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(a k × k matrix, rank 1 projection).
Is there m ∈ N such that for every k there exists k × k matrix Bk

that satisfies

1. 󰀂Ak − Bk󰀂 < 1
3 ,

1

2. in every row Bk has at most m nonzero entries, and

3. in every column Bk has at most m nonzero entries.

1This is the operator norm.
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Large Scale Geometry and Coarse Equivalence

If (X , d) is a metric space, the coarse structure Ed on X is the set
of all E ⊆ X 2 such that

sup
(x ,x ′)∈E

d(x , x ′) < ∞

Definition
An (abstract) coarse structure on a set X is E ⊆ P(X 2) such that

1. The diagonal ∆X is in E .
2. E ∈ E and F ∈ E implies E ∪ F ∈ E and E ◦ F ∈ E .
3. E ∈ E and F ⊆ E implies F ∈ E .

The sets in E are said to be controlled (or entourages).



A coarse space (X , E) is connected if A2 ∈ E for all A ⋐ X .

Lemma
A coarse space (X , E) is metrizable iff it is countably generated
and connected.



Basic Definitions

Given (X , E) and (Y ,F), some f : X → Y is

coarse if (f × f )[E ] ⊆ F
expanding if (f × f )−1[F ] ⊆ E ,

coarse embedding if both coarse and expanding.

We say X and Y are coarsely equivalent, X ∼ Y , if there are a
coarse f : X → Y and a coarse g : Y → X such that both
{(x , g(f (x)) | x ∈ X} and {(y , f (g(y)) | y ∈ Y } are controlled.

Example

R ∼ Z. C ∼ Z2.



Definition
A coarse space (X , E) is uniformly locally finite (u.l.f.), or has
bounded geometry, if (∀E ∈ E):

supx∈X |{y | (x , y) ∈ E or (y , x) ∈ E}| < ∞

Example

Some u.l.f. metric spaces:

1. k-regular graphs, with path distance, for k ∈ N.
2. Finitely generated groups (Cayley graph).

3. If G is a group and S ⊆ G is a generating set, then the sets

EP,n :=
󰁜

j≤n

(P ∪ P−1)

for P ⋐ S and n ∈ N generate a coarse structure on G .

4. Emax := {E ⊆ N2 : supm |{n|(m, n) ∈ E or (n,m) ∈ E}| < ∞}
is the maximal u.l.f. coarse structure on N.



The Uniform Roe Algebra

Definition
For T ∈ B(ℓ2(X )) let Supp(T ) := {(x , x ′) : (T δx |δx ′) ∕= 0}.

Example

1. T ∈ ℓ∞(X ) ⇔ Supp(T ) ⊆ ∆X .

2. If S is the shift on the basis of ℓ2Z, Sδm = δm+1, then
Supp(S) = {(m,m + 1) : m ∈ Z}.

Definition
If (X , E) is a coarse space, let

C*
u[X , E ] = {T ∈ B(ℓ2(X )) : Supp(T ) ∈ E} (the algebraic uniform Roe algebra)

C*
u(X , E) = C*

u[X , E ]
󰀂·󰀂

, (the uniform Roe algebra).



Properties of C*
u(X ) = C*

u(X , E)

1. It is a C∗-algebra.

2. All compact operators belong to it: K(ℓ2(X )) ⊆ C*
u(X ).

3. ℓ∞(X ) ⊆ C*
u[X ] ⊆ C*

u(X ) is a maximal abelian subalgebra
(masa). It is a Cartan masa; will come back to this later.

4. If X is uniformly locally finite and metrizable, then C*
u(X ) is

generated by ℓ∞(X ) together with a countable subset of its
normalizer.



(Our) main problem

Question
What is the relation between the following assertions for u.l.f.
coarse spaces?

1. X ∼ Y .

2. C*
u(X ) ∼= C*

u(Y ).

3. C ∗
u (X )/K(ℓ2(X )) ∼= C ∗

u (Y )/K(ℓ2(Y )) (Not in this talk.)

We will also consider the analogous question for embeddings.
(The original motivation for (2) ⇒? (1) comes from the
Baum–Connes conjecture.)

Lemma
If X and Y are u.l.f. then X ∼ Y implies C*

u(X )⊗K ∼= C*
u(Y )⊗K.



(2) ⇒ (1): From C*
u(X ) ∼= C*

u(Y ) to X ∼ Y

Lemma (Špakula–Willett, 2013)

If C*
u(X ) ∼= C*

u(Y ), then the isomorphism is implemented by a
unitary u : ℓ2(X ) → ℓ2(Y ), via Φ(T ) = uTu∗.

Theorem (Špakula–Willett, 2013)

For u.l.f. metric spaces X and Y the following are equivalent

1. X ∼ Y bijectively.

2. C*
u[X ] ∼= C*

u[Y ].

3. (∃Φ) : C*
u(X ) ∼= C*

u(Y ), and Φ[ℓ∞(X )] = ℓ∞(Y ).



Cartan masas

Definition
A masa D in C*

u(X ) is Cartan if

1. There exists a conditional expectation from C*
u(X ) onto D,

2. The normalizer of D generates C*
u(X ).

It is co-separable if C*
u(X ) = C*(D,Z ) for some countable

subset Z of the normalizer of D.



Lemma (White–Willett, 2018)

If X is u.l.f. and D is a Cartan masa in C*
u(X ) isomorphic to some

ℓ∞(Y ), then there exist a coarse structure (Y ,F) and an
isomorphism Φ : C*

u(X ) ∼= C*
u(Y ,F) such that Φ[D] = ℓ∞(Y ).

The space (Y ,F) is metrizable if and only if D is co-separable.

The first part reduces the rigidity question “does C*
u(X ) ∼= C*

u(Y )
imply X ∼ Y ?” to the question of classification of Cartan masas in
C*
u(X ) that are isomorphic to some ℓ∞-space.



Question (essentially White–Willett, 2018)

If C*
u(X ) ∼= C*

u(Y ), X and Y are u.l.f., and X is metrizable, is Y
necessarily metrizable?

Example (Braga–F.–Vignati, 2019)

There exists a non-metrizable, connected, coarse structure EU on
N included in the coarse structure on N induced by the standard
metric.
Hence C*

u(N, EU ) is a subalgebra of C*
u(N), with ℓ∞(N) as a

(non-co-separable) Cartan masa.



From C*
u(X ) ∼= C*

u(Y ) to X ∼ Y

Suppose Φ : C*
u(X ) ∼= C*

u(Y ) and fix u such that Φ(T ) = uTu∗,
for m ≥ 1 let

Xm = {x : (∃y ∈ Y )|(uδx , δy )| > 1/m},
Ym = {y : (∃x ∈ X )|(δx , uδy )| > 1/m}.

If X = Xm and Y = Ym for some m, then Φ is rigidly implemented.

Proposition (Špakula–Willett)

Suppose both X and Y are metric and Φ : C*
u(X ) ∼= C*

u(Y ).
If Φ is rigidly implemented then X and Y are coarsely equivalent.
If in addition X has property A (⇔ if C*

u(X ) is nuclear) then Φ is
rigidly implemented.



Ghosts

Definition (Yu)

An operator T ∈ C*
u(X ) is a ghost if limx ,x ′→∞ |(T δx |δx ′)| = 0.

Theorem (Roe–Willett)

A u.l.f. space X has property A if and only if all ghosts C*
u(X ) are

compact.
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(1) For k ≥ 2 let
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(a k × k matrix, projection of rank 1).
Prove that for all ε > 0 there exist mε and a k × k matrix Bε,k (for
every k) such that

1. 󰀂Ak − Bε,k󰀂 < ε,

2. in every row Bε,k has at most mε nonzero entries, and

3. in every column Bε,k has at most mε nonzero entries.

Hints 1: Extract a proof from the counterexample to the coarse
Baum–Connes conjecture (Higson–Laforgue–Skandalis, 2002).

(Expander graphs, f.g. groups with property (T), spectral gap of a Laplacian.)



Back to our main rigidity question

A Cartan masa A in C*
u(X ) is ghostly if there are orthogonal

non-compact ghost projections Qn ∈ A such that
󰁚

n Qn = 1.

Theorem (Braga–F., 2018)

If X and Y are u.l.f. metric spaces, and Φ : C*
u(X ) ∼= C*

u(Y ) is not
rigidly implemented, then at least one of C*

u(X ) and C*
u(Y )

contains a ghostly Cartan masa.

Corollary

If all ghost projections in C*
u(X ) and C*

u(Y ) are compact and
C*
u(X ) ∼= C*

u(Y ), then X and Y are bijectively coarsely equivalent.



An ‘almost ghostly’ masa

Example (Willett, Braga–F., 2018)

There exist X , a non-compact ghost projection Q in C*
u(X ), a

unitary u ∈ ℓ∞(X ), and a finite rank perturbation Pn of unQun,
for n ≥ 0, such that

1. Each Pn is a non-compact ghost projection in C*
u(X ),

2.
󰁚

n Pn = 1.

Question
Can X be chosen so that the projections Pn, n ∈ N are contained
in a masa of C*

u(X ) that is closed in the weak operator topology?



What about the not necessarily metrizable spaces?

Theorem (Braga–F., 2018)

If X and Y are (not necessarily metrizable) coarse spaces, X has
property A, C*

u(X ) ∼= C*
u(Y ), and the isomorphism is forcing

absolute, then X ∼ Y .

The definition of ‘forcing absolute’ is of a heavily
metamathematical nature, but I don’t need to state it now.



Theorem (Braga–F.–Vignati, 2018)

Suppose X and Y are coarse u.l.f. spaces such that X has
property A. If C*

u(X ) ∼= C*
u(Y ), then X ∼ Y .

Corollary

If X is a metrizable u.l.f. space with property A and D is a Cartan
masa in C*

u(X ) isomorphic to ℓ∞(N), then D is co-countable.

(This generalizes to higher cardinals.)



When does C*
u(X ) ↩→ C*

u(Y ) imply
that X coarsely embeds into Y ?

If Q is the Higson–Laforgue–Skandalis noncompact ghost
projection in C*

u(X ) then the corner Q C*
u(X )Q is isomorphic to

C*
u({n2 : n ∈ N}).

Example (Braga–F.–Vignati, 2019)

There is a (non-metrizable) u.l.f. coarse space XU with property A
such that C*

u(X ) embeds into C*
u(N) but X does not coarsely

embed into N.

Theorem (Braga–F.–Vignati, 2019)

If X and Y are u.l.f. coarse spaces such that X has property A and
C*
u(Y ) is isomorphic to a hereditary subalgebra of C*

u(X ), then Y
injectively coarsely embeds into X

We also have ℓp-versions of these results, but it is getting late. . .
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