Linear Algebra Test November 30, 2019

(1) For $k \geq 2$ let

$$A_k = rac{1}{k} egin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & & & 1 & 1 & \dots & 1 \end{pmatrix}$$

(a $k \times k$ matrix, rank 1 projection). Is there $m \in \mathbb{N}$ such that for every k there exists $k \times k$ matrix B_k that satisfies

- 1. $||A_k B_k|| < \frac{1}{3}, 1$
- 2. in every row B_k has at most m nonzero entries, and
- 3. in every column B_k has at most m nonzero entries.

¹This is the operator norm.

Operator algebras then and now (a biased selection)

J. von Neumann

R. Kadison

B. de M. Braga

A. Vignati (my coauthors)

Rigidity for uniform Roe algebras

Ilijas Farah (joint work with Bruno de Mendonça Braga and Alessandro Vignati)

Kadison memorial conference, Copenhagen, November 2019

Large Scale Geometry and Coarse Equivalence

If (X, d) is a metric space, the *coarse structure* \mathcal{E}_d on X is the set of all $E \subset X^2$ such that

$$\sup_{(x,x')\in E}d(x,x')<\infty$$

Definition

An (abstract) coarse structure on a set X is $\mathcal{E} \subseteq \mathcal{P}(X^2)$ such that

- 1. The diagonal Δ_X is in \mathcal{E} .
- 2. $E \in \mathcal{E}$ and $F \in \mathcal{E}$ implies $E \cup F \in \mathcal{E}$ and $E \circ F \in \mathcal{E}$.
- 3. $E \in \mathcal{E}$ and $F \subseteq E$ implies $F \in \mathcal{E}$.

The sets in \mathcal{E} are said to be *controlled* (or *entourages*).

A coarse space (X, \mathcal{E}) is *connected* if $A^2 \in \mathcal{E}$ for all $A \subseteq X$.

Lemma

A coarse space (X, \mathcal{E}) is metrizable iff it is countably generated and connected.

Basic Definitions

Given (X, \mathcal{E}) and (Y, \mathcal{F}) , some $f: X \to Y$ is

$$\text{coarse if} \quad (f \times f)[\mathcal{E}] \subseteq \mathcal{F} \\ \text{expanding if} \quad (f \times f)^{-1}[\mathcal{F}] \subseteq \mathcal{E},$$

coarse embedding if both coarse and expanding.

We say X and Y are coarsely equivalent, $X \sim Y$, if there are a coarse $f: X \to Y$ and a coarse $g: Y \to X$ such that both $\{(x, g(f(x)) \mid x \in X\} \text{ and } \{(y, f(g(y)) \mid y \in Y\} \text{ are controlled.}$

Example

 $\mathbb{R} \sim \mathbb{Z}$. $\mathbb{C} \sim \mathbb{Z}^2$.

Definition

A coarse space (X, \mathcal{E}) is uniformly locally finite (u.l.f.), or has bounded geometry, if $(\forall E \in \mathcal{E})$:

$$\sup_{x \in X} |\{y \mid (x, y) \in E \text{ or } (y, x) \in E\}| < \infty$$

Example

Some u.l.f. metric spaces:

- 1. k-regular graphs, with path distance, for $k \in \mathbb{N}$.
- 2. Finitely generated groups (Cayley graph).
- 3. If G is a group and $S \subseteq G$ is a generating set, then the sets

$$E_{P,n} := \prod_{i \le n} (P \cup P^{-1})$$

for $P \subseteq S$ and $n \in \mathbb{N}$ generate a coarse structure on G.

4. $\mathcal{E}_{\max} := \{ E \subseteq \mathbb{N}^2 : \sup_m |\{n|(m,n) \in E \text{ or } (n,m) \in E\}| < \infty \}$ is the maximal u.l.f. coarse structure on \mathbb{N} .

The Uniform Roe Algebra

Definition

For
$$T \in \mathcal{B}(\ell_2(X))$$
 let $\mathsf{Supp}(T) := \{(x, x') : (T\delta_x | \delta_{x'}) \neq 0\}.$

Example

- 1. $T \in \ell_{\infty}(X) \Leftrightarrow \operatorname{Supp}(T) \subseteq \Delta_X$.
- 2. If S is the shift on the basis of $\ell_2\mathbb{Z}$, $S\delta_m = \delta_{m+1}$, then $\operatorname{Supp}(S) = \{(m, m+1) : m \in \mathbb{Z}\}.$

Definition

If (X, \mathcal{E}) is a coarse space, let

$$\mathsf{C}^*_\mathsf{u}[X,\mathcal{E}] = \{ T \in \mathcal{B}(\ell_2(X)) : \mathsf{Supp}(T) \in \mathcal{E} \}$$
 (the algebraic uniform Roe algebra)

$$C_u^*(X,\mathcal{E}) = \overline{C_u^*[X,\mathcal{E}]}^{\|\cdot\|},$$
 (the uniform Roe algebra).

Properties of $C_u^*(X) = C_u^*(X, \mathcal{E})$

- 1. It is a C^* -algebra.
- 2. All compact operators belong to it: $\mathcal{K}(\ell_2(X)) \subseteq C_u^*(X)$.
- 3. $\ell_{\infty}(X) \subseteq C_{u}^{*}[X] \subseteq C_{u}^{*}(X)$ is a maximal abelian subalgebra (masa). It is a Cartan masa; will come back to this later.
- 4. If X is uniformly locally finite and metrizable, then $C_u^*(X)$ is generated by $\ell_\infty(X)$ together with a countable subset of its normalizer.

(Our) main problem

Question

What is the relation between the following assertions for u.l.f. coarse spaces?

- 1. $X \sim Y$.
- 2. $C_u^*(X) \cong C_u^*(Y)$.
- 3. $C_u^*(X)/\mathcal{K}(\ell_2(X)) \cong C_u^*(Y)/\mathcal{K}(\ell_2(Y))$ (Not in this talk.)

We will also consider the analogous question for embeddings. (The original motivation for (2) \Rightarrow ? (1) comes from the Baum–Connes conjecture.)

Lemma

If X and Y are u.l.f. then $X \sim Y$ implies $C_u^*(X) \otimes \mathcal{K} \cong C_u^*(Y) \otimes \mathcal{K}$.

$$(2) \Rightarrow (1)$$
: From $C_u^*(X) \cong C_u^*(Y)$ to $X \sim Y$

Lemma (Špakula-Willett, 2013)

If $C_u^*(X) \cong C_u^*(Y)$, then the isomorphism is implemented by a unitary $u \colon \ell_2(X) \to \ell_2(Y)$, via $\Phi(T) = uTu^*$.

Theorem (Špakula–Willett, 2013)

For u.l.f. metric spaces X and Y the following are equivalent

- 1. $X \sim Y$ bijectively.
- 2. $C_u^*[X] \cong C_u^*[Y]$.
- 3. $(\exists \Phi)$: $C_u^*(X) \cong C_u^*(Y)$, and $\Phi[\ell_\infty(X)] = \ell_\infty(Y)$.

Cartan masas

Definition

A masa D in $C_{ii}^*(X)$ is Cartan if

- 1. There exists a conditional expectation from $C_{ii}^*(X)$ onto D,
- 2. The normalizer of D generates $C_u^*(X)$.

It is *co-separable* if $C_u^*(X) = C^*(D, Z)$ for some countable subset Z of the normalizer of D.

Lemma (White-Willett, 2018)

If X is u.l.f. and D is a Cartan masa in $C^*_u(X)$ isomorphic to some $\ell_\infty(Y)$, then there exist a coarse structure (Y,\mathcal{F}) and an isomorphism $\Phi\colon C^*_u(X)\cong C^*_u(Y,\mathcal{F})$ such that $\Phi[D]=\ell_\infty(Y)$. The space (Y,\mathcal{F}) is metrizable if and only if D is co-separable.

The first part reduces the rigidity question "does $C_u^*(X) \cong C_u^*(Y)$ imply $X \sim Y$?" to the question of classification of Cartan masas in $C_u^*(X)$ that are isomorphic to some ℓ_{∞} -space.

Question (essentially White-Willett, 2018)

If $C_u^*(X) \cong C_u^*(Y)$, X and Y are u.l.f., and X is metrizable, is Y necessarily metrizable?

Example (Braga-F.-Vignati, 2019)

There exists a non-metrizable, connected, coarse structure $\mathcal{E}_{\mathcal{U}}$ on $\mathbb N$ included in the coarse structure on $\mathbb N$ induced by the standard metric.

Hence $C_u^*(\mathbb{N}, \mathcal{E}_{\mathcal{U}})$ is a subalgebra of $C_u^*(\mathbb{N})$, with $\ell_{\infty}(\mathbb{N})$ as a (non-co-separable) Cartan masa.

From
$$C_u^*(X) \cong C_u^*(Y)$$
 to $X \sim Y$

Suppose $\Phi \colon \operatorname{C}^*_{\operatorname{u}}(X) \cong \operatorname{C}^*_{\operatorname{u}}(Y)$ and fix u such that $\Phi(T) = uTu^*$, for $m \geq 1$ let

$$X_m = \{x : (\exists y \in Y) | (u\delta_x, \delta_y)| > 1/m\},$$

$$Y_m = \{y : (\exists x \in X) | (\delta_x, u\delta_y)| > 1/m\}.$$

If $X = X_m$ and $Y = Y_m$ for some m, then Φ is rigidly implemented.

Proposition (Špakula–Willett)

Suppose both X and Y are metric and $\Phi\colon C^*_u(X)\cong C^*_u(Y)$. If Φ is rigidly implemented then X and Y are coarsely equivalent. If in addition X has property A (\Leftrightarrow if $C^*_u(X)$ is nuclear) then Φ is rigidly implemented.

Ghosts

Definition (Yu)

An operator $T \in C_u^*(X)$ is a *ghost* if $\lim_{x,x'\to\infty} |(T\delta_x|\delta_{x'})| = 0$.

Theorem (Roe-Willett)

A u.l.f. space X has property A if and only if all ghosts $C_u^*(X)$ are compact.

Advanced Linear Algebra Test November 30, 2019

(1) For $k \geq 2$ let

$$A_k = \frac{1}{k} \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & & & \\ 1 & 1 & \dots & 1 \end{pmatrix}$$

(a $k \times k$ matrix, projection of rank 1).

Prove that for all $\varepsilon > 0$ there exist m_{ε} and a $k \times k$ matrix $B_{\varepsilon,k}$ (for every k) such that

- 1. $||A_k B_{\varepsilon,k}|| < \varepsilon$,
- 2. in every row $B_{\varepsilon,k}$ has at most m_{ε} nonzero entries, and
- 3. in every column $B_{\varepsilon,k}$ has at most m_{ε} nonzero entries.

Hints 1: Extract a proof from the counterexample to the coarse Baum-Connes conjecture (Higson-Laforgue-Skandalis, 2002).

(Expander graphs, f.g. groups with property (T), spectral gap of a Laplacian.)

Back to our main rigidity question

A Cartan masa A in $C_u^*(X)$ is *ghostly* if there are orthogonal non-compact ghost projections $Q_n \in A$ such that $\bigvee_n Q_n = 1$.

Theorem (Braga-F., 2018)

If X and Y are u.l.f. metric spaces, and $\Phi \colon C^*_u(X) \cong C^*_u(Y)$ is not rigidly implemented, then at least one of $C^*_u(X)$ and $C^*_u(Y)$ contains a ghostly Cartan masa.

Corollary

If all ghost projections in $C_u^*(X)$ and $C_u^*(Y)$ are compact and $C_u^*(X) \cong C_u^*(Y)$, then X and Y are bijectively coarsely equivalent.

An 'almost ghostly' masa

Example (Willett, Braga-F., 2018)

There exist X, a non-compact ghost projection Q in $C_u^*(X)$, a unitary $u \in \ell_{\infty}(X)$, and a finite rank perturbation P_n of $u^n Q u^n$, for $n \geq 0$, such that

- 1. Each P_n is a non-compact ghost projection in $C_u^*(X)$,
- 2. $\bigvee_{n} P_{n} = 1$.

Question

Can X be chosen so that the projections P_n , $n \in \mathbb{N}$ are contained in a masa of $C_u^*(X)$ that is closed in the weak operator topology?

What about the not necessarily metrizable spaces?

Theorem (Braga-F., 2018)

If X and Y are (not necessarily metrizable) coarse spaces, X has property A, $C_u^*(X) \cong C_u^*(Y)$, and the isomorphism is forcing absolute, then $X \sim Y$.

The definition of 'forcing absolute' is of a heavily metamathematical nature, but I don't need to state it now.

Theorem (Braga-F.-Vignati, 2018)

Suppose X and Y are coarse u.l.f. spaces such that X has property A. If $C^*_u(X) \cong C^*_u(Y)$, then $X \sim Y$.

Corollary

If X is a metrizable u.l.f. space with property A and D is a Cartan masa in $C^*_u(X)$ isomorphic to $\ell_\infty(\mathbb{N})$, then D is co-countable. (This generalizes to higher cardinals.)

When does $C_u^*(X) \hookrightarrow C_u^*(Y)$ imply that X coarsely embeds into Y?

If Q is the Higson–Laforgue–Skandalis noncompact ghost projection in $C_u^*(X)$ then the corner Q $C_u^*(X)Q$ is isomorphic to $C_u^*(n^2:n\in\mathbb{N})$.

Example (Braga-F.-Vignati, 2019)

There is a (non-metrizable) u.l.f. coarse space $X_{\mathcal{U}}$ with property A such that $C_{u}^{*}(X)$ embeds into $C_{u}^{*}(\mathbb{N})$ but X does not coarsely embed into \mathbb{N} .

Theorem (Braga-F.-Vignati, 2019)

If X and Y are u.l.f. coarse spaces such that X has property A and $C^*_u(Y)$ is isomorphic to a hereditary subalgebra of $C^*_u(X)$, then Y injectively coarsely embeds into X

We also have ℓ_p -versions of these results, but it is getting late. . .

Book Advertisement:

I. Farah, Combinatorial Set Theory and C*-algebras Springer Monographs in Mathematics December 2019.

Draft available at http://www.math.yorku.ca/~ifarah/ilijas-book.pdf