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A unique, even bizarre, institution in West Philadelphia since 1950, the
Divine Tracy is up for sale. The asking price for the 140-room hotel is
$10 million.
In a city where hotels boast what makes them luxurious – from the
thread count in the bed sheets to spa services for pets – the Divine Tracy
stands out for the niche it serves. For a flat $50 a night rate, guests can
enjoy austere but consistent accommodations in which men and women
are housed on separate floors.
Guests must adhere to a so-called International Modest Code, which was
developed by Father Divine, the spiritual leader of a Christian-based
ministry called the Palace Mission.
The code, which sets high standards for behavior, provides that guest do
not smoke, drink alcohol, use obscenities, vulgarity, profanity, receive
gifts, presents, tips or bribes. There is no eating food in the rooms and
the dress code bespeaks of modesty. Women are not permitted to wear
pants, shorts or miniskirts; men must not don sleeveless shirts, have their
shirts untucked or wear shoes sans socks. In addition, there must be no
“undue mixing of the sexes” but men and women may converse in the
lobby. Rooms do not have televisions.
(Note: At the time the rate was $50 for an entire week.)
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The C*-algebra A[α]

Let K be a compact abelian group. Typical examples:

K = Tn K = (Z/n)N K = lim←−
z 7→zn

T

We consider an endomorphism α of K satisfying

I α is surjective

I Ker α is finite

I
⋃

n Kerαn is dense in K .

Then α preserves Haar measure on K and therefore induces an isometry
sα on L2K . Also C (K ) act as multiplication operators on L2K .

Definition We denote by A[α] the sub-C*-algebra of L(L2K ) generated
by C (K ) together with sα.
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Definition. We denote by A[α] the sub-C*-algebra of L(L2K ) generated
by C (K ) together with sα.
Description of A[α] in the Fourier transform picture
It is important to describe A[α] = C∗(C (K ), sα) also in the dual picture:

Let G = K̂ denote the dual group which is discrete abelian.

By Fourier
transform A[α] then is isomorphic to the C*-subalgebra A[ϕ] of L(`2G )
generated by the left regular representation λ of G and by the isometry
sϕ defined on `2G by sϕ(δg ) = δϕ(g) where ϕ = α̂ is the dual

endomorphism of G = K̂ .
This dual construction of A[ϕ] can be generalized to an endomorphism ϕ
of a not necessarily abelian discrete group G satisfying

I ϕ is injective

I G/ϕG is finite

I
⋂
ϕn(G ) = {e}

This situation has been studied by Ilan Hirshberg who showed that A[ϕ]
is simple if G is amenable and ϕn(G ) is normal in G for all n.

We will however consider only the case where G is abelian (and ϕ
satisfies the three conditions above).
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Under these conditions the algebra A[α] = A[ϕ] always contains a
canonical commutative subalgebra D which is a Cartan subalgebra. It is
generated by the translates λg s

n
ϕs
?n
ϕ λ

?
g of the range projections snϕs

?n
ϕ .

The spectrum of D is the ϕ-adic completion Ḡ = lim←−G/ϕnG of G . This

completion is actually a compact abelian group. Since G is dense in Ḡ ,
the action of G on Ḡ is minimal and the crossed product D o G is
simple. We denote this subalgebra by B. It is also immediate that B has
a unique tracial state.

Theorem (Cuntz-Vershik) A[α] is simple and purely infinite. It can be
described as a universal C*-algebra with a natural set of generators and
relations (as a consequence A[α] is also isomorphic to a crossed product
B oN).
The K -theory of A(α) = A(ϕ) fits into an exact sequence of the form

K∗C
∗(G )

1−b(ϕ)// K∗C∗(G ) // K∗A[ϕ]
kk

where the map b(ϕ) satisfies the equation b(ϕ)ϕ∗ = N(ϕ) with
N(ϕ) = |G/ϕG | = |Kerα|.
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the action of G on Ḡ is minimal and the crossed product D o G is
simple. We denote this subalgebra by B. It is also immediate that B has
a unique tracial state.
Theorem (Cuntz-Vershik) A[α] is simple and purely infinite. It can be
described as a universal C*-algebra with a natural set of generators and
relations (as a consequence A[α] is also isomorphic to a crossed product
B oN).

The K -theory of A(α) = A(ϕ) fits into an exact sequence of the form

K∗C
∗(G )

1−b(ϕ)// K∗C∗(G ) // K∗A[ϕ]
kk

where the map b(ϕ) satisfies the equation b(ϕ)ϕ∗ = N(ϕ) with
N(ϕ) = |G/ϕG | = |Kerα|.



Under these conditions the algebra A[α] = A[ϕ] always contains a
canonical commutative subalgebra D which is a Cartan subalgebra. It is
generated by the translates λg s

n
ϕs
?n
ϕ λ

?
g of the range projections snϕs

?n
ϕ .

The spectrum of D is the ϕ-adic completion Ḡ = lim←−G/ϕnG of G . This
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the action of G on Ḡ is minimal and the crossed product D o G is
simple. We denote this subalgebra by B. It is also immediate that B has
a unique tracial state.
Theorem (Cuntz-Vershik) A[α] is simple and purely infinite. It can be
described as a universal C*-algebra with a natural set of generators and
relations (as a consequence A[α] is also isomorphic to a crossed product
B oN).
The K -theory of A(α) = A(ϕ) fits into an exact sequence of the form

K∗C
∗(G )

1−b(ϕ)// K∗C∗(G ) // K∗A[ϕ]
kk

where the map b(ϕ) satisfies the equation b(ϕ)ϕ∗ = N(ϕ) with
N(ϕ) = |G/ϕG | = |Kerα|.



Proof of the K -theory formula
We have seen that D = lim−→C (G/ϕnG ) and B = D o G . This gives a

representation of B as an inductive limit of the algebras C (G/ϕnG ) o G
and a corresponding inductive limit description of K∗B (with connecting
map b(ϕ) at each level). The semigroup N acts on B by the
endomorphism ϕ and A[ϕ] ∼= B oN. Applying the Pimsner-Voiculescu
sequence and using the fact that ϕ acts as the shift in the inductive limit
representation of K∗B gives the result.

Example Let K = (Z/n)N and α the one-sided shift. Then A[α] ∼= On

and the formula for the K -theory gives the expected result.

Remark Let G be a discrete amenable group and ϕ an injective
endomorphism such that

⋂
ϕn(G ) = {e}, but for which G/ϕG is infinite.

Then A[ϕ] “looks like” O∞ ⊗ C∗G but is simple and purely infinite.
Moreover in this case K∗(A[ϕ]) ∼= K∗(C

∗G ) (Felipe Vieira).
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Example Let α be an endomorphism of K = Tn and ϕ = α̂ the dual
endomorphism of G = Zn. We assume that det ϕ 6= 0.
We know that there is an isomorphism of K∗(C (Tn)) with the exterior
algebra Λ∗Zn =

⊕n
p=0 ΛpZ, preserving the grading (and the exterior

product). The endomorphism ϕ∗ of K∗(C (Tn)) induced by ϕ corresponds
to the endomorphism Λϕ of Λ∗Zn.
The associated endomorphism b(ϕ) of Λ∗Zn is determined by the formula
b(ϕ)ϕ∗ = N(ϕ) id. In the present case we have N(ϕ) = |detϕ|. Now, the
unique solution b (in endomorphisms of ΛZn) for the equation
b Λϕ = |detϕ| id corresponds under the Poincaré isomorphism
D : ΛG ∼= ΛG ′ to sgn(detϕ)Λϕ′ (here we write G ′ for the algebraic dual
Hom (G ,Z) and denote by ϕ′ the endomorphism of G ′ which is dual to
ϕ. The restriction of b to Λ1Zn ∼= Zn for instance is the complementary
matrix to ϕ determined by Cramer’s rule. Thus we obtain

K∗A[α] ∼= ΛG/(1− DΛϕ′D−1)ΛG ⊕ Ker (1− DΛϕ′D−1)

where the first term has the natural even/odd grading. The second term
Ker (1− DΛϕ′D−1) is ΛnZn ∼= Z if detϕ > 0 and {0} if detϕ < 0. It
contributes to K0 if n is odd and to K1 if n is even.
This result has been obtained independently by Exel-an Huef-Raeburn
using a rather different approach.
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Example Consider the solenoid group

K = lim
←−
p

T G = Z[
1

p
]

with the endomorphism ϕq determined on G by ϕq(x) = qx (q prime to
p). The description of G as an inductive limit of groups of the form Z
immediately leads to the formulas

K1(C∗G ) = Z[
1

p
] K0(C∗G ) = Z

Now ϕq acts as id on K0(C∗G ) and by multiplication by q on K1(C∗G ).
Since N(ϕq) = q, we get that b(ϕ) = q id on K0(C∗G ) and b(ϕ) = id
on K1(C∗G ). Thus the exact sequence shows that

K0(A[ϕ]) = Z/(q − 1) + Z[
1

p
] K1(A[ϕ]) = Z[

1

p
]

Example Another interesting generalization of Op, p prime, arises as
follows: Consider G = (Z/p)[t]. This is actually not only an abelian
group but a ring. Multiplication by a non-zero element x gives an
injective endomorphism of G . For x = t we obtain A[ϕ] ∼= Op. Partial
computations concerning the K -theory of A[ϕ] for more general X have
been made by Cuntz-Li.
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