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Option Replication in Discrete Time
with Transaction Costs

PHELIM P. BOYLE and TON VORST*

ABSTRACT

Option replication is discussed in a discrete-time framework with transaction costs.
The model represents an extension of the Cox-Ross-Rubinstein hinomial option
pricing model to cover the case of proportional transaction costs. The method
proceeds by constructing the appropriate replicating portfolic at each trading
interval. Numerical values of these prices are presented for a range of parameter
valuea. The paper derives a simple Black-Scholes type approximation for the option
prices with transaction costs and demonstrates numerically that it iz quite accurate
for plausible parameter values.

THE BLACK-SCHOLES MODEL ASSUMES perfect frictionless markets. A replicat-
ing portfolio can be constructed consisting of a long position in the risky asset
and a short position in bonds which is equal in value to the price of a call
aption. As time passes, the weights of this portfolio are rebalanced so that it
replicates the payoff of the option contract at maturity. Under perfect market
assumptions thig rebalancing is costless, but if we introduce transaction costs
this is no longer the case. This paper examines the impact of transaction
costs on option prices and option replication.

Several papers have discussed this issue in recent years.! Leland (1985)
used a continuous-time framework and derived a Black-Scholes type approxi-
mation for the aption price in the presence of proportional transaction costs.
He constructs a replicating stock-bond portfolio which (almest) replicates the
value of the option at maturity.

Merton (1990) sets up the problem in a true discrete-time framework and
derives the current option value when there are proportional transaction
costs on the underlying asset. He constructs a portfolio of the risky asset and

*Harry A. Brandt, Visiting Professor, Department of Finance, College of Commerce, Univer-
sity aof Illinocis at Urbana-Champaign, 340 Commerce-West, 1206 South Sixth Street, Cham-
paign, Illinois 61820, and Professor of Mathematical Economics, Econametric Inatitute, Erasmus
University Rotterdam, P.Q. Box 1738, 3000 DR Rotterdam, The Netherlands, respectively. The
authora are grateful to Antoon Pelsser, Jeroen de Munnik, Lijiang Fang, and Ruth Cornale for
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thank the referee for useful comments. P. P. B. acknowledges research support from Erasmus
University, the J. Page R. Wadaworth Chair at the University of Waterlao, and the Natural
Sciences and Engineering Research Council of Canada.

! Gilster and Lee (1984), Leland (1985), Merton (1980), Shen (1990), and Hadges and
Nueberger (1989) have examined this topic.
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riskless bonds that precisely replicates the option value at expiration. The
approach incorporates an allowance for the transaction costs arising from
portfolio rebalancing. Qur approach? is similar to Merton's, but we extend
the analysis to several periods. We also employ a discrete-time framework
and construct the portfolio to replicate a long and short European. call,

We start by obtaining the long call price in a one-period model. This model
is then extended to several periods and we develop a recursive procedure
to obtain the replicating portfolio for the long call price. The procedure
for obtaining the short call price is similar but not identical. The zero-
transaction costs option values lie between the short call price and the long
call price, as we would expect. Furthermore, as the transaction costs tend to
zero, these prices converge to the Cox-Ross-Rubinstein option prices. We
derive a closed-form expression for the long call price when there is a large
number of revision times. In this case, the long call price can be approxi-
mated by the ordinary Black-Scholes formula with an adjusted variance. Qur
variance adjustment is similar to, but larger than, that derived by Leland
(1985). We derive an analogous approximation for the short call price.

The layout of the present paper is as follows. In Section I we construct the
replicating portfolio for a long call position when there are several periods.
Section II derives an analytical expression for the long call price in the
presence of transaction costs. Section III develops some convenient approxi-
mations and derives a Black-Scholes type expression for the long call price.
In Section IV we construct the replicating portfolio for a short call position.
We explore the numerical properties of these prices in Section V. Section VI
concludes the paper,

I. Option Replication in Discrete Time with Transaction Costs

We use no-arbitrage arguments to establish the cost of creating a long
European call option by dynamic hedging when there are transaction costs.
In the two-period case our maodel reduces to that obtained by Merton (1990)
when allowance is made for differences in notation and convention. We use
the multiplicative binomial lattice employed by Cox, Ross, and Rubinstein
(1979) for the asset price

Su?
Sz

< Sud

\/\

/

Sa?

2 Shen (1990) also employs a discrete-time framework to study the impact of transactian costs
on aption prices. His approach is similar to ours.
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where we assume that u > R > d, with R equal to one plus the one-period
riskless rate. A dynamic hedging strategy is employed to replicate the payoff
to a European call option. The replicating portfolio will be constructed
backward from the maturity date, i.e., if we know the portfolio at the points
Su and Sd in the above diagram we will construct the portfolio at the point
5. In order to take the transaction costs into account it is not enough to know
the value of the replicating portfolio at each node; we also have to know how
much is invested in the risky asset and how much is borrowed. The symbol A
denotes the number of shares and B denotes the number of bonds. The
following diagram gives the A’s and B’s at each node:

Ay, By
Ay, By
A,B/ \Aé,B4
\AZ: B,
Ag, B;

To introduce transaction costs, assume that proportional transaction costs are
incurred when shares of the risky asset are traded.? Let k be the transaction
costs rate measured as a fraction of the amount traded. We must. select A and
B so that the portfolio (A, B;) can be bought if the up-state Su occurs and
(Ay, By) can be bought if the down-state Sd occurs. This leads to the
following two equations:

ASu+BR =ASu+ B +k|A-A|Su (1)
ASd + BR=A,8d+ B, + k|A— A,|Sd (2)

Equation. (1) indicates that the value of the portfolio in the up-state is exactly
enough to buy the appropriate replicating portfolio corresponding to this
state and to cover the transaction costs incurred in the rebalancing, Equation
(2) has a similar interpretation for the down-state. Since we don't know
whether a sale or purchase of the risky asset will be involved, we use the
absolute value of A — A, and A — A,. Equations (1) and (2) are two nonlinear
equations in A and B, and it is not obvious whether a unique solution exists.

Theorem 1: In the construction of a long European call option by dynamic
hedging, equations (1) and (2) have a unique solution (A, B). Furthermore for
this solution the following inequality holds:

A, = A=A, (3)

3 Proportional transactions costs on bonds can also be incarparated. However, the mode]
hecomes much more complicated without providing new insights.
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This theorem enables us to rewrite equations (1) and (2) in the following form

ASZ + BR = A, Su + B, (4)
ASd + BR = A,8d + B, (5)

where
Z=u(l+k) and d=d(1 - k). (6)

Theorem 1 reduces the nonlinear equations to linear omes, which can be
readily solved. These equations form the basis of an iterative procedure
which can be used to obtain the compaosition of the replicating portfolio at
inception. By working backward from the boundary we can compute the
explicit portfolio weights at each node of the lattice. This procedure makes
appropriate adjustment for transaction costs. We use this procedure in Sec-
tion V to compute numerical values of the long call prices.

If we replace & by u and d by d in equations (4) and (5) we have the
familiar equations for discrete-time option pricing without transaction costs.
Hence, one might be tempted to calculate the current portfolio value with
transaction costs by replacing u by Z and d by d in the standard formula for
the option price C (see Cox, Ross, and Rubinstein (1979) formula (8)). This is
incorrect since the right-hand sides of equations (4) and (58) no longer repre-
sent the values of the call in the up-state and the down-state, as in the
no-transaction cost case. The actual value of the call in the up-state is
A,Su + B, instead of A,S% + B, and similarly for the down-state.

We assume that the institution (or intermediary) creating the replicating
portfolio does not have to buy the initial amount of the risky asset (A).
Hence, we just take account of the additional transaction costs necessary to
maintain the replicating portfolio. We assume that the replicating portfolio
at option expiration for an in-the-money call option consists of one unit of the
risky asset and a short position in riskless honds equal to the exercise price.
Qur conventions correspond to those employed by Leland (1985) rather than
Merton (1989).

II. The Replicating Porifolio as a Discounted Expectation

The value of a European call option without transactions costs can be
expressed as a discounted expectation of the maturity value of the option,
assuming that the risky asset price follows a certain risk-neutral binomial
process. We will derive an analogous expected value formulation for the
value of the replicating portfolio with transaction costs. From (4), (5), and (6)
it follows for a two-period model

CAS 4B B[(1 + k)A,Su + B,] + (;;:_ p)[(1 - k)A,Sd + B,| e

where ( is the current value of the portfolio that exactly replicates the payoff
to a long European call position (with transaction costs). This can be further
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simplified to
C=AS8+B=[pp{(1+k)ASu® + By}
+p(1 - p,}{{(1 — k)A,Sud + B}
+(1 - p)pa{(1 + k)A,Sud + B}

+(1 - p}(1 - p){(1 - k)A;8d? + B;}|/R?,  (8)
where

_ _B(l+k)-d
Py, = (E—g)

It immediately follows that 0 < p, < p, < 1.

From (8) we see that the right-hand side can be interpreted as a discounted
expectation. This gives rise to a new process, which we call the adjusted
process and which differs from both the original asset price process and the
risk-neutral price process. Under the adjusted process the probability of a
particular state depends on whether the previous jump was upward or
downward. After an up-jump the probability of another up-jump is p, while
Jjust after a down-jump the probability of another up-jump is p,.

After a down-jump the probability of another down-jump is larger than in
case of a preceding up-jump. This process can be formalized as follows: Let

R(1-k}-d
(z-d)

and p, =

X,, X,, X,,..., X, be a Markov process with two states and values log, u
and log ,d. The transition matrix is given by:
= I_Ju, ﬁd

P= — _ 9

( 1- Py 1- pd) ( )

The first column of P represents the probability distribution of X ey if
X; = log, u and the second column represents the probability distribution if
X, =log, d. The initial distribution for X, is given by p=(p,(1 - p)T

(¥ means the transposed vector). The following theorem can be proved by an
induction argument.

Theorem 2: The current cost of creating a long European call option in the
presence of proportional transaction costs can be expressed as follows:

oo E[((1 + }?nk)f‘;:: - K) gy k] ’ (10)

where n is the number of periods to option expiration,

Y=Y X, and X,=1 ifX,=log,u and X,=-1 if X, =1log,d
i=1

and the expectation is with respect to the adjusted process,

Apart from the X,k factor, the portfolio value is the discounted expecta-
tion of the value at maturity. However, in this case the expectation iz based
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on a different stochastic process from that used in the no-transaction cost
case. To obtain the corresponding formula for the standard no-transaction
costs case we put k = 0. The transition matrix, P now will have identical
columns reflecting the fact that the distribution of X;,, no longer depends
on X,. In this case we are back to the familiar binomial process. Expression
(10) also shows us that the cost of replicating a long call position with
transaction costs is greater than the cost of replicating a call without
transaction costs, Since after an up-jump the possibility of another up-jump is
larger, there is a higher probhability of a whole sequence of up-jumps leading
to a higher probability for the high value of ¥. The same holds for downward
moves leading to a higher probability for low wvalues of Y. Hence, the
variance of Y is larger than the corresponding variance in the case of a call
without transaction costs. The higher variance leads, in turn, to a higher
price.
It is convenient to define the constants and tnatrices:

e:ﬁ?ir A=(_iﬁL—n and P=(1fﬁyLn (11)

we have the following matrix identity:

[ B+¢# B8
“\1-p-6 1-p+¢8

"ol

=P+0A (12)
|

The difference hetween our stochastic Markov process and a process with
independent increments is given by the matrix § A. With & = 0, # equals zero
and we are back to the no transaction costs case.

III. An Approximation for the Long Call Option Price with
Transaction Costs when the Number of Periods is Large

For numerical computations of the long call portfolio it is convenient to use
the recursive formulae: Equations (4) and (5). Equation (10) is less useful for
practical computations. However, it can be used to develop a Black-Scholes
type approximation to the long call price when there are transaction costs.
We now sketch the derivation of this approximation.

We will use the standard binomial tree as in Cox and Rubinstein (1985)
with parameters u, d, and R* given by

u=e™t d=e ™ R=¢* (13)

where h = T/r, ¢ is the volatility of the risky asset, and r is the riskless
continuous interest rate. We agsume that the time to maturity of the option,
T, is one year.

*Clearly the parameters n, d, and R depend on n. We suppress this dependence for
convenience.
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If we consider the Markov process described in the previous section, we
have the following result.

Lemma 1: The variance of the random variable Y of Theorem 2 has the
following behauvior for large n and small k

Var(Y) = a2(1 + O(k?) + [? + O(k*“’)} x/ﬁ) + O(“\/l_n) (14)

This result is proved in the Appendix.

The next step is to establish that the asset price process is risk-neutral
under the new Markov process. To do this we compute an expression for the
expected value of ¥ in Lemma 2.

Lemma 2: The expected value of the random variable Y of Theorem 2 has the
following behavior for large n and small k:

1 1
E(Y)=r- E[Var(Y)] + O(.ﬁ) + O(k?%) (15)
where Var(Y) is given by equation (14). This lemma is proved in the Appendix.

Lemma 3: For large n and small k we have the following result for the random
variable X k-

E(X,k) = —k{k+ O(1/Vn)} (16)

Cov(X,k,Y) = 4k* + O(1/Vn) (17)

The proof of this lemma is similar to the proofs of the other two lemmas
and is omitted.

It follows from Lemma 3 that the factor X k in (10) can be neglected for
large n and small k. Hence, (10) can be approximated hy

C = E[(SQY —RIE)ISeﬁ‘aK] . (18)

For large n the distribution of the random variable Y tends® to the normal
distribution with mean and variance given by Lemmas 1 and 2. Hence, the
distribution of the stock price tends to the corresponding lognormal distribu-
tion. We can use the standard Black-Scholes methodology to compute expres-
sion (18). This leads to the following theorem.

Theorem 3: For large n and small k the initial value of the hedge portfolio
under a dynamic strategy that replicates a call option at the maturity date end
is self-financing inclusive of transaction costs, is approximately equal to the

5 5ee Billingsley (1979), Example 25.5 and Thearem 27.5, for the justification of using this
limit.
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Black-Scholes value but with modified variance given by

02(1 + Qk\/n)

ayT

where T is the time to aption maturity.

Theorem 3 provides a very convenient method to compute the long call
price. As noted above we will illustrate the accuracy of the approximation
formula in Section V.

IV. The Short Call Option Price

We now investigate® the replication of a short call in the presence of
proportional transaction costs, To obtain the short call value we compute the
cost of creating a self-financing replicating portfolio which has exactly the
same value at expiration as a short position in a European call. The dynamic
hedging strategy takes account of the transaction costs incurred at each
trading date. The method is similar to that used to derive the long eall value
but there are some technical differences.

First consider a one-period model. Since we are replicating a short position
in a call option the replicating portfolio at expiration will consist of a short
position in the risky asset plus a lang position in the riskless asset (or else
zero shares of each security). If the call is in the money at expiration the
value of the replicating portfolio at expiration will be negative. The replicat-
ing portfolio at the start of the period also involves a short position in the
risky security. The recursive equations for the replicating portfolio which has
a payoff equal to the short position in the call option are exactly the same as
(1) and (2). One difference is that the sign of the holdings in the risky asset is
now negative (or zero) on the boundary. Corresponding to Theorem 1 we
have:

Theorem 4: In the construction of a short call position by dynamic hedging
there is a unique solution (A, B) to equations (1) and (2) if

u(l — k) = R(1 + k) (20)
and

d(l + k) = R(1 — k) (21)
Furthermore, the A corresponding to the unique solution always lies in the

interval (Ay, Ay) if none of the terminal stock prices in the tree lies in the
interval [K /(1 + k), K /(1 — k).

& We are grateful to Fischer Black for suggesting we examine this issue.
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The proof is given in the Appendix. Conditions (20) and (21) imply
u(l — k)® > d(1 + &) (22)

from which it follows that w(l — k) = d(1 + k). In fact we will show that
there exists a unique solution if this last condition is satisfied. However, we
will still impose (20) and (21) since, as will be shown in the Appendix, they
are necessary for proving that A, < A < A,. Furthermore, if (20) and (21) are
not satisfied there will be a strategy that dominates the replicating strategy.

The final condition in Theorem 4 is necessary to rule out certain pathologi-
cal cases, as will be explained in the proof, but it is not of great cansequence.
As long as (20) and (21) are satisfied it follows from (22) that the distance on
a logarithmic scale of two adjacent final stock prices is at least 2[In(1 + k) —
In{l - %)] while the interval has only a logarithmic length of [In{1 + k) —
In(1l — %)]. Hence in at least 50% of the cases the condition will be satisfied
and if we fix S and K and vary n the condition will be satisfted for at least
every second n as long as (20} and (21) hold. If this condition is not satisfied
the value of a replicating short position always can be calculated directly
using equations (1) and (2).

If the conditions are met and »n is large we can use the method of the
previous section to show that the value of replicating a short call can be
approximated by a Black-Scholes formula with a modified variance given by

o*(1 - 2kvn /oVT) (23)

i.e., we replace k by —k. Since the option price is continuous in K, this is
also a good approximation if the final stock price condition is not met.
However, conditions (20) and (21) are essential for the approximation to be
valid as we will now explain. Equation (22) states that u(1 — k)% > d(1 + k)%
Hence by taking logarithmics and substituting the expressions for © and d
we find that this is equivalent to

ovh +2In{t — k) > —avh + 2In(l + &) (24)
which, for small k, is approximately equivalent to 20 VA > 4k, i.e.,
a*(1 - 2kvn/aV/T) >0

Thus, if (20} and (21) are not satisfied the approximation might well lead to a
negative modified variance.

V. Numerieal Caleulations

In this section we compute short and long call option prices for a range of
parameter values.” In addition to illustrating the comparative statistics,
these computations form a basis for comparison with the approximation we
introduced earlier. For all our simulations, we take the current price of the

" Our parameter values corvespond to those assumed hy Leland.
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risky asset to be 100, the time to option expiry one year, and the (effective)
interest rate to be 10% p.a. For our base case assumptions the standard
deviation of the return on the risky asset is 20% p.a. We examine the
sensitivity of the option prices to the strike price and the transaction cost
rate. The zero transaction cost case corresponds to the Cox-Ross-Rubinstein
case and is used as a benchmark.

Our approach is to present the results for the long call case first, Table I
provides the long call values for a range of transaction cost and strike price
assumptions. The first panel, corresponding to & = 0, contains the zero-
transaction costs henchmark prices. As we would expect the influence of the
transaction costs increases with the frequency of trading and also with the
magnitude of the costs. As the strike price increases, the size of the spread®
caused by transaction costs increases, reaches a maximum, and then de-
creases. The long call spread is highest when the current asset price is equal
to the discounted strike price. This corresponds to the case when the option’s
time value is highest. In a discrete-time model we can see the intuition
behind this result. Cansider a call which is very deep in the money so that
there is no chance it will mature out of the money. The dynamic replicating
portfolio in this case is certain to consist of a long position in the underlying
asset and a short position in the discounted strike price. If this portfolio is
maintained throughout the lattice there will be no transactions required. At
the other extreme, consider an option which is so far out of the money that
there is zero chance that it will end up in the money. In this case the option
value at expiration will be zero so that the hedge portfolio is degenerate
consisting of no risky asset and no bonds. To maintain such a portfolio
throughout the lattice costs nothing and so transaction costs have no impact
on the call’s price (of zero). As the strike price moves away from either of
these extremes the importance of transaction costs increases, reaching a
maximum when the option’s time value attains its maximum.

In Table II we compare the long call prices generated by our exact discrete
model to the continuous-time approximation given in Theorem 3. We see that
the approximation formula is very accurate and that the accuracy increases
as the number of trading intervals increases. Recall that our maintained
agsumption is that the true asset return process follows a multiplicative
hinomial process as in Cox-Ross-Rubinstein.

In Table III we compare the long call prices produced by our exact discrete-
time model with those of Leland for corresponding parameter values. In
Leland’s approach the dynamie portfolio strategy is not self-financing, since
he uses a continuous model with discrete revision times. In our discrete
approach the replicating portfolio is self-financing and therefore more costly.
(It produces higher option values.) Since both Leland’s formula and our
approximation are of the Black-Scholes type with an adjusted variance and
since our approximation is very accurate (according to the previous table),

® The spread is the difference between the option price with transaction costs and the price
with no transaction costs.
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Table [

European Long Call Prices
Long call prices are computed in a discrete-time setting using the recursive procedure based on
equations

ASz + BR =482+ B, (4)
ASd + BR = A,8d + B, (5)
g=u(l+k) and d=d(1 - k) (6)

where 4 is the number of shares of stock in the initial period and A, represents the number of
shares next period in the up-state and A, corresponds to the down-state. The corresponding
holdings of riskless honds are B, B, and B,. One plus the one-period risklesa interest rate is
denoted by R; u is the one-period stock return in the up-state; & is the one-period stock return in
the down-state; and & is the transaction cost rate on stocks.

Parameters: asset price = 100, standard deviation = 20% p.a., time to expiry = 1 year, inter-
est rate = 10% p.a. effective.

Number of Revision Times (n)

Strike Price 6 13 52 250
k=0%
211] 27703 27.701 27 665 27.875
90 19.821 19.740 19.667 19.674
100 12.655 13.093 12.953 12.984
114 §.129 8.026 7.972 7.965
120 4.216 4.427 4.548 4. 861
k=0.125%
840 27.7358 27.747 27.753 27 878
90 19.894 19.842 19.865 20.103
1040 12.770 13.248 13.256 13.630
110 8.254 8.205 8,824 B8.715
120 4 329 4 595 4 882 5.269
k= 0.5%
80 27.837 27.894 28.047 28.574
a0 20.113 20.149 20.453 21.346
100 13.106 13.699 14.111 15,339
110 R&18 8.721 9.300 10.649
120 4.663 5.084 5.820 7.161
k=2%
80 28,297 28 563 29.409 31.568
a0 20.983 21.346 22.643 2h.524
100 14.358 15.533 16.966 20.413
110 9.965 10.555 12.469 16.192
120 5.926 6.859 8.950 12.750

our higher option values should be confirmed by the adjusted variance.
Indeed, the two expressions for the variance are very similar, but where
Leland has a factor of +/(2/7) we have unity. Since /(2/7) = 0.8 our
model leads to higher option values than Leland’s.

The comparative statistics for the short call case are very similar to those
for the long call case. Table IV provides short call values for the same set of
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Table I1

Comparison of Accurate Long Call Prices Based on Our
Discrete-Time Model with the Black-Scholes Type
Approximation

Accurate long call prices { BV) with transaction costs are computed using the recursive proce-
dure based on equations

AST + BR = 4,85 + B, (4)
ASd + BR = 8,8d + B, (5)
E=u{l+4k) and d=d(L- k) (8)

where A is the number of shares of stock in the initial period, A, represents the numher of
shares next period in the up-state, and A, corresponds to the down-state. The corresponding
holdings of viskless bonds are B, B, and B,. One plus the one-period riskless interest rate is
denoted by R; u is the one-period stock return in the up-state; d is the ane-periad stack return in
the down-state; and & ia the transaction cost rate on stacks.

The Black-Scholes approximation (A} uses the modified variance given hy

2kJyn
211+ ) 19
o (e (19)
Parameters: asset price = 104, standard deviation = 20% p.a., time to expiry = 1 year, inter-

eat rate = 10% p.a. effective, BV = our discrete model, A = approximation value, AD = ahsolute
difference.

Number of Revision Times (n)

Strike 8 6 6 a2 a2 a2 250 250 250
Price RV A AD BV A AD RV A AD
k= 0%

84 27703 27675 0.028 27665 27675 0.010 27675 26675 0.000
a0 19821 19.675 0.147 19667 19675 0.008 19674 196756 0.000
100 12,6855 12993 0338 12,953 12993 0.040 12984 12993 0.008

110 4.129 7966 0.164 7.972 7.966 0.006 7.965 7.966 0.000
120 4.216 4.8656 0.939 4.548 4.566  0.007 4.561 465856 0.004
k= 0.125%

aa 27735 27705 0031 27753 27764 (.010 27.876 27.878 0.000
80 19.894 18.741 01563 19865 19.870 0.006 20.103 20.102 0.001
100 12770 13.086 0.326 18.266 13.202 0.036 13.630 13.636 0.006
110 8.254 8.086 0.167 8.324 83816 0.008 8.716 8.714 0.001
120 4.329 4,670 0.341 4.882 4 888 0.007 5.269 5.272 0.004
h=05%
80 27.837 27.797 0.040 28.047 28.056 0.009 28574 28572 0.002
80 20,113 12940 0173 20453 20.451 0002 21.346 21.342 0.004
100 13.106 12.397 0.291 14111 14135 0.023 15.339 15340 0.001

110 8.618 8438 0.180 9.300 9286 0.014 10.649 10645 Q.004
120 4.663 5.006 0.343 9.820 5.826 0.006 7.161 7.162  0.002
k=2%

80 28.297 28207 0080 29409 29.398 0.011 351.568 31.549 0.019
90 20,983 20724 0.260 22643 22603 0.040 25524 25488 0.026
100 14,368 14513 0.155 16966 16941 0.0256 20413 20.389 0024
110 9.965 9714 0250 12.469 12,418 0.060 16.192 16166 0.026
120 5.926 6.246 0.320 8.950 8933 0017 12750 12.733 0.017
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Tabhle I1I

Comparison of Long Call Prices Generated by Our
Discrete-Time Model and Those Obtained from Leland’s Model

Long call prices (BV) are computed using the recursive procedure based on equations

ASE + BR = 4,8 + By (4)
ASd + BR = 8,58 + B, (5)
Z=u(l+k) and d=4d(1 - k) (6)

where A is the number of shares of stocl in the initial period, A, represents the number of
shares next period in the up-state, and 4, corresponds to the down-state. The corresponding
holdings of viskless honds are B, B, and B,. One plus the one-period riskless interest rate is
denoted by R; u is the one-period stack return in the up-state; d is the one-period stock return in
the down-state; and % is the transaction cost vate on stocks,
Leland’s modified variance is:
. 2(1 . 2k\f2n)

afzT

Parameters: asset price = 100, standard deviation = 20% p.a., time to expiry = 1 year, inter-
est rate = 10% p.a. effective, L = via Leland’s modification, BV = our discrete model, AD =
ahsolute difference.

Number of Revision Times (n)

é 6 6 52 52 52
Strike Price L BV AD L BV AD
k=0%
80 27.875 27.703 0.028 27.675 27.665 0.010
90 19.675 19.821 0.147 19.675 19.667 0.008
100 12,993 12.6558 0.338 12.993 12.953 0.040
110 7.968 8.129 0.164 7.966 7.972 0.004
120 4.655 4.214 0.339 4.555 4.548 a.007
k= 0.125%
80 27.698 27.735 0.037 27.745 27.753 0.008
a0 19.728 19.894 0.167 19.831 19 865 0.034
100 13.074 12.770 0.30b 13.232 13.256 0.024
110 8.062 #.254 0.192 8.246 5.324 0.077
120 4,647 4.329 0.318 4.822 4.882 0.060
k=105%
80 27.771 27.837 0.066 27.974 28.047 0.073
30 19.887 20.113 0.227 20,206 20.453 0.157
100 13.317 13.108 0.210 13.915 14.111 0.196
110 8.344 #.618 0.274 9.035 9.300 0.265
120 4916 4.663 0.254 5.582 5.820 0.238
k=2%
a0 28.091 28.297 0.208 29.026 28.409 0.383
90 20.5156 20.983 0.468 22.052 22.643 0.692
100 14.225 14.358 0.133 16.253 16.266 0.714
110 9.388 9.965 0.577 11.659 12.469 0.809

120 5.926 5.926 0.000 8.172 8.950 0.778
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Table IV

European Short Call Option Prices
Short. call prices are computed in discrete time setting using the recursive procedure hased on
equations

ASu+ BR =A8Su+ B, +k|A-ASu (1)
ASd + BR = 8,84 + By + k| A — Ay | Sd (2)

where A is the number of shares of stack in the initial period, 4, represents the number of
shares next period in the up-state, and A, corresponds to the down-state. The carrespanding
holdings of riskless honds are B, B, and B,. One plus the one-period riskless interest rate is
denated by R; « is the one-period stock return in the up-state; d is the one-period stock return in
the down-state; and k is the transaction cost rate on stocks.

Parameters: asset price = 100, standard deviation = 20% p.a., time to expiry = 1 year, inter-
ast vate = 10% p.a. effective.

Number of Revision Times {n)

Strike Price 8 13 52 2560
k= 0%
aa 27.703 27.701 27.665 27.674
90 19.821 19.740 19.6467 19.674
100 12.655 13.093 12.953 12.984
110 8.129 8.026 7.972 7.965
120 4.214 4.427 4,548 4.5651
h=0.1256%
80 27.671 27.658 27,682 27.502
a0 19.74% 19.638 19.469 19.248
100 12,538 12.935 12.687 12.286
110 $.003 7.843 7.604 7.136
120 4.102 4.2568 4.202 3.773
k=0.5%
80 27.682 27.534 27.383 27.273
90 20.531 19.333 18.889 18.221
100 13.168 12.445 11.5697 9.654
110 7.614 7.269 6.374 3.6847
120 3.754 3.726 3.077 0.879
k= 2%
80 27.327 27.274 * *
90 18.697 18.281 * ¥
100 10.323 10.115 # *
110 5.845 4.311 * *
120 2.266 1.268 * *

* Signifies that inequality {25) or (26) is violated for these parameter values.

parameters as Table I. The short call spread inereases with the frequency of
trading and also with the size of the transaction costs. However, for certain
parameter combinations the necessary conditions for the validity of the first
part of Theorem 4 are violated and we cannot use our recursive procedure to
compute the short call prices. These combinations are denoted with an
asterisk in Table IV.
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V1. Conclusions

This paper derived a procedure for computing option prices in a diserete-
time model when there are proportional transaction costs. The long call price
corresponds to the current value of a portfolio which exactly replicates the
payoff to a long call. The corresponding short call price can be estabhlished by
finding the cost of replicating a short call position. We explored the numeri-
cal values of these prices and concluded that the impact of transaction costs
can be substantial expecially if the number of revision times is large. While
our analysis just dealt with European call options it can be extended to cover
European put options. We could derive the corresponding recursive equations
for the put case and develop an algorithm for the multi-period case. It is more
convenient to derive the put values from put-call parity.

We also demonstrated that the long call price can be expressed as a
discounted expectation under a new Markov process. This leads to an approx-
imation for the long call price in terms of a modified Black-Scholes formula.
This modification invoelves increasing the variance as described in Theorem
3. The accuracy of the approximation increases with the number of trading
intervals. We noted some interesting asymmetries between the properties of
the long call price and the short call price.

Qur approach assumes that the frequency of transactions is specified
exogenously. To derive the prices we have assumed that the replication is
exact and that there will be no hedging errors at maturity. To ensure this,
trading occurs at each trading date. Risk-averse economic agents would be
willing to tolerate less than perfect hedging for a reduction in transaction
costs. This leads to the possibility of determining the transaction frequency
endogenously and some progress in this direction has been made in recent
papers.

It is clear from our results that market-makers should hoth buy and sell
calls at the same time. If they just sell call options they should charge higher
prices to their clients in order to be able to hedge properly. However, this
paper suggests why options with the same maturity but different exercise
prices have different implied volatilities. For example, out of the money puts
often have a higher implied volatility than at the money puts with the same
maturity date, This can be due to the fact that there is a strong demand from
customers for the out of the money puts. Hence market-makers have a
net-gselling position and should hedge.

Appendix

Proof, Theorem 19: We prove Theorem 1 by backward induction. By indue-
tion we may assume that A, = A, = A; and A, < A, < A,. Thus A, < A,.
Subtracting (2) from (1), transferring everything to the right-hand side, and

9 We would like to thank Stuart Turnbull for shortening the original proof of Theorem 1.
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introducing the function f(A) we get
f(A)=AS(u—d) — A,Su + A,8d -~ B, + B,
—k|A-A|Su+k|a—-A,]8d=0 (Al)

The function f(A) is continuous and piecewise linear; i.e., it is a linear
function on (— o, A,), (A,, A,) and (A,, ) with constant derivatives on each
interval with values [(1 + k)u — (1 + k)d]S, [(1 + k)u — (1 — R)d]S and
(L — k)u — (1 — k)18, respectively. Since all of these numbers are strictly
positive, f(A) is a monotonically increasing piecewise linear function. Hence,
it has a unique zero. This proves the first claim of Theorem 1. For the second
part it is enough to show that

f(a;) =0 and f(Aa)=0 (A2)

since this implies that Ae[A,, A|]. Now
flag) = (4, - A)Su(l + k) - B, + B, (A3)
f(a,) = (8, — 4,)8Sd(1 - k) - B, + B, (A4)

Since by induction A, = A, < A;, we know that one of the equations from
which A; has been deduced reads as follows:

A Sud + B/R = A,Sud + B, + k{A; — A,)Sud. (A5)
Similarly, since A; = A, < A, we have:
Ay,Sud + ByR = A, Sdu + B, + k(A — A,)Sdu. (A6)
Subtracting (A5) from (A6) and dividing by R gives
(A ~ A;)Sdu/R + B, — B, = k[(A, — A,) — (4, - A,)]Sdu/R. (A7)
Using this we can derive
f(4g) = (43— A)Su(l + k) - B, + B,
=ki(a, - 4,) - (&, - A,)]Sdu/R + k(A, — A)Sdu/R
= 2k(A, — A,)Sdu/R < 0. (A8)

Similarly f(A,) = 0 and thus we have proved (A2).

To start the induction we consider the option at maturity. At maturity
there are two possible portfolios: A =1 and B = - K, if the asset price is
above the exercise price and A = 0 and B = 0, otherwise, Hence, at maturity
we always have A; = A, in the notation of this appendix. One period before
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maturity there are three different cases. First, A, = A, = 1 in which case
A=A, and B = — K /R is the unique solution, which indeed has A, = A <
A,. Becond, A, = A, =0, in which case A=0 and B =0 is the unique
solution which indeed has A, = A < A,. Finally, A, = 1, A, = 0. In this case
the unique solution is

(Sz - K)
T (sm-8d)

Hence, A, = 0 < A <« 1 = A;. This completes the first step of the induction
proof.,

Proof, Lemma 1: To calculate the variance of Y we firat introduce the

vector vT = (log,ulog,d). It follows from properties of transition matrices
like P that:

EX, = vTP"1p (A9)

—.flog, u 0 -
X .= TPl o Pi-1p Al0
EX;XH-J v P( 0 loged) i) ( )

Hence,

— pTﬁj[(logeu 0 ) _ .P-"‘lﬁvT}ﬁ‘l_l,ﬁ (A11)

0 log, d
Since
log, u 0 T
(1,1)[( 0 log d) - P lva} =0 (A12)

and PA = 0 we can reduce (All) to

(1o 0 . =, .
IJ'T(GA)J[( %eu log d) _P;—lﬁpT}Pz—lﬁ=6J2J—1(10geu_]_Oge d)

1 0 —. -
(1, _1){( O%gu log d) _ P;—lﬁpT}Pr.—lﬁ‘ (Alg)

If we denate P'"'p = (p, 1 — p,)7, we find that

Cov(X,, X,,;} = p,(1 — p;)0/2/(log, u - log, d)? (Al4)
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To caleulate Var(Y) = Var()_ X)) we simply have to add all the covari-
ances, i.e., 3 Var(X)+ 2> > Cov(X;, X,,;). We thus find as the total
variance

i+F

(log, u — log, d)?

épf(l - Pi)[2§:(26)j - 1”

n 1 - (28 n—i+1
_ (log, - log, dY 3= pu1 - p {2 2B} )| (ans)
i=1 1-248
Furthermore,
— i—1 i-1 — ;
Ptp= (P 4) " p= 3 (04) P p= S (04 b+ 5
J=0 i=1
i-1 1
= Zow—l(2g-1)( 1)+ﬁ
= -
1 - (26)"
=9((7)(2— 11)+,6 (A16)
where we have used that PA = 0 and Pp = ﬁ. Hence,
1-(26)7"
1-p)=1p+0|———F"—|(2Pp-1
p(1 - p;) (p Y )( p ))
1 - (26)7"
q1-p—-6|l————2p-1 Al7
(p(l_%)(p)()

Substituting (A17) in (Al5) and simplifying the resulting expression leads
tolﬂ

7-0 )(1_5—6)(1+26]_ 2(25—1)29(26)1

| ~ log, d)’
(log, u — log, )[n[(l_ze 1-26 1 - 268 (1-26)°

+(1ﬁ—_269 )(11_-52_98 )(1_—4‘20)(11_—(2296)?1)
CEERY
(1-26)"

{6 +0% - 0(20)" - 92(23)2")}. (A18)

10 A detailed derivation is available from the authars.
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To prave Lemma 1 we remark that

4 2
(log, u - log, d)? = — (A19)

n

The next step is to examine each of the terms in expression (Al3) to
determine their dependence on n. In expression (A18) the major contribution
will arise from the first term in square brackets:

p—# e/ — T V(L — k) — ek
1-26 e/ (1+k)—e (1 —k)-2e/"

(L—R)1+r/n+0(1/n?)] - (1 - k)1 - a/Vn +0*/2n+ O(1/nVn)]
(L+k)[1+¢/Vn +a2/2n+0(1/nvn)] — (1 - &)
(1 -a/Vn + 0?20+ O(1/nvVn})| - 2k[1 + r/n + O(1/n%)]
_ (1-kyo/vVn + (1 —Rk)(r-0c%/2)/n+ O(1/nvn)
2a/vVn - 2k(r - ¢?/2)/n + O(1/nVn)

_ ((1—&)) 1+ (r-a%/2)/avn + O(1/n)
- 2 1 - k(r - a%/2)/ovn + O(1/n)
_ (1_;5){1 v (L4 B)r = a2/2)/ovn + O(1/n)) (A20)

which, if less precision is required, can be written as:

(S5} + oarvay

In a similar way one can derive:

1-p-8 (1+k

1- 29 2 ){1‘ (1 - k)(r - ¢*/2)/avn + O(1/n)}

or, (1 ; k){l + 0(1/vn)} (A21)

1+ 26
1-28

= Vn{2k/a+ (1 + 2k%(r — ¢?/2)/0*)/Vn + O(1/n)},
or Vn{2k/oc+ O(1/Vn}} (A22)
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0
g = Vrlk/20+ 001/ Vn)] (A23)
Tl Vnlk/a+ O(1/Vn)], (A24)
2p-1 (1+ &)1 - k) (r - o%/2)
Y = —k+ — +0(1/n)

or —k+O(1/v/n). (A25)

2"k e"
e V(L + k) — (1 - k)e2e/v)"

|(26)" =

(A26)

The expression on the right-hand side of (A26) can be shown to be less than
ere—[cr+loge(1+o.')]\/i’

where
a=(1-k)o(l - qg)/k.

From this last inequality we see that we can skip all terms with a factor
(20)" in expression (A18) if we want to calculate the limit behavior of (A18)
for n — oo. Substituting (A20)-(A25) in what remains of (A18) and using
alternatives in (A20)-(A22) depending on the required precision we derive

44° 1 - k2
" {n( 1 )\/n(2k/a+ 1/vVn + 6k%(r — 0%/2)/0%V/n + O(1/n))
32 2
+(J£)2{-(1 e +o(1/¢z)}

+(v€)2{j—i+0(1/\/r?)”

=o’Vn(1 - k%) (2k/a + [1 + 6R%(r — 02/2)/0? - 2R%/4?
+3k%/(1 - ?)e?®]/Vn + O(1/n))
2k 1
2\02(1 + O(kz) + [? + O(k3)} \/E) + O(W)
This completes the proof of the Lemma 1.,

Proof, Lemma 2: We use the same type of approach here as was used in
establishing Lemma 1. From equation (A9) and the definition of E(Y) we
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have

E(Y) - 30 TP e i»ﬂ"{e(—l o Jar-u( L) e

L |

i=1 i=1 1 - 28 -1
no {1 (26)7"
= (log, u — log,d) > @ ——(-)7 (2p - 1)
i=1 1-2¢

Z[ log, u + (1 - p)log, d]

né(2p — 1)
- —log, d)——~ 1 _ — log, d
(log, u — log, d) ———~ (log, u — log, d)
8(2p - 1)\ {1 - (26)"
| 51 1 - p)log, d
( Y] )( g | TP og,u + n(l — p)log,
2p -1 25 -1
— 2 _—
(1—26) (1—2@)(1—29)+ aVnp—ovn
- 1- 26 1-26/11-26

(?p_'za )(1 -20)
=(21 219 )“ " (1—26](?—_2;)
(- Z )

(—k+ (1_'&?5;__ ), 0( )]{Jﬁ—k+0(%)]

a? 1
=_ka\/5+k2+(1—k2)(r—? +O(ﬁ)
=»-—0—2 + 2kVn + k2 1—r+0—2 +O(i)

a 2 vn
=;1'~—1Var(Y)+4‘z2 1—11"+J—2 +O(i)—0(k2),
2 2 Vn
where we have used the results of Lemma 1. Hence
E(Y)=r- %Var(Y} + O(R?) + O(%)

This completes the proof of Lemma 2.
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Proof, Theorem 4: The proof of Theorem 4 is similar to that of Theorem 1.
We still have the function:
fla)y =AS(u —d) — A Su+ A,8d - B, + B,
—k|A-A|Su+k|la-A,|8d4=0
There are two possible cases: A, = A, and A, > A,.

When A, < A,, f(A) is linear function on (—o, A,), (4, 4,), and (A,, o),
with constant derivatives on each interval with values

(L+&){u-d)S, [(1-k)u—(1+k)d]|S, and (1 -k)(u-d)S,

respectively. If (1 — k)u = (1 + k)d, all of these derivatives are positive, and
fA) is an increasing function.

When A, > A,, f(A) is linear function on (—o0, A,), (Ay, A,), and (A, o),
with constant derivatives on each interval with values

(1 +k)(u-d)S, [(1+k)u—(1—k)d]S, and (1 - &)(u - d)S,

respectively. All of these derivatives are strictly positive, and therefore, f(A)
is an increasing function. Since the function is piecewise linear, it must have
a Zero.

To prove that A, < A < A, we may assume by induction that A; < A, < A,
and A, = A, < A;. Thus A < A, It only remains to show that f(4,) < 0 and
f(A,) = 0. Now by condition (20).

f(Aa5) = (8, — A)Sd(1 + k) — B, + B,

As in the proof of Theorem 1 we can use the induction assumption to derive
an equation equivalent to (A7)

(Ay — A;)Sdu/R - B, + By = —k[(A, — A} — (A, — A,)]|Sdu/R (A28)
substituting this in (A27) we derive

f(a,) = —k[(Aa, - Ay) - (4, - A,)|Sdu/R - k(A, — A,)|Sdu/R

=2k(A, - 4,)Sdu/R <0 (A29)
Similarly f(A,) = 0.

To start the induction we only have to consider the case where the stock

price is such that the aoption ends in the money if it goes up and out of money

if it goes down. In that case A, = —1 and A, = 0. Similar to the proof of
Theorem 1

Su(l - k)-K

4= "\ Su(l k) = 841 + &)

Now by our conditions (20) and (21) the numerator is always positive and by
the fina] condition of the theorem that both Su and Sd are not within the
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interval [K /(1 + &), K /(1 — k)], it follows that Su(l — &) = K = Sd(1 + k&),
e, -1 =<4A=0
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