in different 3’UTR’s. It is a fundamental assumption for the χ2-test for independence
that the tabulated data are independent and identically distributed.

What we aim at is a more precise model of word and motif occurrences in random sequences
that we can use as a reference model.

7.2.1 A log-linear counting model

A computation in a simple model

If Xi, . . . , Xi+m−1 are random variables representing the DNA letters in a random sequence
at the positions i, . . . , i+m− 1 are independent, and w = w1 . . . wm is a word, then

P (XiXi+1 . . . Xi+m−1 = w) = P (Xi = w1)× . . .× P (Xi+m−1 = wm)

= p(w1)p(w2) . . . p(wm)

= p(a)nw(a)p(c)nw(c)p(g)nw(g)p(t)nw(t)

where p(a), p(c), p(g) and p(t) are the point probabilities for the distribution of the letters
and nw(a), nw(c), nw(g) and nw(t) are the number of a’s, c’s, g’s and t’s in w.

An expectation

If N denotes the number of occurrences of the word in the entire sequence of length n then
its expectation is

µ = (n−m+ 1)p(a)nw(a)p(c)nw(c)p(g)nw(g)p(t)nw(t).

with µ denoting the expectation, or mean, of N .
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Thus

logµ = log(n−m+ 1)

+nw(a) log p(a) + nw(c) log p(c)

+nw(g) log p(g) + nw(t) log p(t).

A log-linear model

The model is a log-linear model in the log-length and log-probabilities.

Or a generalized linear model with a log-link function.

logµ = αn,m

+βa log p(a) + βc log p(c)

+βg log p(g) + βt log p(t).

Note that the coefficients are known for a given word under this model.

Generalizations

The model above is for inspiration only because

• motifs are generally composite and not just single word motifs,

• the actual distribution, even for non-self-overlapping word, is relatively complicated
though the mean is simple,

• but most importantly, DNA sequences do not consist of i.i.d. random letters.

The model is quantitatively wrong, but the log-linear structure of the mean in the log of the
letter frequencies may be a resonable general model assumption.

The Poisson regression model

Recall that the Poisson distribution with parameter λ > 0 on the positive integers {0, 1, 2, . . .}
has point probabilities

p(n) =
λn

n!
e−λ

and mean λ. It also has variance λ.

A log-linear Poisson regression is a regression model where the observations are Poisson
distributed and the mean is specified as

log(λ) = β0 + β1x1 + . . .+ βkxk
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based on k regressors x1, . . . , xk.

As usual in regression, the regressors may themself be transformations of observed variables,
e.g. the logarithm of relative frequencies. Note that there is no error term in the model. The
error is implicit in the assumption of a Poisson distribution, but it is not an additive error in
the formula. In particular, one should note that there is no scale parameter and the variance
equals the mean in the Poisson regression model.

7.2.2 MEF2 binding sites

The binding sites for the myocyte-specific enhancer factor 2 (MEF2) involved in the muscle-
specific expression of a number of genes were obtained from TRANSFAC.

A motif is created for the binding site for MEF2 in skeletal muscles based on 104 binding
sites.

MEF2 motif count matrix

Position
1 2 3 4 5 6 7 8 9 10 11

a 3 3 88 60 95 100 97 0 104 9 35
c 89 8 0 0 0 0 0 0 0 0 49
g 3 0 0 0 1 0 1 0 0 94 11
t 9 93 16 44 8 4 6 104 0 1 9

From this the consensus pattern is seen to be ctaaaaatagc.

Regarding each column as observations from independent random variables (whose distri-
butions are position specific), we can estimate a position specific distribution of nucleotides
at each of the 11 positions. Notationally we write pi(x) for the probability of nucleotide x
at position i.

Weights

With reference nucleotide probabilities

p(a) p(c) p(g) p(t)
0.255 0.238 0.245 0.262

,

which are obtained as the average nucleotide frequencies in the dataset, a weight matrix is
computed with entries

si(x) = log
pi(x)

p(x)

for i = 1, 2, . . . , 11 and x = a,c,g,t.

A pseudo-count of 1 was added to all positions in the count matrix before the probabilities
pi(x) were estimated.
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Position Specific Weight Matrix (PSWM)

Position
1 2 3 4 5 6 7 8 9 10 11

a -1.93 -1.93 1.17 0.8 1.25 1.3 1.27 -3.32 1.34 -1.01 0.27
c 1.25 -1.05 -3.25 -3.25 -3.25 -3.25 -3.25 -3.25 -3.25 -3.25 0.67
g -1.89 -3.28 -3.28 -3.28 -2.58 -3.28 -2.58 -3.28 -3.28 1.28 -0.79
t -1.04 1.2 -0.51 0.46 -1.15 -1.73 -1.4 1.31 -3.34 -2.65 -1.04

Data

From the human chromosome 1 (Ensembl 41) 400 gene transcripts were chosen at random,
and we extracted 5000 nucleotides from the 5’-flanking region for each of the transcripts.

Using the PSWM for the MEF2-factor binding site, we search each of the 400 sequences for
occurrences of a word with a score greater than a baseline threshold t0 = −2.

For each sequence we also computed the relative nucleotide frequencies and di-nucleotide
frequencies.

For each of the 400 flanking regions we will model the count of the number of motif with a
score exceeding t > t0 = −2 using a Poisson regression model with mean λt.

Each of the occurrences is recorded together with the actual score, the position and the
word. This part of the dataset is organized in a table with four columns and each row
corresponding to a single word occurrence with a score exceeding t0. The nucleotide and di-
nucleotide frequencies are collected in a table with 21 columns giving the sequence identifier
(between 1 and 400) and the 20 relative frequencies.

The model

The Poisson regression model of the counts for threshold t is

log(λt) = β0 + βa log(fa) + βc log(fc) + βg log(fg) + βt log(ft). (7.1)

where (fa, fc, fg, ft) denotes the vector of relative frequencies of nucleotides in the sequence
considered.

Excess distributions

It might also be interesting to study the excess score above the chosen threshold. That is

si − t

for those motifs with a score ≥ t.

After all, motifs with extreme values of the score corresponds to better matches of the motif.

miRNA model conclusions

The model worked fine as a reference model for the (random) occurrences of putative miRNA
target sites in human 3’UTRs.
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The model was able to detect putative miRNA target sites that showed considerable co-
occurrence relative to the reference model.

Further analysis revealed that the co-occurring motifs were part of a longer repeat pattern
(SINEs) and when removed no other clear signals were detected.

7.2.3 R interlude: MEF2 binding site occurrences

The data set consists of two parts. The counts data frame contains the ”matches” of the
MEF2 motif with a score above −2 in the 400 human flanking DNA sequences. The nucl

data frame contains frequencies of nucleotides and dinucleotides for the 400 flanking DNA
sequences.

counts <- read.table("http://www.math.ku.dk/~richard/courses/StatScience2011/pr2_counts.txt",

header=TRUE)

nucl <- read.table("http://www.math.ku.dk/~richard/courses/StatScience2011/pr2_nucl_freq.txt",

header=TRUE)

head(counts)

## id score word position

## 1 1 -1.0621 AAATGTATAGA 16

## 2 1 7.9177 CTAAAAATACA 147

## 3 1 -1.0178 ACAAAAATTAG 155

## 4 1 7.0440 CAAAAATTAGC 156

## 5 1 -0.2032 CTCAAAAAAAT 298

## 6 1 -0.6523 TCAAAAAAATA 299

head(nucl)

## id A C G T AA AC AG AT CA CC

## 1 1 0.2570 0.2662 0.2592 0.2176 0.0756 0.0526 0.0844 0.0444 0.0786 0.0892

## 2 2 0.2548 0.2272 0.2114 0.3066 0.0716 0.0468 0.0714 0.0650 0.0742 0.0716

## 3 3 0.2338 0.2458 0.2530 0.2674 0.0636 0.0464 0.0728 0.0510 0.0666 0.0760

## 4 4 0.3042 0.2108 0.1982 0.2868 0.1058 0.0552 0.0702 0.0730 0.0714 0.0526

## 5 5 0.2978 0.1896 0.2356 0.2770 0.0980 0.0456 0.0830 0.0710 0.0698 0.0474

## 6 6 0.2546 0.2466 0.2348 0.2640 0.0742 0.0540 0.0714 0.0550 0.0718 0.0742

## CG CT GA GC GG GT TA TC TG TT

## 1 0.0256 0.0728 0.0660 0.0688 0.0794 0.0448 0.0368 0.0554 0.0698 0.0556

## 2 0.0060 0.0754 0.0604 0.0452 0.0548 0.0508 0.0484 0.0636 0.0792 0.1154

## 3 0.0262 0.0770 0.0576 0.0660 0.0792 0.0502 0.0460 0.0574 0.0746 0.0892

## 4 0.0076 0.0790 0.0650 0.0366 0.0474 0.0492 0.0620 0.0664 0.0730 0.0854

## 5 0.0048 0.0676 0.0706 0.0444 0.0626 0.0580 0.0594 0.0522 0.0852 0.0802

## 6 0.0196 0.0810 0.0578 0.0574 0.0658 0.0536 0.0508 0.0610 0.0778 0.0744

The plot of nucleotide frequencies and di-nucleotides against each other. Note that, as should
be expected, these variables are clearly dependent.

plot(nucl[, 2:5])
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## plot(nucl[, 6:21], gap = 0, pch = 20, col = "#F1000020")

Setting the opacity or transparency of colors with a lot of overplotting gives more readable
plots. See help(rgb).

For later use we construct a function that tabulates and organizes the data in a data frame
useful for later analyzes.

select.data <- function(threshold = 0) {

tmp <- table(counts[counts$score > threshold, ]$id)

temp <- as.numeric(dim(nucl)[1])

temp[as.numeric(names(tmp))] <- tmp

return(cbind(data.frame(count = temp), nucl))

}

count.data <- select.data(0)

We construct various models by programatically building formulas.

form1 <- as.formula(paste("count ~",

paste("log(", names(count.data)[3:6], ")",

sep = "", collapse = "+")

)

)

form2 <- as.formula(paste("count ~",

paste("log(", names(count.data)[7:22], ")",

sep = "", collapse = "+")

)

)

form3 <- as.formula(paste("count ~",

paste("log(", names(count.data)[3:22], ")",

sep = "", collapse = "+")

)

)
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par(mfcol = c(2, 2))

fit.obj1 <- glm(form1, family = poisson, data = count.data)

summary(fit.obj1)

##

## Call:

## glm(formula = form1, family = poisson, data = count.data)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -4.503 -1.225 -0.152 0.982 23.250

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 16.685 0.991 16.84 < 2e-16 ***

## log(A) 4.506 0.192 23.47 < 2e-16 ***

## log(C) 1.158 0.177 6.55 5.9e-11 ***

## log(G) 1.479 0.182 8.12 4.6e-16 ***

## log(T) 2.267 0.203 11.15 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 5853.0 on 399 degrees of freedom

## Residual deviance: 1715.7 on 395 degrees of freedom

## AIC: 3890

##

## Number of Fisher Scoring iterations: 4

plot(fit.obj1)

fit.obj2 <- glm(form2, family = poisson, data = count.data)

plot(fit.obj2)

fit.obj3 <- glm(form3, family = poisson, data = count.data)

anova(fit.obj1, fit.obj3, test = "Chisq")

## Analysis of Deviance Table

##

## Model 1: count ~ log(A) + log(C) + log(G) + log(T)

## Model 2: count ~ log(A) + log(C) + log(G) + log(T) + log(AA) + log(AC) +

## log(AG) + log(AT) + log(CA) + log(CC) + log(CG) + log(CT) +

## log(GA) + log(GC) + log(GG) + log(GT) + log(TA) + log(TC) +

## log(TG) + log(TT)

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 395 1716

## 2 379 724 16 991 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can try a simpler model – trying to remove the highly correlated ”symmetric” di-
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nucleotide frequencies.

fit.obj5 <- update(fit.obj2, . ~ . - log(CA) - log(GA) - log(TA) -

log(GC) - log(TC) - log(TG))

anova(fit.obj5, fit.obj2, test = "Chisq")

## Analysis of Deviance Table

##

## Model 1: count ~ log(AA) + log(AC) + log(AG) + log(AT) + log(CC) + log(CG) +

## log(CT) + log(GG) + log(GT) + log(TT)

## Model 2: count ~ log(AA) + log(AC) + log(AG) + log(AT) + log(CA) + log(CC) +

## log(CG) + log(CT) + log(GA) + log(GC) + log(GG) + log(GT) +

## log(TA) + log(TC) + log(TG) + log(TT)

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 389 1021

## 2 383 768 6 252 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A highly significant difference. Thus removing all these term gives a significantly worse fit.

fit.obj3 <- glm(form1, family = quasipoisson, data = count.data)

fit.obj4 <- glm(form3, family = quasipoisson, data = count.data)

anova(fit.obj3, fit.obj4, test = "Chisq") ## Same thing as above.

## Analysis of Deviance Table

##

## Model 1: count ~ log(A) + log(C) + log(G) + log(T)

## Model 2: count ~ log(A) + log(C) + log(G) + log(T) + log(AA) + log(AC) +

## log(AG) + log(AT) + log(CA) + log(CC) + log(CG) + log(CT) +

## log(GA) + log(GC) + log(GG) + log(GT) + log(TA) + log(TC) +

## log(TG) + log(TT)

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 395 1716

## 2 379 724 16 991 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The point in the quasi model is to use the Poisson model as surrogate model for fitting the
mean value structure, but the estimate of the ”errors” in the model allows for dispersion
parameter, which is used in the construction of confidence intervals. Compare

confint(fit.obj1)

## Waiting for profiling to be done...

## 2.5 % 97.5 %

## (Intercept) 14.7572 18.641

## log(A) 4.1323 4.885

## log(C) 0.8129 1.506

## log(G) 1.1243 1.838

## log(T) 1.8714 2.668
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confint(fit.obj3)

## Waiting for profiling to be done...

## 2.5 % 97.5 %

## (Intercept) 12.2162 21.304

## log(A) 3.6408 5.402

## log(C) 0.3567 1.979

## log(G) 0.6550 2.326

## log(T) 1.3492 3.214

confint.default(fit.obj1)

## 2.5 % 97.5 %

## (Intercept) 14.743 18.627

## log(A) 4.129 4.882

## log(C) 0.811 1.504

## log(G) 1.122 1.836

## log(T) 1.869 2.665

confint.default(fit.obj3)

## 2.5 % 97.5 %

## (Intercept) 12.1414 21.229

## log(A) 3.6253 5.386

## log(C) 0.3465 1.969

## log(G) 0.6440 2.314

## log(T) 1.3349 3.199

Observation 237 seems to be an outlier and should be removed. Try the following data with
the methods above.

count.data <- select.data(0)[-237, ]

count.data <- select.data(-1)[-237, ]

We will also investigate the overshoot distribution. We compare the overshoot distribution
with the exponential distribution.

plot(density(counts$score, bw = 0.5, from = -2), ylim = c(0, 0.4))

hist(counts$score, prob = TRUE, add = TRUE)

muhat <- mean(counts$score+2)

curve(dexp(x+2, 1 / muhat), -2, 10, col = "red", add = TRUE)
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Formalities

This assignment is the final, individual assignment in the course Statistics BI/E, 2011/2012.
It is handed out Monday 16/1 2012 and the deadline for handing in the solution is Friday
20/1 2012 before 12.00 to Niels Richard Hansen, either in office 04.3.18 or alternatively it
can be handed in at the secretariat, room 04.1.03, Building E, HCØ. The assignment must
be handed in with an official front page that is made available from the course web page.
You confirm with your signature on the front page that you have solved the assignment
yourself without help from any others.

The assignment consists of 4 problems with a total of 13 questions.

Data

Two data sets will be used, and both can be downloaded from Absalon and are found together
with this assignment. In addition, R commands are given in Problem 1 and Problem 2 below
for reading the data into R directly from the internet.

The first data set, qpcr, is only used in the first problem. It is an typical (anonymized) raw
data set from a quantitative PCR experiment.

The second data set, sage, is used in the remaining three problems. The data set is a subset
of the data analyzed in the Science paper Lin Zhang et al. (1997), Gene Expression Profiles in
Normal and Cancer Cells, Science, 276, 1268-72. It is one of the early reported studies where
sequencing of short tags was used to quantify gene expression and compare the expression
level for many genes between normal and cancer cells. The technique used is called serial
analysis of gene expression or SAGE.

Problem 1 (20 %)

We consider the qpcr data set obtainable in R by

qpcr <- read.table("http://www.math.ku.dk/~richard/courses/StatScience2011/qpcr.txt")

with 3 columns named intensity, cycle, and run. In the experiment a target molecule is
amplified in 98 samples (run) each time using 45 PCR cycles (cycle). The intensity is the
measured fluorescence intensity, measured for each cycle and each run.

Question 1.1. Make a scatter plot of the measured intensity against cycle. Restrict the data
set to cycles 28 to 32 and make a scatter plot of log intensity against cycles.

Question 1.2. Restrict the data set to cycles 28 to 32. Fit a linear regression model of
the intensity regressed on the cycle number and fit a linear regression model of log intensity
regressed on cycle number. Investigate how well the two models fit the data. Which model is
to be preferred?

As the scatter plot from Question 1.1 shows, the relation between measured intensity and
cycle number is highly non-linear. If Yi denotes the intensity and xi the cycle number we
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will therefore consider the non-linear four parameter logistic regression model

Yi = β0 +
β3 − β0

1 + exp
(
β1−xi
β2

) + σεi.

Question 1.3. Fit the four parameter logistic regression model to the data. Can any of the
parameters be taken equal to 0? Investigate how well the model fits the data.

Problem 2 (20%)

For this and the subsequent Problems 3 and 4 we consider the sage data, which can be read
into R by

sage <- read.table("http://www.math.ku.dk/~richard/courses/StatScience2011/sage.txt")

It is a data frame with 2456 rows and 4 columns. The columns correspond to 4 different
samples, the two first, NC1 and NC2, from normal cells and the two last, Tu98 and Tu102, from
tumor cells. The row names are tags – short DNA sequences – and for each tag the columns
hold the number of times this tag was sequenced in each of the four samples. We let xNC1

i ,
xNC2
i , xTu98

i and xTu102
i denote the 4 counts for the i’th tag. Throughout the assignment it

can be assumed that the counts are independent for all tags and all four samples as well.

Define the log-fold-change for the i’th tag as

yi = log

(
xNC1
i + xNC2

i + 1

xTu98
i + xTu102

i + 1

)

where we add 1 to both denominator and numerator to avoid problems with dividing by
0 and taking the logarithm of 0. A simple model of yi is a normal distribution, N(µi, σ

2),
that is, for the i’th tag the log-fold-change follows a normal distribution with mean µi and
a common variance σ2 for all tags.

We investigate a simple minded hypothesis;

H : µi = 0 for all i.

Question 2.1. Interpret the hypothesis H, estimate the parameter σ2 under the hypothesis
H and compute, under the hypothesis and based on the estimated σ2, the probability of
observing a log-fold-change larger than 2.3 in absolute value. Compare this probability with
the data.

Remark: A log-fold-change (natural logarithm) larger than 2.3 in absolute value is the same as a

fold-change larger than 10 or smaller than 1/10.

Question 2.2. Test the hypothesis H. Remember to check and comment on the model as-
sumptions.

The hypothesis above was called simple minded, because in reality our working hypothesis
is that for some of the tags µi 6= 0 while for other tags µi = 0. The objective is to find those
tags with a true difference between the normal and the tumor samples.
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Problem 3 (40%)

The raw SAGE data are count data, that is, the values are non-negative integers. This fact
was ignored in the initial approach in Problem 2 above where the log-fold-change could just
as well have been based on continuous measurements of the abundances of the tags.

Here we will analyze a specific count model which has a certain relation between the mean
and variance. It is the probability distribution on the non-negative integers with parameters
ν ≥ 0 and ρ > 0 defined by the point probabilities

p(x) = G(x, ρ)

(
ρ

ρ+ ν

)ρ(
ν

ρ+ ν

)x
(3.2)

for x = 0, 1, 2, . . .. The G function is discussed below. It can be shown that for this model
the mean value is ν and the variance is ν + ν2/ρ, thus the variance is a quadratic function
of the mean. The ν parameter is, naturally, called the mean value parameter, and we call
ρ the inverse dispersion parameter. You will not explicitly need these facts, but they are
important for interpretations of the model. In particular, we will investigate hypotheses
about the parameter ν, that is, about the mean value of the distribution.

You will not need to handle the G function analytically, but you will need to be able to
compute the function logG, which can be computed in R using

logG <- function(x, rho) {

lgamma(x + rho) - lgamma(x + 1) - lgamma(rho)

}

You can also use the fact that logG(0, ρ) = 0 for all ρ > 0 without further comments.

We assume that we have a data set consisting of n independent and identically distributed
variables x1, . . . , xn with a distribution given by (3.2). Let

x̄ =
1

n

n∑

j=1

xj

denote the empirical mean. You should think of x as a vector of n sample counts for a given
tag.

Question 3.1. Find the minus-log-likelihood function, show that for fixed ρ it is minimized
as a function of ν for

ν̂ = x̄

and argue that this is the MLE of ν.

N.B. Pay attention to the case where x̄ = 0.

Question 3.2. Show that the profile minus-log-likelihood function for ρ is

lx(x̄, ρ) =

{
n(ρ+ x̄) log(ρ+ x̄)− nρ log ρ−∑n

j=1 logG(xj , ρ)− nx̄ log x̄ if x̄ > 0

0 if x̄ = 0

Plot the profile minus-log-likelihood for the tag GTTGTGGTTA in the SAGE data, that is, where
the count data x is the vector with the four counts 104, 153, 51, 103.
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Question 3.3. Find the MLE of ρ for the tag GTTGTGGTTA and compute a 95% confidence
interval for ρ.

The computations above are made under the implicit assumption that the same model (3.2)
with parameters ν ≥ 0 and ρ > 0 applies to the count data for the two normal cells as well
as the two tumor cells for the particular tag considered. Consider the extended model where
νNC and νTu are mean value parameters specific to the normal cells and the tumor cells,
respectively, for the tag GTTGTGGTTA. We will assume that ρ is the same for normal cells and
tumor cells. Thus we have an extended model with three parameters νNC ≥ 0, νTu ≥ 0 and
ρ > 0, and the hypothesis

H : νNC = νTu

corresponds to the model used above with the same ν for the counts for normal cells and
tumor cells.

Question 3.4. With xNC = (104, 153) the counts for the normal cells and xTu = (51, 103)
the counts for the tumor cells, and ν̂NC and ν̂Tu the corresponding MLE of ν for the two
groups, that is, the averages of the counts within each group, show that the profile minus-
log-likelihood for ρ is

lxNC(ν̂NC, ρ) + lxTu(ν̂Tu, ρ).

Compute the MLE of ρ and test the hypothesis H above.

We expand the model from the specific tag considered to all tags. Thus for the i’th tag we
have count data xNC

i for the normal cells and xTu
i for the tumor cells and we have mean

value parameters νNC
i ≥ 0 and νTu

i ≥ 0. Moreover, we assume a common ρ > 0 for all tags
and normal as well as tumor cells. We are interested in the hypotheses

Hi : νNC
i = νTu

i

for all tags.

Question 3.5. Argue that under the model above the profile minus-log-likelihood for ρ is

2456∑

i=1

lxNC
i

(ν̂NC
i , ρ) + lxTu

i
(ν̂Tu
i , ρ).

Compute the MLE, ρ̂, of ρ and compute a confidence interval for ρ. Compare with the result
from Question 3.3.

Question 3.6. Compute for all 2456 tags the −2 logQ and corresponding p-value for testing
the hypotheses Hi. Report the tags with a p-value below 10−12 ordered according to p-value.

Hint: In principle, you need to recompute the estimate of ρ and the entire minus-log-
likelihood under each of the hypotheses. However, the changes in ρ will be small, and you
can avoid excessive computations by fixing ρ as the MLE ρ̂ obtained in Question 3.5. Then
for the i’th hypothesis for the i’th tag

−2 logQ ' 2(lxi(x̄i, ρ̂)− lxNC
i

(ν̂NC
i , ρ̂)− lxTu

i
(ν̂Tu
i , ρ̂))

and you can use this approximation without further comments.
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Remark: For the interested, the function G(x, ρ) can be expressed as

G(x, ρ) =
(x− 1 + ρ)(x)

x!

where x! = x× (x− 1) . . .× 2× 1 is x factorial and

(x− 1 + ρ)(x) = (x− 1 + ρ)× (x− 2 + ρ) . . .× ρ

is the x’th decreasing factorial. These quantities can also be expressed in terms of the Γ function,

and this was used in the R function logG given above. The distribution is usually called the negative

binomial distribution, but be warned, the parametrization in terms of the mean, ν, and the inverse

dispersion parameter, ρ, is non-standard! If you look up the negative binomial distribution you will

most likely find it in a different parametrization.

Problem 4 (20 %)

We will investigate the variability in the SAGE data a little further. For this, it will be the
working hypothesis that there are no differences between the normal and tumor cells for all
tags. That is most likely not the case, but the method is reasonable if it is true for most
tags. If νi and σ2

i denote the mean and variance for the i’th tag we will investigate if the
following approximate relation

σ2
i ' ανβi . (4.3)

holds for parameters α and β independent of the tag.

Question 4.1. Compute for each tag the empirical mean ν̂i and the empirical variance σ̂2
i .

Plot the log empirical variance against the log empirical mean for all tags. Does the plot
support the relation (4.3)?

Question 4.2. Fit a linear regression model of log(σ̂2
i ) against log(ν̂i). Interpret the fitted

parameters in relation to the α and β parameters in (4.3). Interpret and test the hypothesis
that the slope parameter in the linear regression model is equal to 1.
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For this exam you will need the populations data set, which is available here:

http://www.math.ku.dk/~richard/courses/StatScience2011/populations.txt
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This assignment is the final, individual assignment in the course Statistics BI/E, 2010/2011.
It is handed out Wednesday 19/1 2010 and the deadline for handing in the solution is
Wednesday 26/1 2010 before 15.15 to Jessica Kasza, either in office 04.3.24 or alternatively
it can be handed in at the secretariat, room 04.1.03, Building E, HCØ. The assignment
must be handed in with an official front page that is made available from the course web
page on Absalon. You confirm with your signature on the front page that you have solved
the assignment yourself without help from any others.

Problem 1 (55%)

In this problem we consider the loblolly tree data, which you can load into your R
workspace using the command data(Loblolly). We first consider the first two columns
of the data set, which consist of 84 measurements of heights in feet and ages in years of
loblolly pine trees. We would like to model the growth of the trees: how does the height
of the tree change as the tree ages?

Let X be a random variable representing the height of trees measured in feet, and y be
tree ages in years. We assume

Xi = gβ(yi) + σεi, εi ∼ N(0, 1), i = 1, . . . , 84.

Two commonly considered models for growth are

• the logistic model:

glβ(yi) =
βl0

1 + exp
(
βl
1−yi
βl
2

) ; (1.1)

• the asymptotic regression model, which is an alternative to the logistic regression
model:

gaβ(yi) = β0 + (β1 − β0) exp (− exp(β2)yi) . (1.2)

1



2

Question 1.1. Calculate the limit of each of glβ(yi) and gaβ(yi) as yi → ∞, and use your

result to interpret the parameters βl0 and β0.

Question 1.2. Fit both the logistic and asymptotic regression models to the loblolly tree
data, using non-linear least squares. Make a scatterplot of the data, and, using the lines

command, add both of the fitted lines to the plot.

Hint: Typically when we use non-linear least squares to fit a regression model, you need to
provide starting points for each of the parameters in the model. The SSlogis and SSasymp

functions in R allow you to fit a logistic or asymptotic regression model without the need
to specify starting points. You can use a command like

my.model <- nls(my.response ~ SSlogis(my.covariate, beta0, beta1, beta2))

Question 1.3. For each model, plot the residuals versus the fitted values, and a normal
quantile-quantile plot of the residuals. Using these plots, assess the regression assumptions.

Question 1.4. Which of the two models do you think is a better fit for this data set?
Why? Are all of the regression assumptions satisfied for this model?

The loblolly data set consists of growth data for 14 individual loblolly trees. The third
column of the data set contains information on the seed number of each of these 14 trees.
We now consider the data associated with the trees that were tallest and shortest when
they were 25 years old. The shortest tree has seed number 329, and the tallest tree has
seed number 305. We are interested in the difference between the asymptotic heights of
these trees: the heights these trees will approach as they get very old.

Question 1.5. If βs0 is β0 for the shortest tree and βt0 is β0 for the tallest tree, where
β0 is as in Equation (1.2), estimate βs0 and βt0. Our parameter of interest is τ = βt0 − βs0.
Estimate τ .

Question 1.6. Using either parametric or non-parametric bootstrapping, obtain 1000
estimates of τ . Based on these 1000 values of τ̂ , estimate a 95% confidence interval for τ .
Test the null hypothesis H0 : τ = 0 at level α = 0.05. What do you conclude about the
difference between the asymptotic heights of these two trees?

Question 1.7. Suppose we want to perform hypothesis tests to compare the asymptotic
heights of each pair of trees. If we do this, how many hypothesis tests will we conduct? If
there is no difference in the asymptotic heights of the trees, and we test them at level α =
0.10, what is the probability that we incorrectly reject at least one of our null hypotheses?

Problem 2 (45%)

Many quantities of interest are thought to be distributed according to power-law distri-
butions. These distributions are useful for describing situations where large observations
are thought to occur with non-negligible probability. For example, in some protein-protein
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interaction networks, it is thought that the number of proteins that each protein is related
to follows a power-law distribution: most proteins are related to few other proteins, but
there are also so-called “hub” proteins, that are related to a comparitively large number of
other proteins. Other quantities are thought to be distributed in this way include popula-
tions of cities: there are lots of small cities, but a few very large ones (New York, London,
etc.), and intensities of earthquakes (as measured by the Richter scale): most quakes have
very small intensities, but earthquakes with very large intensities do occur.

The continuous power law distribution function is given by

F (x) = 1− x−ρ+1, x > 1, (2.3)

where ρ > 1 is a parameter, known as the scaling parameter.

Question 2.1. What three conditions must be satisfied for F (x) to be a valid distribution
function? Show that the corresponding density function is given by

f(x) = (ρ− 1)x−ρ.

Question 2.2. Plot, on the same figure, f(x) for ρ = 1.5, 3, 5 and 10, for x ∈ (1, 10).
Calculate P (X > 7) for each of these values of ρ. What happens to this probability as ρ
increases?

Suppose X has a power-law distribution with scale parameter ρ.

Question 2.3. Find EX and VX. Find an expression for the q-quantile of X in terms of
ρ, and use this expression to write down formulae for the median and interquartile range
of X.

Question 2.4. Would you prefer to use the expectation and variance or the median and
interquartile range to describe the distribution of X? Why?

Suppose we have n random variables X1, . . . , Xn that are independent and identically
distributed with density function f(xi) = (ρ − 1)x−ρi . Hence, the minus log-likelihood
function is given by

`x(ρ) = −n log(ρ− 1) + ρ

n∑

i=1

log (xi)

Question 2.5. Show that the maximum likelihood estimator of ρ is given by

ρ̂ = 1 +
n∑n

i=1 log (xi)
,

and that the inverse of the Fisher information is given by

i(ρ) =
(ρ− 1)2

n
.

Question 2.6. Write down the approximate distribution of ρ̂.
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Question 2.7. Download the population data from Absalon: the file population.txt

contains the populations of cities in the United States from the 2000 US census. For the
purposes of this question, we assume that these populations are iid observations of a con-
tinuous random variable with a power-law distribution. Compute the maximum likelihood
estimate of ρ given this data. Does the model fit the data? What range of values of ρ are
plausible given this data set?
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