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Bernoulli actions

Bernoulli actions of a countable group G
For any standard probability space (X0, µ0), consider

G y (X0, µ0)G =
∏
g∈G

(X0, µ0) given by (g · x)h = xg−1h.

I (G = Z) Kolmogorov-Sinai : entropy of µ0 is a conjugacy invariant.

I (G = Z) Ornstein : entropy is a complete invariant.

I Bowen : beyond amenable groups, sofic groups.

I Popa : orbit equivalence rigidity, von Neumann algebra rigidity.

What about G y
∏
g∈G

(X0, µg ) given by (g · x)h = xg−1h ?

Main motivation: produce interesting families of type III group actions.
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Group actions of type III

I The classical Bernoulli action G y (X , µ) = (X0, µ0)G

• is ergodic,

• preserves the probability measure µ.

I An action G y (X , µ) is called non-singular if µ(g · U) = 0
whenever µ(U) = 0 and g ∈ G .

I Write U ∼ V if there exists a measurable bijection ∆ : U → V with
∆(x) ∈ G · x for a.e. x ∈ U .

I A nonsingular ergodic G y (X , µ) is of type III if U ∼ V for all
non-negligible U ,V ⊂ X .

• There is no G -invariant measure in the measure class of µ.

• The Radon-Nikodym derivative d(g ·µ)/dµ must be sufficiently wild.
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Group actions of type III1

Let G y (X , µ) be a nonsingular group action.

I Write ω(g , x) =
d(g−1 · µ)

dµ
(x), the Radon-Nikodym 1-cocycle.

I The action G y X × R given by g · (x , s) = (g · x , s + log(ω(g , x)))
preserves the (infinite) measure µ× e−sds.

I This is called the Maharam extension. It is the ergodic analogue of
the Connes-Takesaki continuous core for von Neumann algebras.

An ergodic nonsingular action G y (X , µ) is of type III1 if its
Maharam extension remains ergodic.

Associated ergodic flow R y L∞(X × R)G .

G y (X , µ) is of type III iff this flow is not just R y R.

G y (X , µ) is of type IIIλ iff this flow is R y R/Z log λ.
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Bernoulli actions of type III

Consider G y (X , µ) =
∏
g∈G

(X0, µg ) given by (g · x)h = xg−1h.

1 All µg are equal : type II1, ergodic, probability measure preserving.

2 Interesting gray zone : when is G y (X , µ) of type III, or type III1 ?

3 The µg are quite different : type I, the action is dissipative, meaning

that X =
⊔
g∈G

g · U up to measure zero.

4 The µg are very different : the action is singular.
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Kakutani’s criterion

I The action G y
∏
g∈G

(X0, µg ) is nonsingular if and only if

for every g ∈ G , we have
∑
h∈G

d(µgh, µh)2 <∞.

I Take X0 = {0, 1} with 0 < µg (0) < 1.

Assume that δ ≤ µg (0) ≤ 1− δ for all g ∈ G .

Then, the action is nonsingular if and only if∑
h∈G
|µgh(0)− µh(0)|2 <∞ for all g ∈ G .

Then c : G → `2(G ) : cg (h) = µh(0)− µg−1h(0) is a 1-cocycle
for the left regular representation,

meaning that cgh = cg + λgch.
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An easy no-go theorem

Theorem (V-Wahl, 2017)

If H1(G , `2(G )) = {0}, there are no nonsingular Bernoulli actions of
type III. More precisely,

every nonsingular Bernoulli action of G is the sum of a classical, probability
measure preserving Bernoulli action and a dissipative Bernoulli action.

I The groups with H1(G , `2(G )) = {0} are precisely the nonamenable

groups with β
(2)
1 (G ) = 0.

I Large classes of nonamenable groups have β
(2)
1 (G ) = 0 :

• property (T) groups,

• groups that admit an infinite, amenable, normal subgroup,

• direct products of infinite groups.

7/17



What if H1(G , `2(G)) 6= {0} ?

This is very delicate ! Even for the case G = Z.

I (Krengel, 1970)

The group G = Z admits a nonsingular Bernoulli action without
invariant probability measure.

I (Hamachi, 1981)

The group G = Z admits a nonsingular Bernoulli action of type III.

I (Kosloff, 2009)

The group G = Z admits a nonsingular Bernoulli action of type III1.

In all cases: no explicit constructions.
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Dissipative versus conservative

Recall: G y (X , µ) is dissipative iff X =
⊔

g∈G g · U up to measure zero.

G y (X , µ) is conservative iff we return to every U ⊂ X with µ(U) > 0.

Theorem (V-Wahl, 2017)

Let G y
∏

g∈G ({0, 1}, µg ) be nonsingular. Let cg (h) = µh(0)− µg−1h(0).

I If
∑
g∈G

exp
(
−1

2
‖cg‖22

)
<∞, the action is dissipative.

I If µg (0) ∈ [δ, 1− δ] for all g ∈ G

and if
∑
g∈G

exp
(
−3δ−2 ‖cg‖22

)
= +∞, the action is conservative.

The growth of g 7→ ‖cg‖2 should be sufficiently slow.
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A naive example

Take Z y
∏

n∈Z({0, 1}, µn) where

I µn(0) = p if n < 0,

I µn(0) = q if n ≥ 0.

One might expect: if p 6= q, then the action is of type IIIλ.

But (Krengel 1970 and Hamachi 1981): if p 6= q, the action is dissipative.

Indeed: ‖cn‖22 ∼ |n| and
∑

n∈Z exp(−ε |n|) < +∞ for every ε > 0.
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Ergodicity of nonsingular Bernoulli actions

Let G y (X , µ) =
∏

g∈G ({0, 1}, µg ) be any nonsingular Bernoulli action.

Assume that µg (0) ∈ [δ, 1− δ] for all g ∈ G .

I (Kosloff, 2018) When G = Z and G y (X , µ) is conservative, then
G y (X , µ) is ergodic.

I (Danilenko, 2018) When G is amenable and G y (X , µ) is
conservative, then G y (X , µ) is ergodic.

Tool: let R be the tail equivalence relation on (X , µ) given by x ∼ y iff
xg 6= yg for at most finitely many g ∈ G .

I They prove that any G -invariant function is R-invariant.

I Key role: Hurewicz ratio ergodic theorem (K) / a new pointwise
ergodic theorem (D).
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Ergodicity of nonsingular Bernoulli actions

Let G y (X , µ) =
∏

g∈G ({0, 1}, µg ) be any nonsingular Bernoulli action.

Theorem (Björklund-Kosloff-V, 2019)

I If G is abelian and G y (X , µ) is conservative, then G y (X , µ) is
ergodic.

So, no assumption that µg (0) ∈ [δ, 1− δ].

I If G is arbitrary and G y (X , µ) is strongly conservative, then
G y (X , µ) is ergodic.

So, no amenability assumption.

Assume that µg (0) ∈ [δ, 1− δ]. Write cg (h) = µh(0)− µg−1h(0).

If
∑

g∈G exp(−8δ−1 ‖cg‖22) = +∞, then G y (X , µ) is strongly
conservative and thus ergodic.
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Type of nonsingular Bernoulli actions

Let G y (X , µ) =
∏

g∈G ({0, 1}, µg ) be a conservative Bernoulli action.

I Basically no systematic results on the type of G y (X , µ).

I (Björklund-Kosloff, 2018) If G is amenable and limg→∞ µg (0) exists,
then G y (X , µ) is either II1 or III1.

Theorem (Björklund-Kosloff-V, 2019)

Let G be abelian and not locally finite.

I If limg→∞ µg (0) does not exist: type III1.

I If limg→∞ µg (0) = λ and 0 < λ < 1, then type II1 or type III1,
depending on

∑
g∈G (µg (0)− λ)2 being finite or not.

I If limg→∞ µg (0) = λ and λ ∈ {0, 1}, then type III.

Answering Krengel: a Bernoulli action of Z is never of type II∞.
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Type of nonsingular Bernoulli actions

Let G y (X , µ) =
∏

g∈G ({0, 1}, µg ) be nonsingular and µg (0) ∈ [δ, 1− δ].

Write cg (h) = µh(0)− µg−1h(0).

Theorem (Björklund-Kosloff-V, 2019)

Assume that G has only one end.

Assume that
∑

g∈G exp(−8δ−1 ‖cg‖22) = +∞.

Then, G y (X , µ) is of type III1, unless

for some 0 < λ < 1, we have
∑

g∈G (µg (0)− λ)2 < +∞. Then type II1.

Corollary (answering conjecture of V-Wahl): a group G admits a type III1
Bernoulli action iff H1(G , `2(G )) 6= {0}.

Recall: the growth condition on the cocycle implies that G y (X , µ) is
strongly conservative.
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Ends of groups

Recall. A finitely generated group G has more than one end if its Cayley
graph has more than one end: there exists a finite subset F ⊂ G with
disconnected complement.

Proposition. A finitely generated group G has more than one end iff
there exists a subset W ⊂ G such that

I W is almost invariant: |gW M W | <∞ for all g ∈ G ,

I both W and G \W are infinite.

Use this as definition of “having more than one end” for arbitrary
countable groups.
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Ends of groups

Stallings’ Theorem

A countable group G has more than one end if and only if G is in one of
the following families.

I Nontrivial amalgamated free products and HNN extensions over finite
subgroups.

I Virtually cyclic groups.

I Locally finite groups.

Due to Stallings for finitely generated groups.

Due to Dicks & Dunwoody for arbitrary groups.
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Ends of groups and nonsingular Bernoulli actions

Let W ⊂ G be almost invariant. Define

I µg (0) = p if g ∈W ,

I µg (0) = q if g 6∈W .

Then: G y (X , µ) =
∏

g∈G ({0, 1}, µg ) is a nonsingular Bernoulli action.

But (remember G = Z and W = N) : the action could be dissipative.

Theorem (Björklund-Kosloff-V, 2019)

I Infinite, locally finite groups admit Bernoulli actions of each possible
type: II1, II∞, III0, IIIλ and III1.

I Every nonamenable group with more than one end admits nonsingular
Bernoulli actions of type IIIλ for each λ close enough to 1.
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