Amenability and approximations of C*-algebras

Wilhelm Winter
WWU Münster

Richard Kadison and his mathematical legacy
Copenhagen, November 2019
A system of completely positive approximations for a C^*-algebra A is a net

$$(A \xrightarrow{\varphi_\lambda} F_\lambda \xrightarrow{\psi_\lambda} A)_{\lambda \in \Lambda}$$

such that

- the F_λ are finite dimensional C^*-algebras
- the φ_λ and the ψ_λ are completely positive maps with a uniform norm bound
- $\varphi_\lambda \psi_\lambda \xrightarrow{\text{point-norm topology}} \text{id}_A$

Nuclear C^*-algebras are precisely those admitting such systems. They form a remarkably robust class of C^*-algebras.

Let us recall some sample results.
A system of completely positive approximations for a C*-algebra A is a net

\[(A \xrightarrow{\varphi_\lambda} F_\lambda \xrightarrow{\psi_\lambda} A)_{\lambda \in \Lambda}\]

such that

- the F_λ are finite dimensional C*-algebras
A system of completely positive approximations for a C*-algebra A is a net

$$(A \xlongrightarrow{\varphi_\lambda} F_\lambda \xlongrightarrow{\psi_\lambda} A)_{\lambda \in \Lambda}$$

such that

- the F_λ are finite dimensional C*-algebras
- the φ_λ and the ψ_λ are completely positive maps with a uniform norm bound
A system of completely positive approximations for a C*-algebra A is a net

$$(A \xrightarrow{\varphi_\lambda} F_\lambda \xrightarrow{\psi_\lambda} A)_{\lambda \in \Lambda}$$

such that

- the F_λ are finite dimensional C*-algebras
- the φ_λ and the ψ_λ are completely positive maps with a uniform norm bound
- $\varphi_\lambda \psi_\lambda \longrightarrow \text{id}_A$ in point-norm topology.

Nuclear C*-algebras are precisely those admitting such systems. They form a remarkably robust class of C*-algebras. Let us recall some sample results.
A system of completely positive approximations for a C*-algebra A is a net

$$\left(A \xrightarrow{\varphi_\lambda} F_\lambda \xrightarrow{\psi_\lambda} A \right)_{\lambda \in \Lambda}$$

such that

- the F_λ are finite dimensional C*-algebras
- the φ_λ and the ψ_λ are completely positive maps with a uniform norm bound
- $\varphi_\lambda \psi_\lambda \rightarrow \text{id}_A$ in point-norm topology.

Nuclear C*-algebras are precisely those admitting such systems.
A system of completely positive approximations for a C*-algebra \(A \) is a net

\[
(A \xrightarrow{\varphi_\lambda} F_\lambda \xrightarrow{\psi_\lambda} A)_{\lambda \in \Lambda}
\]
such that

- the \(F_\lambda \) are finite dimensional C*-algebras
- the \(\varphi_\lambda \) and the \(\psi_\lambda \) are completely positive maps with a uniform norm bound
- \(\varphi_\lambda \psi_\lambda \to \text{id}_A \) in point-norm topology.

Nuclear C*-algebras are precisely those admitting such systems. They form a remarkably robust class of C*-algebras.
A system of completely positive approximations for a C*-algebra A is a net

$$(A \xrightarrow{\varphi_\lambda} F_\lambda \xrightarrow{\psi_\lambda} A)_{\lambda \in \Lambda}$$

such that

- the F_λ are finite dimensional C*-algebras
- the φ_λ and the ψ_λ are completely positive maps with a uniform norm bound
- $\varphi_\lambda \psi_\lambda \rightarrow \text{id}_A$ in point-norm topology.

Nuclear C*-algebras are precisely those admitting such systems. They form a remarkably robust class of C*-algebras. Let us recall some sample results.
THEOREM [Bunce, Christensen, Pisier]

Nuclear C*-algebras are precisely those with similarity degree 2.
THEOREM [Bunce, Christensen, Pisier]

Nuclear C*-algebras are precisely those with similarity degree 2.

In particular, they satisfy Kadison’s similarity property:
Every (bounded) representation is similar to a *-representation.
THEOREM [Christensen–Sinclair–Smith–White–W]

Separable nuclear C*-algebras satisfy the Kadison–Kastler conjecture: They are stable under small perturbations.
THEOREM [Christensen–Sinclair–Smith–White–W]

Separable nuclear C*-algebras satisfy the Kadison–Kastler conjecture: They are stable under small perturbations.

More precisely, if two nuclear C*-algebras act on the same Hilbert space, if one of them is separable and nuclear, and if their unit balls are within $\frac{1}{420000}$ of each other, then they are isomorphic.
For $A \neq M_r(C)$ a separable, simple, unital, nuclear C^\star-algebra, the following are equivalent:

(i) A has finite nuclear dimension.

(ii) $A \cong A \otimes \mathbb{Z}$.

I will define nuclear dimension in a moment. Think of the Jiang–Su algebra \mathbb{Z} as the smallest possible C^\star-version of the hyperfinite II_1 factor.

For $A \neq M_r(\mathbb{C})$ a separable, simple, unital, nuclear C*-algebra, the following are equivalent:

(i) A has finite nuclear dimension.

(ii) $A \cong A \otimes \mathbb{Z}$.

I will define nuclear dimension in a moment. Think of the Jiang–Su algebra \mathbb{Z} as the smallest possible C*-version of the hyperfinite II$_1$ factor.

For $A \neq M_r(\mathbb{C})$ a separable, simple, unital, nuclear C*-algebra, the following are equivalent:

(i) A has finite nuclear dimension.

For $A \neq M_r(\mathbb{C})$ a separable, simple, unital, nuclear C*-algebra, the following are equivalent:

(i) A has finite nuclear dimension.
(ii) $A \cong A \otimes \mathcal{Z}$.

I will define nuclear dimension in a moment. Think of the Jiang–Su algebra \mathcal{Z} as the smallest possible C*-version of the hyperfinite II$_1$ factor.

For $A \neq M_r(\mathbb{C})$ a separable, simple, unital, nuclear C*-algebra, the following are equivalent:

(i) A has finite nuclear dimension.
(ii) $A \cong A \otimes \mathcal{Z}$.

I will define nuclear dimension in a moment.

For $A \neq M_r(\mathbb{C})$ a separable, simple, unital, nuclear C^*-algebra, the following are equivalent:

(i) A has finite nuclear dimension.

(ii) $A \cong A \otimes \mathcal{Z}$.

I will define nuclear dimension in a moment. Think of the Jiang–Su algebra \mathcal{Z} as the smallest possible C^*-version of the hyperfinite II_1 factor.
THEOREM [many hands]
THEOREM [many hands]

\[\{ A \otimes \mathcal{Z} \mid A \text{ separable, simple, unital, nuclear, with UCT} \} \]

is classified by the Elliott invariant

\[\left(K_0(A), K_0(A)_+, [1_A]_0, K_1(A), T(A), r_A : T(A) \to S(K_0(A)) \right) . \]
For all of these results, understanding completely positive approximations is key. Let us look at these in more detail now.
A C ⋆-algebra A has nuclear dimension at most d, $\dim_{\text{nuc}} A \leq d$, if there is a system $(A \psi_\lambda \to F_\lambda \phi_\lambda \to A)_{\lambda \in \Lambda}$ of completely positive approximations such that

▶ the ψ_λ are contractions
▶ for each λ, $F_\lambda = F(0) \oplus \ldots \oplus F(d)$ and for each $k \in \{0, \ldots, d\}$, $\phi_\lambda|_{F(k)}$ is contractive and has order zero, i.e., preserves orthogonality.

In this situation one can arrange that

▶ the ψ_λ are approximately order zero: $[a b] = 0 \Rightarrow [\psi_\lambda(a) \psi_\lambda(b) \to 0]$.

If the maps ϕ_λ may be chosen to be contractive, A has decomposition rank $\leq d$. In this case can even arrange that

▶ the ψ_λ are approximately multiplicative: $\psi_\lambda(a) \psi_\lambda(b) - \psi_\lambda(a b) \to 0$.
DEFINITION [W–Zacharias, Kirchberg–W]

A C*-algebra A has *nuclear dimension* at most d, $\dim_{\text{nuc}} A \leq d$, if there is a system

$$(A \xrightarrow{\psi_\lambda} F_\lambda \xrightarrow{\varphi_\lambda} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

- the ψ_λ are contractions
A C*-algebra A has nuclear dimension at most d, $\dim_{\text{nuc}} A \leq d$, if there is a system

$$(A \xrightarrow{\psi_\lambda} F_\lambda \xrightarrow{\varphi_\lambda} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

- the ψ_λ are contractions
- for each λ, $F_\lambda = F_\lambda^{(0)} \oplus \ldots \oplus F_\lambda^{(d)}$ and for each $k \in \{0, \ldots, d\}$, $\varphi_\lambda|_{F_\lambda^{(k)}}$ is contractive and has order zero, i.e., preserves orthogonality.
DEFINITION [W–Zacharias, Kirchberg–W]

A C*-algebra A has nuclear dimension at most d, $\dim_{\text{nuc}} A \leq d$, if there is a system

$$(A \xrightarrow{\psi_\lambda} F_\lambda \xrightarrow{\varphi_\lambda} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

- the ψ_λ are contractions
- for each λ, $F_\lambda = F_\lambda^{(0)} \oplus \ldots \oplus F_\lambda^{(d)}$ and for each $k \in \{0, \ldots, d\}$, $\varphi_\lambda|_{F_\lambda^{(k)}}$ is contractive and has order zero, i.e., preserves orthogonality.

In this situation one can arrange that

- the ψ_λ are approximately order zero: $[ab = 0] \implies [\psi_\lambda(a) \psi_\lambda(b) \to 0]$.

If the maps φ_λ may be chosen to be contractive, A has decomposition rank $\leq d$. In this case can even arrange that

- the ψ_λ are approximately multiplicative: $\psi_\lambda(a) \psi_\lambda(b) - \psi_\lambda(ab) \to 0$.

DEFINITION [W–Zacharias, Kirchberg–W]

A C*-algebra A has \textit{nuclear dimension} at most d, $\dim_{\text{nuc}} A \leq d$, if there is a system

$$(A \xrightarrow{\psi_\lambda} F_\lambda \xrightarrow{\varphi_\lambda} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

- the ψ_λ are contractions
- for each λ, $F_\lambda = F_\lambda^{(0)} \oplus \ldots \oplus F_\lambda^{(d)}$ and for each $k \in \{0, \ldots, d\}$, $\varphi_\lambda|_{F_\lambda^{(k)}}$ is contractive and has order zero, i.e., preserves orthogonality.

In this situation one can arrange that

- the ψ_λ are \textit{approximately order zero}: $[a b = 0] \implies [\psi_\lambda(a) \psi_\lambda(b) \to 0]$.

If the maps φ_λ may be chosen to be contractive, A has \textit{decomposition rank} $\leq d$.
DEFINITION [W–Zacharias, Kirchberg–W]

A C*-algebra A has **nuclear dimension** at most d, $\dim_{\text{nuc}} A \leq d$, if there is a system

$$(A \xrightarrow{\psi_\lambda} F_\lambda \xrightarrow{\varphi_\lambda} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

- the ψ_λ are contractions
- for each λ, $F_\lambda = F_\lambda^{(0)} \oplus \ldots \oplus F_\lambda^{(d)}$ and for each $k \in \{0, \ldots, d\}$, $\varphi_\lambda|_{F_\lambda^{(k)}}$ is contractive and has order zero, i.e., preserves orthogonality.

In this situation one can arrange that

- the ψ_λ are approximately order zero: $[a b = 0] \implies [\psi_\lambda(a) \psi_\lambda(b) \to 0]$.

If the maps φ_λ may be chosen to be contractive, A has **decomposition rank** $\leq d$. In this case can even arrange that

- the ψ_λ are approximately multiplicative: $\psi_\lambda(a) \psi_\lambda(b) - \psi_\lambda(a b) \to 0$.
These definitions capture both algebraic and topological information.
These definitions capture both algebraic and topological information.

For example, if A is commutative, this forces the F_λ to be commutative as well.
These definitions capture both algebraic and topological information.

For example, if A is commutative, this forces the F_{λ} to be commutative as well. Also, $\dim_{\text{nuc}} C(X) = \dim X$.
Even without finite nuclear dimension, one can find approximations with similar properties.

Theorem

[Hirshberg–Kirchberg–White, Carrión–Hirshberg–White]

Any nuclear C^\star-algebra A has a system $(\phi_\lambda \rightarrow F_\lambda \psi_\lambda \rightarrow A)_{\lambda \in \Lambda}$ of completely positive approximations such that

- the ϕ_λ are convex combinations of contractive order zero maps
- the ψ_λ are contractive and approximately order zero.

If A and all its tracial states are quasidiagonal, one can in addition arrange that

- the ψ_λ are approximately multiplicative.

Note that, even for $C([0,1])$, such approximations are not entirely straightforward to write down.
Even without finite nuclear dimension, one can find approximations with similar properties.

THEOREM [Hirshberg–Kirchberg–White, Carrión–Hirshberg–White]
Even without finite nuclear dimension, one can find approximations with similar properties.

THEOREM [Hirshberg–Kirchberg–White, Carrión–Hirshberg–White]

Any nuclear C*-algebra A has a system

$$(A \xrightarrow{\varphi_\lambda} F_\lambda \xrightarrow{\psi_\lambda} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

- the φ_λ are convex combinations of contractive order zero maps
- the ψ_λ are contractive and approximately order zero.

If A and all its tracial states are quasidiagonal, one can in addition arrange that

- the ψ_λ are approximately multiplicative.

Note that, even for $\mathbb{C}([0,1])$, such approximations are not entirely straightforward to write down.
Even without finite nuclear dimension, one can find approximations with similar properties.

Theorem [Hirshberg–Kirchberg–White, Carrión–Hirshberg–White]

Any nuclear C*-algebra A has a system
\[
(A \xrightarrow{\varphi_\lambda} F_\lambda \xrightarrow{\psi_\lambda} A)_{\lambda \in \Lambda}
\]
of completely positive approximations such that
- the φ_λ are convex combinations of contractive order zero maps
- the ψ_λ are contractive and approximately order zero.

If A and all its tracial states are quasidiagonal, one can in addition arrange that
- the ψ_λ are approximately multiplicative.

Note that, even for $\mathbb{C}(\mathbb{R})$, such approximations are not entirely straightforward to write down.
Even without finite nuclear dimension, one can find approximations with similar properties.

THEOREM [Hirshberg–Kirchberg–White, Carrión–Hirshberg–White]

Any nuclear C^*-algebra A has a system

$$\left(A \xrightarrow{\varphi_\lambda} F_\lambda \xrightarrow{\psi_\lambda} A \right)_{\lambda \in \Lambda}$$

of completely positive approximations such that

- the φ_λ are *convex combinations* of contractive order zero maps
- the ψ_λ are contractive and approximately order zero.

If A and all its tracial states are quasidiagonal, one can in addition arrange that

- the ψ_λ are approximately multiplicative.

Note that, even for $C([0,1])$, such approximations are not entirely straightforward to write down.
Even without finite nuclear dimension, one can find approximations with similar properties.

THEOREM [Hirshberg–Kirchberg–White, Carrión–Hirshberg–White]

Any nuclear C^*-algebra A has a system

$$(A \xrightarrow{\varphi_{\lambda}} F_{\lambda} \xrightarrow{\psi_{\lambda}} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

- the φ_{λ} are *convex combinations* of contractive order zero maps
- the ψ_{λ} are contractive and approximately order zero.

If A and all its tracial states are quasidiagonal, one can in addition arrange that

- the ψ_{λ} are approximately multiplicative.
Even without finite nuclear dimension, one can find approximations with similar properties.

THEOREM [Hirshberg–Kirchberg–White, Carrión–Hirshberg–White]

Any nuclear C*-algebra A has a system

$$(A \xrightarrow{\varphi_\lambda} F_\lambda \xrightarrow{\psi_\lambda} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

- the φ_λ are *convex combinations* of contractive order zero maps
- the ψ_λ are contractive and approximately order zero.

If A and all its tracial states are quasidiagonal, one can in addition arrange that

- the ψ_λ are approximately multiplicative.

Note that, even for $C([0, 1])$, such approximations are not entirely straightforward to write down.
From now on we will assume A to be separable, and we will restrict to systems of approximations with $\Lambda = \mathbb{N}$:

$$(A \xrightarrow{\psi_k} F_k \xrightarrow{\psi_k} A)_{k \in \mathbb{N}}$$

Questions

- When does a system $$(F_0 \xrightarrow{\varphi_0} F_1 \xrightarrow{\varphi_1} \ldots)$$ come from a C^\ast-algebra?
- Under which conditions on the system $$(F_0 \xrightarrow{\varphi_0} F_1 \xrightarrow{\varphi_1} \ldots)$$ can we recover A?
- How to read off information on A (K-theory, traces, ...) from $$(F_0 \xrightarrow{\varphi_0} F_1 \xrightarrow{\varphi_1} \ldots)$$?
- What structure does the inductive limit of $$(F_0 \xrightarrow{\varphi_0} F_1 \xrightarrow{\varphi_1} \ldots)$$ have?
From now on we will assume A to be separable, and we will restrict to systems of approximations with $\Lambda = \mathbb{N}$:

$$(A \xrightarrow{\varphi_k} F_k \xrightarrow{\psi_k} A)_{k \in \mathbb{N}}$$

With $\rho_{k,k+1} := \varphi_{k+1} \psi_k$ such a system of approximations yields an inductive system

$$F_0 \xrightarrow{\rho_{0,1}} F_1 \xrightarrow{\rho_{1,2}} \ldots.$$
From now on we will assume A to be separable, and we will restrict to systems of approximations with $\Lambda = \mathbb{N}$:

$$(A \xrightarrow{\varphi_k} F_k \xrightarrow{\psi_k} A)_{k \in \mathbb{N}}$$

With $\varrho_{k,k+1} := \varphi_{k+1} \psi_k$ such a system of approximations yields an inductive system

$$F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots$$

QUESTIONS

When does a system $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots)$ come from a C*-algebra?
From now on we will assume \(A \) to be separable, and we will restrict to systems of approximations with \(\Lambda = \mathbb{N} \):

\[
\left(A \xrightarrow{\varphi_k} F_k \xrightarrow{\psi_k} A \right)_{k \in \mathbb{N}}
\]

With \(\rho_{k,k+1} := \varphi_{k+1} \psi_k \) such a system of approximations yields an inductive system

\[
F_0 \xrightarrow{\rho_{0,1}} F_1 \xrightarrow{\rho_{1,2}} \ldots
\]

QUESTIONS

When does a system \((F_0 \xrightarrow{\rho_{0,1}} F_1 \xrightarrow{\rho_{1,2}} \ldots) \) come from a \(\mathbb{C}^* \)-algebra?

Under which conditions on the system \((F_0 \xrightarrow{\rho_{0,1}} F_1 \xrightarrow{\rho_{1,2}} \ldots) \) can we recover \(A \)?
From now on we will assume A to be separable, and we will restrict to systems of approximations with $\Lambda = \mathbb{N}$:

$$(A \xrightarrow{\varphi_k} F_k \xrightarrow{\psi_k} A)_{k \in \mathbb{N}}$$

With $\varrho_{k,k+1} := \varphi_{k+1} \psi_k$ such a system of approximations yields an inductive system

$$F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots$$

QUESTIONS

When does a system $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots)$ come from a C^*-algebra?

Under which conditions on the system $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots)$ can we recover A?

How to read of information on A (K-theory, traces, ...) from $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots)$?
From now on we will assume A to be separable, and we will restrict to systems of approximations with $\Lambda = \mathbb{N}$:

$$(A \xrightarrow{\varphi_k} F_k \xrightarrow{\psi_k} A)_{k \in \mathbb{N}}$$

With $\varrho_{k,k+1} := \varphi_{k+1} \psi_k$ such a system of approximations yields an inductive system

$$F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots$$

QUESTIONS

When does a system $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots)$ come from a C*-algebra?

Under which conditions on the system $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots)$ can we recover A?

How to read of information on A (K-theory, traces, ...) from $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots)$?

What structure does the inductive limit of $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots)$ have?
DEFINITION [Blackadar–Kirchberg, Courtney–W]

Consider an inductive system \(F_0 \varrho_0 \rightarrow F_1 \varrho_1 \rightarrow \ldots \) with finite dimensional \(C^\star \)-algebras \(F_k \) and completely positive contractive \(\varrho_k \), \(k + 1 \).

The system is asymptotically multiplicative, if the following holds: For every \(K \in \mathbb{N} \), \(x, y \in F_K \) and \(\epsilon > 0 \) there is \(K \leq M \in \mathbb{N} \) such that for every \(M \leq m < n \) we have
\[
\| \varrho_m, n (\varrho_K, m (x)) \varrho_K, n (y) \|_{F_n} < \epsilon.
\]

The system is asymptotically order zero, if the following holds: For every \(K \in \mathbb{N} \), \(x, y \in F_K \) and \(\epsilon > 0 \) there are \(K \leq M \in \mathbb{N} \) and \(\delta > 0 \) such that for every \(M \leq m < n \) we have
\[
\| \varrho_K, m (x) \varrho_K, m (y) \|_{F_m} < \delta \implies \| \varrho_K, n (x) \varrho_K, n (y) \|_{F_n} < \epsilon.
\]
DEFINITION [Blackadar–Kirchberg, Courtney–W]

Consider an inductive system

\[F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots \]

with finite dimensional C*-algebras \(F_k \) and completely positive contractive \(\varrho_{k,k+1} \).
DEFINITION [Blackadar–Kirchberg, Courtney–W]

Consider an inductive system

\[F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots \]

with finite dimensional C*-algebras \(F_k \) and completely positive contractive \(\varrho_{k,k+1} \). The system is *asymptotically multiplicatively*, if the following holds:
DEFINITION [Blackadar–Kirchberg, Courtney–W]

Consider an inductive system

\[F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots \]

with finite dimensional C*-algebras \(F_k \) and completely positive contractive \(\varrho_{k,k+1} \).

The system is \textit{asymptotically multiplicatively}, if the following holds:
For every \(K \in \mathbb{N}, x, y \in F_K \) and \(\epsilon > 0 \) there is \(K \leq M \in \mathbb{N} \) such that for every \(M \leq m < n \) we have

\[\| \varrho_{m,n}(\varrho_{K,m}(x)\varrho_{K,m}(y)) - \varrho_{K,n}(x)\varrho_{K,n}(y) \|_{F_n} < \epsilon. \]
Consider an inductive system

\[F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots \]

with finite dimensional C*-algebras \(F_k \) and completely positive contractive \(\varrho_{k,k+1} \).

The system is \textit{asymptotically multiplicatively}, if the following holds:

For every \(K \in \mathbb{N}, \ x, y \in F_K \) and \(\epsilon > 0 \) there is \(K \leq M \in \mathbb{N} \) such that for every \(M \leq m < n \) we have

\[\| \varrho_{m,n}(\varrho_{K,m}(x) \varrho_{K,m}(y)) - \varrho_{K,n}(x) \varrho_{K,n}(y) \|_{F_n} < \epsilon. \]

The system is \textit{asymptotically order zero}, if the following holds:
DEFINITION [Blackadar–Kirchberg, Courtney–W]

Consider an inductive system

\[F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots \]

with finite dimensional C*-algebras \(F_k \) and completely positive contractive \(\varrho_{k,k+1} \).

The system is \textit{asymptotically multiplicative}, if the following holds:

For every \(K \in \mathbb{N} \), \(x, y \in F_K \) and \(\epsilon > 0 \) there is \(K \leq M \in \mathbb{N} \) such that for every \(M \leq m < n \) we have

\[
\| \varrho_{m,n}(\varrho_{K,m}(x)\varrho_{K,m}(y)) - \varrho_{K,n}(x)\varrho_{K,n}(y) \|_{F_n} < \epsilon.
\]

The system is \textit{asymptotically order zero}, if the following holds:

For every \(K \in \mathbb{N} \), \(x, y \in F_K \) and \(\epsilon > 0 \) there are \(K \leq M \in \mathbb{N} \) and \(\delta > 0 \) such that for every \(M \leq m < n \) we have

\[
\| \varrho_{K,m}(x)\varrho_{K,m}(y) \|_{F_m} < \delta \implies \| \varrho_{K,n}(x)\varrho_{K,n}(y) \|_{F_n} < \epsilon.
\]
THEOREM [Courtney–W, using Blackadar–Kirchberg, Carrión–Hirshberg–White]

Let A be a separable nuclear $C\star$-algebra. Then, there exists a system of completely positive approximations such that the associated inductive system $F_0 \xrightarrow{\varrho_0} F_1 \xrightarrow{\varrho_1} \ldots$ has the following properties:

- it is asymptotically order zero
- the induced map $\Psi : A \to X := \lim_{\to} (F_k, \varrho_k, k+1) \subset \prod_{N} F_k / \bigoplus_{N} F_k$ is an orthogonality preserving complete order isomorphism.

If A and all its traces are quasidiagonal, one can arrange:

- the system is asymptotically multiplicative
- Ψ is an injective \star-homomorphism
- the maps $\varrho_k, k+1$ induce affine maps $T \leq 1 (F_k) \leftarrow T \leq 1 (F_{k+1})$ between the simplices of positive trace functionals such that $T \leq 1 (A) \approx \lim_{\to} T \leq 1 (F_k)$.
THEOREM [Courtney–W, using Blackadar–Kirchberg, Carrión–Hirshberg–White]

Let A be a separable nuclear C*-algebra.

Let A be a separable nuclear C*-algebra. Then, there exists a system of completely positive approximations such that the associated inductive system $F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots$ has the following properties:

1. it is asymptotically order zero
2. the induced map $\Psi : A \to X := \varinjlim (F_k, \varrho_k, k+1)$ is an orthogonality preserving complete order isomorphism.
3. If A and all its traces are quasidiagonal, one can arrange:
 1. the system is asymptotically multiplicative
 2. Ψ is an injective \ast-homomorphism
 3. the maps $\varrho_{k, k+1}$ induce affine maps $T_{\leq 1}(F_k) \leftarrow T_{\leq 1}(F_{k+1})$ between the simplices of positive trace functionals such that $T_{\leq 1}(A) \approx \varprojlim T_{\leq 1}(F_k)$.
THEOREM [Courtney–W, using Blackadar–Kirchberg, Carrión–Hirshberg–White]

Let A be a separable nuclear C*-algebra. Then, there exists a system of completely positive approximations such that the associated inductive system $F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots$ has the following properties:

- it is asymptotically order zero
THEOREM [Courtney–W, using Blackadar–Kirchberg, Carrión–Hirshberg–White]

Let A be a separable nuclear C^*-algebra. Then, there exists a system of completely positive approximations such that the associated inductive system $F_0 \xrightarrow{q_{0,1}} F_1 \xrightarrow{q_{1,2}} \ldots$ has the following properties:

- it is asymptotically order zero
- the induced map $\psi : A \rightarrow X := \lim_{\rightarrow} (F_k, q_{k,k+1}) \subset \prod_{\mathbb{N}} F_k / \bigoplus_{\mathbb{N}} F_k$ is an orthogonality preserving complete order isomorphism.
THEOREM [Courtney–W, using Blackadar–Kirchberg, Carrión–Hirshberg–White]

Let A be a separable nuclear C^*-algebra. Then, there exists a system of completely positive approximations such that the associated inductive system $F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots$ has the following properties:

- it is asymptotically order zero
- the induced map $\Psi : A \rightarrow X := \lim_{\rightarrow} (F_k, \varrho_{k,k+1}) \subset \prod_{\text{IN}} F_k / \bigoplus_{\text{IN}} F_k$ is an orthogonality preserving complete order isomorphism.

If A and all its traces are quasidiagonal, one can arrange:

- the system is asymptotically multiplicative
- Ψ is an injective \star-homomorphism
- the maps $\varrho_{k,k+1}$ induce affine maps $T_{\leq 1}(F_k) \leftarrow T_{\leq 1}(F_{k+1})$ between the simplices of positive trace functionals such that $T_{\leq 1}(A) \approx \lim_{\rightarrow} T_{\leq 1}(F_k)$.
THEOREM [Courtney–W, using Blackadar–Kirchberg, Carrión–Hirshberg–White]

Let A be a separable nuclear C^\star-algebra. Then, there exists a system of completely positive approximations such that the associated inductive system $F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots$ has the following properties:

- it is asymptotically order zero
- the induced map $\Psi : A \rightarrow X := \lim_{\rightarrow} (F_k, \varrho_{k,k+1}) \subset \prod_{\text{IN}} F_k / \bigoplus_{\text{IN}} F_k$ is an orthogonality preserving complete order isomorphism.

If A and all its traces are quasidiagonal, one can arrange:

- the system is asymptotically multiplicative
THEOREM [Courtney–W, using Blackadar–Kirchberg, Carrión–Hirshberg–White]

Let A be a separable nuclear C^*-algebra. Then, there exists a system of completely positive approximations such that the associated inductive system $F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots$ has the following properties:

- it is asymptotically order zero
- the induced map $\Psi : A \rightarrow X := \lim_{\rightarrow} (F_k, \varrho_{k,k+1}) \subset \prod_{\text{IN}} F_k / \bigoplus_{\text{IN}} F_k$
 is an orthogonality preserving complete order isomorphism.

If A and all its traces are quasidiagonal, one can arrange:

- the system is asymptotically multiplicative
- Ψ is an injective *-homomorphism
THEOREM [Courtney–W, using Blackadar–Kirchberg, Carrión–Hirshberg–White]

Let A be a separable nuclear C^*-algebra. Then, there exists a system of completely positive approximations such that the associated inductive system $F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots$ has the following properties:

- it is asymptotically order zero
- the induced map $\Psi : A \rightarrow X := \varinjlim (F_k, \varrho_{k,k+1}) \subset \prod_{\text{in}} F_k / \bigoplus_{\text{in}} F_k$ is an orthogonality preserving complete order isomorphism.

If A and all its traces are quasidiagonal, one can arrange:

- the system is asymptotically multiplicative
- Ψ is an injective \ast-homomorphism
- the maps $\varrho_{k,k+1}$ induce affine maps $T^{\leq 1}(F_k) \leftarrow T^{\leq 1}(F_{k+1})$ between the simplices of positive trace functionals such that $T^{\leq 1}(A) \approx \varinjlim T^{\leq 1}(F_k)$.
Upshot:

For a separable, unital, nuclear and sufficiently quasidiagonal C\(^\star\)-algebra \(A\), we now know how to read its trace space \(T(A)\) from a suitable system of completely positive approximations. We also know how to recover its multiplicative structure via \(\Psi : A \rightarrow X\), so we can describe projections, unitaries, partial isometries in terms of \(X\). Since our constructions are compatible with matrix amplification, we can describe K-theory in this context.
Upshot:

For a separable, unital, nuclear and sufficiently quasidiagonal C*-algebra A, we now know how to read of its trace space $T(A)$ from a suitable system of completely positive approximations.
Upshot:

For a separable, unital, nuclear and sufficiently quasidiagonal C*-algebra A, we now know how to read of its trace space $T(A)$ from a suitable system of completely positive approximations.

We also know how to recover its multiplicative structure via $\psi : A \to X$, so we can describe projections, unitaries, partial isometries in terms of X.

Upshot:

For a separable, unital, nuclear and sufficiently quasidiagonal C*-algebra A, we now know how to read of its trace space $T(A)$ from a suitable system of completely positive approximations.

We also know how to recover its multiplicative structure via $\psi : A \to X$, so we can describe projections, unitaries, partial isometries in terms of X.

Since our constructions are compatible with matrix amplification, we can describe K-theory in this context.
Without quasidiagonality, we can still describe traces —
Without quasidiagonality, we can still describe traces — but even K-theory works:

\[p \in A^+ \text{ is a projection } \iff \Psi(p)^2 = \Psi(p)\Psi(1_A). \]

Similar identities hold for unitaries and partial isometries, and so one can always describe K-theory for nuclear C\(^*\)-algebras in terms of their approximating systems.

[Joint work in progress with Kristin Courtney.]
Without quasidiagonality, we can still describe traces — but even K-theory works:

\[p \in A_+ \text{ is a projection } \iff \psi(p)^2 = \psi(p)\psi(1_A). \]
Without quasidiagonality, we can still describe traces — but even K-theory works:

\[p \in A_+ \text{ is a projection } \iff \psi(p)^2 = \psi(p)\psi(1_A). \]

Similar identities hold for unitaries and partial isometries, and so one can always describe K-theory for nuclear C*-algebras in terms of their approximating systems. [Joint work in progress with Kristin Courtney.]
Along these lines, we can analyse a nuclear C^*-algebra in terms of asymptotically order zero inductive systems of finite dimensional C^*-algebras.

But given such an inductive system, when is there a C^*-algebra behind it? In other words, given $F_0 \to F_1 \to \cdots \to X$, when can X be equipped with a C^*-algebra structure?
Along these lines, we can analyse a nuclear C*-algebra in terms of asymptotically order zero inductive systems of finite dimensional C*-algebras.

But given such an inductive system, when is there a C*-algebra behind it?
Along these lines, we can analyse a nuclear C*-algebra in terms of asymptotically order zero inductive systems of finite dimensional C*-algebras.

But given such an inductive system, when is there a C*-algebra behind it?

In other words, given

\[F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \ldots \xrightarrow{} X, \]

when can \(X \) be equipped with a C*-algebra structure?
THEOREM [Courtney–W]

Let B be a C^*-algebra and let $X \subset B$ be a self-adjoint subspace. Suppose there is $0 \leq e \in X \cap X'$ such that e is an order unit for X_{sa} and $e^2 = e$. Then, X is a \star-algebra with the unique product $\cdot : X \times X \to X$ satisfying $(x \cdot y) e = xy \in B$. Moreover, X carries a norm which 'looks like' $\|x\|_\cdot = \|x e - 1\|_B$. With this product and norm, X becomes a unital pre-C^*-algebra.
THEOREM [Courtney–W]

Let B be a C^*-algebra and let $X \subseteq B$ be a self-adjoint subspace.
THEOREM [Courtney–W]

Let B be a C^*-algebra and let $X \subset B$ be a self-adjoint subspace. Suppose there is
\[0 \leq e \in X \cap X' \]
such that

\[e \text{ is an order unit for } X \sa \]
\[eX^2 = eX. \]

Then, X is a \star-algebra with the unique product $\cdot : X \times X \to X$ satisfying
\[(x \cdot y) e = xy \in B. \]

Moreover, X carries a norm which 'looks like'
\[\|x\| \cdot = \|x e - 1\|_B. \]

With this product and norm, X becomes a unital pre-C^*-algebra.
THEOREM [Courtney–W]

Let B be a C*-algebra and let $X \subseteq B$ be a self-adjoint subspace. Suppose there is

$$0 \leq e \in X \cap X'$$

such that

- e is an order unit for X_{sa}
THEOREM [Courtney–W]

Let B be a C^*-algebra and let $X \subseteq B$ be a self-adjoint subspace. Suppose there is $0 \leq e \in X \cap X'$ such that e is an order unit for X_{sa} and $X^2 = eX$. Then, X is a \star-algebra with the unique product $\cdot : X \times X \to X$ satisfying $(x \cdot y)e = xy \in B$.

Moreover, X carries a norm which 'looks like' $\|x\| \cdot = \|x e - 1\|_B$.

With this product and norm, X becomes a unital pre-C^*-algebra.
THEOREM [Courtney–W]

Let B be a C^*-algebra and let $X \subset B$ be a self-adjoint subspace. Suppose there is

$$0 \leq e \in X \cap X'$$

such that

- e is an order unit for X_{sa}
- $X^2 = eX$.

Then, X is a $*$-algebra with the unique product $\bullet : X \times X \to X$ satisfying

$$(x \bullet y) e = xy \in B.$$
THEOREM [Courtney–W]

Let B be a C^*-algebra and let $X \subset B$ be a self-adjoint subspace. Suppose there is

$$0 \leq e \in X \cap X'$$

such that

- e is an order unit for X_{sa}
- $X^2 = eX$.

Then, X is a *-algebra with the unique product $\bullet : X \times X \rightarrow X$ satisfying

$$(x \bullet y) e = x y \in B.$$

Moreover, X carries a norm which ‘looks like’ $\|x\|_\bullet = \|x e^{-1}\|_B$.
THEOREM [Courtney–W]

Let B be a C^*-algebra and let $X \subset B$ be a self-adjoint subspace. Suppose there is

$$0 \leq e \in X \cap X'$$

such that

- e is an order unit for X_{sa}
- $X^2 = eX$.

Then, X is a $*$-algebra with the unique product $\bullet : X \times X \to X$ satisfying

$$(x \bullet y) e = x y \in B.$$

Moreover, X carries a norm which ‘looks like’ $\|x\|_{\bullet} = \|xe^{-1}\|_B$. With this product and norm, X becomes a unital pre-C^*-algebra.