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Let (M, τ) be a II1-factor.

We define the unitary group of M to be

U(M, τ) := {u ∈ M | uu∗ = u∗u = 1},

and the projective unitary group as

PU(M, τ) := U(M, τ)/(S1 · 1M).

Theorem (Kadison, 1952)

The group PU(M, τ) is topologically simple.
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Efficient generation in finite simple groups

The group PU(M, τ) behaves in many ways as a finite simple
group or a generalization of a compact simple Lie group.

Theorem (Liebeck-Shalev)

There exists a contant c, such that for any non-abelian finite
simple group G and non-trivial g ∈ G we have:

G = (gG )k if k ≥ c log |G |
log |gG |

.

This is optimal up to a multiplicative constant.
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The case of Lie groups – joint work with Philip Dowerk

For u ∈ U(n), we set

`(u) = inf
λ∈S1
‖1− λu‖1,

where ‖a‖1 = n−1tr((a∗a)1/2).

Theorem
There exists a constant c, such that for any n ≥ 2 and non-trivial
u ∈ PU(n), we have

PU(n) = (uPU(n))k , if k ≥ c | log `(u)|
`(u)
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Consequences I – joint work with Philip Dowerk

Theorem
Let M be a II1-factor von Neumann algebra. For any non-trivial
u ∈ PU(M), we have

PU(M) = (uPU(M))k , if k ≥ c | log `(u)|
`(u)

.



Consequences II – joint work with Philip Dowerk

Recall, a polish group is called SIN if it has a basis of conjugation
invariant neighborhoods of 1.

Theorem
Let M be a finite factorial von Neumann algebra.

1. Any homomorphism from PU(M) into a polish SIN group is
automatically continuous.

2. PU(M) carries a unique polish group topology.

Question
Is the first claim true for II1-factors without the assumption that
the target group is SIN?
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Lie theory for infinite dimensional groups

Consider A(M, τ), the ring of operators affiliated with (M, τ).

There are many ways to construct and understand A(M, τ):

I Define A(M, τ) directly as the set of closed, densely defined
operators on L2(M, τ), such that suitable spectral projections
lie in (M, τ). Addition and multiplication are defined the the
closure of suitable operators on the intersection of domains.

I Define A(M, τ) the the completion of (M, τ) with respect to
the metric

d(s, t) := τ([s − t]),

where [x ] denotes the source projection of the operator x ∈ M.

I Define A(M, τ) as the Ore localization of (M, τ) with respect
to the set of non-zero divisors in M.
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The world can be so easy...

We set
Lie(M, τ) := {x ∈ A(M, τ) | x∗ = −x}.

Theorem (Ando-Matsuzawa)

There is a bijective correspondence between SOT-continuous
1-parameter semigroups in U(M, τ) and Lie(M, τ).

Moreover, Lie(M, τ) is a topological Lie algebra and analogues of
familiar formulas from Lie theory hold.



How far does Lie theory generalize?

Theorem (Ando-Matsuzawa)

To any closed subgroup of U(M, τ) corresponds a closed sub-Lie
algebra of Lie(M, τ).

Remark
Note that U(M, τ) admits connected closed subgroups, such as
Aut([0, 1], λ), which do not contain any non-trivial one-parameter
subgroup. Hence, the corressponding Lie algebra is trivial.

Remark
Another curious example is UHS(`2N), which is a closed subgroup
of U(R), where R denotes the hyperfinite II1-factor.
Its Lie algebra is the Hilbert space of skew-adjoint Hilbert-Schmidt
operators – sitting inside Lie(M, τ).



How far does Lie theory generalize?

Theorem (Ando-Matsuzawa)

To any closed subgroup of U(M, τ) corresponds a closed sub-Lie
algebra of Lie(M, τ).

Remark
Note that U(M, τ) admits connected closed subgroups, such as
Aut([0, 1], λ), which do not contain any non-trivial one-parameter
subgroup. Hence, the corressponding Lie algebra is trivial.

Remark
Another curious example is UHS(`2N), which is a closed subgroup
of U(R), where R denotes the hyperfinite II1-factor.
Its Lie algebra is the Hilbert space of skew-adjoint Hilbert-Schmidt
operators – sitting inside Lie(M, τ).



How far does Lie theory generalize?

Theorem (Ando-Matsuzawa)

To any closed subgroup of U(M, τ) corresponds a closed sub-Lie
algebra of Lie(M, τ).

Remark
Note that U(M, τ) admits connected closed subgroups, such as
Aut([0, 1], λ), which do not contain any non-trivial one-parameter
subgroup. Hence, the corressponding Lie algebra is trivial.

Remark
Another curious example is UHS(`2N), which is a closed subgroup
of U(R), where R denotes the hyperfinite II1-factor.

Its Lie algebra is the Hilbert space of skew-adjoint Hilbert-Schmidt
operators – sitting inside Lie(M, τ).



How far does Lie theory generalize?

Theorem (Ando-Matsuzawa)

To any closed subgroup of U(M, τ) corresponds a closed sub-Lie
algebra of Lie(M, τ).

Remark
Note that U(M, τ) admits connected closed subgroups, such as
Aut([0, 1], λ), which do not contain any non-trivial one-parameter
subgroup. Hence, the corressponding Lie algebra is trivial.

Remark
Another curious example is UHS(`2N), which is a closed subgroup
of U(R), where R denotes the hyperfinite II1-factor.
Its Lie algebra is the Hilbert space of skew-adjoint Hilbert-Schmidt
operators

– sitting inside Lie(M, τ).



How far does Lie theory generalize?

Theorem (Ando-Matsuzawa)

To any closed subgroup of U(M, τ) corresponds a closed sub-Lie
algebra of Lie(M, τ).

Remark
Note that U(M, τ) admits connected closed subgroups, such as
Aut([0, 1], λ), which do not contain any non-trivial one-parameter
subgroup. Hence, the corressponding Lie algebra is trivial.

Remark
Another curious example is UHS(`2N), which is a closed subgroup
of U(R), where R denotes the hyperfinite II1-factor.
Its Lie algebra is the Hilbert space of skew-adjoint Hilbert-Schmidt
operators – sitting inside Lie(M, τ).



The Heisenberg-von Neumann-Kadison puzzle

Theorem (Kadison-Liu-Thom, 2017)

The Lie algebra Lie(M, τ) is perfect. In fact, every element is a
sum of two commutators.

Question (Kadison)

Do there exist x , y ∈ A(M, τ) such that

1 = xy − yx .

Is every element in A(M, τ) equal to a commutator?
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A collection of known results...

Theorem (Shoda)

Every complex matrix of trace zero is equal to a commutator.

Theorem (Halmos)

Every operator in B(`2N) is a sum of two commutators.

Theorem (Brown-Pearcy)

An operator in B(`2N) is equal to a commutator if and only if it is
not of the form λ1 + k, where k is a compact operator.

Theorem (Marcoux)

Every operator in a II1-factor of trace zero is a sum of two
commutators.

Question
Which operators in a II1-factor are commutators?
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Definition
We say that x ∈ A(M, τ) is log-integrable if the

τ(log+(x∗x)) <∞.

Proposition (Haagerup-Schultz)

The log-integrable operators form a sub-ring of A(M, τ).

Theorem (Thom)

When x , y ∈ A(M, τ) are log-integrable, then xy − yx 6= 1.

Sketch of proof: Note that log-integrable operators have a
well-defined Brown spectral measure µx . It is characterized by the
property:

log ∆(x − λ1) =

∫
C

log |t − λ|dµx(t),

where ∆ denotes the Fuglede-Kadison determinant.
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Continuation of the proof

Fact 1: For every log-integrable operator, µx is a probability
measure on C,

Fact 2: µxy = µyx , whenever x and y are log-integrable,

Now, if xy − yx = 1, then xy = 1 + yx and it follows from both
facts that

µyx = µxy = µ1+yx ,

thus the probability measure µyx is invariant under shift by 1,
which is absurd.

Question
Does a generalization of Brown’s spectral measure with suitable
properties exist for all operators in A(M, τ)?
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Thank you for your attention.


