The Murray-von Neumann algebra and the unitary group of a II₁-factor

Andreas Thom TU Dresden, Germany

November 30, 2019 København Let (M, τ) be a II₁-factor.

Let (M, τ) be a II_1 -factor.

We define the unitary group of M to be

$$\mathrm{U}(M,\tau):=\{u\in M\mid uu^*=u^*u=1\},$$

Let (M, τ) be a II_1 -factor.

We define the unitary group of M to be

$$U(M,\tau) := \{ u \in M \mid uu^* = u^*u = 1 \},$$

and the projective unitary group as

$$\mathrm{PU}(M,\tau) := \mathrm{U}(M,\tau)/(S^1 \cdot 1_M).$$

Let (M, τ) be a II_1 -factor.

We define the unitary group of M to be

$$U(M,\tau) := \{ u \in M \mid uu^* = u^*u = 1 \},$$

and the projective unitary group as

$$\mathrm{PU}(M,\tau) := \mathrm{U}(M,\tau)/(S^1 \cdot 1_M).$$

Theorem (Kadison, 1952)

The group $PU(M, \tau)$ is topologically simple.

Outline

- 1. Bounded normal generation of $PU(M, \tau)$
- 2. The Lie algebra of $U(M, \tau)$
- 3. The Heisenberg-von Neumann-Kadison puzzle

The group $\mathrm{PU}(M,\tau)$ behaves in many ways as a finite simple group or a generalization of a compact simple Lie group.

The group $PU(M, \tau)$ behaves in many ways as a finite simple group or a generalization of a compact simple Lie group.

Theorem (Liebeck-Shalev)

There exists a contant c, such that for any non-abelian finite simple group G and non-trivial $g \in G$ we have:

$$G = (g^G)^k$$
 if $k \ge \frac{c \log |G|}{\log |g^G|}$.

The group $\mathrm{PU}(M,\tau)$ behaves in many ways as a finite simple group or a generalization of a compact simple Lie group.

Theorem (Liebeck-Shalev)

There exists a contant c, such that for any non-abelian finite simple group G and non-trivial $g \in G$ we have:

$$G = (g^G)^k$$
 if $k \ge \frac{c \log |G|}{\log |g^G|}$.

This is optimal up to a multiplicative constant.

The case of Lie groups – joint work with Philip Dowerk

For $u \in U(n)$, we set

$$\ell(u) = \inf_{\lambda \in S^1} \|1 - \lambda u\|_1,$$

The case of Lie groups – joint work with Philip Dowerk

For $u \in U(n)$, we set

$$\ell(u) = \inf_{\lambda \in S^1} \|1 - \lambda u\|_1,$$

where $||a||_1 = n^{-1} \operatorname{tr}((a^*a)^{1/2}).$

The case of Lie groups – joint work with Philip Dowerk

For $u \in U(n)$, we set

$$\ell(u) = \inf_{\lambda \in S^1} \|1 - \lambda u\|_1,$$

where $||a||_1 = n^{-1} \operatorname{tr}((a^*a)^{1/2}).$

Theorem

There exists a constant c, such that for any $n \ge 2$ and non-trivial $u \in PU(n)$, we have

$$PU(n) = (u^{PU(n)})^k$$
, if $k \ge \frac{c|\log \ell(u)|}{\ell(u)}$.

Consequences I – joint work with Philip Dowerk

Theorem

Let M be a II_1 -factor von Neumann algebra. For any non-trivial $u \in PU(M)$, we have

$$PU(M) = (u^{PU(M)})^k$$
, if $k \ge \frac{c|\log \ell(u)|}{\ell(u)}$.

Consequences II – joint work with Philip Dowerk

Recall, a polish group is called SIN if it has a basis of conjugation invariant neighborhoods of 1.

Theorem

Let M be a finite factorial von Neumann algebra.

- 1. Any homomorphism from PU(M) into a polish SIN group is automatically continuous.
- 2. PU(M) carries a unique polish group topology.

Consequences II – joint work with Philip Dowerk

Recall, a polish group is called SIN if it has a basis of conjugation invariant neighborhoods of 1.

Theorem

Let M be a finite factorial von Neumann algebra.

- 1. Any homomorphism from PU(M) into a polish SIN group is automatically continuous.
- 2. PU(M) carries a unique polish group topology.

Question

Is the first claim true for II_1 -factors without the assumption that the target group is SIN?

Consider $\mathcal{A}(M,\tau)$, the ring of operators affiliated with (M,τ) .

Consider $A(M, \tau)$, the ring of operators affiliated with (M, τ) .

There are many ways to construct and understand $\mathcal{A}(M,\tau)$:

Consider $A(M, \tau)$, the ring of operators affiliated with (M, τ) .

There are many ways to construct and understand $\mathcal{A}(M,\tau)$:

▶ Define $\mathcal{A}(M,\tau)$ directly as the set of closed, densely defined operators on $L^2(M,\tau)$, such that suitable spectral projections lie in (M,τ) . Addition and multiplication are defined the the closure of suitable operators on the intersection of domains.

Consider $A(M, \tau)$, the ring of operators affiliated with (M, τ) .

There are many ways to construct and understand $\mathcal{A}(M,\tau)$:

- ▶ Define $\mathcal{A}(M,\tau)$ directly as the set of closed, densely defined operators on $L^2(M,\tau)$, such that suitable spectral projections lie in (M,τ) . Addition and multiplication are defined the the closure of suitable operators on the intersection of domains.
- ▶ Define $A(M, \tau)$ the the completion of (M, τ) with respect to the metric

$$d(s,t) := \tau([s-t]),$$

where [x] denotes the source projection of the operator $x \in M$.

Consider $A(M, \tau)$, the ring of operators affiliated with (M, τ) .

There are many ways to construct and understand $\mathcal{A}(M,\tau)$:

- ▶ Define $\mathcal{A}(M,\tau)$ directly as the set of closed, densely defined operators on $L^2(M,\tau)$, such that suitable spectral projections lie in (M,τ) . Addition and multiplication are defined the the closure of suitable operators on the intersection of domains.
- ▶ Define $A(M, \tau)$ the the completion of (M, τ) with respect to the metric

$$d(s,t) := \tau([s-t]),$$

where [x] denotes the source projection of the operator $x \in M$.

▶ Define $A(M, \tau)$ as the Ore localization of (M, τ) with respect to the set of non-zero divisors in M.

Consider $A(M, \tau)$, the ring of operators affiliated with (M, τ) .

There are many ways to construct and understand $\mathcal{A}(M,\tau)$:

- ▶ Define $\mathcal{A}(M,\tau)$ directly as the set of closed, densely defined operators on $L^2(M,\tau)$, such that suitable spectral projections lie in (M,τ) . Addition and multiplication are defined the the closure of suitable operators on the intersection of domains.
- ▶ Define $A(M, \tau)$ the the completion of (M, τ) with respect to the metric

$$d(s,t) := \tau([s-t]),$$

where [x] denotes the source projection of the operator $x \in M$.

▶ Define $A(M, \tau)$ as the Ore localization of (M, τ) with respect to the set of non-zero divisors in M.

The world can be so easy...

We set

$$\mathrm{Lie}(M,\tau) := \{ x \in \mathcal{A}(M,\tau) \mid x^* = -x \}.$$

Theorem (Ando-Matsuzawa)

There is a bijective correspondence between SOT-continuous 1-parameter semigroups in $U(M, \tau)$ and $Lie(M, \tau)$.

Moreover, $\operatorname{Lie}(M, \tau)$ is a topological Lie algebra and analogues of familiar formulas from Lie theory hold.

Theorem (Ando-Matsuzawa)

To any closed subgroup of $\mathrm{U}(M,\tau)$ corresponds a closed sub-Lie algebra of $\mathrm{Lie}(M,\tau)$.

Theorem (Ando-Matsuzawa)

To any closed subgroup of $\mathrm{U}(M,\tau)$ corresponds a closed sub-Lie algebra of $\mathrm{Lie}(M,\tau)$.

Remark

Note that $\mathrm{U}(M,\tau)$ admits connected closed subgroups, such as $\mathrm{Aut}([0,1],\lambda)$, which do not contain any non-trivial one-parameter subgroup. Hence, the corresponding Lie algebra is trivial.

Theorem (Ando-Matsuzawa)

To any closed subgroup of $U(M, \tau)$ corresponds a closed sub-Lie algebra of $\mathrm{Lie}(M, \tau)$.

Remark

Note that $\mathrm{U}(M,\tau)$ admits connected closed subgroups, such as $\mathrm{Aut}([0,1],\lambda)$, which do not contain any non-trivial one-parameter subgroup. Hence, the corressponding Lie algebra is trivial.

Remark

Another curious example is $U_{HS}(\ell^2\mathbb{N})$, which is a closed subgroup of $U(\mathcal{R})$, where \mathcal{R} denotes the hyperfinite II_1 -factor.

Theorem (Ando-Matsuzawa)

To any closed subgroup of $U(M, \tau)$ corresponds a closed sub-Lie algebra of $\mathrm{Lie}(M, \tau)$.

Remark

Note that $\mathrm{U}(M,\tau)$ admits connected closed subgroups, such as $\mathrm{Aut}([0,1],\lambda)$, which do not contain any non-trivial one-parameter subgroup. Hence, the corresponding Lie algebra is trivial.

Remark

Another curious example is $U_{HS}(\ell^2\mathbb{N})$, which is a closed subgroup of $U(\mathcal{R})$, where \mathcal{R} denotes the hyperfinite II_1 -factor.

Its Lie algebra is the Hilbert space of skew-adjoint Hilbert-Schmidt

Its Lie algebra is the Hilbert space of skew-adjoint Hilbert-Schmidt operators

Theorem (Ando-Matsuzawa)

To any closed subgroup of $\mathrm{U}(M,\tau)$ corresponds a closed sub-Lie algebra of $\mathrm{Lie}(M,\tau)$.

Remark

Note that $\mathrm{U}(M,\tau)$ admits connected closed subgroups, such as $\mathrm{Aut}([0,1],\lambda)$, which do not contain any non-trivial one-parameter subgroup. Hence, the corresponding Lie algebra is trivial.

Remark

Another curious example is $U_{HS}(\ell^2\mathbb{N})$, which is a closed subgroup of $U(\mathcal{R})$, where \mathcal{R} denotes the hyperfinite II_1 -factor.

Its Lie algebra is the Hilbert space of skew-adjoint Hilbert-Schmidt operators – sitting inside $\operatorname{Lie}(M, \tau)$.

Theorem (Kadison-Liu-Thom, 2017)

The Lie algebra $\operatorname{Lie}(M, \tau)$ is perfect. In fact, every element is a sum of two commutators.

Theorem (Kadison-Liu-Thom, 2017)

The Lie algebra $\operatorname{Lie}(M,\tau)$ is perfect. In fact, every element is a sum of two commutators.

Question (Kadison)

Do there exist $x, y \in A(M, \tau)$ such that

$$1=xy-yx.$$

Theorem (Kadison-Liu-Thom, 2017)

The Lie algebra $\operatorname{Lie}(M,\tau)$ is perfect. In fact, every element is a sum of two commutators.

Question (Kadison)

Do there exist $x, y \in A(M, \tau)$ such that

$$1=xy-yx.$$

Is every element in $\mathcal{A}(M,\tau)$ equal to a commutator?

Theorem (Shoda)

Every complex matrix of trace zero is equal to a commutator.

Theorem (Shoda)

Every complex matrix of trace zero is equal to a commutator.

Theorem (Halmos)

Every operator in $B(\ell^2\mathbb{N})$ is a sum of two commutators.

Theorem (Shoda)

Every complex matrix of trace zero is equal to a commutator.

Theorem (Halmos)

Every operator in $B(\ell^2\mathbb{N})$ is a sum of two commutators.

Theorem (Brown-Pearcy)

An operator in $B(\ell^2\mathbb{N})$ is equal to a commutator if and only if it is not of the form $\lambda 1 + k$, where k is a compact operator.

A collection of known results...

Theorem (Shoda)

Every complex matrix of trace zero is equal to a commutator.

Theorem (Halmos)

Every operator in $B(\ell^2\mathbb{N})$ is a sum of two commutators.

Theorem (Brown-Pearcy)

An operator in $B(\ell^2\mathbb{N})$ is equal to a commutator if and only if it is not of the form $\lambda 1 + k$, where k is a compact operator.

Theorem (Marcoux)

Every operator in a II_1 -factor of trace zero is a sum of two commutators.

A collection of known results...

Theorem (Shoda)

Every complex matrix of trace zero is equal to a commutator.

Theorem (Halmos)

Every operator in $B(\ell^2\mathbb{N})$ is a sum of two commutators.

Theorem (Brown-Pearcy)

An operator in $B(\ell^2\mathbb{N})$ is equal to a commutator if and only if it is not of the form $\lambda 1 + k$, where k is a compact operator.

Theorem (Marcoux)

Every operator in a II_1 -factor of trace zero is a sum of two commutators.

Question

Which operators in a II_1 -factor are commutators?

We say that $x \in \mathcal{A}(M, \tau)$ is log-integrable if the

$$\tau(\log^+(x^*x))<\infty.$$

We say that $x \in \mathcal{A}(M, \tau)$ is log-integrable if the

$$\tau(\log^+(x^*x))<\infty.$$

Proposition (Haagerup-Schultz)

The log-integrable operators form a sub-ring of $A(M, \tau)$.

We say that $x \in \mathcal{A}(M, \tau)$ is log-integrable if the

$$\tau(\log^+(x^*x))<\infty.$$

Proposition (Haagerup-Schultz)

The log-integrable operators form a sub-ring of $A(M, \tau)$.

Theorem (Thom)

When $x, y \in A(M, \tau)$ are log-integrable, then $xy - yx \neq 1$.

We say that $x \in \mathcal{A}(M, \tau)$ is log-integrable if the

$$\tau(\log^+(x^*x))<\infty.$$

Proposition (Haagerup-Schultz)

The log-integrable operators form a sub-ring of $A(M, \tau)$.

Theorem (Thom)

When $x, y \in A(M, \tau)$ are log-integrable, then $xy - yx \neq 1$.

Sketch of proof: Note that log-integrable operators have a well-defined Brown spectral measure μ_x .

We say that $x \in \mathcal{A}(M, \tau)$ is log-integrable if the

$$\tau(\log^+(x^*x))<\infty.$$

Proposition (Haagerup-Schultz)

The log-integrable operators form a sub-ring of $A(M, \tau)$.

Theorem (Thom)

When $x, y \in A(M, \tau)$ are log-integrable, then $xy - yx \neq 1$.

Sketch of proof: Note that log-integrable operators have a well-defined Brown spectral measure $\mu_{\rm x}$. It is characterized by the property:

$$\log \Delta(x - \lambda 1) = \int_{\mathbb{C}} \log |t - \lambda| d\mu_x(t),$$

where Δ denotes the Fuglede-Kadison determinant.

Fact 1: For every log-integrable operator, $\mu_{\rm X}$ is a probability measure on \mathbb{C} ,

Fact 1: For every log-integrable operator, $\mu_{\rm X}$ is a probability measure on \mathbb{C} ,

Fact 2: $\mu_{xy} = \mu_{yx}$, whenever x and y are log-integrable,

Fact 1: For every log-integrable operator, $\mu_{\rm X}$ is a probability measure on \mathbb{C} ,

Fact 2: $\mu_{xy} = \mu_{yx}$, whenever x and y are log-integrable,

Now, if xy - yx = 1,

Fact 1: For every log-integrable operator, $\mu_{\rm X}$ is a probability measure on \mathbb{C} ,

Fact 2: $\mu_{xy} = \mu_{yx}$, whenever x and y are log-integrable,

Now, if xy - yx = 1, then xy = 1 + yx

Fact 1: For every log-integrable operator, $\mu_{\rm X}$ is a probability measure on \mathbb{C} ,

Fact 2: $\mu_{xy} = \mu_{yx}$, whenever x and y are log-integrable,

Now, if xy - yx = 1, then xy = 1 + yx and it follows from both facts that

$$\mu_{\mathsf{yx}} = \mu_{\mathsf{xy}} = \mu_{\mathsf{1+yx}},$$

Fact 1: For every log-integrable operator, $\mu_{\rm X}$ is a probability measure on \mathbb{C} ,

Fact 2: $\mu_{xy} = \mu_{yx}$, whenever x and y are log-integrable,

Now, if xy - yx = 1, then xy = 1 + yx and it follows from both facts that

$$\mu_{\mathsf{y}\mathsf{x}} = \mu_{\mathsf{x}\mathsf{y}} = \mu_{\mathsf{1}+\mathsf{y}\mathsf{x}},$$

thus the probability measure $\mu_{\mbox{\scriptsize yx}}$ is invariant under shift by 1,

Fact 1: For every log-integrable operator, μ_X is a probability measure on \mathbb{C} ,

Fact 2: $\mu_{xy} = \mu_{yx}$, whenever x and y are log-integrable,

Now, if xy - yx = 1, then xy = 1 + yx and it follows from both facts that

$$\mu_{\mathsf{yx}} = \mu_{\mathsf{xy}} = \mu_{1+\mathsf{yx}},$$

thus the probability measure μ_{yx} is invariant under shift by 1, which is absurd.

Fact 1: For every log-integrable operator, μ_X is a probability measure on \mathbb{C} ,

Fact 2: $\mu_{xy} = \mu_{yx}$, whenever x and y are log-integrable,

Now, if xy - yx = 1, then xy = 1 + yx and it follows from both facts that

$$\mu_{\mathsf{y}\mathsf{x}} = \mu_{\mathsf{x}\mathsf{y}} = \mu_{\mathsf{1}+\mathsf{y}\mathsf{x}},$$

thus the probability measure μ_{yx} is invariant under shift by 1, which is absurd.

Question

Does a generalization of Brown's spectral measure with suitable properties exist for all operators in $A(M, \tau)$?

Thank you for your attention.

