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1. Introduction

When viewed in a certain light, Tomita’s theorem (tho main result of the Tomita—
Takesaki theory—see [3, 14, 15, 16, 17]) appoars as the combination of a result on “un-
bounded” similarity between self-adjoint operator algebras and the special structure of
a von Neumann algobra and its commutant relative to a joint separating vector. Tho main
purpose of this article is to introduce and develop the theory of such similaritics. (Soe
section 3.) Our secondary purpose is to present & full proof of Tomita’s theorem in the
style mentioned. (See section 4.) In connection with this argument, we develop & new
density result (Theorem 4.10). In section 2 wo prove a bounded similarity result.

‘The author is i to the Centre Uni itaire de Marseille-Luminy, the University
of Newcastlo and the Zentrum fir interdiziplinaire Forschung Universitit Bielefeld for
their hospitality during various stages of this work and to J. Ringrose, M. Takesaki &
A. Van Dacle, for important insights into the Tomita-Takesaki theory. Thanks are due
to the NSF (USA) and SRC (UK) for partial support.

2. Bounded similarity

1f 3 is & complex Hilbert space and H is an operator on H such that 0 <al < H<bl,
then H is bounded and sp (H), the spectrum of H, lies in [, 5]. In addition, # has an
inverse with spectrum in [6-1, a~1]. If g(T) = HTH- for T in B(H), then g is & bounded
operator on B(¥) and sp () (relative to B(B(#))) is contained in [ab-1, a~16]. To see this,
note that left multiplication by H on B(¥) has the same spectrum as H, that right multi-
plication by H-1 has the same spectrum as H-1, and that these two multiplications com.-
‘mute.

We employ the Banach-algobra-valued, holomorphic function calculus (seo, for ex-
ample, [1; Chapter VIT)) to discuss holomorphic functions f of an element 4 of a Banach
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A unique, even bizarre, institution in West Philadelphia since 1950, the
Divine Tracy is up for sale. The asking price for the 140-room hotel is
$10 million.

In a city where hotels boast what makes them luxurious — from the
thread count in the bed sheets to spa services for pets — the Divine Tracy
stands out for the niche it serves. For a flat $50 a night rate, guests can
enjoy austere but consistent accommodations in which men and women
are housed on separate floors.

Guests must adhere to a so-called International Modest Code, which was
developed by Father Divine, the spiritual leader of a Christian-based
ministry called the Palace Mission.

The code, which sets high standards for behavior, provides that guest do
not smoke, drink alcohol, use obscenities, vulgarity, profanity, receive
gifts, presents, tips or bribes. There is no eating food in the rooms and
the dress code bespeaks of modesty. Women are not permitted to wear
pants, shorts or miniskirts; men must not don sleeveless shirts, have their
shirts untucked or wear shoes sans socks. In addition, there must be no
“undue mixing of the sexes” but men and women may converse in the
lobby. Rooms do not have televisions.

(Note: At the time the rate was $50 for an entire week.)
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> o is injective
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> N¢"(G) = {e}

This situation has been studied by llan Hirshberg who showed that A[y]
is simple if G is amenable and ¢"(G) is normal in G for all n.

We will however consider only the case where G is abelian (and ¢
satisfies the three conditions above).
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Theorem (Cuntz-Vershik) A[a] is simple and purely infinite. It can be
described as a universal C*-algebra with a natural set of generators and
relations (as a consequence Afa] is also isomorphic to a crossed product
B x N).

The K-theory of A(a) = A(¢) fits into an exact sequence of the form

K.C*(6) 22 k. c*(6) — K. A[4]
\‘_—W/

where the map b((p) satisfies the equation b(p)p. = N(yp) with
N(p) = [G/¢G| = [Keral.
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sequence and using the fact that ¢ acts as the shift in the inductive limit
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representation of K, B gives the result.

Example Let K = (Z/n)" and « the one-sided shift. Then A[a] = O,
and the formula for the K-theory gives the expected result.

Remark Let G be a discrete amenable group and ¢ an injective
endomorphism such that () ¢"(G) = {e}, but for which G/¢G is infinite.
Then Afy] “looks like" Os @ C*G but is simple and purely infinite.
Moreover in this case K. (A[p]) = K.(C*G) (Felipe Vieira).



Example Let a be an endomorphism of K = T" and ¢ = & the dual
endomorphism of G = Z". We assume that det ¢ # 0.

We know that there is an isomorphism of K,(C(T")) with the exterior
algebra A*Z" = @;zo APZ, preserving the grading (and the exterior
product). The endomorphism ¢, of K.(C(T")) induced by ¢ corresponds
to the endomorphism Ay of A*Z".

The associated endomorphism b(y) of A*Z" is determined by the formula
b(p)p« = N(p)id. In the present case we have N(¢) = |det ¢|. Now, the
unique solution b (in endomorphisms of AZ") for the equation

b Ay = |det ¢|id corresponds under the Poincaré isomorphism

D : NG = AG’ to sgn(det p)Ay’ (here we write G’ for the algebraic dual
Hom (G, Z) and denote by ¢’ the endomorphism of G’ which is dual to
. The restriction of b to A'Z" = 7" for instance is the complementary
matrix to ¢ determined by Cramer's rule. Thus we obtain

K.A[a] 2 AG/(1— DAg'D™)AG @& Ker(1 — DAY'D™Y)

where the first term has the natural even/odd grading. The second term
Ker (1 — DA¢'D™1) is A"Z" = 7, if detp > 0 and {0} if detp < 0. It
contributes to Kj if nis odd and to K if nis even.
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This result has been obtained independently by Exel-an Huef-Raeburn
using a rather different approach.
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with the endomorphism ¢ determined on G by ¢q(x) = gx (g prime to
p). The description of G as an inductive limit of groups of the form Z
immediately leads to the formulas
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Now ¢4 acts as id on Ko(C*G) and by multiplication by g on K1(C*G).

Since N(pq) = g, we get that b(p) = gid on Ko(C*G) and b(yp) = id
on K1(C*G). Thus the exact sequence shows that

Ko(Alg]) = Z/(q — 1) + Z[%] Ki(Alg]) = Z[%]
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Example Another interesting generalization of O,, p prime, arises as
follows: Consider G = (Z/p)[t]. This is actually not only an abelian
group but a ring. Multiplication by a non-zero element x gives an
injective endomorphism of G. For x = t we obtain A[p] = O,. Partial
computations concerning the K-theory of A[p] for more general X have
been made by Cuntz-Li.









