From Kadison-Singer to Ramanujan
(after Marcus-Spielman-Srivastava)

Alain Valette

Copenhagen, 30 November 2019
Kadison memorial conference



1 MSS on KS

Theorem 1.1. (solution to Kadison-Singer, Marcus-Spielman-
Srivastava 2013) Every pure state of (*°(N) uniquely extends
as a state of B(F*(N)).

To prove this (actually, Weaver’s translation in linear alge-

bra), MSS had to prove two results on random matrices:

Let Ay, ..., A; be independent random variables with values in
rank 1 positive semi-definite matrices. Set A = Zgzl A;. Let
pa(z) = det(z1,, — A) be the characteristic polynomial of A.

Theorem 1.2. (MSS)

1. Assume EA = 1,, and E||A;|| < e for alli = 1,...,d.
Then Epa is real-rooted with biggest root at most (1 +

Ve



2. Assume that the A;’s take finitely many values. Then for
some realization of the A;’s, || Al (=biggest root of pa) is
less or equal to the biggest root of Epy.

It turn out that the second part also solved another famous
question , going back to 1986: the existence of infinite families
of d-regular Ramanujan graphs, for every d > 3.



2 Ramanujan graphs

Let X = (V,FE) be a finite, connected d-regular connected
graph, on n vertices. Let A be its adjacency matrix:

{ 1 if xz adjacent to y
Ay =

0 otherwise (z,y €V)

By linear algebra, the spectrum Sp(A) consists of n eigenval-
ues (counting multiplicities):
N=d>X\ >N >...> )\n—l(z —d)

Proposition 2.1. X is bipartite if and only if \,—1 = —d. In
this case the spectrum of A is symmetric with respect to 0.

The spectral gap of X is d — A\ (X).



Let (X,;)m=0 be a family of d-regular, finite, connected graphs
with | X,,| = oo for m — oc.

Definition 2.2. (X,,)n~0 is an expander family if the spectral
gap of the X, s is bounded below by a positive constant c:

d— (X)) >«
for every m > 0.
Asymptotically the spectral gap is at most d — 2v/d — 1:
Theorem 2.3. (Alon-Boppana) liminf,, o A (X,,) > 2v/d — 1.

Definition 2.4. X is Ramanujan if, for every eigenvalue A

of A, with A\ # +d, we have |\ < 2v/d — 1.

Example 1. The complete graph K, is (n — 1)-regular Ra-
manujan; the complete bipartite graph K, ,, is n-reqular Ra-
manujan.



Infinite families of d-regular Ramanujan graphs, if they exist,
provide expander families with the largest possible spectral
gap. But do they exist?

Theorem 2.5. (Lubotzky-Phillips-Sarnak 1986, Margulis 1986,
Morgenstern 1994) When d — 1 is a prime power, there exists
explicit infinite families of d-reqular Ramanujan graphs, both
bipartite and non-bipartite.

The proof uses deep number theory (proof by Deligne of the
Ramanujan conjecture).

Question 1. For arbitrary d > 3, does there exist infinite
families of d-reqular Ramanujan graphs?



3 2-lifts

Definition 3.1. A signing of X is a map s : E — {+1}. For
a signing s, the signed adjacency matriz A®) is:

(s) _ s(x,y) if v adjacent to y
A { 0 otherwise (z,y € V).

To every signing s, we associate the 2-lift X®), a graph on
ViIVa, with Vi = V5 =V (see flipchart).

Lemma 3.2. (Bilu-Linial 2006): For a signing s of X :
Sp(X)) = Sp(A) U Sp(AY).



Conjecture 1. (Bilu-Linial) For any d-regqular X, there exist
a signing s such that Sp(A%) C [-2v/d — 1,2v/d — 1].

Theorem 3.3. (MSS) The Bilu-Linial conjecture holds for
bipartite graphs.

The conjecture is still open for non-bipartite graphs!

Corollary 3.4. (MSS) Every d-regular bipartite Ramanugjan
graph admits a 2-lift which s also d-reqular bipartite Ramanu-
jan. ]

Taking K4 as seed and iterating, we get:

Corollary 3.5. (MSS) For every d > 3, there exists infinite
families of d-reqular bipartite Ramanujan graphs.



Remark 3.6. e This is an existence result!

o The assumption “bipartite” is used only as follows: the
MSS techniques allow them to control the top eigenvalue.
For a bipartite graph, you also control the lowest eigen-
value.

o In 2015, using their theory of free finite convolutions,
MSS could prove that for every n and d, there exists a
d-reqular bipartite Ramanujan graph on n vertices.

e The name “Ramanujan” might not be the best one - after
all!



4 Main steps in the proof

Fix a signing s. For e = (u,v) € E define a positive rank 1
operator AP € M,(C); for f € CV:

s _ <f‘5u - 5v>(5u - (51;) vf S(U,U) =—1
AN = { (flow+ 00)(0u +0y) if s(u,v) =1

d1,+ AP =3 40

ecl

Endow the set of 2/”! signings with the uniform probability,
and view the s — A% (for e € E) as a collection of indepen-
dent random variables. By the 2nd part of the MSS result:
for some realization of A®);

max-100t(pyq 4 ae) < max-root(Egpy 1 ae)

So let )\g;izm be the largest eigenvalue of A®) . The LHS of the
previous inequality is d + )\Sfizm



Definition 4.1. An r-matching of X 1s a collection of r dis-
joint edges. We denote by p, the number of r-matchings, and
by pix(2) = > ,0(=1)pr2""*" the matching polynomial of X .

Theorem 4.2. (Godsil-Gutman 1978) Esp ¢ = ux.

To proceed: for u € V', the path-tree T'(X, ) is a finite subtree
of the universal cover X obtained by lifting all injective paths
from u in X.

Theorem 4.3. (Heilbronn-Lieb 1972) The matching polyno-
mial px divides the characteristic polynomial pr of the adja-
cency matriz of T(X, u).

Consequence: from Perron-Frobenius and the above:
max-root(py) < max-root(pr) < 2vVd — 1

So the max-root of Espyq a0 (2) = Egpae (2 — d) is at most
d + 2v/d — 1 and we are done.



Remark 4.4. : For a finite tree T', the matching polynomial
pr coincides with the characteristic polynomial pr of the ad-
jacency matrix.

Indeed, denoting by Sym(S)™ the set of fixed-point free per-
mutations of S:

pr(z) =det(z1,— A) = > (o) [[(z1n = A)iwiy
() =l

oceSym(n

= Z Z G(W)HAZ',#(Z')

k= |S|=k reSym(S)" icS
The product is 0 or 1, and is 1 if and only ¢ is adjacent to
7(7) for every ¢ € S: this means every cycle in 7 is a cycle
in S. As T is a tree, the only possibilities for 7 are disjoint
transpositions associated with perfect matchings of S.



5 (If time left) The MSS proof of GG

Recall: we want to prove Egp ) = pux
As in the above remark:

n

pa(2) =Y DRy S e [T A,

k=0 |S|=k meSym(S)"S ieS
n
=> DR Y em) ] st ().
k=0 |S|=k meSym(S)"/ i€S

Since E;s(7,j) = 0, taking Eg and using independence, we
see that E(][;cgs(é,m(7)) = 0 as soon as 7 has a cycle of
length > 3. So 7 contributes if and only if it is a product of
disjoint transpositions, if and only if it corresponds to a per-
fect matching of S. Hence B[} g, (5ys €(7) [ Licg s(4, 7(2))]
is (—1)" x |{Perfect matchings of S}| if |S| = 2r, and is 0 if
S| = 2r +1. O



