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Preface

This book was written as the textbook material for a graduate

statistics course in regression analysis. The prerequisites include ac-

quaintance with standard statistical methodology, such as ordinary

least squares linear regression methods, including t-tests and con-

structions of standard confidence intervals, and standard distribu-

tions such as the univariate and multivariate normal distributions.

The reader will also benefit from introductory statistics courses cov-

ering likelihood methods, one- and two-sided analysis of variance,

and aspects of asymptotic theory. In addition, a solid knowledge of

linear algebra is assumed.

The exposition is mathematical, but the emphasis is on data

modeling rather than formal theoretical arguments. That is, math-

ematics is used to make model descriptions and assumptions precise,

and to analyze practical estimation problems and computations re-

quired for carrying out data analysis. Less attention is paid to

mathematical justifications of methods, e.g. bounds on the esti-

mation error, theoretical optimality results or formal asymptotic

arguments.

The book attempts to be complete and thorough on the topics

covered, yet to be practical and relevant for the applied statistician.

The means for achieving the latter is by larger case studies using

R. The R code included is complete and covers all aspects of the

data analysis from reading data into R, cleaning and plotting data

to data analysis and model checking.
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Introduction

The purpose of statistical modeling

This book is primarily on predictive regression modeling. That is,

the viewpoint is that the main purpose of a model is to be predic-

tive. There is no claim that this is the only purpose of modeling

in general, but it is arguably important. The topics chosen and

the treatment given owe a lot to two other books in particular. The

book Regression Modeling Strategies1 was an important inspiration, 1 Frank Harrell. Re-

gression Modeling Strate-
gies, Springer-Verlag New
York, Inc., 2010

and is an excellent supplement – this book being more mathemati-

cal. The other book is The Elements of Statistical Learning2, which

2 Trevor Hastie, Robert
Tibshirani, and Jerome
Friedman. The Elements

of Statistical Learning,
Springer, New York, 2009

o↵ers a plethora of predictive models and methods. The present

book is far less ambitious with a narrower focus on fundamental

regression models and modeling strategies – the aim is to be more

detailed. Indeed, the book can be seen as providing the statistical

foundation for The Elements of Statistical Learning as well as the

literature on predictive regression modeling and machine learning

in general.

In predictive modeling it is fairly clear how to compare models.

The only thing required is a quantification of predictive accuracy,

and the best model is then the most accurate model. The accuracy

of a prediction is typically quantified by a loss function, which actu-
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ally quantifies how inaccurate the prediction is. Thus, the smaller

the loss is the more accurate is the model. The specification of a rele-

vant loss function is, perhaps, not always easy. A good loss function

should ideally reflect the consequences of wrong predictions. There

is, on the other hand, a selection of useful, reasonable and conve-

nient standard loss functions that can cope with many situations of

practical interest. Examples include (weighted) squared error loss,

the 0-1-loss and the negative log-likelihood loss. The biggest chal-

lenge in practice is to select and fit a model to a data set in such

a way that it will preserve its predictive accuracy when applied to

new data. The model should be able to generalize well to casesGeneralization is good, over-
fitting is bad. not used for the model fitting and selection process. Otherwise the

model has been overfitted to the data, which is a situation we want

to avoid.

A prediction model does not need to explain the underlying mech-

anisms of how observed variables are related. This may be a point

of criticism. What good is the model if we can’t interpret it – if it

is just a black box producing predictions? Sometimes a block box

is completely adequate. Nobody really cares about the mechanisms

behind spam emails3, but we care a lot about the performance of our3 Perhaps except those that
design spam filters. spam email filter. On the other hand, it is well known that educa-

tion level is a strong predictor of income, but are we ever interested

in predicting income based on education level? We are more likely

to be interested in how education a↵ects income – for an individual

as well as for a population. Even if we have an accurate prediction

model of income given education level, an increase of the general

education level in the population may not result in a corresponding

increase of income – as the model would otherwise predict. For a

predictive model to be accurate we require that if we sample a ran-

dom individual and predict her income based on her education level

we get an accurate prediction. However, if we intervene and change

the education level in the population we might not observe a cor-

responding e↵ect on the income level. In this particular case both

variables may be partly determined by native intelligence, which

will remain una↵ected by changes in education level. Whether a

model explains mechanisms, and allows for computations of inter-

vention e↵ects or not, cannot be turned into a purely mathematical

or statistical question. It is a problem that is deeply entangled with
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the subject matter field to which the model is applied.

Causal modeling is an important, interesting and active research

field. Judea Pearl’s Causality4 book has been exceptionally influ- 4 Judea Pearl. Causality,
Cambridge University Press,

Cambridge, 2009
ential on the development of the field. One main di↵erence from

predictive modeling is that causal modeling is concerned with pre-

diction of intervention e↵ects. Predictions are thus important in

causal modeling as well, but the predictions are to be made in a

setup that di↵ers from the setup we have data from. We will not

pursue causal modeling in any systematic way, but we will bring up

causal interpretations and predictions when relevant, and we will

discuss which assumptions we are making to allow for a causal in-

terpretation of a predictive model. It is necessary to warn against

causal misinterpretations of predictive models. A regression coef-

ficient does not generally represent an e↵ect. A phrase like5 “the 5 See the birth weight case

study, p. 16.e↵ect of the mother drinking more than 8 cups of co↵ee per day dur-

ing her pregnancy is a reduction of the birth weight by 142 gram

all other things being equal” is problematic. At least if it is, with-

out further considerations, taken to imply that a mothers choice of

whether or not to drink co↵ee can a↵ect the birth weight by 142

gram. The all other things being equal condition does not save the

day. In a technical model sense it makes the claim correct, but

it may be impossible to keep all other (observed) variables fixed

when intervening on one variable. More seriously6, a variable may 6 Since issues related to vari-
ables we don’t have data on

are di�cult to address.
be a↵ected by, or may a↵ect when intervened upon, an unobserved

variable related to the response. A generally valid interpretation

of a regression coe�cient is that it quantifies a di↵erence between

subpopulations – and not the e↵ect of moving individuals from one

subpopulation to another. However, the documentation that such

di↵erences exist, and the estimation of their magnitude, are im-

portant contributions to the understanding of causal relations. It

is, however, a discussion we have to take within the subject mat-

ter field, and a discussion related to the variables we observe, their

known or expected causal relations, and how the data was obtained.

In particular, if the data was obtained from an observational study.

By contrast, in a randomized trial the purpose of the randomization

is to break all relations between the response and unobserved vari-

ables, so that observed di↵erences can be ascribed to the variation

of (controlled) predictors, e.g. a treatment, and thus be given a
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causal interpretation.

With these words of warning and reminders of carefulness in mak-

ing causal interpretations of predictive models, we should again re-

mind ourselves of the usefulness of predictive models. They are

invaluable in automatized processes like spam filters or image and

voice recognition. They make substantial contributions to medical

diagnosis and prognosis, to business intelligence, to prediction of

customer behavior, to risk prediction in insurance companies, pen-

sion funds and banks, to weather forecasts and to many other areas

where it is of interest to know what we cannot (yet) observe.

Case studies

The book consists of theory sections interspersed by real data mod-

eling and data analysis. A decision was made that instead of pro-

viding small simple data examples to illustrate a point, the relevant

points are illustrated by real case studies. The hope is that this

will ease the transition from theory to practice. The price to pay is

that there are constant distractions in forms of real data problems.

Data never behaves well. There are missing observations and out-

liers, the model does not fit the data perfectly, the data comes with

a strange encoding of variables and many other issues. Issues that

require decisions to be made and issues on which many textbooks

on statistical theory are silent.

By working through the case studies in detail it is the hope that

many relevant practical problems are illustrated and appropriate

solutions are given in such a way that the reader is better prepared

to turn the theory into applications on her own.

R

We use the programming language R7 throughout to illustrate how7 www.r-project.org

good modeling strategies can be carried out in practice on real data.

The book will not provide an introduction to the language though.

Consult the R manuals8 or the many introductory texts on R.

8 R Core Team. R: A
Language and Environment
for Statistical Computing.

R Foundation for Statistical
Computing, Vienna, Aus-

tria, 2013a

The case studies in this book are complete with R code that

covers all aspects of the analysis. They represent an integration of

data analysis in R with documentation in LATEX. This is an adap-

http://www.r-project.org/
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tation to data analysis of what is known as literate programming.

The main idea is that the writing of a report that documents the

data analysis and the actual data analysis are merged into one doc-

ument. This supports the creation of reproducible analysis, which is

a prerequisite for reproducible research. To achieve this integration

the book was written using the R package knitr

9. The package 9 yihui.name/knitr/

supports alternative documentation formats, such as HTML or the

simpler Markdown format, and they may be more convenient than

LATEX for day-to-day data analysis. An alternative to knitr is the

Sweave function in the utils package (comes with the R distribu-

tion). The functionality of knitr is far greater than Sweave or any

other attempt to improve upon Sweave, and knitr is thus recom-

mended. The use of the RStudio10 integrated development environ- 10 www.rstudio.com

ment (IDE) is also recommended. The RStudio IDE is developed

and distributed separately from R by RStudio, Inc., but it is still

open source and available for free.

Most figures in the book were produced using the ggplot2 pack-

age11 developed by Hadley Wickham. It is an extensive plotting and 11 ggplot2.org

visualization system written in R. It is essentially a language within

the language that allows you to specify how figures are plotted in

a logical and expressive way. The package is well documented, see

the web page or consult the book12. Occasionally, an alternative

12 Hadley Wickham. gg-
plot2: elegant graphics for

data analysis, Springer New
York, 2009package, lattice, was used. There exists a nice series of blogs13

13 learnr.wordpress.com/

2009/06/28/

recreating plots from the book Lattice: Multivariate Data Visual-

ization with R using ggplot2.

Another classical resource worth mentioning is the influential

book Modern Applied Statistics with S14 and the corresponding
14 W. N. Venables and
B. D. Ripley. Modern
Applied Statistics with S,
Springer, New York, 2002

MASS package (comes with the R distribution). Many classical sta-

tistical models and methods are supported by this package and doc-

umented in the book. The MASS package is, furthermore, and by

a wide margin the single package that most other packages depend

upon (at the time of writing).

Once you have become a experienced user of R for data analysis

(or perhaps earlier if you are a programmer) you will want to learn

more about programming in R. Perhaps you want to develop your

own functions, data structures or entire R packages. For package

development the o�cial manual15 is an important resource. An-

15 R Core Team. Writing

R Extensions. R Founda-
tion for Statistical Comput-

ing, Vienna, Austria, 2013b

other splendid resource is the book Advanced R development: mak-

http://yihui.name/knitr/
http://www.rstudio.com/
http://ggplot2.org/
http://learnr.wordpress.com/2009/06/28/
http://learnr.wordpress.com/2009/06/28/
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ing reusable code by Hadley Wickham. It is at the time of writing

a book in progress, but it is fortunately available as a wiki16 – and
16 github.com/hadley/

devtools/wiki

will continue to be so after publication. This is a very well written

and pedagogical treatment of R programming and software devel-

opment.

To conclude this section we list (and load) all the R packages

that are explicitly used in this book.

library(ggplot2) ## Grammar of graphics

library(reshape2) ## Reshaping data frames

library(lattice) ## More graphics

library(hexbin) ## and more graphics

library(gridExtra) ## ... and more graphics

library(xtable) ## LaTeX formatting of tables

library(splines) ## Splines -- surprise :-)

https://github.com/hadley/devtools/wiki
https://github.com/hadley/devtools/wiki
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The linear model

The fundamental linear model

This section briefly reviews the linear model and the typical assump-

tions made. This settles notation for the case study in the following

section. In a first reading it can be read quickly and returned to

later to better digest the model assumptions discussed and their

implications.

The linear model relates a continuous response variable Y to

a p-dimensional vector X of predictors1 via the relation 1 The X goes by many
names; explanatory vari-
ables, covariates, indepen-

dent variables, regressors,
inputs or features.

Y = X

T b + #. (2.1)

Here

X

T b = X1b1 + . . . + X

p

b
p

is a linear combination of the predictors weighted by the b-parameters.

An intercept parameter, b0, is often added,

Y = b0 + X

T b + #.

It is notationally convenient to assume that the intercept parameter

is included among the other parameters. This can be achieved by

joining the predictor X0 = 1 to X, thereby increasing the dimension

to p + 1. In the general presentation we will not pay particular
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attention to the intercept. We will assume that if an intercept is

needed, it is appropriately included among the other parameters,

and we will index the predictors from 1 to p. Other choices of index

set, e.g. from 0 to p, may be convenient in specific cases.

The # is called the error or noise term. The model is not much

of a model if the error can be arbitrary. The typical model assump-

tions are distributional and specified in terms of the conditional

distribution of # given X. We list them in decreasing order of im-

portance.

A1 The conditional expectation of # given X is 0,

E(# | X) = 0.

A2 The conditional variance of # given X does not depend upon

X,

V(# | X) = s2.

A3 The conditional distribution of # given X is a normal distribu-

tion,

# | X ⇠ N (0, s2).

Assumption A1 is the key assumption, which implies that

E(Y | X) = X

T b.

Thus the linear2 model is a model of the conditional expectation2 The linearity that matters

for statistics is the linearity
in the unknown parameter
vector b.

of the response variable given the predictors. This assumption is

crucial if we want X

T b to be interpretable and useful.

Assumption A2 is often made and also often needed3, but it is

3 The assumption A2 is
known as homoskedasticity,
which is derived from

the Greek words “homo”
(same) and “skedastios”

(dispersion). The opposite

is heteroskedasticity.

perhaps not obvious why. It is first of all conceivable that A2 makes

it easier to estimate the variance, since it doesn’t depend upon X.

The assumption has, furthermore, several consequences for the more

technical side of the statistical analysis as well as the interpretation

of the resulting model and the assessment of the precision of model

predictions.

Assumption A3 implies that # and X are independent, as the

conditional distribution of # given X does not depend upon X in this

case. Assumption A3 is for many purposes unnecessarily restrictive.

However, it is only under this assumption that a complete statistical
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theory can be developed. Some results used in practice are formally

derived under this assumption, and they must thus be regarded as

approximations when A3 is violated.

There exists a bewildering amount of terminology related to the

linear model in the literature. Notation and terminology has been

developed di↵erently for di↵erent submodels of the linear model. If

the X-vector only represents continuous variables, the model is often

referred to as the linear regression model. Since any categorical vari-

able on k levels can be encoded in X as k binary dummy variables4, 4 The j’th dummy variable
being 1 if the value of the

categorical variable is the

j’th level and 0 otherwise.

the linear model includes all ANalysis Of VAriance (ANOVA) mod-

els. Combinations, which are known in parts of the literature as

ANalysis of COVAriance (ANCOVA), are of course also possible.

The fractionation of the linear model in the literature into di↵er-

ent submodels has resulted in special terminology for special cases,

which is unnecessary, and most likely a consequence of historically

di↵erent needs in di↵erent areas of applications. A unified treat-

ment is preferable to understand that, in reality, the linear model is

a fairly simple model with a rather complete theoretical basis. That

said, many modeling questions still have to be settled in a practical

data analysis, which makes applications of even the simple linear

model non-trivial business.

We need to introduce a couple of additional distributional as-

sumptions. These are assumptions on the joint distribution of mul-

tiple observations. If we have n observations, Y1, . . . , Y

n

, of the

response with corresponding predictors X1, . . . , X

n

we collect the

responses into a column vector Y, and we collect the predictors

into an n ⇥ p matrix X. The i’th row of X is X

T

i

. The additional

assumptions are:

A4a The conditional distribution of Y

i

given X depends upon X

i

only.

A4b The variables Y

i

and Y

j

are conditionally uncorrelated given

X,

cov(Y
i

, Y

j

| X) = 0.

A5 The variables Y1, . . . , Y

n

are conditionally independent given

X.
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Assumptions A4a and A4b imply together with A1 and A2 that

E(Y | X) = Xb, (2.2)

and that

V(Y | X) = s2
I (2.3)

where I is the n ⇥ n identity matrix. We refer to A4a and A4b

collectively as assumption A4.

Assumption A5 implies A4, and A5 and A3 imply that

Y ⇠ N (Xb, s2
I). (2.4)

In summary, there are two sets of distributional assumptions. The

weak set A1, A2 and A4, which imply the moment identities (2.2)

and (2.3), and the strong set A3 and A5, which, in addition, imply

the distributional identity (2.4).

It is quite important to realize that the model assumptions can-

not easily be justified prior to the data analysis. There are no magic

arguments or simple statistical summaries that imply that the as-

sumptions are fulfilled. A histogram of the marginal distribution

of the response Y can, for instance, not be used as an argument

for or against Assumption A3 on the normal distribution of the

errors. Justifications and investigations of model assumptions are

done after a model has been fitted to data. This is called model

diagnostics.

Birth weight – a case study

The question that we address in this case study is how birth weight

of children is associated with a number of other observable variables.

The data set comes from a sub-study of The Danish National Birth

Cohort Study. The Danish National Birth Cohort Study was a na-

tionwide study of pregnant women and their o↵spring5. Pregnant5 Jørn Olsen, Mads Mel-
bye, Sjurdur F. Olsen,
et al. The Danish Na-
tional Birth Cohort - its

background, structure and
aim. Scandinavian Journal

of Public Health, 29(4):300–
307, 2001

women completed a computer assisted telephone interview, sched-

uled to take place in pregnancy weeks 12-16 (for some, the interview

took place later). We consider data on women interviewed before

pregnancy week 17, who were still pregnant in week 17. One of

the original purposes of the sub-study was to investigate if fever

episodes during pregnancy were associated with fetal death.
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We focus on birth weight as the response variable of interest. If

Y denotes the birth weight of a child, the objective is to find a good

predictive model of Y given a relevant set of predictor variables X.

What we believe to be relevant can depend upon many things, for

instance, that the variables used as predictors should be observable

when we want to make a prediction. Causal mechanisms (known

or unknown) may also be taken into account. If co↵ee happened to

be a known course of preterm birth, and if we are interested in es-

timating a total causal e↵ect of drinking co↵ee on the birth weight,

we should not include the gestational age (age of fetus) at birth as

a predictor variable. If, on the other hand, there are unobserved

variables associated with co↵ee drinking as well as preterm birth,

the inclusion of gestational age might give a more appropriate esti-

mate of the causal e↵ect of co↵ee. We will return to this discussion

in subsequent sections – the important message being that the rel-

evant set of predictors may very well be a subset of the variables in

the data set.

First, we obtain the data set by reading it directly from the

internet source.

Mistakes are easily made if
the classes of the columns in

the data frame are not ap-
propriate.

pregnant <- read.table(

"http://www.math.ku.dk/~richard/regression/data/pregnant.txt",

header = TRUE,

colClasses = c("factor", "factor", "numeric", "factor", "factor",

"integer", "factor", "numeric", "factor", "numeric",

"numeric", "integer")

)

The standard default for read.table is that columns containing

characters are converted to factors. This is often desirable. Use

the stringsAsFactors argument to read.table or set the global

option stringsAsFactors to control the conversion of characters.

Categorical variables encoded as integers or other numeric values, as

in the present data set, are, however, turned into numeric columns,

which is most likely not what is desired. This is the reason for the

explicit specification of the column classes above.

It is always a good idea to check that the data was read correctly,

that the columns of the resulting data frame have the correct names

and are of the correct class, and to check the dimensions of the

resulting data frame. This data set has 12 variables and 11817

cases.
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head(pregnant, 4)

## interviewWeek fetalDeath age abortions children gestationalAge

## 1 14 0 36.73 0 1 40

## 2 12 0 34.99 0 1 41

## 3 13 1 33.70 0 0 35

## 4 16 0 33.06 0 1 38

## smoking alcohol coffee length weight feverEpisodes

## 1 1 0 1 NA NA 0

## 2 3 2 2 53 3900 2

## 3 1 0 1 NA NA 0

## 4 1 4 2 48 2800 0

Note that there are missing
observations represented as
NA. One explanation of miss-

ing length and weight obser-
vations is fetal death.

Descriptive summaries

The first step is to summarize the variables in the data set using

simple descriptive statistics. This is to get an idea about the data

and the variable ranges, but also to discover potential issues that

we need to take into account in the further analysis. The list of

issues we should be aware of includes, but is not limited to,

• extreme observations and outliers,

• missing values

• and skewness or asymmetry of marginal distributions.

Anything worth noticing should be noticed. It should not nec-

essarily be written down in a final report, but figures and tables

should be prepared to reveal and not conceal.

A quick summary of the variables in a data frame can be ob-

tained with the summary function. It prints quantile information

for numeric variables and frequencies for factor variables. This

is the first example where the class of the columns matter for the

result that R produces. Information on the number of missing ob-

servations for each variable is also given.

summary(pregnant)

## interviewWeek fetalDeath age abortions children

## 14 :2379 0 :11659 Min. :16.3 0:9598 0:5304

## 15 :2285 1 : 119 1st Qu.:26.6 1:1709 1:6513

## 16 :2202 NA's: 39 Median :29.5 2: 395

## 13 :2091 Mean :29.6 3: 115

## 12 :1622 3rd Qu.:32.5
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## 11 :1089 Max. :44.9

## (Other): 149

## gestationalAge smoking alcohol coffee length

## Min. :17.0 1:8673 Min. : 0.000 1 :7821 Min. : 0.0

## 1st Qu.:39.0 2:1767 1st Qu.: 0.000 2 :3624 1st Qu.:51.0

## Median :40.0 3:1377 Median : 0.000 3 : 368 Median :52.0

## Mean :39.4 Mean : 0.512 NA's: 4 Mean :51.8

## 3rd Qu.:41.0 3rd Qu.: 1.000 3rd Qu.:54.0

## Max. :47.0 Max. :15.000 Max. :99.0

## NA's :1 NA's :538

## weight feverEpisodes

## Min. : 0 Min. : 0.0

## 1st Qu.:3250 1st Qu.: 0.0

## Median :3600 Median : 0.0

## Mean :3572 Mean : 0.2

## 3rd Qu.:3950 3rd Qu.: 0.0

## Max. :6140 Max. :10.0

## NA's :538

interviewWeek: Preg-
nancy week at interview.

fetalDeath: Indicator of
fetal death (1 = death).

age: Mother’s age at con-

ception in years.

abortions: Number of

previous spontaneous

abortions (0, 1, 2, 3+).

children: Indicator of
previous children (1 =
previous children).

gestationalAge: Gesta-
tional age in weeks at end

of pregnancy.

smoking: Smoking status;

0, 1–10 or 11+ cigs/day
encoded as 1, 2 or 3.

alcohol: Number of

weekly drinks during

pregnancy.

coffee: Co↵ee consump-
tion; 0, 1–7 or 8+

cups/day encoded as 1, 2
or 3.

length: Birth length in

cm.

weight: Birth weight in
gram.

feverEpisodes: Num-
ber of mother’s fever

episodes before inter-
view.

Table 2.1: The 12 variables
and their encoding in the

data set.

Further investigations of the marginal distributions of the vari-

ables in the data set can be obtained by using histograms, density

estimates, tabulations and barplots. Barplots are preferable over

histograms for numeric variables that take only a small number of

di↵erent values, e.g. counts. This is the case for the feverEpisodes

variable. Before such figures and tables are produced – or perhaps

after they have been produced once, but before they enter a final

report – we may prefer to clean the data a little. We can observe

from the summary information above that for some cases weight or

length is registered as 0 – and in some other cases weight or length

is found to be unrealistically small – which are most likely regis-

tration mistakes. Likewise, some lengths are registered as 99, and

further scrutiny reveals an observation with weight 3550 gram with

gestationalAge registered as 18. We exclude those cases from the

subsequent analysis.

For convenience, disVar and

contVar are the variables
that will be summarized as

discrete or as continuous
variables, respectively.

pregnant <- subset(pregnant,

weight > 32 & length > 10 & length < 99 &

gestationalAge > 18,

select = -c(interviewWeek, fetalDeath))

disVar <- sapply(pregnant, class) == "factor"

contVar <- names(which(!disVar))[-6] ## Excluding 'feverEpisodes'
disVar <- c(names(which(disVar)), "feverEpisodes")

We present density estimates of the 5 continuous variables, see

Figure 2.1. The density estimates, as the majority of the figures

presented in this book, were produced using the ggplot2 package.
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age gestationalAge alcohol length weight
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Figure 2.1: Density esti-

mates of continuous vari-
ables.

Readers familiar with ordinary R graphics can easily produce his-

tograms with the hist function or density estimates with the den-

sity function. For this simple task, the qplot (for quick plot) and

the general ggplot functions do not o↵er much of an advantage –

besides the fact that figures have the same style as other ggplot2

figures. However, the well-thought-out design and entire function-

ality of ggplot2 has resulted in plotting methods that are powerful

and expressive. The benefit is that with ggplot2 it is possible to

produce quite complicated figures with clear and logical R expres-

sions – and without the need to mess with a lot of low-level technical

plotting details.

What is most noteworthy in Figure 2.1 is that the distribution of

alcohol is extremely skewed, with more than half of the cases not

drinking alcohol at all. This is noteworthy since little variation in a

predictor makes it more di�cult to detect whether it is associated

with the response.

See ?melt.data.frame on
the melt method for data

frames from the reshape2

package.

mPregnant <- melt(pregnant[, contVar])

qplot(value, data = mPregnant, geom = "density", adjust = 2,

fill = I(gray(0.5)), xlab = "", ylab = "") +

facet_wrap(~ variable, scales = "free", ncol = 6)

For the discrete variables – the categorical or count variables –

we produce barplots instead of density estimates. Figure 2.2 shows

that all discrete variables except children have quite skewed dis-

tributions.

In summary, the typical pregnant woman does not smoke or drink

alcohol or co↵ee, nor has she had any previous spontaneous abor-

tions or any fever episodes. About one-third drinks co↵ee or alcohol

or smokes. These observations may not be surprising – they reflect
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Figure 2.2: Barplots of dis-

crete variables.what is to be expected for a random sample of cases. A small vari-

ation of a predictor can result in di�culties with estimation and

detection of associations between the response and the predictors.

However, the data set is quite large, which can potentially compen-

sate for this fact.

The coercion of value to

factor is needed to get the
order of the levels correct.

mPregnant <- melt(pregnant[, disVar], id.var = c())

qplot(factor(value, levels = 0:10), data = mPregnant, geom = "bar",

fill = I(gray(0.5)), xlab = "", ylab = "") +

facet_wrap(~ variable, scales = "free_x", ncol = 5)

Pairwise associations

The next step is to investigate associations of the variables. We are

still not attempting to build a predictive model and the response

does not yet play a special role. One purpose is again to get better

acquainted with the data – this time by focusing on covariation –

but there is also one particular issue that we should be aware of.

• Collinearity of predictors.

Add this bullet point to the previous list of issues. If two or more

predictors in the data set are strongly correlated, they contain, from

a predictive point of view, more or less the same information, but

perhaps encoded in slightly di↵erent ways. Strongly correlated pre-

dictors result in the same problem as predictors with little variation.

It can become di�cult to estimate and detect joint association of

the predictors with the response. A technical consequence is that

statistical tests of whether one of the predictors could be excluded

become non-significant if the other is included, whereas a test of

joint exclusion of the predictors can be highly significant. Thus it
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Figure 2.3: Scatter plot
matrix of the continuous
variables and corresponding

Pearson correlations.

age �0.02 0.15 0.03 0.03

gest. age 0.01 0.52 0.51

alcohol �0.01 �0.01

length 0.81

weight

will become di�cult to determine on statistical grounds if one pre-

dictor should be included over the other. It is best to know about

such potential issues upfront. Perhaps it is, by subject matter ar-

guments, possible to choose one of the predictors over the other as

the most relevant to include in the model.

A scatter plot matrix is a useful graphical summary of the pair-

wise association of continuous variables. It can be supplemented

with computations of Pearson correlations.

Function cor.print formats

the correlations for printing.

The na.omit function re-
moves cases containing miss-

ing observations – in this

case to get the correlations
computed.

cor.print <- function(x, y) {

panel.text(mean(range(x)), mean(range(y)),

paste('$', round(cor(x, y), digits = 2), '$', sep = '')
)

}

splom(na.omit(pregnant)[, contVar], xlab = "",

upper.panel = panel.hexbinplot,

pscales = 0, xbins = 20,

varnames = c("age", "gest. age", contVar[3:5]),

lower.panel = cor.print

)

The scatter plots, Figure 2.3, show that length and weight are

(not surprisingly) very correlated, and that both of these variables
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abortions children coffee

smoking

0 1 2 3

1 6669 1172 270 78

2 1367 222 66 18

3 1043 201 36 15

0 1

1 3577 4612

2 848 825

3 574 721

1 2 3

1 5939 2140 109

2 890 717 64

3 552 565 177

Table 2.2: Cross-tabulation
of smoking with abortions,

children and coffee.

are also highly correlated with gestationalAge. The alcohol and

age variables are mildly correlated, but they are virtually uncorre-

lated with the other three variables.

The scatter plot matrix was produced using the splom function

from the lattice package. The data set is quite large and just

blindly producing a scatter plot matrix results in a lot of overplot-

ting and huge graphics files. Figures can be saved as high-resolution

png files instead of pdf files to remedy problems with file size. The

actual plotting may, however, still be slow, and the information

content in the plot may be limited due to the overplotting. A good

way to deal with overplotting is to use hexagonal binning of data

points. This was done using the panel.hexbinplot function from

the hexbin package together with the splom function.

Just as the scatter plot is useful for continuous variables, cross-

tabulation is useful for categorical variables. If two categorical vari-

ables are strongly dependent the corresponding vectors of dummy

variable encoding of the categorical levels will be collinear. In ex-

treme cases where only certain pairwise combinations of the cate-

gorical variables are observed, the resulting dummy variable vectors

will be perfectly collinear.

crossTabA <- with(pregnant, table(smoking, abortions))

crossTabB <- with(pregnant, table(smoking, children))

crossTabC <- with(pregnant, table(smoking, coffee))

Table 2.2 shows the cross-tabulation of smoking with the vari-

ables abortions, children and coffee. The table shows, for in-

stance, a clear association between co↵ee drinking and smoking.

A c2-test (on 4 degrees of freedom) of independence yields a test

statistic of 953.7 with a corresponding p-value of 3.8 ⇥ 10�205. To

summarize, all the cross-tabulations for the 4 categorical variables

and corresponding c2-tests of independence are computed.
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vars <- c("smoking", "coffee", "children", "abortions")

tests <- outer(1:4, 1:4,

Vectorize(function(i, j) {

tmp <- summary(table(pregnant[, c(vars[i], vars[j])]))

ifelse(i <= j, tmp$p.value, tmp$statistic)

}

)

)

colnames(tests) <- rownames(tests) <- vars

Table 2.3: Test statis-
tics (below diagonal) and

p-values (above diagonal)
for testing independence be-
tween the di↵erent variables.

smoking co↵ee children abortions

smoking 3.79e�205 9.58e�07 0.376

co↵ee 954 1.19e�40 0.00155

children 27.7 184 1.49e�41

abortions 6.44 21.4 193

Table 2.3 shows that all variables are significantly dependent ex-

cept abortions and smoking. However, neither the p-value nor the

test statistic are measures of the degree of dependence – they scale

with the size of the data set and become more and more extreme

for larger data sets. There is no single suitable substitute for the

Pearson correlation that applies to categorical variables in general.

In this particular example all the categorical variables are, in fact,

ordinal. In this case we can use the Spearman correlation. The

Spearman correlation is simply the Pearson correlation between the

ranks of the observations. Since we only need to be able to sort

observations to compute ranks, the Spearman correlation is well

defined for ordinal as well as continuous variables.

cp <- cor(data.matrix(na.omit(pregnant)), method = "spearman")

ord <- rev(hclust(as.dist(1-abs(cp)))$order)

colPal <- colorRampPalette(c("blue", "yellow"), space = "rgb")(100)

levelplot(cp[ord, ord], xlab = "", ylab = "",

col.regions = colPal, at = seq(-1, 1, length.out = 100),

colorkey = list(space = "top", labels = list(cex = 1.5)),

scales = list(x = list(rot = 45),

y = list(draw = FALSE),

cex = 1.2))
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Figure 2.4: Spearman corre-

lation matrix. Variables are
ordered according to a hier-

archical clustering.

Figure 2.4 shows Spearman correlations of all variables – cate-

gorical as well as continuous. For continuous variables the Spear-

man correlation is, furthermore, invariant to monotone transfor-

mations and less sensitive to outliers than the Pearson correlation.

These properties make the Spearman correlation more attractive as

a means for exploratory investigations of pairwise association.
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For the production of the plot of the correlation matrix, Figure

2.4, we used a hierarchical clustering of the variables. The purpose

was to sort the variables so that the large correlations are concen-

trated around the diagonal. Since there is no natural order of the

variables, the correlation matrix could be plotted using any order.

We want to choose an order that brings highly correlated variables

close together to make the figure easier to read. Hierarchical cluster-

ing can be useful for this purpose. For the clustering, a dissimilarity

measure between variables is needed. We used 1 minus the absolute

value of the correlation. It resulted in a useful ordering in this case.

What we see most clearly from Figure 2.4 are three groupings

of positively correlated variables. The weight, length and gesta-

tionalAge group, a group consisting of age, children and abor-

tions (not surprising), and a grouping of alcohol, smoking and

coffee with mainly co↵ee being correlated with the two others.

An alternative way to study the relation between a continuous

and a categorical variable is to look at the distribution of the con-

tinuous variable stratified according to the values of the categorical

variable. This can be done using violin plots.

The deciles function is
used to add median and

decile information to the vi-
olin plots.

mPregnant <- melt(pregnant[, c("gestationalAge", disVar)],

id = "gestationalAge")

deciles <- function(x) {

quan <- quantile(x, c(0.1, 0.5, 0.9))

data.frame(ymin = quan[1], y = quan[2], ymax = quan[3])

}

ggplot(mPregnant,

aes(x = factor(value, levels = 0:10), y = gestationalAge)) +

geom_violin(scale = 'width', adjust = 2, fill = I(gray(0.8))) +

stat_summary(fun.data = deciles, color = "blue") + xlab("") +

facet_wrap(~ variable, scale = "free_x", ncol = 5)

A violin plot can be seen as an alternative to a boxplot, and it

is easy to produce with ggplot2. It is just a rotated kernel density

estimate.

Figure 2.5 shows violin plots of gestationalAge stratified ac-

cording to the discrete variables. The violin plots have been supple-

mented with median and interdecile range information. The figure

shows that there is no clear relation between gestationalAge and

the other variables. This concurs with the information in Figure

2.4. Figure 2.6 shows a similar violin plot but this time with the

continuous variable being the response variable weight. From this
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Figure 2.5: Violin plots,

medians and interdecile
ranges for the distribution
of gestationalAge. Note

that there are very few
observations with many
fever episodes.

figure we observe that weight seems to be larger if the mother has

had children before and to be negatively related to co↵ee drinking

and smoking.

A linear regression model

To build a linear regression model of the response variable weight,

we need to decide which of the predictors we want to include. We

also need to decide if we want to include the predictor variables as

is, or if we want to transform them. Before we make any of these

decisions we explore linear regression models where we just include

one of the predictors at a time. This analysis is not to be misused for

variable selection, but to supplement the explorative studies from

the previous sections. In contrast to correlation considerations this

procedure for studying single predictor association with the response

can be generalized to models where the response is discrete.

form <- weight ~ gestationalAge + length + age + children +

coffee + alcohol + smoking + abortions + feverEpisodes

pregnant <- na.omit(pregnant)

nulModel <- lm(weight ~ 1, data = pregnant)

oneTermModels <- add1(nulModel, form, test = "F")

Table 2.4 shows the result of testing if inclusion of each of the

predictors by themselves is significant. That is, we test the model

with only an intercept against the alternative where a single predic-

tor is included. The test used is the F-test – see the next section,

page 34, for details on the theory. For each of the categorical predic-

tor variables the encoding requires Df (degrees of freedom) dummy

variables in addition to the intercept to encode the inclusion of a
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Figure 2.6: Violin plots, me-

dians and interdecile ranges
of weight.

variable with Df + 1 levels.

Df Sum of Sq RSS F value Pr(>F)

length 1 2.352e+09 1.262e+09 20774.87 0
gestationalAge 1 9.323e+08 2.682e+09 3876.54 0

children 1 9.762e+07 3.516e+09 309.55 2.29e�68
smoking 2 5.332e+07 3.561e+09 83.48 1.03e�36
co↵ee 2 2.199e+07 3.592e+09 34.13 1.67e�15

abortions 3 6.273e+06 3.608e+09 6.46 0.000229
age 1 3.954e+06 3.610e+09 12.21 0.000476
feverEpisodes 1 1.086e+06 3.613e+09 3.35 0.0672

alcohol 1 1.700e+05 3.614e+09 0.52 0.469

Table 2.4: Marginal associ-

ation tests sorted according

to the p-value.

Figure 2.7 shows the scatter plots of weight against the 4 contin-

uous predictors. This is just the first row in the scatter plot matrix

in Figure 2.3, but this time we have added the linear regression line.

For the continuous variables the tests reported in Table 2.4 are tests

of whether the regression line has slope 0.

mPregnant <- melt(pregnant[, contVar],

id.vars = "weight")

binScale <- scale_fill_continuous(breaks = c(1, 10, 100, 1000),

low = "gray80", high = "black",

trans = "log", guide = "none")

qplot(value, weight, data = mPregnant, xlab = "", geom = "hex") +

stat_binhex(bins = 25) + binScale +

facet_wrap(~ variable, scales = "free_x", ncol = 4) +

geom_smooth(size = 1, method = "lm")

To decide upon the variables to include in the first multivari-

ate linear model, we summarize some of the findings of the initial

analyses. The length variable is obviously a very good predictor

of weight, but it is also close to being an equivalent “body size”

measurement, and it will be a↵ected in similar ways as weight by

variables that a↵ect fetus growth. From a predictive modeling point

of view it is in most cases useless, as it is will not be observable unless
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Figure 2.7: Scatter plots

including linear regression
line.

weight is also observable. The gestationalAge variable is likewise

of little interest if we want to predict weight early in pregnancy.

The variable is, however, virtually unrelated to the other predic-

tors, and age of the fetus at birth is a logic cause of the weight of

the child. It could also be a relevant predictor late in pregnancy

for predicting the weight if the woman were to give birth at a given

time. Thus we keep gestationalAge as a predictor. The remaining

predictors are not strongly correlated, and we have not found rea-

sons to exclude any of them. We will thus fit a main e↵ects linear

model with 8 predictors. We include all the predictors as they are.

The main e↵ects model.
form <- update(form, . ~ . - length)

pregnantLm <- lm(form, data = pregnant)

summary(pregnantLm)

Table 2.5 shows the estimated b-parameters among other things.

Note that all categorical variables (specifically, those that are en-

code as factors in the data frame) are included via a dummy variable

representation. The precise encoding is determined by a linear con-

straint, known as a contrast. By default, the first factor level is

constrained to have parameter 0, in which case the remaining pa-

rameters represent di↵erences to this base level. In this case it is

only occasionally of interest to look at the t-tests for testing if a

single parameter is 0. Table 2.6 shows instead F-tests of excluding

any one of the predictors. It shows that the predictors basically

fall into two groups; the strong predictors gestationalAge, chil-

dren, smoking and coffee, and the weak predictors abortions,

age, feverEpisodes and alcohol. The table was obtained using

the drop1 function. We should at this stage resist the temptation
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Estimate Std. Error t value Pr(>|t|)
(Intercept) �2169.44 98.60 �22.00 4.6e�105

gestationalAge 145.16 2.30 63.01 0

age �2.00 1.20 �1.66 0.097

children1 185.95 9.90 18.79 1.5e�77
co↵ee2 �65.54 10.39 �6.31 2.9e�10

co↵ee3 �141.78 27.24 �5.20 2e�07

alcohol �2.75 5.09 �0.54 0.59
smoking2 �101.95 13.05 �7.81 6.1e�15

smoking3 �131.19 14.91 �8.80 1.6e�18

abortions1 27.84 13.09 2.13 0.033
abortions2 48.76 25.45 1.92 0.055

abortions3 �50.03 45.80 �1.09 0.27
feverEpisodes 6.36 9.39 0.68 0.5

Table 2.5: Summary table of
parameter estimates, stan-
dard errors and t-tests for
the linear model of weight

fitted with 8 predictors.

to use the tests for a model reduction or model selection.

drop1(pregnantLm, test = "F")

Df Pr(>F)

gest. Age 1 0

children 1 1.5e�77

smoking 2 5.6e�26
co↵ee 2 5.2e�13

abortions 3 0.028

age 1 0.097
feverEpisodes 1 0.5

alcohol 1 0.59

Table 2.6: Tests of exclud-
ing each term from the full
model.

Model diagnostics are then to be considered to justify the

model assumptions. Several aspects of the statistical analysis pre-

sented so far rely on these assumptions, though the theory is post-

poned to the subsequent sections. Most notably, the distribution

of the test statistics, and thus the p-values, depend on the strong

set of assumptions, A3 + A5. We cannot hope to prove that the

assumptions are fulfilled, but we can check – mostly using graphi-

cal methods – that they are either not obviously wrong, or if they

appear to be wrong, what we can do about it.

Model diagnostics for the linear model are mostly based on the

residuals, which are estimates of the unobserved errors #
i

, or the

standardized residuals, which are estimates of #
i

/s. Plots of the

standardized residuals against the fitted values, or against any one of

the predictors, are useful to detect deviations from A1 or A2. For A3

we consider qq-plots against the standard normal distribution. The

assumptions A4 or A5 are more di�cult to investigate. If we don’t

have a specific idea about how the errors, and thus the observations,

might be correlated, it is very di�cult to do anything.

pregnantDiag <- fortify(pregnantLm)

p1 <- qplot(.fitted, .stdresid, data = pregnantDiag, geom = "hex") +

binScale + geom_smooth(size = 1) +

xlab("fitted values") + ylab("standardized residuals")

p2 <- qplot(gestationalAge, .stdresid, data = pregnantDiag,
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Figure 2.8: Diagnostic plots.
Standardized residuals plot-
ted against fitted values, the
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geom = "hex") + binScale +

stat_binhex(bins = 25) + geom_smooth(size = 1) +

xlab("gestationalAge") + ylab("")

p3 <- qplot(sample = .stdresid, data = pregnantDiag, stat = "qq") +

geom_abline(intercept = 0, slope = 1, color = "blue", size = 1) +

xlab("theoretical quantiles") + ylab("")

grid.arrange(p1, p2, p3, ncol = 3)

Why not use the plot
method for lm-objects?
That’s OK for interactive
usage, but di�cult to

customize for publication
quality.

The residual plot in Figure 2.8 shows that the model is not spot

on. The plot of the residuals against gestationalAge shows that

there is a non-linear e↵ect that the linear model does not catch.

Thus A1 is not fulfilled. We address this specific issue in a later

section, where we solve the problem using splines. The qq-plot

shows that the tails of the residuals are heavier than the normal

distribution an right skewed. However, given the problems with

A1, this issue is of secondary interest.

The diagnostics considered above address if the data set as a

whole does not comply to the model assumptions. Single observa-

tions can also be extreme and, for instance, have a large influence

on how the model is fitted. For this reason we should also be aware

of single extreme observations in the residual plots and the qq-plot.

Interactions between the di↵erent predictors can then be con-

sidered. The inclusion of interactions results in an substantial in-

crease in the complexity of the models, even if we have only a few

predictors. Moreover, it becomes possible to construct an over-

whelming number of comparisons of models. Searching haphazardly

through thousands of models with various combinations of interac-

tions is not recommended. It will result in spurious discoveries that

will be di�cult to reproduce in other studies. Instead, we suggest

to focus on the strongest predictors from the main e↵ects model. It
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Figure 2.9: Scatter

plots of weight against
gestationalAge stratified
according to the values

of smoking, children and
coffee

is more likely that we are able to detect interactions between strong

predictors than between weak predictors. To comprehend an inter-

action model it is advisable to visualize the model to the extend

it is possible. This is a point were the ggplot2 package is really

strong. It supports a number of ways to stratify a plot according to

di↵erent variables.

qplot(gestationalAge, weight, data = pregnant, geom = "hex") +

facet_grid(coffee ~ children + smoking, label = label_both) +

binScale + stat_binhex(bins = 25) +

geom_smooth(method = "lm", size = 1, se = FALSE)

Figure 2.9 shows a total of 18 scatter plots where the stratification

is according to children, smoking and coffee. A regression line

was fitted separately for each plot. This corresponds to a model with

a third order interaction between the 4 strong predictors (and with

the weak predictors left out). Variations between the regression

lines are seen across the di↵erent plots, which is an indication of

interaction e↵ects. For better comparison of the regression lines it

can be beneficial to plot them di↵erently. Figure 2.10 shows an

example where the stratification according to coffee is visualized

by color coding the levels of coffee. We can test the model with

a third order interaction between the strong predictors against the
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of estimated regression lines
for gestationalAge strati-
fied according to the val-

ues of smoking, coffee and
children

main e↵ects model. In doing so we keep the weak predictors in the

model.

form <- weight ~ smoking * coffee * children * gestationalAge +

age + alcohol + abortions + feverEpisodes

pregnantLm2 <- lm(form, data = pregnant)

anova(pregnantLm, pregnantLm2)

ggplot(pregnant, aes(gestationalAge, weight, color = coffee)) +

facet_grid(. ~ children + smoking, label = label_both) +

geom_smooth(method = "lm", size = 1, se = FALSE)

Table 2.7 shows that the F-test of the full third order interaction

model against the main e↵ects model is clearly significant. Since

there is some lack of model fit, we should be skeptical about the

conclusions from formal hypothesis tests. However, deviations from

A1 result in an increased residual variance, which will generally re-

sult in more conservative tests. That is, it will become harder to

reject a null hypothesis, and thus, in this case, conclude that inclu-

sion of the interactions is significant. The third order interaction

model contains 42 parameters, so a full table of all the parameters

is not very comprehensible, and it will thus not be reported.

Table 2.7: Test of the model

including a third order inter-
action against the additive

model.

Res.Df RSS Df Sum of Sq F Pr(>F)

1 11139 2.5376e+09

2 11110 2.5143e+09 29 2.3341e+07 3.56 3.49e�10

We reconsider model diagnostics for the extended model, where

we have included the interactions. Figure 2.11 shows the residual

plot. The inclusion of the interactions did not solve the earlier ob-

served problems with the model fit. This is hardly surprising as the
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problem with the model appears to be related to a non-linear rela-

tion between weight and gestationalAge. Such an apparent non-

linearity could be explained by interaction e↵ects, but this would

require a strong correlation between the predictors, e.g. that heavy

co↵ee drinkers (coffee = 3) have large values of gestationalAge.

We already established that this was not the case.

pregnantDiag2 <- fortify(pregnantLm2)

qplot(.fitted, .stdresid, data = pregnantDiag2, geom = "hex") +

binScale + geom_smooth(size = 1) +

xlab("fitted values") + ylab("standardized residuals")
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Figure 2.11: Residual plot
for the third order interac-
tion model.

Before we conclude the analysis, we test if the inclusion of the 4

weak predictors together is necessary. Table 2.8 shows that the test

results in a borderline p-value of around 5%. On the basis of this

we choose to exclude the 4 weak predictors even though Table 2.6

suggested that the number of abortions is related to weight. The

highly skewed distribution of abortions resulted in large standard

errors, and low power despite the size of the data set. In combina-

tion with the di↵erent signs on the estimated parameters in Table

2.5, depending upon whether the woman had had 1, 2 or 3+ spon-

taneous abortions, the study is inconclusive on how abortions is

related weight.

form <- weight ~ smoking * coffee * children * gestationalAge

pregnantLm3 <- lm(form, data = pregnant)

anova(pregnantLm3, pregnantLm2)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 11116 2.5172e+09

2 11110 2.5143e+09 6 2.8727e+06 2.12 0.04825

Table 2.8: Test of the

full third order interaction
model against the model ex-
cluding the 4 weak predic-
tors.In conclusion, we have arrived at a predictive model of weight

given in terms of a third order interaction of the 4 predictors ges-

tationalAge, smoking, coffee and children. The model is not a

perfect fit, as it doesn’t catch a non-linear relation between weight

and gestationalAge. The fitted model can be visualized as in the

Figures 2.9 or 2.10. We note that the formal F-test of the interac-

tion model against the main e↵ects model justifies the need for the

increased model complexity. It is, however, clear from the figures

that the actual di↵erences in slope are small, and the significance
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of the test reflects that we have a large data set. There is no clear-

cut interpretation of the interactions either. The regression lines in

the figures should, preferably, be equipped with confidence bands.

This can be achieved by removing the se = FALSE argument to

the geom_smooth function. However, this will result in a separate

variance estimate for each combination of smoking, coffee and

children. If we want to use the pooled variance estimate obtained

by our model, we have to do something else. How this is achieved

is shown in a later section, where we also consider how to deal with

the non-linearity using spline basis expansions.

The theory of the linear model

The theory that we will cover in this section is divided into two

parts. First, we will consider how the unknown b-parameters are

estimated in theory and in practice using the least squares estima-

tor. Second, we consider results on the distribution of the estimators

and tests under the weak assumptions A1, A2 and A4 and under

the strong assumptions A3 and A5. Needless to say, the conclusions

obtained under A3 and A5 are stronger.

Weighted linear least squares estimation

We will consider the generalization of linear least squares that among

other things allows for weights on the individual cases. Allowing

for weights can be of interest in itself, but serves, in particular, as

a preparation for the methods we will consider in Chapter 3.

We introduce the weighted squared error loss6 as6 That this loss with W = I.

is proportional to the neg-
ative log-likelihood loss un-
der assumptions A3 and A5

is derived in Chapter 3

`(b) = (Y � Xb)T

W(Y � Xb) (2.5)

where W is a positive definite matrix. An n ⇥ n matrix is positive

definite if it is symmetric and

y

T

Wy > 0

for all y 2 Rn with y 6= 0. A special type of positive definite weight

matrix is a diagonal matrix with positive entries in the diagonal.
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With

W =

0

BBBB@

w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...

0 0 . . . w

n

1

CCCCA

we find that the weighted squared error loss becomes

`(b) = Â
i

w

i

(Y
i

� X

T

i

b)2.

That is, the i’th case receives the weight w

i

.

The b-parameters are estimated by minimization of `.

Theorem 2.1. If X has full column rank p, the unique solution of

the normal equation

X

T

WXb = X

T

WY (2.6)

is the unique minimizer of `.

Proof. The derivative of ` is

Db`(b) = �2(Y � Xb)T

WX.

For the di↵erentiation it may be useful to think of `(b) as a com-

position. The function a(b) = (Y � Xb) from Rp to Rn has deriva-

tive Dba(b) = �X, and ` is a composition of a with the function

b(z) = z

T

Wz from Rn to R with derivative D

z

b(z) = 2z

T

W. By

the chain rule

Db`(b) = D

z

b(a(b)))Dba(b) = �2(Y � Xb)T

WX.

Note that the derivative is a row vector7. The second derivative is 7 The gradient,

rb`(b) = Db`(b)T ,

is a column vector.
D

2
b`(b) = 2X

T

WX.

If X has rank p, D

2
b`(b) is (globally) positive definite, and there is

a unique minimizer found by solving Db`(b) = 0, which amounts

to a transposition of the normal equation.

Under the rank-p assumption on X, the solution to the normal

equation can, of course, be written as

b̂ = (XT

WX)�1
X

T

WY.
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As we discuss below, the practical computation of the solution does

not rely on explicit matrix inversion.

The geometric interpretation of the solution provides additional

insight into the weighted least squares estimator. The inner product

induced by W on Rn is given by y

T

Wx, and the corresponding norm

is denoted || · ||
W

. With this notation we see that||y||2
W

= y

T

Wy specifies a

norm if and only if W is pos-

itive definite. `(b) = ||Y � Xb||2
W

.

If L = {Xb | b 2 Rp} denotes the column space of X, ` is minimized

whenever Xb is the orthogonal projection of Y onto L in the inner

product given by W.

Lemma 2.2. The orthogonal projection onto L is

P = X(XT

WX)�1
X

T

W

provided that X has full column rank p.

Proof. We verify that P is the orthogonal projection onto L by

verifying three characterizing properties:

PXb = Xb (P is the identity on L)

P

2 = X(XT

WX)�1
X

T

WX(XT

WX)�1
X

T

W

= X(XT

WX)�1
X

T

W = P

P

T

W = (X(XT

WX)�1
X

T

W)T

W

= WX(XT

WX)�1
X

T

W = WP.

The last property is self-adjointness w.r.t. the inner product given

by W.

Note that since PY = Xb̂, Theorem 2.1 follows directly from

Lemma 2.2 – using the fact that when the columns of X are linearly

independent, the equation PY = Xb has a unique solution.

If X does not have rank p the projection is still well defined, and

it can be written as

P = X(XT

WX)�X

T

W

where (XT

WX)� denotes a generalized inverse8. This is seen by

8 A generalized inverse of

a matrix A is any matrix
A

� with the property that

AA

�
A = A
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verifying the same three conditions as in the proof above. The

solution to PY = Xb is, however, no longer unique, and the solution

b̂ = (XT

WX)�X

T

WY

is just one possible solution.

The actual computation of the solution to the normal equa-

tion is typically based on a QR-decomposition instead of a di-

rect matrix inversion. The R function lm – or rather the under-

lying R functions lm.fit and lm.wfit – are based on the QR-

decomposition. If we write9 W = LL

T and introduce X̃ = L

T

X and 9 This could be the Cholesky
decomposition. For a diag-

onal W, L is diagonal and
trivial to compute by taking
square roots. For unstruc-

tured W the computation of
the Cholesky decomposition
scales as n

3.

Ỹ = L

T

Y, the normal equation can be rewritten as

X̃

T

X̃b = X̃

T

Ỹ.

Then we compute the QR-decomposition of X̃, that is,

X̃ = QR

where Q is an orthogonal matrix and R is an upper triangular ma-

trix. Since

X

T

WX = X̃

T

X̃ = R

T

Q

T

Q| {z }
I

R = R

T

R, (2.7)

the normal equation becomes

R

T

Rb = R

T

Q

T

Ỹ.

This equation can be solved e�ciently and in a numerically stable

way in a two-step pass by exploiting first that R

T is lower trian-

gular and then that R is upper triangular. Note that the compu-

tations based on the QR-decomposition don’t involve the compu-

tation of X

T

WX. The factorization (2.7) of the positive definite

matrix X

T

WX as a lower and upper triangular matrix is called the

Cholesky decomposition.

An alternative to the QR-decomposition is to compute X

T

WX

and then compute its Cholesky decomposition directly. The QR-

decomposition is usually preferred for numerical stability. Comput-

ing X

T

WX is essentially a squaring operation, and precision can be

lost.
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Distributional results

The results above are all on the estimation of b. The results below

are on the distribution of b̂. They are based on di↵erent combina-

tions of assumptions A1–A5. Throughout we restrict attention to

the case where W = I.

Some results involve the unknown variance parameter s2 (see

Assumption A2) and some involve a specific estimator ŝ2. This

estimator of s2 is

ŝ2 =
1

n � p

n

Â
i=1

(Y
i

� X

T

i

b̂)2 =
1

n � p

||Y � Xb̂||2 (2.8)

provided that X has full rank p. With the i’th residual defined as

#̂
i

= Y

i

� X

T

i

b̂,

the variance estimator is – up to division by n � p and not n – the

empirical variance of the residuals. Since the residual is a natural

estimator of the unobserved error #
i

, the variance estimator ŝ2 is a

natural estimator of the error variance s2. The explanation of the

denominator n� p is related to the fact that #̂
i

is an estimator of #
i

.

A partial justification, as shown in the following theorem, is that

division by n � p makes ŝ2 unbiased.

Theorem 2.3. Under the weak assumptions A1, A2 and A4, and

assuming that X has full rank p,

E(b̂ | X) = b,

V(b̂ | X) = s2(XT

X)�1,

E(ŝ2 | X) = s2.

Proof. Using assumptions A1 and A4a we find that

E(b̂ | X) = E((XT

X)�1
X

T

Y | X)

= (XT

X)�1
X

T

E(Y | X)

= (XT

X)�1
X

T

Xb

= b.

Using, in addition, assumptions A2 and A4b it follows that

V(b̂ | X) = (XT

X)�1
X

T

V(Y | X)X(XT

X)�1

= (XT

X)�1
X

Ts2
IX(XT

X)�1

= s2(XT

X)�1.
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For the computation of the expectation of ŝ2, the geometric in-

terpretation of b̂ is useful. Since Xb̂ = PY with P the orthogonal

projection onto the column space L of X, we find that

Y � Xb̂ = (I � P)Y.

Because E(Y � Xb̂ | X) = 0

E(||Y � Xb̂||2 | X) =
n

Â
i=1

V(Y � Xb̂ | X)
ii

and

V(Y � Xb̂ | X) = V((I � P)Y | X)

= (I � P)V(Y | X)(I � P)T

= (I � P)s2
I(I � P)

= s2(I � P).

The sum of the diagonal elements in (I � P) is the trace of this

orthogonal projection onto L

? – the orthogonal complement of L –

and is thus equal to the dimension of L

?, which is n � p.

Just as assumptions A1, A2 and A4 are distributional assump-

tions on the first and second moments, the distributional results are,

under these assumptions, results on the first and second moments.

If we want precise results on the distribution of b̂ and ŝ2 we need

the strong distributional assumptions A3 and A5.

Theorem 2.4. Under the strong assumptions A3 and A5 it holds,

conditionally on X, that

b̂ ⇠ N (b, s2(XT

X)�1)

and that

(n � p)ŝ2 ⇠ s2c2
n�p

.

Moreover, for the standardized Z-score

Z

j

=
b̂

j

� b
j

ŝ
q
(XT

X)�1
jj

⇠ t

n�p

,

or more generally for any a 2 Rp

Z

a

=
a

T b̂ � a

T b

ŝ
p

a

T(XT

X)�1
a

⇠ t

n�p

.



40 The linear model

Proof. See EH, Chapter 10.

The standardized Z-scores are are used to test hypotheses about

a single parameter or a single linear combination of the parameters.

The Z-score is computed under the hypothesis (with the hypoth-

esized value of b
j

or a

T b plugged in), and compared to the t

n�p

distribution. The test is two-sided. The Z-scores are also used to

construct confidence intervals for linear combinations of the param-

eters. A 95% confidence interval for a

T b is computed as

a

T b̂ ± z

n�p

ŝ
q

a

T(XT

X)�1
a (2.9)

where ŝ
p

a

T(XT

X)�1
a is the estimated standard error of a

T b̂ and

z

n�p

is the 97.5% quantile in the t

n�p

-distribution.

For the computation of a

T(XT

X)�1
a it is noteworthy that (XT

X)�1

is not needed, if we have computed the QR-decomposition of X or

the Cholesky decomposition of X

T

X already. With X

T

X = LL

T for

a lower triangular10 p ⇥ p matrix L we find that10 If we have computed the

QR-decomposition, L = R

T .

a

T(XT

X)�1
a = a

T(LL

T)�1
a

= (L�1
a)T

L

�1
a

= b

T

b

where b solves Lb = a. The solution of this lower triangular sys-

tem of equations is faster to compute than the matrix-vector prod-

uct (XT

X)�1
a, even if the inverse matrix is already computed and

stored. This implies that the computation of (XT

X)�1 is never com-

putationally beneficial. Not even if we need to compute estimated

standard errors for many di↵erent choices of a.

To test hypotheses involving more than a one-dimensional linear

combination, we need the F-tests. Let p0 < p and assume that X

0 is

an n⇥ p0-matrix whose p0 columns span a p0-dimensional subspace

of the column space of X. With b̂0 the least squares estimator

corresponding to X

0 the F-test statistic is defined as

F =
||Xb̂ � X

0 b̂0||2/(p � p0)

||Y � Xb̂||2/(n � p)
. (2.10)

Note that the denominator is just ŝ2. The F-test statistic is one-

sided with large values critical.
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Theorem 2.5. Under the strong assumptions A3 and A5 and the

hypothesis that

E(Y | X) = X

0b0
0

the F-test statistic follows an F-distribution with (p � p0, n � p)

degrees of freedom.

Proof. See EH, Chapter 10.

The terminology associated with the F-test is as follows. The

norm ||Y � Xb̂||2 is called the residual sum of squares (RSS) under

the model, and n � p is the residual degrees of freedom (Res. Df).

The norm ||Xb̂ � X

0 b̂0||2 is the sum of squares (Sum of Sq.), and

p � p0 is the degrees of freedom (Df). The norm ||Y � X

0 b̂0||2 is the

residual sum of squares under the hypothesis, and it follows from

Pythagoras that

||Xb̂ � X

0 b̂0||2 = ||Y � X

0 b̂0||2 � ||Y � Xb̂||2.

Thus the sum of squares is the di↵erence between the residual sum of

squares under the hypothesis and under the model. These numbers

are computed and reported by the R function anova in addition

to the actual F-test statistic and corresponding p-value from the

appropriate F-distribution.
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