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RNA molecular structure

Let-7 (pre-cursor) from C. Elegans.

UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGAACUAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA

Member of the family of micro RNAs that terminate or inhibit the
translation of mRNA to protein. The pre-cursor is embedded as a gene in
the DNA – we want to find genes with similar structure.
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StemSearch

StemSearch is an implementation of a search algorithm for general
stem-loop motifs.

For a fixed threshold t and a sequence of length n we are given the Nt

(declumped) findings with a score exceeding t. The statistical null model
states the Nt is Poisson distributed with

E(Nt) = nK exp(−λt)

and the excesses are iid exponentially distributed with parameter λ.

The model is only valid for t sufficiently large. [4]
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StemSearch
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Empirical (red) and theoretical Poisson point probabilities (blue) using StemSearch with

n = 5000, b = 200, v = (−4,−1,−1) and C.Elegans genome first order Markov transition

probabilities. Here 1000 sequences with thresholds t = 6 (A), t = 8 (B), t = 10 (C) and

t = 12 (D). The variance-to-mean ratio for the empirical counts are 1.117 (A), 1.034 (B),

1.052 (C) and 1.037 (D).
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StemSearch
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The log-average number of overshoots as a function of the threshold for a simulation study

using StemSearch with n = 5000, b = 200 and v = (−4,−1,−1) on sequences generated

by a first order Markov chain with C.Elegans genome transition probabilities. The line is the

least squares fit to the points with slope −0.54 and intercept 6.62.
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StemSearch

We use the standard Hill estimator from extreme value statistics;

λ̂ =

(

1

N

N
∑

i

S(m−i+1):m − S(m−N):m

)−1

of λ, where

S1:m < . . . < Sm:m

denote the ordered m overshoots of a (suitable) threshold t.

K̂ = exp(λ̂S(m−N):m)
N

n
.

. – p.6/18



Poisson process limits

With (Xk)k≥1 a sequence of random variables we can often associate a
random measure

µn =
∑

i

δ(ti,mi) ∈ M([0, 1] × E)

which places motif mi at position ti.
With restrictions of the following type:

Stationarity or asymptotic stationarity of (Xk)k≥1.

Rare motifs – E(µn([0, 1] × E)) ' λ for large n and rare motifs.

Motifs are declumped.

Weak – or moderate – dependence in (Xk)k≥1.

Then µn(· × E) converges weakly to an homogeneous Poisson random
measure (Poisson process) on [0, 1] for n → ∞.
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Motifs in genomes

The DNA-alphabet is E = {A, C, G, T}.

Words are finite strings; ACGTTA, GTAACA, AGA, ...

A collection of words is a Motif.

Regular expressions; A.*[CG]TT., G.[AG][AG]C., ...

Weight matrices; W = {Wx,i}x∈E,i=1,...,k.
A word w = x1 . . . xk receives the score

Sw =
k
∑

i=1

Wxi,i.

A motif is specified as {w|Sw > t}.
See [2] for a probabilistic treatment.
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Stem-loop motifs

The regular expression:

ATGGC.{5,7}GCCAT

corresponds to stem-loop structures
A

ATGGC A
||||| C
TACCG A

A

TA
ATGGC G
||||| T
TACCG G

GG

with 5-7 letters in the loop.

Reinert and Schbath [5] investigate Poisson approximations focusing on

exact error bounds for motifs in homogeneous Markov chains – including

stem-loop motifs as the above.
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Problems

The homogeneous Poisson process model suffer from some problems -
even as a null model:

Non-Markov nature of genomic sequences.

Heterogeneity of genomic sequences:

Heterogeneous nucleotide frequencies.

Low-complexity and repeat patterns (fixed by repeat masker?).

Heterogeneous distribution of larger motifs.

Dependence structures of biologically relevant motifs.

How to get beyond the null model?
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Example

Is there an over-representation of simultaneous occurrence of the two
words w1 = AACCTGG and w2 = ATGCCAT in the sequences
x1, . . . , xm (xi = xi1 . . . xin(i))?

Null model: The words occur as independent Poisson processes in each
sequence (intensities λi

1 and λi
2), and the sequences are independent.

R =
m
∑

i=1

1(w1 ∈ xi, w2 ∈ x2)
approx
∼ Poi(ξ)

with

ξ =

m
∑

i=1

(1 − e−λi

1)(1 − e−λi

2).

A theoretical foundation is given in Reinert and Schbath [5].
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Example - continued

In a concrete application, Marc Riemer Friedländer investigated in his
Master’s Thesis the co-occurrence of miRNA target sites (7 letter words)
in the 3’UTR of mRNA taking

log(λi
w) = βw + βw(0) log n(i) + βw(A) log fA(i) + . . . βw(T) log fT(i)

with fA(i), . . . , fT(i) the relative frequency of nucleotides in sequence i.

Parameters were estimated using Poisson regression with a much better
model fit than the iid sequence model where βw(0) = 1, βw = 0 and

βw(α) = number of times α occurs in word w
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ENCODE

Illustration from [6] – a statistical analysis of regulatory elements in the
ENCODE regions.
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Transcription Factor Binding Sites

Protein binding sites on DNA serve a central role in the regulatory
mechanisms for gene transcription.

Typically hard to locate computationally – computational predictions
are noisy.

Better experimental data is becomming available (ChIP-chip), which
provides actual binding sites of proteins (e.g. ENCODE data).
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Intensity based modeling

For a multivariate point-process (N1(t), . . . , Nk(t)) with filtration (Ft)t≥0

and adapted intensity process λ(t) = (λ1(t), . . . , λk(t)) we have

P(Ni(t + ε) − Ni(t) > 0|Ft) ' λi(t)ε

We also have the log-likelihood process

k
∑

i=1

[∫ t

0

log λi(t)Ni(dt) −

∫ t

0

λi(t)dt

]

.

A statistical modeling approach using Hawkes processes was first at-

tempted by Gaëlle Gusto and Sophie Schbath in [3].
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Hawkes processes

Multivariate point-process (N1, . . . , Nk) with intensity

λi(t) = φ





k
∑

j=1

∫ t

0

hij(t − s)Nj(ds)



 .

Lisbeth Carstensen (Ph.D.-student, Copenhagen) has an
implementation fitting two-dimensional Hawkes processes with
spline-based expansions of hij – including additional local sequence
covariates.

Ongoing projects: More then two dimensions, inclusion of a
Cox-process component, superpositions, model selection and
test-statistics for hij = 0.
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Concluding remarks

Actually proving an asymptotic Poisson result can be an arbitrary
hard mathematical challenge.

The iid or homogeneous Markov chain models for sequences attempt
modeling on a microscopic scale.

I believe that biologically relevant questions are better addressed with
statistical models directly at the mesoscopic scale.

Thanks for your time, thanks to Richard Gill for inviting me, and
thanks to Lisbeth and Mark and the entire Bioinformatics Centre in
Copenhagen.
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