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RNA molecular structure

Let-7 (pre-cursor) from C. Elegans.

UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGAACUAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA

Member of the family of micro RNAs that terminate or inhibit the
translation of mRNA to protein.
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RNA molecular structure

Let-7 (pre-cursor) from C. Elegans.

UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGAACUAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA

Member of the family of micro RNAs that terminate or inhibit the
translation of mRNA to protein. The pre-cursor is embedded as a gene in
the DNA – we want to find genes with similar structure.
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Marked point process view

An implementation (StemSearch) gives for C.Elegans, chromosome I:
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Distribution of overshoots

Histogram
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Objectives

Want a statistical (null) model of the random occurrences (biologically
non-significant) of high-scoring points.
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Objectives

Want a statistical (null) model of the random occurrences (biologically
non-significant) of high-scoring points.

Also want statistical models of biologically significant occurrences.
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Motifs in genomes

The DNA-alphabet is E = {A, C, G, T}.

Words are finite strings; ACGTTA, GTAACA, AGA, ...

A collection of words is a Motif.
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Motifs in genomes

The DNA-alphabet is E = {A, C, G, T}.

Words are finite strings; ACGTTA, GTAACA, AGA, ...

A collection of words is a Motif.

Regular expressions; A.*[CG]TT., G.[AG][AG]C., ...

Weight matrices; W = {Wx,i}x∈E,i=1,...,k.
A word w = x1 . . . xk receives the score

Sw =
k

∑

i=1

Wxi,i.

A motif is specified as {w|Sw > t}.
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Stem-loop motifs

The regular expression:

ATGGC.{5,7}GCCAT

corresponds to stem-loop structures
A

ATGGC A
||||| C
TACCG A

A

TA
ATGGC G
||||| T
TACCG G

GG

with 5-7 letters in the loop.

Reinert and Schbath [5] investigate Poisson approximations focusing on
exact error bounds for motifs in homogeneous Markov chains – including
stem-loop motifs as the above.
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MEF2

Potential binding sites for the myocyte-specific enhancer factor 2 (MEF2),
which is involved in the muscle-specific expression of a number of genes,
can be located using a weight matrix:

Position

1 2 3 4 5 6 7 8 9 10 11

A -1.93 -1.93 1.17 0.80 1.25 1.30 1.27 -3.32 1.34 -1.01 0.27

C 1.25 -1.05 -3.25 -3.25 -3.25 -3.25 -3.25 -3.25 -3.25 -3.25 0.67

G -1.89 -3.28 -3.28 -3.28 -2.58 -3.28 -2.58 -3.28 -3.28 1.28 -0.79

T -1.04 1.20 -0.51 0.46 -1.15 -1.73 -1.40 1.31 -3.34 -2.65 -1.04
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Potential MEF2 binding sites
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– and with scores as marks
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Potential miRNA target sites
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Poisson process limits

With (Xk)k≥1 a sequence of random variables we can often associate a
random measure

µn =
∑

i

δ(ti,mi) ∈ M([0, 1] × E)

which places motif mi at position ti.
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Poisson process limits

With (Xk)k≥1 a sequence of random variables we can often associate a
random measure

µn =
∑

i

δ(ti,mi) ∈ M([0, 1] × E)

which places motif mi at position ti.
With restrictions of the following type:

Stationarity or asymptotic stationarity of (Xk)k≥1.

Rare motifs – E(µn([0, 1] × E)) ' λ for large n and rare motifs.

Motifs are declumped.

Weak – or moderate – dependence in (Xk)k≥1.

Then µn(· × E) converges weakly to an homogeneous Poisson random
measure (Poisson process) on [0, 1] for n → ∞.
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Problems

The homogeneous Poisson process model suffers from several problems
- even as a null model:

Non-Markov nature of genomic sequences.
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Heterogeneity of genomic sequences:

Heterogeneous nucleotide frequencies.

Low-complexity and repeat patterns (fixed by repeat masker?).

Heterogeneous distribution of larger motifs.
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Problems

The homogeneous Poisson process model suffers from several problems
- even as a null model:

Non-Markov nature of genomic sequences.

Heterogeneity of genomic sequences:

Heterogeneous nucleotide frequencies.

Low-complexity and repeat patterns (fixed by repeat masker?).

Heterogeneous distribution of larger motifs.

Dependence structures of biologically relevant motifs.

How to get beyond the null model?
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Example

Is there an over-representation of the simultaneous occurrence of the two
words w1 = AACCTGG and w2 = ATGCCAT in the sequences
x1, . . . , xm (xi = xi1 . . . xin(i))?
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Example

Is there an over-representation of the simultaneous occurrence of the two
words w1 = AACCTGG and w2 = ATGCCAT in the sequences
x1, . . . , xm (xi = xi1 . . . xin(i))?

Null model: The words occur as independent Poisson processes in each
sequence (intensities λi

1 and λi
2), and the sequences are independent.

R =
m

∑

i=1

1(w1 ∈ xi, w2 ∈ x2)
approx
∼ Poi(ξ)

with

ξ =

m
∑

i=1

(1 − e−λi

1)(1 − e−λi

2).
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Example

Is there an over-representation of the simultaneous occurrence of the two
words w1 = AACCTGG and w2 = ATGCCAT in the sequences
x1, . . . , xm (xi = xi1 . . . xin(i))?

Null model: The words occur as independent Poisson processes in each
sequence (intensities λi

1 and λi
2), and the sequences are independent.

R =
m

∑

i=1

1(w1 ∈ xi, w2 ∈ x2)
approx
∼ Poi(ξ)

with

ξ =

m
∑

i=1

(1 − e−λi

1)(1 − e−λi

2).

A theoretical foundation is given in Reinert and Schbath [5].
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Example - continued

In a concrete application, Marc Riemer Friedländer investigated in his
Master’s Thesis the co-occurrence of miRNA target sites (7 letter words)
in the 3’UTR of mRNA taking

log(λi
w) = βw + βw(0) log n(i) + βw(A) log fA(i) + . . . βw(T) log fT(i)

with fA(i), . . . , fT(i) the relative frequency of nucleotides in sequence i.
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Example - continued

In a concrete application, Marc Riemer Friedländer investigated in his
Master’s Thesis the co-occurrence of miRNA target sites (7 letter words)
in the 3’UTR of mRNA taking

log(λi
w) = βw + βw(0) log n(i) + βw(A) log fA(i) + . . . βw(T) log fT(i)

with fA(i), . . . , fT(i) the relative frequency of nucleotides in sequence i.

Parameters were estimated using Poisson regression with a much better
model fit than the iid sequence model where βw(0) = 1, βw = 0 and

βw(α) = number of times α occurs in word w
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Example - continued

Marc showed that the model gave a distribution of the test statistic R

clearly superior to common distributions based on sequence
shuffling.
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attempt to capture heterogeneity in a single sequence.
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Example - continued

Marc showed that the model gave a distribution of the test statistic R

clearly superior to common distributions based on sequence
shuffling.

The model is based on “global” sequence covariates and does not
attempt to capture heterogeneity in a single sequence.

It would be desirable to use local covariates also like local
(windowed) nucleotide frequencies.

One example is Aalens non-parametric additive hazards model
known from survival analysis.

Another approach include spline-based expansions of position and
position-covariate effects.

– p. 17/22



ENCODE

Illustration from [6] – a statistical analysis of regulatory elements in the
ENCODE regions.
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Intensity based modeling

For a multivariate point-process (N1(t), . . . , Nk(t)) with filtration (Ft)t≥0

and adapted intensity process λ(t) = (λ1(t), . . . , λk(t)) we have

P(Ni(t + ε) − Ni(t) > 0|Ft) ' λi(t)ε
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Intensity based modeling

For a multivariate point-process (N1(t), . . . , Nk(t)) with filtration (Ft)t≥0

and adapted intensity process λ(t) = (λ1(t), . . . , λk(t)) we have

P(Ni(t + ε) − Ni(t) > 0|Ft) ' λi(t)ε

We also have the log-likelihood process

k
∑

i=1

[∫ t

0

log λi(t)Ni(dt) −

∫ t

0

λi(t)dt

]

.
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Intensity based modeling

For a multivariate point-process (N1(t), . . . , Nk(t)) with filtration (Ft)t≥0

and adapted intensity process λ(t) = (λ1(t), . . . , λk(t)) we have

P(Ni(t + ε) − Ni(t) > 0|Ft) ' λi(t)ε

We also have the log-likelihood process

k
∑

i=1

[∫ t

0

log λi(t)Ni(dt) −

∫ t

0

λi(t)dt

]

.

A statistical modeling approach using Hawkes processes was first
attempted by Gaëlle Gusto and Sophie Schbath in [2].
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Hawkes processes

Multivariate point-process (N1, . . . , Nk) with intensity

λi(t) = φ





k
∑

j=1

∫ t

0

hij(t − s)Nj(ds)



 .
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Hawkes processes

Multivariate point-process (N1, . . . , Nk) with intensity

λi(t) = φ





k
∑

j=1

∫ t

0

hij(t − s)Nj(ds)



 .

Lisbeth Carstensen (Ph.D.-student, Copenhagen) has an
implementation fitting two-dimensional Hawkes processes with
spline-based expansions of hij – including additional local sequence
covariates.
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Hawkes processes

Multivariate point-process (N1, . . . , Nk) with intensity

λi(t) = φ





k
∑

j=1

∫ t

0

hij(t − s)Nj(ds)



 .

Lisbeth Carstensen (Ph.D.-student, Copenhagen) has an
implementation fitting two-dimensional Hawkes processes with
spline-based expansions of hij – including additional local sequence
covariates.

Ongoing projects: More then two dimensions, inclusion of a
Cox-process component, superpositions, model selection and
test-statistics for hij = 0.

– p. 20/22



Concluding remarks

Modeling biologically sequences is a multi-scale problem with
sequence motif occurrences being on a meso-genomic scale.
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Concluding remarks

Modeling biologically sequences is a multi-scale problem with
sequence motif occurrences being on a meso-genomic scale.

The micro-genomic scale models based on iid or homogeneous
Markov chain models for sequences have a hard time capturing the
organization of motifs on the meso-genomic scale.

I believe that biologically relevant questions are better addressed with
statistical models directly at the meso-genomic scale.

Thanks for your time and for the invitation ... and thanks to Lisbeth
and Marc and the Bioinformatics Centre in Copenhagen.
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