Spectra of C* algebras, Extensions and \mathbb{R}-actions

Eberhard Kirchberg
Humboldt-Universität zu Berlin

Sept 5, 2010

C*-Workshop, Banff, Sept 2010
• Spectra of amenable C*-algebras.

• NC-Selection and semi-split Extensions.

• Study of coherent locally q-compact spaces.

• Application: Exotic line-action on Cuntz algebras.
Conventions and Notations

• Spaces P, X, Y, \ldots are T_0 and second countable, algebras A, B, \ldots are separable, ...

• ... except corona spaces $\beta(P) \setminus P$, multiplier algebras $\mathcal{M}(B)$, and ideals of corona algebras $Q(B) := \mathcal{M}(B)/B$, the space $\text{Prim}(\mathcal{M}(B))$, ...

• The isomorphisms $\mathcal{I}(A) \cong \mathcal{O}(\text{Prim}(A)) \cong \mathcal{F}(\text{Prim}(A))^{op}$ will be used frequently.

• $\mathbb{Q} := [0, 1]^\infty$ denotes the Hilbert cube (with its coordinate-wise order).

• A T_0 space X is sober (or “point-complete”) if each prime closed subset F of X is a the closure $\overline{\{x\}} = F$ of a singleton $\{x\}$. (Locally) “compact” means (locally) “quasi-compact” in case of T_0 spaces.
Spectra of amenable algebras (1)

Characterization of Prim(\(A\)) for amenable \(A\) (H.Harnisch, E.K., M.Rørdam):

Theorem 1. A sober space \(X\) is homeomorphic to a primitive ideal space of an amenable \(C^*\)-algebra \(A\), if and only if, there is a Polish l.c. space \(P\) and a continuous map \(\pi: P \to X\) such that
\[
\pi^{-1}: \mathcal{O}(X) \to \mathcal{O}(P) \text{ is injective (=: \(\pi\) is pseudo-epimorphic),}
\]
and
\[
(\bigcap_n \pi^{-1}(U_n))^\circ = \pi^{-1}((\bigcap_n U_n)^\circ) \text{ for each sequence } U_1, U_2, \ldots \in \mathcal{O}(X) \text{ (=: \(\pi\) is pseudo-open).}
\]

The algebra \(A \otimes \mathcal{O}_2 \otimes \mathbb{K}\) is uniquely determined by \(X\) up to (unitarily homotopic) isomorphisms.
Notice: A continuous epimorphism $\pi: P \to X$ is not necessarily pseudo-open, e.g. $\sum_n \alpha_n 3^{-n} \mapsto \sum_n \alpha_n 2^{-n}$ is continuous epimorphism from the Cantor space $\{0,1\}^\infty$ onto $[0,1]$, but no pseudo-open continuous epimorphism from $\{0,1\}^\infty$ onto $[0,1]$ exists.

A map $\Psi: \mathcal{O}(X) \to \mathcal{O}(Y)$ is lower semi-continuous if $(\bigcap_n \Psi(U_n))^\circ = \Psi((\bigcap_n U_n)^\circ)$ for each sequence $U_1, U_2, \ldots \in \mathcal{O}(X)$.

(Thus, π is pseudo-open, if and only if, $\Psi := \pi^{-1}$ is lower semi-continuous.)

If one works with closed sets, then one has to replace intersections by unions and interiors by closures.
Proposition 2. If $\Psi : \mathcal{I}(B) \to \mathcal{I}(A)$ is a lower semi-continuous action of $\text{Prim}(B)$ on A and B is stable, then there exists a lower s.c. action $\mathcal{M}(\Psi) : \mathcal{I}(\mathcal{M}(B)) \to \mathcal{I}(A)$ of $\text{Prim}(\mathcal{M}(B))$ on A, that has the following properties (i)–(iii):

(i) $\mathcal{M}(\Psi)$ is monotone upper semi-continuous
$(:= \text{sup’s of upward directed families of ideals will be respected}).$

(ii) $\mathcal{M}(\Psi)(J_1) = \mathcal{M}(\Psi)(J_1)$
if $J_1 \cap \delta_{\infty}(\mathcal{M}(B)) = J_2 \cap \delta_{\infty}(\mathcal{M}(B))$.

(iii) $\mathcal{M}(\Psi)(\mathcal{M}(B, I)) = \Psi(I)$ for all $I \in \mathcal{I}(B)$.

The “extension” $\mathcal{M}(\Psi)$ of Ψ with (i)–(iii) is unique.
For strongly p.i. (not necessarily separable) \(B \) and exact \(A \), there is a nuclear *-morphism \(h: A \to B \) with \(\Psi(J) = h^{-1}(h(A) \cap J) \), if and only if, \(\Psi \) is lower s.c. and monotone upper s.c. It yields the following theorem.

Theorem 3. [NC-selection] Suppose that \(B \) is stable, \(A \otimes \mathcal{O}_2 \) contains a regular exact \(C^* \)-algebra \(C \subset A \otimes \mathcal{O}_2 \), and that \(\Psi: \mathcal{I}(B) \to \mathcal{I}(A) \) is a lower s.c. action of \(\text{Prim}(B) \) on \(A \).

Then there is a *-morphism \(h: A \to \mathcal{M}(B) \) such that \(\delta_\infty \circ h \) is unitarily equivalent to \(h \), \(\Psi(J) = h^{-1}(h(A) \cap \mathcal{M}(B, J)) \) and that

\[
[h]_J: A/\Psi(J) \to \mathcal{M}(B/J) \cong \mathcal{M}(B)/\mathcal{M}(B, J)
\]

is weakly nuclear for all \(J \in \mathcal{I}(B) \).
Here, a subalgebra $C \subset D$ is regular if C separates the ideals of D and $C \cap (I + J) = (C \cap I) + (C \cap J)$ for all $I, J \in \mathcal{I}(D)$.

Theorem 3 applies to necessary and sufficient criteria for (ideal-system-) equivariant semi-splitness of extensions.

Let $\epsilon: B \to E$ a *-monomorphism onto a closed ideal of E and $\pi: E \to A$ an epimorphism such that $\epsilon(B)$ is the kernel of π. We denote by $\gamma: A \to Q(B) = \mathcal{M}(B)/B$ the Busby invariant of the extension

$$0 \to B \xrightarrow{\epsilon} E \xrightarrow{\pi} A \to 0.$$
Consider now general “actions” $\psi_B: S \to \mathcal{I}(B)$, $\psi_E: S \to \mathcal{I}(E)$, and $\psi_A: S \to \mathcal{I}(A)$, of a set S on B, E and A. We require that the extension E is ψ-equivariant:

(a) $\epsilon(\psi_B(s)) = \epsilon(B) \cap \psi_E(s) = \epsilon(B)\psi_E(s)$, and

(b) $\psi_A(s) = \pi(\psi_E(s))$ for all $s \in S$.

i.e., $0 \to \psi_B(s) \to \psi_E(s) \to \psi_A(s) \to 0$ is exact for each $s \in S$.

An action $\Phi: \mathcal{I}(A) \to \mathcal{I}(B)$ of $\text{Prim}(A)$ on B is **upper semi-continuous** if Ψ preserves sup of families in $\mathcal{I}(A)$, i.e., $\Psi(I + J) = \Psi(I) + \Psi(J)$ and Ψ is monotone upper semi-continuous.
NC-Selection and Extensions (5)

Lemma 4. There is a unique maximal upper semi-continuous map $\Phi: \mathcal{I}(A) \to \mathcal{I}(B)$ with the property that $\Phi(\psi_A(s)) \subset \psi_B(s)$ for all $s \in S$.

Upper semi-continuous actions Φ have lower semi-continuous (= inf preserving) adjoint maps $\Psi: \mathcal{I}(B) \to \mathcal{I}(A)$ such that (Ψ, Φ) build a Galois connection, i.e., $\Psi(J) \supset I$ iff $J \supset \Phi(I)$. The rule is: The upper adjoint is lower semi-continuous.

Applications of Theorem 3 to the adjoint Ψ of Φ in Lemma 4 implies the following necessary and sufficient criterion (ii):
Theorem 5. Let B, E, A, ϵ, π, γ, $\psi_Y : S \to \mathcal{I}(Y)$ (for $Y \in \{B, E, A\}$) be as above, and let $\Phi : \mathcal{I}(A) \to \mathcal{I}(B)$ the map given in Lemma 4.

Suppose, in addition, that A is exact and that B is weakly injective (i.e., has the WEP of Lance).

Then the following properties (i) and (ii) of the extension are equivalent:

(i) The extension has an S-equivariant c.p. splitting map, i.e., there is a c.p. map $V : A \to E$ with $\pi \circ V = \text{id}_A$ and $V(\psi_A(s)) \subset \psi_E(s)$ for all $s \in S$.

(ii) The Busby invariant $\gamma : A \to Q(B)$ is nuclear, and,

$$\pi_B(\mathcal{M}(B, \Phi(J))) \supseteq \gamma(J) \quad \forall \ J \in \mathcal{I}(A)$$
Definition 6. A map \(f: X \to [0, \infty) \) is a Dini function if it is lower semi-continuous and
\[\sup f(\bigcap_n F_n) = \inf_n \{ \sup f(F_n) \} \]
for every decreasing sequence \(F_1 \supset F_2 \supset \cdots \) of closed subsets of \(X \).

A sober \(T_0 \) space \(X \) is a Dini space if the supports of the Dini functions build a base of the topology of \(X \).

The Dini functions \(f \) are exactly the functions that satisfy the (generalized) Dini Lemma: Every upward directed net of l.s.c. functions converges uniformly to \(f \) if it converges point-wise to \(f \). If a \(T_0 \) space \(X \) is sober, then a function \(f: X \to [0, 1] \) is Dini, if and only if, \(f \) is lower semi-continuous and the restriction \(f: X \setminus f^{-1}(0) \to (0, 1]_{lsc} \) is proper.
Coherent Dini spaces (2)

The class of Dini spaces X coincides with the class of sober locally compact T_0 spaces with a countable base of its topology.

A subset C of X is **saturated** if $C = \text{Sat}(C)$, where $\text{Sat}(C)$ means the intersection of all $U \in \mathcal{O}(X)$ with $U \supset C$.

Definition 7. A sober T_0 space X is **coherent** if the intersection $C_1 \cap C_2$ of two saturated quasi-compact subsets $C_1, C_2 \subset X$ is again quasi-compact.

Below, we consider some partial results concerning the open **Question:**
Is every (second-countable) coherent Dini space X homeomorphic to the primitive ideal spaces $\text{Prim}(A)$ of some amenable C^*-algebra A?

Let $\mathcal{F}(X)$ denote the lattice of closed subsets $F \subset X$.
Definition 8. The topological space $\mathcal{F}(X)_{lsc}$ is the set $\mathcal{F}(X)$ with the T_0 order topology that is generated by the complements

$$\mathcal{F}(X) \setminus [\emptyset, F] = \{ G \in \mathcal{F}(X) ; \ G \cap U \neq \emptyset \} =: \mu_U$$

of the intervals $[\emptyset, F]$ for all $F \in \mathcal{F}(X)$ (where $U = X \setminus F$).

The Fell-Vietoris topology on $\mathcal{F}(X)$ is the topology, that is generated by the sets μ_U ($U \in \mathcal{O}(X)$) and the sets $\mu_C := \{ G \in \mathcal{F}(X) ; \ G \cap C = \emptyset \}$ for all quasi-compact $C \subset X$.

$\mathcal{O}(X) \cong \mathcal{F}(X)^{\text{op}}$ defines the Larson topology on $\mathcal{O}(X)$. We denote by $\mathcal{F}(X)_H$ Fell-Vietoris topology.

The space $\mathcal{F}(X)_{lsc}$ is a coherent Dini space, and the space $\mathcal{F}(X)_H$ is a compact Polish space.
Coherent Dini spaces (4)

The ordered Hilbert cube \mathbb{Q} is nothing else $\mathcal{F}(Y)$ for $Y := X_0 \uplus X_0 \uplus \cdots$ where $X_0 := (0, 1]_{lsc}$. The Fell-Vietoris topology becomes the usual Hausdorff topology on \mathbb{Q}.

If X is locally quasi-compact sober T_0 space, then a dense sequence g_1, g_2, \ldots in the Dini functions g on X with $\sup g(X) = 1$ defines an order isomorphism $\iota: \mathcal{F} \to \mathbb{Q}$ onto a max-closed subset $\iota(\mathcal{F})$ of \mathbb{Q} with $\iota(\emptyset) = 0$, $\iota(X) = 1$ by

$$\iota(F) := (\sup g_1(F), \sup g_2(F), \ldots) \in \mathbb{Q}.$$

The image $\iota(\mathcal{F}(X))$ is closed in \mathbb{Q} (with Hausdorff topology) and ι defines a homeomorphism from $\mathcal{F}(X)$ onto $\iota(\mathcal{F}(X))$ with respect to both topologies on $\mathcal{F}(X)$ and \mathbb{Q}.
Coherent Dini spaces (5)

In this way, \(X \cong \eta(X) \subset \overline{\eta(X)}^H \setminus \{0\} \subset \mathcal{F}(X) \subset \mathbb{Q} \), considered as Polish spaces, with \(X \ni x \mapsto \eta(x) := \{x\} \in \mathcal{F}(X) \).

Theorem 9. Let \(X \) a second countable locally (quasi-)compact sober \(T_0 \) space. Following properties (i)-(iv) of \(X \) are equivalent:

(i) \(X \) is coherent.

(ii) The set \(\mathcal{D}(X) \) of Dini functions on \(X \) is convex.

(iii) \(\mathcal{D}(X) \) is min-closed.

(iv) \(\mathcal{D}(X) \) is multiplicatively closed.
Coherent Dini spaces (6)

It is known that, X is coherent, if and only if, the image $\eta(X) \cong X$ in $\mathcal{F}(X) \setminus \{\emptyset\}$ is closed in $\mathcal{F}(X) \setminus \{\emptyset\}$ with respect to the Fell-Vietoris topology on $\mathcal{F}(X)$.

Lemma 10. (I) Each closed subset $F \subset \mathcal{Q}_H$ is a coherent locally compact sober subspace F_{lsc} of \mathcal{Q}_{lsc}, and is the intersection of an decreasing sequence F_k of closed subspaces of \mathcal{Q}_H that are continuously order-isomorphic to spaces $G_k \times \mathbb{Q}$ with $G_k \subset [0, 1]^{n_k}$ a finite union of n_k-dimensional (small) cubes.

(II) If $F = \bigcap_k F_k$ for a sequence $F_1 \supset F_2 \supset \cdots$ of closed subsets in \mathcal{Q}_H, and if each $(F_k)_{lsc} \subset \mathcal{Q}_{lsc}$ is the primitive ideal space of an amenable C^*-algebra, then F_{lsc} is the primitive ideal space of an amenable C^*-algebra.
Coherent Dini spaces (7)

Lemma 10 applies to $F := \eta(\mathcal{F}(X))$ for all Dini spaces X, and to $F := \{0\} \cup \eta(X)$ for all coherent Dini spaces X.

Corollary 11. If there is a coherent sober l.c. space X that is not homeomorphic to the primitive ideal space of an amenable C^*-algebra, then there is $n \in \mathbb{N}$ and a finite union Y of (Hausdorff-closed and small) cubes in $[0, 1]^n$ such that Y with induced order-topology is not the primitive ideal space of any amenable C^*-algebra.

Theorem 12. [O.B. Ioffe, E.K.] If $G \subset [0, 1]^n$ is a finite union of (small) cubes, then the space G_{lsc} has a decomposition series $U_1 \subset U_2 \subset \cdots \subset U_k$, by open subsets $U_\ell \subset G_{lsc}$ such that $U_{\ell+1} \setminus U_\ell$ is the primitive ideal space of an amenable C^*-algebra.

Now combine above results with the following conjecture.
Coherent Dini spaces (8)

Let X a Dini space and $U \subset X$ open.

Conjecture 13. The space X is homeomorphic to the primitive ideal space of an amenable C^*-algebra if U and $X \setminus U$ are homeomorphic to primitive ideal spaces of amenable C^*-algebras.

This Conjecture implies that Dini spaces are primitive ideal spaces of amenable C^*-algebras — if they have decomposition series by open subsets $\{U_\alpha\}$ with coherent spaces $U_{\alpha+1} \setminus U_\alpha$.

A Dini space X is the primitive ideal space of an AF-algebra if U and $X \setminus U$ are primitive ideal spaces of AF-algebras.

Proposition 14. Conjecture 13 reduces, in the case where X is coherent, to the case, where $X \setminus U = \{p\}$ is a singleton and $U \cong \text{Prim}(B)$, and where B is an inductive limit of algebras $B_n \cong C_0(\Gamma_n \setminus \{g_n\}) \otimes M_{k_n}$ for connected pointed graphs (Γ_n, g_n).
Theorem 15. [N.Ch. Phillips, E.K.] Suppose that A is an amenable C^*-algebra, G an amenable l.c. group, and that G acts minimally by $\alpha : G \to \text{Homeo}(\text{Prim}(A))$ on $\text{Prim}(A)$. Then there exists a continuous group-action $\beta : G \to \text{Aut}(B)$ on the C^*-algebra $B := A \otimes \mathcal{O}_2 \otimes \mathbb{K}$ that implements α, and has crossed product $B \rtimes_\beta G \cong \mathcal{O}_2 \otimes \mathbb{K}$.

A part of the proof is an G-equivariant improvement of Theorem 1. Then the spectra of the actions will be enriched by tensoring (infinitely often if necessary) with the natural action of G on $\mathcal{O}_\infty \cong \mathcal{O}(L_2(G))$.

Definition 16. [N.C. Phillips compactification]

Let $\Xi(P)$ denote the prime T_0 space $P \cup \{\infty\}$ with topology given by the system of open subsets

\[\mathcal{O}(\Xi(P)) = \{\emptyset, \Xi(P) \setminus C ; C \subset P, \text{ compact in } P \} \, . \]
Exotic \mathbb{R}-actions (2)

Theorem 17. [N.Ch. Phillips, E.K.] There exists an amenable C^*-algebra A with $\text{Prim}(A) \cong \Xi(P)$.

If we apply the above theorems to $\Xi(G)$, we get:

Corollary 18. Every non-compact amenable l.c. group G has a co-action $\hat{\beta}$ on $\mathcal{O}_2 \otimes K$ such that $B := (\mathcal{O}_2 \otimes K) \rtimes \hat{G}$ is prime and the (dual) action β of G on B is minimal and topologically free.

If $G := \mathbb{R} = \hat{G}$, there is also an action $\hat{\beta}$ of $\mathbb{R} = \hat{\mathbb{R}}$ on \mathcal{O}_2 itself with this property.
The existence problem for extensions reduces in case of non-coherent X to the case where $U \cong \text{Prim}(B)$ with $B \cong B \otimes \mathcal{O}_2 \otimes K$ is an inductive limit of algebras $B_n \cong C_0(\Gamma_n \setminus \{g_n\}) \otimes \mathcal{M}_{k_n}$ for connected pointed graphs (Γ_n, g_n), and where $F := X \setminus U$ is homeomorphic to $(0, 1]_{\text{lsc}}$.

This is equivalent to the below formulated question:

Given sequences of positive contractions $T_1, T_2, \ldots \in \mathcal{M}(B)_+$ and isometries $V_n \in \mathcal{M}(B)$ with $T_{n+1} = V_n^* T_n V_n$.

Let $\gamma(J) := \lim_n \|T_n + \mathcal{M}(B, J)\|$, and suppose that, for each $J \in \mathcal{I}(B)$ and $n \in \mathbb{N}$, there is $b := b_{n,J} \in B$ such that

$$(\delta_\infty(T_n) - \gamma(J))_+ - \delta_\infty(b) \in \mathcal{M}(B, J),$$

i.e., $\delta_\infty(\mathcal{M}(\pi_J)(T_n) - \gamma(J)_+) \in \delta_\infty(B/J)$.

General extensions (1)
Question 19. Does there exist a contraction $S \in \mathcal{M}(B)_+$ such that

$$\|\mathcal{M}(\pi_J)(S)\| = \|S + \mathcal{M}(B, J) + B\| = \gamma(J)$$

for each $J \in \mathcal{I}(B)$.

If the answer is positive, then the element $\pi_B(S) \in Q(B)$ defines the desired Busby invariant of the desired extension.