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1 MSS on KS

Theorem 1.1. (solution to Kadison-Singer, Marcus-Spielman-
Srivastava 2013) Every pure state of `∞(N) uniquely extends
as a state of B(`2(N)).

To prove this (actually, Weaver’s translation in linear alge-
bra), MSS had to prove two results on random matrices:

Let A1, ..., Ad be independent random variables with values in
rank 1 positive semi-definite matrices. Set A =

∑d
i=1Ai. Let

pA(z) = det(z1m − A) be the characteristic polynomial of A.

Theorem 1.2. (MSS)

1. Assume EA = 1m and E‖Ai‖ ≤ ε for all i = 1, ..., d.
Then EpA is real-rooted with biggest root at most (1 +√
ε)2.
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2. Assume that the Ai’s take finitely many values. Then for
some realization of the Ai’s, ‖A‖ (=biggest root of pA) is
less or equal to the biggest root of EpA.

It turn out that the second part also solved another famous
question , going back to 1986: the existence of infinite families
of d-regular Ramanujan graphs, for every d ≥ 3.
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2 Ramanujan graphs

Let X = (V,E) be a finite, connected d-regular connected
graph, on n vertices. Let A be its adjacency matrix:

Axy =

{
1 if x adjacent to y
0 otherwise

(x, y ∈ V )

By linear algebra, the spectrum Sp(A) consists of n eigenval-
ues (counting multiplicities):

λ0 = d > λ1 ≥ λ2 ≥ ... ≥ λn−1(≥ −d).

Proposition 2.1. X is bipartite if and only if λn−1 = −d. In
this case the spectrum of A is symmetric with respect to 0.

The spectral gap of X is d− λ1(X).
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Let (Xm)m>0 be a family of d-regular, finite, connected graphs
with |Xm| → ∞ for m→∞.

Definition 2.2. (Xm)m>0 is an expander family if the spectral
gap of the Xm’s is bounded below by a positive constant ε:

d− λ1(Xm) ≥ ε

for every m > 0.

Asymptotically the spectral gap is at most d− 2
√
d− 1:

Theorem 2.3. (Alon-Boppana) lim infm→∞ λ1(Xm) ≥ 2
√
d− 1.

Definition 2.4. X is Ramanujan if, for every eigenvalue λ
of A, with λ 6= ±d, we have |λ| ≤ 2

√
d− 1.

Example 1. The complete graph Kn is (n − 1)-regular Ra-
manujan; the complete bipartite graph Kn,n is n-regular Ra-
manujan.
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Infinite families of d-regular Ramanujan graphs, if they exist,
provide expander families with the largest possible spectral
gap. But do they exist?

Theorem 2.5. (Lubotzky-Phillips-Sarnak 1986, Margulis 1986,
Morgenstern 1994) When d− 1 is a prime power, there exists
explicit infinite families of d-regular Ramanujan graphs, both
bipartite and non-bipartite.

The proof uses deep number theory (proof by Deligne of the
Ramanujan conjecture).

Question 1. For arbitrary d ≥ 3, does there exist infinite
families of d-regular Ramanujan graphs?
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3 2-lifts

Definition 3.1. A signing of X is a map s : E → {±1}. For
a signing s, the signed adjacency matrix A(s) is:

A(s)
xy =

{
s(x, y) if x adjacent to y

0 otherwise
(x, y ∈ V ).

To every signing s, we associate the 2-lift X̃(s), a graph on
V1
∐
V2, with V1 = V2 = V (see flipchart).

Lemma 3.2. (Bilu-Linial 2006): For a signing s of X:

Sp(X̃(s)) = Sp(A) ∪ Sp(A(s)).
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Conjecture 1. (Bilu-Linial) For any d-regular X, there exist
a signing s such that Sp(As) ⊂ [−2

√
d− 1, 2

√
d− 1].

Theorem 3.3. (MSS) The Bilu-Linial conjecture holds for
bipartite graphs.

The conjecture is still open for non-bipartite graphs!

Corollary 3.4. (MSS) Every d-regular bipartite Ramanujan
graph admits a 2-lift which is also d-regular bipartite Ramanu-
jan. �

Taking Kd,d as seed and iterating, we get:

Corollary 3.5. (MSS) For every d ≥ 3, there exists infinite
families of d-regular bipartite Ramanujan graphs.
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Remark 3.6. • This is an existence result!

• The assumption “bipartite” is used only as follows: the
MSS techniques allow them to control the top eigenvalue.
For a bipartite graph, you also control the lowest eigen-
value.

• In 2015, using their theory of free finite convolutions,
MSS could prove that for every n and d, there exists a
d-regular bipartite Ramanujan graph on n vertices.

• The name “Ramanujan” might not be the best one - after
all!
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4 Main steps in the proof

Fix a signing s. For e = (u, v) ∈ E define a positive rank 1

operator A
(s)
e ∈Mn(C); for f ∈ CV :

A(s)
e (f) =

{
〈f |δu − δv〉(δu − δv) if s(u, v) = −1
〈f |δu + δv〉(δu + δv) if s(u, v) = 1

Then:
d.1n + A(s) =

∑
e∈E

A(s)
e

Endow the set of 2|E| signings with the uniform probability,
and view the s 7→ A

(s)
e (for e ∈ E) as a collection of indepen-

dent random variables. By the 2nd part of the MSS result:
for some realization of A(s):

max-root(pd.1n+A(s)) ≤ max-root(Espd.1n+A(s))

So let λ
(s)
max be the largest eigenvalue of A(s). The LHS of the

previous inequality is d+ λ
(s)
max.
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Definition 4.1. An r-matching of X is a collection of r dis-
joint edges. We denote by pr the number of r-matchings, and
by µX(z) =

∑
r≥0(−1)rprz

n−2r the matching polynomial of X.

Theorem 4.2. (Godsil-Gutman 1978) EspA(s) = µX.

To proceed: for u ∈ V , the path-tree T (X, u) is a finite subtree
of the universal cover X̃ obtained by lifting all injective paths
from u in X.

Theorem 4.3. (Heilbronn-Lieb 1972) The matching polyno-
mial µX divides the characteristic polynomial pT of the adja-
cency matrix of T (X, u).

Consequence: from Perron-Frobenius and the above:

max-root(µX) ≤ max-root(pT ) ≤ 2
√
d− 1

So the max-root of Espd.1n+A(s)(z) = EspA(s)(z − d) is at most
d+ 2

√
d− 1 and we are done.
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Remark 4.4. : For a finite tree T , the matching polynomial
µT coincides with the characteristic polynomial pT of the ad-
jacency matrix.

Indeed, denoting by Sym(S)nf the set of fixed-point free per-
mutations of S:

pT (z) = det(z.1n − A) =
∑

σ∈Sym(n)

ε(σ)
n∏
i=1

(z.1n − A)i,σ(i)

=
n∑
k=0

zn−k(−1)k
∑
|S|=k

∑
π∈Sym(S)nf

ε(π)
∏
i∈S

Ai,π(i).

The product is 0 or 1, and is 1 if and only i is adjacent to
π(i) for every i ∈ S: this means every cycle in π is a cycle
in S. As T is a tree, the only possibilities for π are disjoint
transpositions associated with perfect matchings of S.
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5 (If time left) The MSS proof of GG

Recall: we want to prove EspA(s) = µX
As in the above remark:

pA(s)(z) =
n∑
k=0

zn−k(−1)k
∑
|S|=k

∑
π∈Sym(S)nf

ε(π)
∏
i∈S

A
(s)
i,π(i)

=
n∑
k=0

zn−k(−1)k
∑
|S|=k

∑
π∈Sym(S)nf

ε(π)
∏
i∈S

s(i, π(i)).

Since Ess(i, j) = 0, taking Es and using independence, we
see that Es(

∏
i∈S s(i, π(i)) = 0 as soon as π has a cycle of

length ≥ 3. So π contributes if and only if it is a product of
disjoint transpositions, if and only if it corresponds to a per-
fect matching of S. Hence Es[

∑
π∈Sym(S)nf ε(π)

∏
i∈S s(i, π(i))]

is (−1)r × |{Perfect matchings of S}| if |S| = 2r, and is 0 if
|S| = 2r + 1. �
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