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Stable rank one (1)

Definition (Rieffel 1983)

A unital C*-algebra A has stable rank one if A−1 ⊆ A is
norm-dense.

Nonunital A has stable rank one if Ã does.

Examples:
II1-factors, AF-algebras, C(X ) iff dim(X ) ≤ 1
A⊗W for A inductive limit of type I algebras andW the
Jacelon-Razac algebra (Santiago 2012)

; Problem: Characterize primitive ideal spaces of stable rank
one C*-algebras.

Application: Non-stable K -theory (Rieffel 1983):
K1(A) = U(A)/U0(A). (No matrix amplifications needed.)
projections p and q are equivalent iff [p] = [q] ∈ K0(A)
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Stable rank one (2)

Examples among unital, stably finite, simple C*-algebras:
irrational rotation algebras (Putnam 1990)

all Z-stable C*-algebras (Rørdam 2004)
; Question: Do simple, projectionless, Z-stable C*-algebras
have stable rank one?

many non-Z-stable, nuclear C*-algebras (Villadsen 1998,
Toms 2008, Elliott-Ho-Toms 2009)
C(X ) o Z (Archey-Phillips 2015, Lutley 2017,
Giol-Kerr 2010)
C∗r (G1 ∗G2) for |G1| ≥ 2 and |G2| ≥ 3
(Dykema-Haagerup-Rørdam 1997)

; Question: Do all simple group C*-algebras have stable rank
one?
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The Cuntz semigroup (1)

Murray-von Neumann semigroup

V (A) := Proj(A⊗K)/∼MvN
∼= {f.g. projective A-modules}/∼=.

Cuntz semigroup (Cuntz 1978, Coward-Elliott-Ivanescu 2008)

Cu(A) := (A⊗K)+/∼Cu
∼= {c.g. Hilbert A-modules}/∼.

If A has stable rank one, then Cu(A) ∼= {c.g. Hilb. A-mod’s}/∼=.

[E ] + [F ] := [E ⊕ F ], [E ] ≤ [F ] :⇔ E ↪→ F .

A V (A) K0(A) Cu(A)

C or Mn(C) N Z N = N ∪ {∞}
C([0,1]) N Z Lsc([0,1],N)
II1-factor [0,∞) R [0,∞) t (0,∞]
Z or C∗r (F∞) N Z N t (0,∞]
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The Cuntz semigroup (2)

Theorem (CEI 2008)
There is a category Cu of order-complete, partially ordered
semigroups such that A 7→ Cu(A) is a functor C∗ → Cu.

Theorem (Antoine-Perera-T 2018)
Cu admits tensor products (symmetric, monoidal category)
Cu(A⊗ D) ∼= Cu(A)⊗ Cu(D) for D strongly self-absorbing

Theorem (APT 2017)
Cu admits internal-hom (closed monoidal category)
starting point to develop UCT for bivariant Cuntz
semigroups:
Cu(A,B)→ JCu(A),Cu(B)K
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The Cuntz semigroup (3)

Theorem (APT 2019)
Cu is complete and cocomplete.
Cu(−) preserves lim−→, ⊕,

∏
,
∏
U .

Corollary

Ultraproduct
∏
U Ak is simple iff either:

1 almost all Ak are simple, purely infinite; or:
2 there is n such that almost all Ak are isomorphic to Mn(C).

(Uses that Cu(−) encodes lattice of ideals.)

Corollary

Characterization of when limit (quasi)traces on
∏
U Ak are

dense in QT(
∏
U Aj).

(Generalizing Ozawa’s 2013 ‘no silly traces’ result. Uses that
Cu(−) encodes simplex of (quasi)traces.)
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The rank problem (1)

Let A be unital, simple, stably finite. Then:

Cu(A) = V (A) t Cu(A)soft.

V (A) = classes of projections in A⊗K
Cu(A)soft = classes of a ∈ (A⊗K)+ with spectrum [0,1]

Every quasitrace τ : A→ C induces a dimension function:

dτ : Cu(A)→ [0,∞], dτ ([a]) = lim
n→∞

τ(a1/n).

The rank map

α : Cu(A)soft → LAff(QT(A))++, α([a])(τ) = dτ (a).

Is α order-embedding? (⇔: A has strict comparison)
Is α surjective? (the rank problem)
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The rank problem (2)

Let A be unital, simple, stably finite.

Cu(A) = V (A) t Cu(A)soft, α : Cu(A)soft → LAff(QT(A))++.

Is α order-embedding ? (⇔: A has strict comparison)
Is α surjective? (the rank problem)

If A ∼= Z ⊗ A, then α is isomorphism:

Cu(A) ∼= V (A) t LAff(QT(A))++.

Theorem (T 2018)
If A has stable rank one, then α is surjective.

Corollary
If A has stable rank one and strict comparison, then

Cu(A) ∼= V (A) t LAff(QT(A))++
∼= Cu(Z ⊗ A).
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The rank problem (3)

Toms-Winter conjecture 2005
For unital, simple, nuclear A, TFAE:

1 A has finite nuclear dimension.
2 A ∼= Z ⊗ A.
3 A has strict comparison.

applications to Elliott classification program
Known: (1)⇒(2) (Winter 2012), (2)⇒(3) (Rørdam 2004),
(2)⇒(1) (Castillejos-Evington-Tikuisis-White-Winter 2019)

Corollary (T 2018)
Toms-Winter conjecture holds for:

C*-algebras with stable rank one and locally finite nuclear
dimension (in particular, stable rank one ASH-algebras).
minimal crossed products C(X ) o Z (using Lutley 2017).
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Cuntz semigroups of C*-algebras with stable rank one

Theorem (Antoine-Perera-Robert-T 2018)

If A has stable rank one, then Cu(A) has Riesz interpolation:
If xj ≤ zk for j , k = 1,2, then there is y with x1, x2 ≤ y ≤ z1, z2.

Corollary

If A separable with stable rank one, then Cu(A) is semilattice.

Proof.
Given y , z, the set {x : x ≤ y , z} of lower bounds is directed.
Directed sets have suprema: y ∧ z = sup{x : x ≤ y , z}.

Given Hilbert modules E and F there is a Hilbert module G
with G ↪→ E and G ↪→ F , and such that any Hilbert module
H with H ↪→ E and H ↪→ F also satisfies H ↪→ G.
We can apply methods from semilattice theory to study
C*-algebras of stable rank one.
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Applications (1)

Definition
A dimension function on A is a functional d : Cu(A)→ [0,∞].

It assigns a dimension to each Hilbert A-module such that:
1 d(E ⊕ F ) = d(E) + d(F ),
2 d(E) ≤ d(F ) if E ↪→ F,
3 d(A) = 1.

dimension function = finitely additive, noncommutative measure

DF(C(X )) = finitely additive probability measures on X

Blackadar-Handelman conjecture 1982

DF(A) is a Choquet simplex.

Theorem (APRT 2018)
Blackadar-Handelman conjecture holds for stable rank one.
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Applications (2)

Let A be unital, k ∈ N.
Obstructions to irreducible representation of dimension < k :

1 unital *-homomorphism Mk (C)→ A

2 *-homomorphism Mk (C0((0,1]))→ A with full image

Global Glimm Halving Problem (Kirchberg-Rørdam 2002)
Is this the only obstruction?

If A is simple and non-elementary, then (2) holds for every k .
(Glimm 1960s)

Theorem (APRT 2018, Global Glimm Halving)
Let A be unital with stable rank one, and k ∈ N. TFAE:

1 A has no irreducible representation of dimension < k.
2 there exists Mk (C0((0,1]))→ A with full image.
3 there exists a Hilbert A-module E such that

E⊕k ⊆ A ⊆ E⊕n, for some n.
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Applications (3)

The rank of a Hilbert A-module E is

Ê : QT(A)→ [0,∞], Ê(τ) = dτ (E).

The rank problem

Describe {Ê : E Hilbert A-module}.

If A simple with stable rank one, then (T 2018)

{Ê : E Hilbert A-module} = LAff(QT(A))++ ∪ {0}.

Theorem (APRT 2018)
Let A be unital, stable rank one, no finite-dimensional
representations. Then for every f ∈ LAff(QT(A))++ there is
Hilbert A-module E with Ê = f .
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13 / 14



References

(1) Antoine, Perera, Thiel. Tensor products and regularity
properties of Cuntz semigroups. Mem. Amer. Math. Soc.
251 (2018), no. 1199; 199 pages. arXiv:1410.0483.

(2) Antoine, Perera, Thiel. Abstract bivariant Cuntz
semigroups. Int. Math. Res. Not. IMRN (to appear).
arXiv:1702.01588.

(3) Thiel. Ranks of operators in simple C*-algebras with stable
rank one. Commun. Math. Phys. (to appear).
arXiv:1711.04721.

(4) Antoine, Perera, Thiel. Cuntz semigroups of ultraproduct
C*-algebras. arXiv:1905.03208

(5) Antoine, Perera, Robert, Thiel. C*-algebras of stable rank
one and their Cuntz semigroups. arXiv:1809.03984

14 / 14


