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Introduction

QM finitely many d. o. f.

∆q∆p & ~

positions = observables, dual to momentum;

exactly implemented by the Born - Heisenberg relations

pq − qp = −i~I.

NONCOMMUTATIVITY is the root of QM. In

QFT, local observables:

A ∈ A(O);

2



O (double cones) - spacetime specifications, in terms of

coordinates - accessible through measurements of local

observables. Allows to formulate LOCALITY:

AB = BA

whenever

A ∈ A(O1), B ∈ A(O2, ),

and

O1,O2

are spacelike separated.

Born - Heisenberg relations are governed by the C* Al-

gebra of all compact operators on the separable infinite

dim Hilbert Space.



Though being a commutativity condition, Locality makes

the overall C* of local observables, which has to be

simple, much more radically noncommutative.

Dick has been a pioneer and a master of Noncommu-

tative C* algebras since the beginning of this field; at

the same time he devoted deep love and thoughts to

Mathematical Physics; a tribute to the Leader and to

the unforgettable Friend based on this subject is maybe

not out of place.

Locality is OK with experiments at all accessible scales;

theory: in QFT it is OK at all scales, if we neglect

GRAVITATIONAL FORCES BETWEEN ELEMENTARY

PARTICLES.



If we DON’T we are led to a further step in noncom-

mutativity:

Heisenberg: localizing an event in a small region costs
energy (QM);

Einstein: energy generates a gravitational field (CGR).

QM + CGR:

PRINCIPLE OF Gravitational Stability against localization

of events [DFR, 1994, 95]:

The gravitational field generated by the concentra-

tion of energy required by the Heisenberg Uncer-

tainty Principle to localize an event in spacetime



should not be so strong to hide the event itself

to any distant observer - distant compared to the

Planck scale.

Spherically symmetric localization in space with accu-

racy a: an uncontrollable energy E of order 1/a has to

be transferred (use universal units where ~ = c = G =

1)

Schwarzschild radius R ' E + U

if U is the energy already present at the observed spot,

in a background spherically symmetric quantum state,

Hence we must have that



a & R ' 1/a+ U ;

so that if U is much smaller than 1

a & 1,

i.e. in CGS units

a & λP ' 1.6 · 10−33cm. (1)



if U is much larger than 1,

a & U,

and the “minimal distance” is dynamical, the Effec-
tive Planck Length, which might diverge.

Quantum Spacetime can solve the Horizon Problem:
divergent Effective Planck Length means instant long
range (a causal) correlations, allowing establishment of
thermal equilibrium [DMP 2013].

But at t = 0 all points instantly connected to one an-
other: a single point. Degrees of freedom collapsing to
zero.



An indication in this direction:

fields at a (quantum) point and interactions vanish

at t→ 0 i.e. as λeff →∞.

(Morsella, Pinamonti, - ; in preparation; Comments at

the end).

Neglecting U but no spherical symmetry:

if we measure one or at most two space coordinates

with great precision a,

but the uncertainty L in another coordinates is large,



the energy 1/a may spread over a region of size L, and

generate a gravitational potential that vanishes every-

where as L→∞

(provided a, as small as we like but non zero, remains

constant).

This indicates that the ∆qµ must satisfy UNCER-

TAINTY RELATIONS.

Should be implemented by commutation relations.

QUANTUM SPACETIME.



Dependence of Uncertainty Relations, hence of Com-

mutators between coordinates, upon background quan-

tum state i.e. upon metric tensor.

CGR: Geometry ∼ Dynamics

QG: Algebra ∼ Dynamics



QST, Quantum Minkowski Space, QFT

Remember: if A,B are self adjoint elements of a C*
algbra and ω a state, setting

AB −BA = iC

we have

∆ωA ·∆ωB & (1/2)|ω(C)|.

The Principle of Gravitational Stability against localization
of events implies :

∆q0 ·
3∑

j=1

∆qj & 1;
∑

1≤j<k≤3

∆qj∆qk & 1. (2)
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[DFR 1994 - 95]. STUR must be implemented by

SPACETIME commutation relations

[qµ, qν] = iλ2
PQµν (3)

imposing Quantum Conditions on the Qµν.

SIMPLEST solution:

[qµ, Qν,λ] = 0; (4)

QµνQ
µν = 0; (5)

((1/2) [q0, . . . , q3])2 = I, (6)



where QµνQµν is a scalar, and

[q0, . . . , q3] ≡ det

 q0 · · · q3
... . . . ...
q0 · · · q3


≡ εµνλρqµqνqλqρ =

= −(1/2)Qµν(∗Q)µν (7)

is a pseudoscalar, hence we use the square in the Quan-

tum Conditions.

Basic model of Quantum Spacetime; implements ex-

actly Space Time Uncertainty Relations and is fully

Poincaré covariant.



The classical Poincaré group acts as symmetries;

translations, in particular, act adding to each qµ a real

multiple of the identity.

The noncommutative C* algebra of Quantum Space-

time can be associated to the above relations. The

procedure [DFR] applies to more general cases.

Assuming that the qλ, Qµν are selfadjoint operators and

that the Qµν commute strongly with one another and

with the qλ, the relations above can be seen as a bundle

of Lie Algebra relations based on the joint spectrum of

the Qµν.



Regular representations are described by representa-
tions of the C* group algebra of the unique simply con-
nected Lie group associated to the corresponding Lie
algebra.

The C* algebra of Quantum Spacetime is the C* alge-
bra of a continuos field of group C* algebras based on
the spectrum of a commutative C* algebra.

In our case, that spectrum - the joint spectrum of the
Qµν - is the manifold Σ of the real valued antisymmetric
2 - tensors fulfilling the same relations as the Qµν do: a
homogeneous space of the proper orthocronous Lorentz
group, identified with the coset space of SL(2, C) mod
the subgroup of diagonal matrices. Each of those ten-
sors, can be taken to its rest frame, where the electric



and magnetic parts e, m are parallel unit vectors, by

a boost, and go back with the inverse boost, specified

by a third vector, orthogonal to those unit vectors;

thus Σ can be viewed as the tangent bundle to two

copies of the unit sphere in 3 space - its base Σ1.

Irreducible representations at a point of Σ1: Shroedinger

p, q in 2 d. o. f..

The fibers, with the condition that I is not an inde-

pendent generator but is represented by I, are the C*

algebras of the Heisenberg relations in 2 degrees of free-

dom - the algebra of all compact operators on a fixed

infinite dimensional separable Hilbert space.



The continuos field can be shown to be trivial. Thus

the C* algebra E of Quantum Spacetime is identified

with the tensor product of the continuous functions

vanishing at infinity on Σ an the algebra of compact

operators.

The mathematical generalization of points are pure

states.

Optimally localized states: those minimizing

Σµ(∆ωqµ)2;

minimum = 2, reached by states concentrated on Σ1,

at each point ground state of harmonic oscillator.



(Given by an optimal localization map composed with

a probability measure on Σ1).

But to explore more thoroughly the Quantum Geometry

of Quantum Spacetime we must consider independent

events.

Quantum mechanically n independent events ought to

be described by the n − fold tensor product of E with

itself; considering arbitrary values on n we are led to

use the direct sum over all n.

If A is the C* algebra with unit over C, obtained adding

the unit to E, we will view the n-fold tensor power Λn(A)



of A over C as an A-bimodule with the product in A,

a(a1 ⊗ a2 ⊗ ...⊗ an) = (aa1)⊗ a2 ⊗ ...⊗ an;

(a1 ⊗ a2 ⊗ ...⊗ an)a = a1 ⊗ a2 ⊗ ...⊗ (ana);

and the direct sum

Λ(A) =
∞⊕
n=0

Λn(A)

as the A-bimodule tensor algebra,

(a1⊗a2⊗...⊗an)(b1⊗b2⊗...⊗bm) = a1⊗a2⊗...⊗(anb1)⊗b2⊗...⊗bm.

This is the natural ambient for the universal differential
calculus, where the differential is given by

d(a0⊗· · ·⊗an) =
n∑

k=0

(−1)ka0⊗· · ·⊗ak−1⊗I⊗a⊗ · · ·⊗an.



As usual d is a graded differential, i.e., if φ ∈ Λ(A), ψ ∈
Λn(A), we have

d2 = 0;

d(φ · ψ) = (dφ) · ψ + (−1)nφ · dψ.

Note that A = Λ1(A) ⊂ Λ(A), and the d-stable subal-
gebra Ω(A) of Λ(A) generated by A is the universal
differential algebra. In other words, it is the subalgebra
generated by A and

da = I ⊗ a− a⊗ I

as a varies in A.

A curiosity: If τ is a faithful trace on A defined on a
two sided ideal J, relative to the the pairing

< a1⊗a2⊗ ...⊗an, b1⊗ b2⊗ ...⊗ bm >= δn,mτ(a1b1...anbn)



(where at least one of the factors belongs to J) the

Hodge dual of d is the Hochshild boundary.

In the case of n independent events one is led to de-

scribe the spacetime coordinates of the j − th event by

qj = I ⊗ ...⊗ I ⊗ q⊗ I...⊗ I (q in the j - th place); in this

way, the commutator between the different spacetime

components of the qj would depend on j.

A better choice is to require that it does not; this

is achieved as follows.

The centre Z of the multiplier algebra of E is the algebra

of all bounded continuos complex functions on Σ; so

that E, and hence A, is in an obvious way a Z−bimodule.



We therefore can, and will, replace, in the definition of
Λ(A), the C - tensor product by the Z−bimodule−tensor
product so that

dQ = 0.

As a consequence, the qj and the 2−1/2(qj − qk), j dif-
ferent from k, and 2−1/2dq, obey the same space-
time commutation relations, as does the normalized
barycenter coordinates, n−1/2(q1+q2+ ...+qn); and the
latter commutes with the difference coordinates.

These facts allow us to define a quantum diagonal map
from Λn(E) to E1 (the restriction to Σ1 of E),

E(n) : E ⊗Z · · · ⊗Z E −→ E1



which factors to that restriction map and a conditional

expectation which leaves the functions of the barycen-

ter coordinates alone, and evaluates on functions of the

difference variables the universal optimally localized map

(which, when composed with a probability measure on

Σ1, would give the generic optimally localized state).

Replacing the classical diagonal evaluation of a function

of n arguments on Minkowski space by the quantum

diagonal map allows us to define the Quantum Wick

Product.

But working in Ω(A) as a subspace of Λ(A) allows us

to use two structures:



- the tensor algebra structure described above, where

both the A bimodule and the Z bimodule structures en-

ter, essential for our reduced universal differential cal-

culus;

- the pre - C* algebra structure of Λ(A), which allows

us to consider, for each element a of Λn(A), its modulus

(a∗a)1/2, its spectrum, and so on.

In particular we can study the geometric operators: sep-

aration between two independent events, area, 3 - vol-

ume, 4 - volume, given by



dq;

dq ∧ dq;

dq ∧ dq ∧ dq;

dq ∧ dq ∧ dq ∧ dq,

where, for instance, the latter is given by

V = dq ∧ dq ∧ dq ∧ dq =

εµνρσdq
µdqνdqρdqσ.



Each of these forms has a number of spacetime com-
ponents:

e.g. 4 the first one (a vector), 1 the last one (a pseu-
doscalar).

Each component is a normal operator;

THEOREM

For each of these forms, the sum of the square mod-
uli of all spacetime components is bounded below
by a multiple of the identity of unit order of mag-
nitude.

Although that sum is (except for the 4 - volume!)
NOT Lorentz invariant, the bound holds in any Lorentz
frame.



In particular,

- the four volume operator has pure point spectrum, at
distance 51/2 − 2 from 0;

- the Euclidean distance between two independent events
has a lower bound of order one in Planck units.

Two distinct points can never merge to a point.

However, of course, the state where the minimum is
achieved will depend upon the reference frame where
the requirement is formulated.

(The structure of length, area and volume operators on
QST has been studied in full detail [BDFP 2011]).



Thus the existence of a minimal length is not at all in

contradiction with the Lorentz covariance of the model.

In the C* algebra E of Quantum Spacetime, define

[DFR 1995]:

- the von Neumann functional calculus: for each

f ∈ FL1(R4) the function f(q) of the quantum co-

ordinates qµ is given by

f(q) ≡
∫
f̌(α)eiqµα

µ
d4α ,

- the integral over the whole space and over 3 -



space at q0 = t by∫
d4qf(q) ≡

∫
f(x)d4x = f̌(0) = Trf(q),∫

q0=t
f(q)d3q ≡

∫
eik0tf̌(k0, ~0)dk0 =

= lim
m
Tr(fm(q)∗f(q)fm(q))),

where the trace is the ordinary trace at each point of
the joint spectrum Σ of the commutators, i.e. a Z
valued trace.

But on more general elements of our algebra both maps
give Q - dependent results.

Important to define the interaction Hamiltonian to be
used in the Gell’Mann Low formula for the S - Matrix.



QST and QFT

The geometry of Quantum Spacetime and the free
field theories on it are fully Poincaré covariant.

One can introduce interactions in different ways, all
preserving spacetime translation and space rotation co-
variance, all equivalent on ordinary Minkowski space,
providing inequivalent approaches on QST; but all of
them, sooner or later, meet problems with Lorentz
covariance, apparently due to the nontrivial action of
the Lorentz group on the centre of the algebra of Quan-
tum Spacetime.

On this points in our opinion a deeper understanding is
needed.
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For instance, the interaction Hamiltonian on quantum

spacetime

HI(t) = λ
∫
q0=t

d3q : φ(q)n :

would be Q - dependent; no invariant probability

measure or mean on Σ; integrating on Σ1 [DFR 1995]

breaks Lorentz invariance.

Covariance is preserved by Yang Feldmann equations

but missed again at the level of scattering theory.

The Quantum Wick product selects a special frame

from the start. The interaction Hamiltonian on the

quantum spacetime is then given by



HI(t) = λ
∫
q0=t

d3q : φ(q)n :Q

where

: φn(q) :Q= E(n)(: φ(q1) · · ·φ(qn) :)

which does not depend on Q any longer, but brakes

Lorentz invariance at an earlier stage

The last mentioned approach takes into account, in the

very definition of Wick products, the fact that in our

Quantum Spacetime n (larger or equal to two) distinct

points can never merge to a point. But we can use the

canonical quantum diagonal map which associates to

functions of n independent points a function of a single



point, evaluating a conditional expectation which on
functions of the differences takes a numerical value,
associated with the minimum of the Euclidean distance
(in a given Lorentz frame!).

The “Quantum Wick Product” obtained by this
procedure leads to an interaction Hamiltonian on the
quantum spacetime given by as a constant operator–
valued function of Σ1 (i.e. HI(t) is formally in the
tensor product of C(Σ1) with the algebra of field oper-
ators).

The interaction Hamiltonian on the quantum spacetime
is then given by

HI(t) = λ
∫
q0=t

d3q : φ(q)n :Q



This leads to a unique prescription for the interaction

Hamiltonian on quantum spacetime. When used in the

Gell’Mann Low perturbative expansion for the S - Ma-

trix, this gives the same result as the effective non

local Hamiltonian determined by the kernel

exp

{
−

1

2

∑
j,µ

a
µ
j

2
}
δ(4)

(
1

n

n∑
j=1

aj

)
.

The corresponding perturbative Gell’Mann Low formula

is then free of ultraviolet divergences at each term

of the perturbation expansion [BDFP 2003] .

However, those terms have a meaning only after a sort

of adiabatic cutoff: the coupling constant should be

changed to a function of time, rapidly vanishing at in-

finity, say depending upon a cutoff time T.



But the limit T →∞ is difficult problem, and there are

indications it does not exist.

HOWEVER the minimal distance can be taken into

account in another way:

replacing, in the Hamiltonian density on Minkowski space,

the field at a point by the field at a “quantum point”

in Quantum Spacetime

< ι⊗ ωx, φ(q) >

where φ(q) is affiliated to F ⊗ E, F is the algebra of

fields, and ωx the state of E optimally localized at x.



The effective non local Hamiltonian density obtained in
this way and the previous one have the same spacetime
integrals (in the exponent in the Gell’mann - Low for-
mula); but the S - matrix may still differ due to the
Time Ordering.

This difference is of great importance: the techniques
of Perturbative Algebraic Quantum Field Theory devel-
oped by Fredenhagen, Reizner, Brunetti, Dütsch may
now be applied, to show that the perturbative expan-
sion of the field operators is not only ultraviolet finite,
but also term by term convergent in the Adiabatic

Limit [DMP, 2019].

Unfortunately the same is not yet proved for S - matrix
itself. But this result allows one to tackle the problems:



1. Can we estimate the decay of field commutators

at spacelike separations, even without results on the

convergence of the perturbative expansion?

2. if so, and the commutators do decay rapidly as ex-

pected beyond planckian distances, this will be enough

to study the S - matrix following Haag, Ruelle, Araki

and Hepp.

In order that the so obtained S - matrix has any physi-

cal meaning, however, one should apply this procedure

to the renormalized interaction Lagrangean den-

sity of a theory which is renormalizable on the ordinary

Minkowski space, with the counter terms defined by

that ordinary theory, and with finite renormalization



constants depending upon both the Planck length

λP and the cutoff time T , chosen so that in the limit

λP → 0 and T →∞ we get back the ordinary renormal-

ized Gell-Mann Low expansion on Minkowski space.

In that case, that result could be taken as source of

predictions to be compared with observations.



QST and cosmology

Heuristic argument we started with: commutators be-

tween coordinates ought to depend on gµ,ν; scenario:

Rµ,ν − (1/2)Rgµ,ν = 8πTµ,ν(ψ);

Fg(ψ) = 0;

[qµ, qν] = iQµ,ν(g);

Algebra is Dynamics.

Expect: dynamical minimal length.
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In particular, divergent near singularities. Would solve

Horizon Problem, without inflationary hypothesis.

How solid are these heuristic arguments?

Exact solution of the semiclassical EE, spherically sim-

metric case confirms:

massless scalar field semiclassical coupling with gravity;

use Quantum Wick product to define Energy - Momen-

tum Tensor Tµ,νQ (q);

Exact EE with source ω⊗ηx(Tµ,νQ (q)), where ω is a KMS

state and ηx is a state on E optimally localized at x;



these simplifying ansaetze imply a solution describing

spacetime without the horizon problem [DMP 2013].

Near the Big Bang every pair of points were in causal

contact, as indicated by the heuristic argument that the

range of a-causal effects should diverge.

For the Planck length λP is replaced by the effective

Planck length λP/a(t), where a(t) is the coefficient in

the FRW metric

ds2 = −dt2 + a(t)2(dx2
1 + dx2

2 + dx2
3)

What happens at the singularity, t = 0? Current

research (G.Morsella, N.Pinamonti, S.D.):



Two attitudes:

- no limit; asymptotic approaches replace initial condi-

tions?

- state at t = 0, given the divergence of the effective

Planck length?

We wish to comment on the last, in a simplified picture:

Minkowski QST with varying effective Planck length,

λeff →∞

Repacing λP by λeff →∞ in the above formulas we get



- The Quantum Diagonal Map E(n) → 0;

- The Fields at a quantum point < ι⊗ωx, φ(q) >→ 0;

- The same happens for the interacting field, at least at

the lowest perturbative order, in the Yang - Feldmann

approach;

- The methods of Perturbative Algebraic Quan-

tum Field Theory, applied to the effective interac-

tion Hamiltonian, obtained replacing in the Hamilto-

nian density on Minkowski space, the field at a point

by the field at a “quantum point” in Quantum Space-

time, show that fields tend to zero at all orders in

perturbation theory.[DMP, 2019]



This supports the picture:

Since λeff → ∞ at the singularity all points are in

contact to one another, the universe becames a

single point, a system with zero degrees of free-

dom.

Initial condition or unreachable limit?

In the first case: description of the transition to a flat

Universe at nonzero times?

In the second case, different asymtotics at t→ 0 replace

Initial conditions?
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Need for a dynamical picture of Quantum Spacetime.

BUT: observable signatures of QST? DFMP Phys.

Rev. D 95, 065009 (2017).

Warning: Quantum effects at Planck scale result from

extrapolation of EE to that scale.

But: Newton’s law is experimentally checked only for

distances (Adelberger et al, 2003, 2004), i.e. we are

extrapolating 31 steps down in base 10 - log scale;

while the size of the known universe is ”only” 28 steps

up.
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