Ergodicity and type of nonsingular Bernoulli actions

Richard Kadison and his mathematical legacy – A memorial conference

University of Copenhagen

29 - 30 November 2019

Stefaan Vaes

Bernoulli actions

Bernoulli actions of a countable group *G*

For any standard probability space (X_0, μ_0) , consider

$$G \curvearrowright (X_0, \mu_0)^G = \prod_{g \in G} (X_0, \mu_0)$$
 given by $(g \cdot x)_h = x_{g^{-1}h}$.

- $lackbox{(}G=\mathbb{Z})$ Kolmogorov-Sinai : entropy of μ_0 is a conjugacy invariant.
- lackbox ($G=\mathbb{Z}$) Ornstein : entropy is a complete invariant.
- ▶ Bowen : beyond amenable groups, sofic groups.
- ▶ Popa : orbit equivalence rigidity, von Neumann algebra rigidity.
- What about $G \cap \prod_{g \in G} (X_0, \mu_g)$ given by $(g \cdot x)_h = x_{g^{-1}h}$?

Main motivation: produce interesting families of type III group actions.

Group actions of type III

- ▶ The classical Bernoulli action $G \curvearrowright (X, \mu) = (X_0, \mu_0)^G$
 - is ergodic,
 - preserves the probability measure μ .
- An action $G \curvearrowright (X, \mu)$ is called **non-singular** if $\mu(g \cdot \mathcal{U}) = 0$ whenever $\mu(\mathcal{U}) = 0$ and $g \in G$.
- ▶ Write $\mathcal{U} \sim \mathcal{V}$ if there exists a measurable bijection $\Delta : \mathcal{U} \to \mathcal{V}$ with $\Delta(x) \in G \cdot x$ for a.e. $x \in \mathcal{U}$.
- ▶ A nonsingular ergodic $G \curvearrowright (X, \mu)$ is of **type III** if $\mathcal{U} \sim \mathcal{V}$ for all non-negligible $\mathcal{U}, \mathcal{V} \subset X$.
 - There is no G-invariant measure in the measure class of μ .
 - The Radon-Nikodym derivative $d(g \cdot \mu)/d\mu$ must be sufficiently wild.

Group actions of type III₁

Let $G \curvearrowright (X, \mu)$ be a nonsingular group action.

- ▶ Write $\omega(g,x) = \frac{d(g^{-1} \cdot \mu)}{d\mu}(x)$, the Radon-Nikodym 1-cocycle.
- ► The action $G \cap X \times \mathbb{R}$ given by $g \cdot (x, s) = (g \cdot x, s + \log(\omega(g, x)))$ preserves the (infinite) measure $\mu \times e^{-s} ds$.
- ► This is called the **Maharam extension**. It is the ergodic analogue of the **Connes-Takesaki continuous core** for von Neumann algebras.
- An ergodic nonsingular action $G \curvearrowright (X, \mu)$ is of **type III**₁ if its Maharam extension remains ergodic.
- \longrightarrow Associated ergodic flow $\mathbb{R} \cap L^{\infty}(X \times \mathbb{R})^{G}$.
- \longrightarrow $G \cap (X, \mu)$ is of type III iff this flow is not just $\mathbb{R} \cap \mathbb{R}$.
- $G \curvearrowright (X, \mu)$ is of type III $_{\lambda}$ iff this flow is $\mathbb{R} \curvearrowright \mathbb{R}/\mathbb{Z} \log \lambda$.

Bernoulli actions of type III

Consider
$$G \curvearrowright (X, \mu) = \prod_{g \in G} (X_0, \mu_g)$$
 given by $(g \cdot x)_h = x_{g^{-1}h}$.

- **1** All μ_g are equal : type II₁, ergodic, probability measure preserving.
- **2** Interesting gray zone : when is $G \curvearrowright (X, \mu)$ of type III, or type III₁ ?
- 3 The μ_g are quite different : type I, the action is **dissipative**, meaning that $X = \bigsqcup_{g \in G} g \cdot \mathcal{U}$ up to measure zero.
- 4 The μ_g are very different : the action is singular.

Kakutani's criterion

▶ The action $G \curvearrowright \prod_{g \in G} (X_0, \mu_g)$ is nonsingular if and only if

for every
$$g \in G$$
, we have $\sum_{h \in G} d(\mu_{gh}, \mu_h)^2 < \infty$.

• Take $X_0 = \{0,1\}$ with $0 < \mu_g(0) < 1$.

Assume that $\delta \leq \mu_{\mathbf{g}}(\mathbf{0}) \leq 1 - \delta$ for all $\mathbf{g} \in \mathbf{G}$.

Then, the action is nonsingular if and only if

$$\sum_{h\in G} |\mu_{gh}(0) - \mu_h(0)|^2 < \infty \text{ for all } g\in G.$$

Then $c: G \to \ell^2(G): c_g(h) = \mu_h(0) - \mu_{g^{-1}h}(0)$ is a **1-cocycle** for the left regular representation,

meaning that $c_{gh} = c_g + \lambda_g c_h$.

An easy no-go theorem

Theorem (V-Wahl, 2017)

If $H^1(G, \ell^2(G)) = \{0\}$, there are no nonsingular Bernoulli actions of type III. More precisely,

every nonsingular Bernoulli action of G is the sum of a classical, probability measure preserving Bernoulli action and a dissipative Bernoulli action.

- ► The groups with $H^1(G, \ell^2(G)) = \{0\}$ are precisely the nonamenable groups with $\beta_1^{(2)}(G) = 0$.
- ▶ Large classes of nonamenable groups have $\beta_1^{(2)}(G) = 0$:
 - property (T) groups,
 - groups that admit an infinite, amenable, normal subgroup,
 - direct products of infinite groups.

What if $H^1(G, \ell^2(G)) \neq \{0\}$?

This is very delicate! Even for the case $G = \mathbb{Z}$.

- ► (Krengel, 1970)
 - The group $G = \mathbb{Z}$ admits a nonsingular Bernoulli action without invariant probability measure.
- ► (Hamachi, 1981)

The group $G = \mathbb{Z}$ admits a nonsingular Bernoulli action of type III.

► (Kosloff, 2009)

The group $G = \mathbb{Z}$ admits a nonsingular Bernoulli action of type III_1 .

In all cases: no explicit constructions.

Dissipative versus conservative

Recall: $G \curvearrowright (X, \mu)$ is dissipative iff $X = \bigsqcup_{g \in G} g \cdot \mathcal{U}$ up to measure zero.

 $G \curvearrowright (X, \mu)$ is conservative iff we return to every $\mathcal{U} \subset X$ with $\mu(\mathcal{U}) > 0$.

Theorem (V-Wahl, 2017)

Let $G \curvearrowright \prod_{g \in G} (\{0,1\}, \mu_g)$ be nonsingular. Let $c_g(h) = \mu_h(0) - \mu_{g^{-1}h}(0)$.

- If $\sum_{g \in G} \exp(-\frac{1}{2} \|c_g\|_2^2) < \infty$, the action is dissipative.
- If $\mu_g(0) \in [\delta, 1 \delta]$ for all $g \in G$ and if $\sum_{g \in G} \exp(-3\delta^{-2} \|c_g\|_2^2) = +\infty$, the action is conservative.
- The growth of $g \mapsto \|c_g\|_2$ should be sufficiently slow.

A naive example

Take $\mathbb{Z} \curvearrowright \prod_{n \in \mathbb{Z}} (\{0,1\}, \mu_n)$ where

- $\mu_n(0) = p \text{ if } n < 0,$
- $\mu_n(0) = q \text{ if } n \ge 0.$

One might expect: if $p \neq q$, then the action is of type III_{λ} .

But (Krengel 1970 and Hamachi 1981): if $p \neq q$, the action is dissipative.

Indeed: $\|c_n\|_2^2 \sim |n|$ and $\sum_{n \in \mathbb{Z}} \exp(-\varepsilon |n|) < +\infty$ for every $\varepsilon > 0$.

Ergodicity of nonsingular Bernoulli actions

Let $G \curvearrowright (X, \mu) = \prod_{g \in G} (\{0, 1\}, \mu_g)$ be any nonsingular Bernoulli action.

Assume that $\mu_g(0) \in [\delta, 1 - \delta]$ for all $g \in G$.

- ▶ (Kosloff, 2018) When $G = \mathbb{Z}$ and $G \curvearrowright (X, \mu)$ is conservative, then $G \curvearrowright (X, \mu)$ is ergodic.
- ▶ (Danilenko, 2018) When G is amenable and $G \curvearrowright (X, \mu)$ is conservative, then $G \curvearrowright (X, \mu)$ is ergodic.

Tool: let \mathcal{R} be the tail equivalence relation on (X, μ) given by $x \sim y$ iff $x_g \neq y_g$ for at most finitely many $g \in G$.

- ▶ They prove that any G-invariant function is R-invariant.
- Key role: Hurewicz ratio ergodic theorem (K) / a new pointwise ergodic theorem (D).

Ergodicity of nonsingular Bernoulli actions

Let $G \curvearrowright (X, \mu) = \prod_{g \in G} (\{0, 1\}, \mu_g)$ be any nonsingular Bernoulli action.

Theorem (Björklund-Kosloff-V, 2019)

▶ If G is abelian and $G \curvearrowright (X, \mu)$ is conservative, then $G \curvearrowright (X, \mu)$ is ergodic.

So, no assumption that $\mu_g(0) \in [\delta, 1 - \delta]$.

▶ If G is arbitrary and $G \curvearrowright (X, \mu)$ is strongly conservative, then $G \curvearrowright (X, \mu)$ is ergodic.

So, no amenability assumption.

Assume that $\mu_g(0) \in [\delta, 1 - \delta]$. Write $c_g(h) = \mu_h(0) - \mu_{g^{-1}h}(0)$.

If $\sum_{g \in G} \exp(-8\delta^{-1} \|c_g\|_2^2) = +\infty$, then $G \curvearrowright (X, \mu)$ is strongly conservative and thus ergodic.

Type of nonsingular Bernoulli actions

Let $G \curvearrowright (X, \mu) = \prod_{g \in G} (\{0, 1\}, \mu_g)$ be a conservative Bernoulli action.

- ▶ Basically no systematic results on the type of $G \curvearrowright (X, \mu)$.
- ▶ (Björklund-Kosloff, 2018) If G is amenable and $\lim_{g\to\infty} \mu_g(0)$ exists, then $G \curvearrowright (X, \mu)$ is either II₁ or III₁.

Theorem (Björklund-Kosloff-V, 2019)

Let G be abelian and not locally finite.

- ▶ If $\lim_{g\to\infty} \mu_g(0)$ does not exist: type III₁.
- ▶ If $\lim_{g\to\infty} \mu_g(0) = \lambda$ and $0 < \lambda < 1$, then type II₁ or type III₁, depending on $\sum_{g\in G} (\mu_g(0) \lambda)^2$ being finite or not.
- ▶ If $\lim_{g\to\infty} \mu_g(0) = \lambda$ and $\lambda \in \{0,1\}$, then type III.
- \longrightarrow Answering Krengel: a Bernoulli action of \mathbb{Z} is never of type II_{∞} .

Type of nonsingular Bernoulli actions

Let
$$G \curvearrowright (X, \mu) = \prod_{g \in G} (\{0, 1\}, \mu_g)$$
 be nonsingular and $\mu_g(0) \in [\delta, 1 - \delta]$.

Write $c_g(h) = \mu_h(0) - \mu_{g^{-1}h}(0)$.

Theorem (Björklund-Kosloff-V, 2019)

Assume that G has only one end.

Assume that $\sum_{g \in G} \exp(-8\delta^{-1} \|c_g\|_2^2) = +\infty$.

Then, $G \curvearrowright (X, \mu)$ is of type III₁, unless

for some $0<\lambda<1$, we have $\sum_{g\in G}(\mu_g(0)-\lambda)^2<+\infty$. Then type II_1 .

Corollary (answering conjecture of V-Wahl): a group G admits a type III₁ Bernoulli action iff $H^1(G, \ell^2(G)) \neq \{0\}$.

Recall: the growth condition on the cocycle implies that $G \curvearrowright (X, \mu)$ is strongly conservative.

Ends of groups

Recall. A finitely generated group G has **more than one end** if its Cayley graph has more than one end: there exists a finite subset $\mathcal{F} \subset G$ with disconnected complement.

Proposition. A finitely generated group G has more than one end iff there exists a subset $W \subset G$ such that

- ▶ W is almost invariant: $|gW \triangle W| < \infty$ for all $g \in G$,
- ▶ both W and $G \setminus W$ are infinite.
- Use this as definition of "having more than one end" for arbitrary countable groups.

Ends of groups

Stallings' Theorem

A countable group G has more than one end if and only if G is in one of the following families.

- ► Nontrivial amalgamated free products and HNN extensions over finite subgroups.
- Virtually cyclic groups.
- Locally finite groups.
- Due to Stallings for finitely generated groups.
- Due to Dicks & Dunwoody for arbitrary groups.

Ends of groups and nonsingular Bernoulli actions

Let $W \subset G$ be almost invariant. Define

- $\blacktriangleright \ \mu_g(0) = p \text{ if } g \in W,$
- $\blacktriangleright \ \mu_g(0) = q \text{ if } g \not\in W.$

Then: $G \curvearrowright (X, \mu) = \prod_{g \in G} (\{0, 1\}, \mu_g)$ is a nonsingular Bernoulli action.

But (remember $G = \mathbb{Z}$ and $W = \mathbb{N}$): the action could be dissipative.

Theorem (Björklund-Kosloff-V, 2019)

- ▶ Infinite, locally finite groups admit Bernoulli actions of each possible type: II_1 , II_∞ , III_0 , III_λ and III_1 .
- Every nonamenable group with more than one end admits nonsingular Bernoulli actions of type III_λ for each λ close enough to 1.