Amenability and approximations of C*-algebras

Wilhelm Winter WWU Münster

Richard Kadison and his mathematical legacy Copenhagen, November 2019

$$(A \xrightarrow{\varphi_{\lambda}} F_{\lambda} \xrightarrow{\psi_{\lambda}} A)_{\lambda \in \Lambda}$$

$$(A \xrightarrow{\varphi_{\lambda}} F_{\lambda} \xrightarrow{\psi_{\lambda}} A)_{\lambda \in \Lambda}$$

such that

• the F_{λ} are finite dimensional C*-algebras

$$(A \xrightarrow{\varphi_{\lambda}} F_{\lambda} \xrightarrow{\psi_{\lambda}} A)_{\lambda \in \Lambda}$$

such that

- the F_{λ} are finite dimensional C*-algebras
- lacktriangleright the $arphi_\lambda$ and the ψ_λ are completely positive maps with a uniform norm bound

$$(A \xrightarrow{\varphi_{\lambda}} F_{\lambda} \xrightarrow{\psi_{\lambda}} A)_{\lambda \in \Lambda}$$

such that

- the F_{λ} are finite dimensional C*-algebras
- lacktriangleright the $arphi_{\lambda}$ and the $\overline{\psi_{\lambda}}$ are completely positive maps with a uniform norm bound
- $lackbox{} arphi_\lambda\psi_\lambda\longrightarrow \operatorname{id}_{\mathcal A}$ in point-norm topology.

$$(A \xrightarrow{\varphi_{\lambda}} F_{\lambda} \xrightarrow{\psi_{\lambda}} A)_{\lambda \in \Lambda}$$

such that

- the F_{λ} are finite dimensional C*-algebras
- lacktriangleright the φ_{λ} and the ψ_{λ} are completely positive maps with a uniform norm bound
- $lackbox{} arphi_\lambda\psi_\lambda\longrightarrow \operatorname{id}_{\mathcal A}$ in point-norm topology.

Nuclear C*-algebras are precisely those admitting such systems.

$$(A \xrightarrow{\varphi_{\lambda}} F_{\lambda} \xrightarrow{\psi_{\lambda}} A)_{\lambda \in \Lambda}$$

such that

- ▶ the F_{λ} are finite dimensional C*-algebras
- lacktriangleright the φ_{λ} and the ψ_{λ} are completely positive maps with a uniform norm bound
- $lackbox{} arphi_\lambda\psi_\lambda\longrightarrow \operatorname{id}_{\mathcal A}$ in point-norm topology.

Nuclear C*-algebras are precisely those admitting such systems. They form a remarkably robust class of C*-algebras.

$$(A \xrightarrow{\varphi_{\lambda}} F_{\lambda} \xrightarrow{\psi_{\lambda}} A)_{\lambda \in \Lambda}$$

such that

- ▶ the F_{λ} are finite dimensional C*-algebras
- lacktriangleright the φ_{λ} and the ψ_{λ} are completely positive maps with a uniform norm bound
- $lackbox{} arphi_\lambda\psi_\lambda\longrightarrow \operatorname{id}_{\mathcal A}$ in point-norm topology.

Nuclear C*-algebras are precisely those admitting such systems. They form a remarkably robust class of C*-algebras. Let us recall some sample results.

THEOREM [Bunce, Christensen, Pisier]

Nuclear C^* -algebras are precisely those with *similarity degree* 2.

THEOREM [Bunce, Christensen, Pisier]

Nuclear C*-algebras are precisely those with *similarity degree* 2.

In particular, they satisfy Kadison's similarity property: Every (bounded) representation is similar to a *-representation.

THEOREM [Christensen-Sinclair-Smith-White-W]

Separable nuclear C*-algebras satisfy the Kadison–Kastler conjecture: They are stable under small perturbations.

<u>THEOREM</u> [Christensen–Sinclair–Smith–White–W]

Separable nuclear C*-algebras satisfy the Kadison–Kastler conjecture: They are stable under small perturbations.

More precisely, if two nuclear C*-algebras act on the same Hilbert space, if one of them is separable and nuclear, and if their unit balls are within $\frac{1}{420000}$ of each other, then they are isomorphic.

For $A \neq M_r(\mathbb{C})$ a separable, simple, unital, nuclear C*-algebra, the following are equivalent:

For $A \neq M_r(\mathbb{C})$ a separable, simple, unital, nuclear C*-algebra, the following are equivalent:

(i) A has finite nuclear dimension.

For $A \neq M_r(\mathbb{C})$ a separable, simple, unital, nuclear C*-algebra, the following are equivalent:

- (i) A has finite nuclear dimension.
- (ii) $A \cong A \otimes \mathcal{Z}$.

For $A \neq M_r(\mathbb{C})$ a separable, simple, unital, nuclear C*-algebra, the following are equivalent:

- (i) A has finite nuclear dimension.
- (ii) $A \cong A \otimes \mathcal{Z}$.

I will define nuclear dimension in a moment.

<u>THEOREM</u> [W, Matui–Sato, Castillejos–Evington–Tikuisis–White–W]

For $A \neq M_r(\mathbb{C})$ a separable, simple, unital, nuclear C*-algebra, the following are equivalent:

- (i) A has finite nuclear dimension.
- (ii) $A \cong A \otimes \mathcal{Z}$.

I will define nuclear dimension in a moment. Think of the Jiang–Su algebra $\mathcal Z$ as the smallest possible C*-version of the hyperfinite II₁ factor.

THEOREM [many hands]

THEOREM [many hands]

$$\Big\{A\otimes\mathcal{Z}\,|\,A$$
 separable, simple, unital, nuclear, with UCT $\Big\}$

is classified by the Elliott invariant

$$(K_0(A), K_0(A)_+, [1_A]_0, K_1(A), T(A), r_A : T(A) \rightarrow S(K_0(A))).$$

DEFINITION [W-Zacharias, Kirchberg-W]

A C*-algebra A has nuclear dimension at most d, $\dim_{nuc} A \leq d$, if there is a system

$$(A \xrightarrow{\psi_{\lambda}} F_{\lambda} \xrightarrow{\varphi_{\lambda}} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

▶ the ψ_{λ} are contractions

A C*-algebra A has nuclear dimension at most d, $\dim_{nuc} A \leq d$, if there is a system

$$(A \xrightarrow{\psi_{\lambda}} F_{\lambda} \xrightarrow{\varphi_{\lambda}} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

- the ψ_{λ} are contractions
- for each λ , $F_{\lambda} = F_{\lambda}^{(0)} \oplus \ldots \oplus F_{\lambda}^{(d)}$ and for each $k \in \{0, \ldots, d\}$, $\varphi_{\lambda}|_{F_{\lambda}^{(k)}}$ is contractive and has *order zero*, i.e., preserves orthogonality.

A C*-algebra A has nuclear dimension at most d, $\dim_{nuc} A \leq d$, if there is a system

$$(A \xrightarrow{\psi_{\lambda}} F_{\lambda} \xrightarrow{\varphi_{\lambda}} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

- the ψ_{λ} are contractions
- for each λ , $F_{\lambda} = F_{\lambda}^{(0)} \oplus \ldots \oplus F_{\lambda}^{(d)}$ and for each $k \in \{0, \ldots, d\}$, $\varphi_{\lambda}|_{F_{\lambda}^{(k)}}$ is contractive and has *order zero*, i.e., preserves orthogonality.

In this situation one can arrange that

▶ the ψ_{λ} are approximately order zero: $[ab = 0] \Longrightarrow [\psi_{\lambda}(a)\psi_{\lambda}(b) \longrightarrow 0]$.

A C*-algebra A has nuclear dimension at most d, $\dim_{nuc} A \leq d$, if there is a system

$$(A \xrightarrow{\psi_{\lambda}} F_{\lambda} \xrightarrow{\varphi_{\lambda}} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

- the ψ_{λ} are contractions
- ▶ for each λ , $F_{\lambda} = F_{\lambda}^{(0)} \oplus \ldots \oplus F_{\lambda}^{(d)}$ and for each $k \in \{0, \ldots, d\}$, $\varphi_{\lambda}|_{F_{\lambda}^{(k)}}$ is contractive and has *order zero*, i.e., preserves orthogonality.

In this situation one can arrange that

▶ the ψ_{λ} are approximately order zero: $[ab = 0] \Longrightarrow [\psi_{\lambda}(a)\psi_{\lambda}(b) \longrightarrow 0]$.

If the maps φ_{λ} may be chosen to be contractive, *A* has *decomposition rank* $\leq d$.

A C*-algebra A has nuclear dimension at most d, $\dim_{nuc} A \leq d$, if there is a system

$$(A \xrightarrow{\psi_{\lambda}} F_{\lambda} \xrightarrow{\varphi_{\lambda}} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

- the ψ_{λ} are contractions
- for each λ , $F_{\lambda} = F_{\lambda}^{(0)} \oplus \ldots \oplus F_{\lambda}^{(d)}$ and for each $k \in \{0, \ldots, d\}$, $\varphi_{\lambda}|_{F_{\lambda}^{(k)}}$ is contractive and has *order zero*, i.e., preserves orthogonality.

In this situation one can arrange that

▶ the ψ_{λ} are approximately order zero: $[ab = 0] \Longrightarrow [\psi_{\lambda}(a)\psi_{\lambda}(b) \longrightarrow 0]$.

If the maps φ_{λ} may be chosen to be contractive, A has decomposition $rank \leq d$. In this case can even arrange that

▶ the ψ_{λ} are approximately multiplicative: $\psi_{\lambda}(a) \, \psi_{\lambda}(b) - \psi_{\lambda}(ab) \longrightarrow 0$.

These definitions capture both algebraic and topological information.

For example, if A is commutative, this forces the F_{λ} to be commutative as well.

These definitions capture both algebraic and topological information.

For example, if A is commutative, this forces the F_{λ} to be commutative as well. Also, $\dim_{\text{nuc}} C(X) = \dim X$.

THEOREM [Hirshberg-Kirchberg-White, Carrión-Hirshberg-White]

<u>THEOREM</u> [Hirshberg–Kirchberg–White, Carrión–Hirshberg–White]

Any nuclear C*-algebra A has a system

$$(A \xrightarrow{\varphi_{\lambda}} F_{\lambda} \xrightarrow{\psi_{\lambda}} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

THEOREM [Hirshberg-Kirchberg-White, Carrión-Hirshberg-White]

Any nuclear C*-algebra A has a system

$$(A \xrightarrow{\varphi_{\lambda}} F_{\lambda} \xrightarrow{\psi_{\lambda}} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

lacktriangledown the $arphi_{\lambda}$ are convex combinations of contractive order zero maps

<u>THEOREM</u> [Hirshberg–Kirchberg–White, Carrión–Hirshberg–White]

Any nuclear C*-algebra A has a system

$$(A \xrightarrow{\varphi_{\lambda}} F_{\lambda} \xrightarrow{\psi_{\lambda}} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

- the φ_{λ} are *convex combinations* of contractive order zero maps
- the ψ_{λ} are contractive and approximately order zero.

<u>THEOREM</u> [Hirshberg–Kirchberg–White, Carrión–Hirshberg–White]

Any nuclear C*-algebra A has a system

$$(A \xrightarrow{\varphi_{\lambda}} F_{\lambda} \xrightarrow{\psi_{\lambda}} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

- the φ_{λ} are *convex combinations* of contractive order zero maps
- the ψ_{λ} are contractive and approximately order zero.

If A and all its tracial states are quasidiagonal, one can in addition arrange that

• the ψ_{λ} are approximately multiplicative.

Even without finite nuclear dimension, one can find approximations with similar properties.

THEOREM [Hirshberg-Kirchberg-White, Carrión-Hirshberg-White]

Any nuclear C*-algebra A has a system

$$(A \xrightarrow{\varphi_{\lambda}} F_{\lambda} \xrightarrow{\psi_{\lambda}} A)_{\lambda \in \Lambda}$$

of completely positive approximations such that

- the φ_{λ} are convex combinations of contractive order zero maps
- the ψ_{λ} are contractive and approximately order zero.

If A and all its tracial states are quasidiagonal, one can in addition arrange that

• the ψ_{λ} are approximately multiplicative.

Note that, even for C([0,1]), such approximations are not entirely straightforward to write down.

$$(A \xrightarrow{\varphi_k} F_k \xrightarrow{\psi_k} A)_{k \in \mathbb{N}}$$

$$(A \xrightarrow{\varphi_k} F_k \xrightarrow{\psi_k} A)_{k \in \mathbb{N}}$$

With $\varrho_{k,k+1} := \varphi_{k+1} \psi_k$ such a system of approximations yields an inductive system

$$F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \dots$$

$$(A \xrightarrow{\varphi_k} F_k \xrightarrow{\psi_k} A)_{k \in \mathsf{IN}}$$

With $\varrho_{k,k+1}:= \varphi_{k+1}\psi_k$ such a system of approximations yields an inductive system

$$F_0 \stackrel{\varrho_{0,1}}{\longrightarrow} F_1 \stackrel{\varrho_{1,2}}{\longrightarrow} \dots$$

QUESTIONS

When does a system $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \dots)$ come from a C*-algebra?

$$(A \xrightarrow{\varphi_k} F_k \xrightarrow{\psi_k} A)_{k \in \mathsf{IN}}$$

With $\varrho_{k,k+1}:= \varphi_{k+1}\psi_k$ such a system of approximations yields an inductive system

$$F_0 \stackrel{\varrho_{0,1}}{\longrightarrow} F_1 \stackrel{\varrho_{1,2}}{\longrightarrow} \dots$$

QUESTIONS

When does a system $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \dots)$ come from a C^* -algebra? Under which conditions on the system $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \dots)$ can we recover A?

$$(A \xrightarrow{\varphi_k} F_k \xrightarrow{\psi_k} A)_{k \in \mathsf{IN}}$$

With $\varrho_{k,k+1}:= \varphi_{k+1}\psi_k$ such a system of approximations yields an inductive system

$$F_0 \stackrel{\varrho_{0,1}}{\longrightarrow} F_1 \stackrel{\varrho_{1,2}}{\longrightarrow} \dots$$

QUESTIONS

When does a system $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \dots)$ come from a C*-algebra? Under which conditions on the system $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \dots)$ can we recover A? How to read of information on A (K-theory, traces, ...) from $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \dots)$?

$$(A \xrightarrow{\varphi_k} F_k \xrightarrow{\psi_k} A)_{k \in \mathbb{N}}$$

With $\varrho_{k,k+1}:= \varphi_{k+1}\psi_k$ such a system of approximations yields an inductive system

$$F_0 \stackrel{\varrho_{0,1}}{\longrightarrow} F_1 \stackrel{\varrho_{1,2}}{\longrightarrow} \dots$$

QUESTIONS

When does a system $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \dots)$ come from a C*-algebra? Under which conditions on the system $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \dots)$ can we recover A? How to read of information on A (K-theory, traces, ...) from $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \dots)$? What structure does the inductive limit of $(F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \dots)$ have?

Consider an inductive system

$$F_0 \stackrel{\varrho_{0,1}}{\longrightarrow} F_1 \stackrel{\varrho_{1,2}}{\longrightarrow} \dots$$

with finite dimensional C*-algebras F_k and completely positive contractive $\varrho_{k,k+1}$.

Consider an inductive system

$$F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \dots$$

with finite dimensional C*-algebras F_k and completely positive contractive $\varrho_{k,k+1}$. The system is *asymptotically multiplicative*, if the following holds:

Consider an inductive system

$$F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \dots$$

with finite dimensional C*-algebras F_k and completely positive contractive $\varrho_{k,k+1}$. The system is asymptotically multiplicative, if the following holds: For every $K \in \mathbb{N}$, $x, y \in F_K$ and $\epsilon > 0$ there is $K \leq M \in \mathbb{N}$ such that for every $M \leq m < n$ we have

$$\|\varrho_{m,n}(\varrho_{K,m}(x)\varrho_{K,m}(y))-\varrho_{K,n}(x)\varrho_{K,n}(y)\|_{F_n}<\epsilon.$$

Consider an inductive system

$$F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \dots$$

with finite dimensional C*-algebras F_k and completely positive contractive $\varrho_{k,k+1}$. The system is asymptotically multiplicative, if the following holds: For every $K \in \mathbb{N}$, $x, y \in F_K$ and $\epsilon > 0$ there is $K \leq M \in \mathbb{N}$ such that for every $M \leq m < n$ we have

$$\|\varrho_{m,n}(\varrho_{K,m}(x)\varrho_{K,m}(y))-\varrho_{K,n}(x)\varrho_{K,n}(y)\|_{F_n}<\epsilon.$$

The system is asymptotically order zero, if the following holds:

DEFINITION [Blackadar-Kirchberg, Courtney-W]

Consider an inductive system

$$F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \dots$$

with finite dimensional C*-algebras F_k and completely positive contractive $\varrho_{k,k+1}$. The system is asymptotically multiplicative, if the following holds: For every $K \in \mathbb{N}$, $x, y \in F_K$ and $\epsilon > 0$ there is $K \leq M \in \mathbb{N}$ such that for every $M \leq m < n$ we have

$$\|\varrho_{m,n}(\varrho_{K,m}(x)\varrho_{K,m}(y))-\varrho_{K,n}(x)\varrho_{K,n}(y)\|_{F_n}<\epsilon.$$

The system is asymptotically order zero, if the following holds: For every $K \in \mathbb{N}$, $x,y \in F_K$ and $\epsilon > 0$ there are $K \leq M \in \mathbb{N}$ and $\delta > 0$ such that for every $M \leq m < n$ we have

$$\|\varrho_{K,m}(x)\varrho_{K,m}(y)\|_{F_m} < \delta \Longrightarrow \|\varrho_{K,n}(x)\varrho_{K,n}(y)\|_{F_n} < \epsilon.$$

Let A be a separable nuclear C^* -algebra.

Let A be a separable nuclear C*-algebra. Then, there exists a system of completely positive approximations such that the associated inductive system $F_0 \stackrel{\varrho_{0,1}}{\longrightarrow} F_1 \stackrel{\varrho_{1,2}}{\longrightarrow} \dots$ has the following properties:

Let A be a separable nuclear C*-algebra. Then, there exists a system of completely positive approximations such that the associated inductive system $F_0 \stackrel{\varrho_{0,1}}{\longrightarrow} F_1 \stackrel{\varrho_{1,2}}{\longrightarrow} \dots$ has the following properties:

▶ it is asymptotically order zero

Let A be a separable nuclear C*-algebra. Then, there exists a system of completely positive approximations such that the associated inductive system $F_0 \stackrel{\varrho_{0,1}}{\longrightarrow} F_1 \stackrel{\varrho_{1,2}}{\longrightarrow} \dots$ has the following properties:

- ▶ it is asymptotically order zero
- ▶ the induced map $\Psi: A \longrightarrow X := \overline{\lim_{\to} (F_k, \varrho_{k,k+1})} \subset \prod_{\mathbb{N}} F_k / \bigoplus_{\mathbb{N}} F_k$ is an orthogonality preserving complete order isomorphism.

Let A be a separable nuclear C*-algebra. Then, there exists a system of completely positive approximations such that the associated inductive system $F_0 \stackrel{\varrho_{0,1}}{\longrightarrow} F_1 \stackrel{\varrho_{1,2}}{\longrightarrow} \dots$ has the following properties:

- ▶ it is asymptotically order zero
- ▶ the induced map $\Psi: A \longrightarrow X := \overline{\lim_{\to} (F_k, \varrho_{k,k+1})} \subset \prod_{\mathbb{N}} F_k / \bigoplus_{\mathbb{N}} F_k$ is an orthogonality preserving complete order isomorphism.

If A and all its traces are quasidiagonal, one can arrange:

Let A be a separable nuclear C*-algebra. Then, there exists a system of completely positive approximations such that the associated inductive system $F_0 \stackrel{\varrho_{0,1}}{\longrightarrow} F_1 \stackrel{\varrho_{1,2}}{\longrightarrow} \dots$ has the following properties:

- ▶ it is asymptotically order zero
- ▶ the induced map $\Psi: A \longrightarrow X := \overline{\lim_{\to} (F_k, \varrho_{k,k+1})} \subset \prod_{\mathbb{N}} F_k / \bigoplus_{\mathbb{N}} F_k$ is an orthogonality preserving complete order isomorphism.

If A and all its traces are quasidiagonal, one can arrange:

► the system is asymptotically multiplicative

Let A be a separable nuclear C*-algebra. Then, there exists a system of completely positive approximations such that the associated inductive system $F_0 \stackrel{\varrho_{0,1}}{\longrightarrow} F_1 \stackrel{\varrho_{1,2}}{\longrightarrow} \dots$ has the following properties:

- ▶ it is asymptotically order zero
- ▶ the induced map $\Psi: A \longrightarrow X := \overline{\lim_{\to} (F_k, \varrho_{k,k+1})} \subset \prod_{\mathbb{N}} F_k / \bigoplus_{\mathbb{N}} F_k$ is an orthogonality preserving complete order isomorphism.

If A and all its traces are quasidiagonal, one can arrange:

- ► the system is asymptotically multiplicative
- ► Ψ is an injective *-homomorphism

Let A be a separable nuclear C*-algebra. Then, there exists a system of completely positive approximations such that the associated inductive system $F_0 \xrightarrow{\varrho_{0,1}} F_1 \xrightarrow{\varrho_{1,2}} \dots$ has the following properties:

- ▶ it is asymptotically order zero
- ▶ the induced map $\Psi: A \longrightarrow X := \overline{\lim_{\to} (F_k, \varrho_{k,k+1})} \subset \prod_{\mathbb{N}} F_k / \bigoplus_{\mathbb{N}} F_k$ is an orthogonality preserving complete order isomorphism.

If A and all its traces are quasidiagonal, one can arrange:

- ► the system is asymptotically multiplicative
- ► Ψ is an injective *-homomorphism
- ▶ the maps $\varrho_{k,k+1}$ induce affine maps $\mathsf{T}^{\leq 1}(F_k) \longleftarrow \mathsf{T}^{\leq 1}(F_{k+1})$ between the simplices of positive trace functionals such that $\mathsf{T}^{\leq 1}(A) \approx \lim_{\leftarrow} \mathsf{T}^{\leq 1}(F_k)$.

Upshot:

For a separable, unital, nuclear and sufficiently quasidiagonal C^* -algebra A, we now know how to read of its trace space T(A) from a suitable system of completely positive approximations.

Upshot:

For a separable, unital, nuclear and sufficiently quasidiagonal C^* -algebra A, we now know how to read of its trace space T(A) from a suitable system of completely positive approximations.

We also know how to recover its multiplicative structure via $\Psi: A \longrightarrow X$, so we can describe projections, unitaries, partial isometries in terms of X.

Upshot:

For a separable, unital, nuclear and sufficiently quasidiagonal C^* -algebra A, we now know how to read of its trace space T(A) from a suitable system of completely positive approximations.

We also know how to recover its multiplicative structure via $\Psi: A \longrightarrow X$, so we can describe projections, unitaries, partial isometries in terms of X.

Since our constructions are compatible with matrix amplification, we can describe K-theory in this context.

Without quasidiagonality, we can still describe traces —

Without quasidiagonality, we can still describe traces — but even K-theory works:

$$p \in A_+$$
 is a projection $\iff \Psi(p)^2 = \Psi(p)\Psi(1_A)$.

Without quasidiagonality, we can still describe traces — but even K-theory works:

$$p \in A_+$$
 is a projection $\iff \Psi(p)^2 = \Psi(p)\Psi(1_A)$.

Similar identities hold for unitaries and partial isometries, and so one can *always* describe K-theory for nuclear C*-algebras in terms of their approximating systems. [Joint work in progress with Kristin Courtney.]

Along these lines, we can analyse a nuclear C*-algebra in terms of asymptotically order zero inductive systems of finite dimensional C*-algebras.

Along these lines, we can analyse a nuclear C*-algebra in terms of asymptotically order zero inductive systems of finite dimensional C*-algebras.

But given such an inductive system, when is there a C*-algebra behind it?

Along these lines, we can analyse a nuclear C*-algebra in terms of asymptotically order zero inductive systems of finite dimensional C*-algebras.

But given such an inductive system, when is there a C*-algebra behind it?

In other words, given

$$F_0 \stackrel{\varrho_{0,1}}{\longrightarrow} F_1 \stackrel{\varrho_{1,2}}{\longrightarrow} \ldots \longrightarrow X,$$

when can X be equipped with a C*-algebra structure?

Let *B* be a C*-algebra and let $X \subset B$ be a self-adjoint subspace.

Let B be a C*-algebra and let $X \subset B$ be a self-adjoint subspace. Suppose there is

$$0 \le e \in X \cap X'$$

such that

Let B be a C*-algebra and let $X \subset B$ be a self-adjoint subspace. Suppose there is

$$0 \le e \in X \cap X'$$

such that

► e is an order unit for X_{sa}

Let B be a C*-algebra and let $X \subset B$ be a self-adjoint subspace. Suppose there is

$$0 \le e \in X \cap X'$$

such that

- ► e is an order unit for X_{sa}
- $X^2 = eX.$

Let B be a C*-algebra and let $X \subset B$ be a self-adjoint subspace. Suppose there is

$$0 \le e \in X \cap X'$$

such that

- ▶ e is an order unit for X_{sa}
- $X^2 = eX.$

Then, X is a *-algebra with the unique product $\bullet: X \times X \longrightarrow X$ satisfying

$$(x \bullet y) e = x y \in B.$$

Let B be a C*-algebra and let $X \subset B$ be a self-adjoint subspace. Suppose there is

$$0 \le e \in X \cap X'$$

such that

- ightharpoonup e is an order unit for X_{sa}
- $\rightarrow X^2 = eX.$

Then, X is a *-algebra with the unique product $\bullet: X \times X \longrightarrow X$ satisfying

$$(x \bullet y) e = x y \in B.$$

Moreover, X carries a norm which 'looks like' $||x||_{\bullet} = ||x|e^{-1}||_{B}$.

Let B be a C*-algebra and let $X \subset B$ be a self-adjoint subspace. Suppose there is

$$0 \le e \in X \cap X'$$

such that

- ► e is an order unit for X_{sa}
- $\rightarrow X^2 = eX$.

Then, X is a *-algebra with the unique product $\bullet: X \times X \longrightarrow X$ satisfying

$$(x \bullet y) e = x y \in B.$$

Moreover, X carries a norm which 'looks like' $||x||_{\bullet} = ||x|e^{-1}||_{B}$. With this product and norm, X becomes a unital pre-C*-algebra.