More on Splines

Recall the basis

\[N_1(x) = 1, \quad N_2(x) = x \]

and

\[N_{2+l}(x) = \frac{(x - \xi_l)^3 - (x - \xi_K)^3}{\xi_K - \xi_l} - \frac{(x - \xi_{K-1})^3 - (x - \xi_K)^3}{\xi_K - \xi_{K-1}} \]

for \(l = 1, \ldots, K - 2 \) for natural cubic splines. Observe that \(N''_1(x) = N''_2(x) = 0 \) and

\[
N''_{2+l}(x) = \begin{cases}
6 \frac{x-\xi_l}{\xi_K-\xi_l} & x \in (\xi_l, \xi_{K-1}] \\
6 \frac{(\xi_{K-1}-\xi_l)(\xi_K-x)}{(\xi_K-\xi_l)(\xi_K-\xi_{K-1})} & x \in (\xi_{K-1}, \xi_K) \\
0 & x \leq \xi_l \text{ and } x \geq \xi_K
\end{cases}
\]

Assuming that \(\xi_1 < \ldots < \xi_K \) the functions \(N''_3, \ldots, N''_K \) are linearly independent.
Regularity of the Spline Smoother

If \(x_1, \ldots, x_N \) are all different, \(N_1, \ldots, N_N \) is the basis for the n.c.s. with knots \(x_1, \ldots, x_N \) and \(f = \sum_{i=1}^{N} \theta_i N_i \) we have

\[
\theta^T \Omega_N \theta = \int_a^b (f''(x))^2 \, dx = 0
\]

if and only if \(f''(x) = 0 \) for all \(x \in [a, b] \). Hence

\[
\theta_3 = \ldots = \theta_N = 0.
\]

If also \(\theta^T N^T N \theta = 0 \) then

\[
\begin{pmatrix} \theta_1 & \theta_2 \end{pmatrix} \begin{pmatrix} N & \sum_i x_i \\ \sum_i x_i & \sum_i x_i^2 \end{pmatrix} \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} = 0,
\]

which implies that \(\theta_1 = \theta_2 = 0 \) if \(N \geq 2 \). The in general positive semidefinite matrix

\[
N^T N + \lambda \Omega_N
\]

is thus positive definite for \(\lambda > 0 \).
The Reinsch Form

Let

\[S_\lambda = N(N^T N + \lambda \Omega_N)^{-1} N^T \]

be the spline smoother and \(N = UDV^T \) the singular value decomposition of \(N \). Since \(N \) is square \(N \times N \), \(U \) is orthogonal hence invertible with \(U^{-1} = U^T \), and \(D \) is invertible since \(N \) has full rank \(N \). Then

\[
S_\lambda = UDV^T (VD^2 V^T + \lambda \Omega_N)^{-1} VDU^T \\
= U(D^{-1} V^T VD^2 V^T VD^{-1} + \lambda D^{-1} V^T \Omega_N VD^{-1})^{-1} U^T \\
= U(I + \lambda D^{-1} V^T \Omega_N VD^{-1})^{-1} U^T \\
= (U^T U + \lambda U^T D^{-1} V^T \Omega_N VD^{-1} U)^{-1} \\
= (I + \lambda U^T D^{-1} V^T \Omega_N VD^{-1} U)^{-1} \underbrace{K}_{K} \\
= (I + \lambda K)^{-1}
\]
The Demmler-Reinsch Basis

The matrix K is positive semidefinite and we write

$$K = \bar{U}D\bar{U}^T$$

where $D = \text{diag}(d_1, \ldots, d_N)$ with $0 = d_1 = d_2 < d_3 \leq \ldots \leq d_N$ and \bar{U} is orthogonal.

The columns in \bar{U}, denoted $\bar{u}_1, \ldots, \bar{u}_N$, are known as the Demmler-Reinsch basis.

The Demmler-Reinsch basis is a (the) orthonormal basis of \mathbb{R}^N with the property that the smoother S_λ is diagonal in this basis:

$$S_\lambda = \bar{U}(I + \lambda D)^{-1}\bar{U}^T$$

The eigenvalues are in decreasing order

$$\rho_k(\lambda) = \frac{1}{1 + \lambda d_k}$$

for $k = 1, \ldots, N$ – and $\rho_1(\lambda) = \rho_2(\lambda) = 1$.
The Demmler-Reinsch Basis

We may also observe that

\[S_\lambda \bar{u}_k = \rho_k(\lambda) \bar{u}_k. \]

We think of and visualize \(\bar{u}_k \) as a function evaluated in the points \(x_1, \ldots, x_N \).

One important consequence of these derivations is that the Demmler-Reinsch basis does not depend upon \(\lambda \) and we can clearly see the effect of \(\lambda \) through the eigenvalues \(\rho_k(\lambda) \) that work as shrinkage coefficients multiplied on the basis vectors.
A Bias-Variance Decomposition

Assume that conditionally on X the Y_i's are uncorrelated with common variance σ^2. Then with $f = E(Y|X) = E(Y^{\text{new}}|X)$ and Y^{new} independent of Y

$$E(||Y^{\text{new}} - \hat{f}||^2|X) = E(||Y^{\text{new}} - S_\lambda Y||^2|X)$$

$$= E(||Y^{\text{new}} - f||^2|X) + ||f - S_\lambda f||^2$$

$$+ E(||S_\lambda (f - Y)||^2|X)$$

$$= N\sigma^2 + ||(I - S_\lambda)f||^2 + \sigma^2 \text{trace}(S_\lambda^2)$$

$$= \sigma^2(N + \text{trace}(S_\lambda^2)) + \text{Bias}(\lambda)^2$$

where we use that $E(\hat{f}|X) = E(S_\lambda Y|X) = S_\lambda f$. We can also write

$$\text{Bias}(\lambda)^2 = \text{trace}((I - S_\lambda)^2ff^T).$$
Estimation of σ^2 using low bias estimates

It seems that

$$\text{RSS}(\hat{f}) = \sum_{i=1}^{N} (y_i - \hat{f}_i)^2$$

is a natural estimator of $E(||Y - \hat{f}||^2|X)$, and its mean is computed as

$$\sigma^2(N - \text{trace}(2S_\lambda - S_\lambda^2)) + \text{Bias}(\lambda)^2.$$

Choosing a low-bias — that is small λ — model we expect $\text{Bias}(\lambda)^2$ to be negligible and we estimate σ^2 as

$$\hat{\sigma}^2 = \frac{1}{N - \text{trace}(2S_\lambda - S_\lambda^2)} \text{RSS}(\hat{f}).$$

From this point of view it seems that

$$\text{trace}(2S_\lambda - S_\lambda^2)$$

can also be justified as the effective degrees of freedom.
Reproducing Kernel Hilbert Spaces

On any space Ω, not necessarily a subset of \mathbb{R}^p, a kernel is a function

$$K : \Omega \times \Omega \rightarrow \mathbb{R}$$

with the property that if $x_1, \ldots, x_N \in \Omega$ then the $N \times N$ matrix

$$K = \{ K(x_i, x_j) \}_{i,j}$$

is positive semidefinite. We will only kernels that are positive definite.

The inner product space

$$\mathcal{H}_K^{pre} = \left\{ \sum_m \alpha_m K(\cdot, y_m) \right\}$$

with inner product

$$\left\langle \sum_m \alpha_m K(\cdot, y_m), \sum_n \alpha'_n K(\cdot, y'_n) \right
angle = \sum_{m,n} \alpha'_n \alpha_m K(y'_n, y_m)$$

can be abstractly completed.
Reproducing Kernel Hilbert Spaces

The existence of the completion \mathcal{H}_K, which is a Hilbert space with reproducing kernel K is known as the Moore-Aronszajn theorem. If $f \in \mathcal{H}_K$ then

$$\langle f, K(\cdot, x) \rangle = f(x).$$

If $\Omega \subseteq \mathbb{R}^p$ then under additional regularity conditions there are orthogonal functions ϕ_i such that

$$K(x, y) = \sum_i \gamma_i \phi_i(x) \phi_i(y)$$

where $\gamma_i \geq 0$ and $\sum_i \gamma_i^2 < \infty$. This is known as Mercer’s theorem. Then \mathcal{H}_K becomes concrete as

$$f = \sum_i c_i \phi_i$$

with $\sum_i \frac{c_i^2}{\gamma_i} < \infty$.
The Finite-Dimensional Optimization Problem

Considering the abstract problem

\[
\min_{f \in \mathcal{H}_K} \sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda \| f \|_K^2
\]

a solution is then of the form \(\sum_{i=1}^{N} \alpha_i K(\cdot, x_i) \). We need to solve

\[
\min_{\alpha \in \mathbb{R}^N} (y - K\alpha)^T (y - K\alpha) + \lambda \alpha^T K \alpha.
\]

The solution (unique when \(K \) is positive definite) is

\[
\hat{\alpha} = (K + \lambda I)^{-1} y
\]

and the predicted values are

\[
\hat{f} = K \hat{\alpha} = K(K + \lambda I)^{-1} y = (I + \lambda K^{-1})^{-1} y
\]
In this course we consider observational data. Roughly we have

- Observational data; Both X and Y are sampled from an (imaginary) population.
- Non-observational; e.g. a designed experiment where we fix X by the design and sample Y.

For observational data how should we interpret $Y|X$?
Example

In toxicology we are interested in measuring the effect of a (toxic) compound on the plant, say.

Consider a naturally occurring compound A and a plant Z.

- **Full observational study**: On N randomly selected fields we measure $Y =$ the amount of plant Z and $X =$ the amount of compound A.

- **Semi-observational study**: On each of N randomly selected fields we plant R plants Z. After T days we measure $Y =$ the amount of plant Z and $X =$ the amount of compound A.

- **Designed experiment**: On each of N identical fields we plant R plants Z. We add according to a design scheme the amount X_i of compound A to field i. After T days we measure $Y =$ the amount of plant Z.
Causality

In toxicology – as in most parts of science – the basic question is *causal relations*.

Is the compound A toxic? Does it actually kill plant Z?

The pragmatic farmer; Can I grow plant Z on my soil?

The former question can only be answered by the designed experiment. The latter may be answered by prediction of the yield based on a measurement of compound A.

The latter prediction is not justified by causality – only by correlation.
Probability Models and Causality

Probability theory is completely blind to causation!

From a technical point of view the regression of Y on X is carried out precisely in the same manner whether the data are observational or from a designed experiment. The probability conditional model is the same.

For the ideal designed experiment we control X and all systematic variation in Y can only be ascribed to X.

For the observational study we observed the pair (X, Y) Systematic variations in Y can be due to X but there is no evidence of causality.
Interventions

Many, many studies are observational and many, many conclusions are causal.

- If the children in Gentofte get higher grades compared to Copenhagen, should I put my child in one of their schools?
- If the children in large schools get higher grades compared to children in small schools, should we build larger schools?
- If people on night-shifts get more ill than those with a regular job, is it then dangerous to take night-shifts? Should I not take a night-shift job?
- If smokers more frequently get lung cancer is that because they smoke? Should I stop smoking?

All four final questions are phrased as interventions. Data from an observational study does not alone provide information on the result of an intervention.
What if $Y|X$ then?

For observational data we must think of $Y|X$ as an observational conditional distribution meaning that (X, Y) must be sampled exactly the same way as $(x_1, y_1), \ldots, (x_N, y_1)$ were.

Then if $X = x$ but Y has not been disclosed to us, $Y|X = x$ is a sensible conditional distribution of Y.

If we remember to gather data using the same principles as when we later want to use $Y|X$ for predictions, we can expect that $Y|X$ is useful for predictions – even if there is no alternative evidence of causation.

Violations of a consistent sampling scheme is the Achilles heel of predictions based on observational data. And we can not trust predictions if we make interventions.