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A system of completely positive approximations for a C?-algebra A is a net(
A

ϕλ−→ Fλ
ψλ−→ A

)
λ∈Λ

such that
I the Fλ are finite dimensional C?-algebras
I the ϕλ and the ψλ are completely positive maps with a uniform norm bound
I ϕλψλ −→ idA in point-norm topology.

Nuclear C?-algebras are precisely those admitting such systems.
They form a remarkably robust class of C?-algebras.
Let us recall some sample results.
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THEOREM [Bunce, Christensen, Pisier]

Nuclear C?-algebras are precisely those with similarity degree 2.

In particular, they satisfy Kadison’s similarity property:
Every (bounded) representation is similar to a ?-representation.
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THEOREM [Christensen–Sinclair–Smith–White–W]

Separable nuclear C?-algebras satisfy the Kadison–Kastler conjecture:
They are stable under small perturbations.

More precisely, if two nuclear C?-algebras act on the same Hilbert space, if one
of them is separable and nuclear, and if their unit balls are within 1

420000 of each
other, then they are isomorphic.
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THEOREM [W, Matui–Sato, Castillejos–Evington–Tikuisis–White–W]

For A 6= Mr (C) a separable, simple, unital, nuclear C?-algebra, the following are
equivalent:

(i) A has finite nuclear dimension.
(ii) A ∼= A⊗Z.

I will define nuclear dimension in a moment.
Think of the Jiang–Su algebra Z as the smallest possible C?-version of the
hyperfinite II1 factor.
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THEOREM [many hands]

{
A⊗Z |A separable, simple, unital, nuclear, with UCT

}
is classified by the Elliott invariant(

K0(A), K0(A)+, [1A]0, K1(A), T(A), rA : T(A)→ S(K0(A))
)
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For all of these results, understanding completely positive approximations is key.
Let us look at these in more detail now.



DEFINITION [W–Zacharias, Kirchberg–W]

A C?-algebra A has nuclear dimension at most d , dimnuc A ≤ d , if there is a system(
A

ψλ−→ Fλ
ϕλ−→ A

)
λ∈Λ

of completely positive approximations such that
I the ψλ are contractions

I for each λ, Fλ = F (0)
λ ⊕ . . .⊕ F (d)

λ and for each k ∈ {0, . . . ,d},
ϕλ|F (k)

λ

is contractive and has order zero, i.e., preserves orthogonality.

In this situation one can arrange that
I the ψλ are approximately order zero: [ a b = 0 ] =⇒ [ψλ(a)ψλ(b) −→ 0 ].

If the maps ϕλ may be chosen to be contractive, A has decomposition rank ≤ d .
In this case can even arrange that

I the ψλ are approximately multiplicative: ψλ(a)ψλ(b)−ψλ(a b) −→ 0.
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These definitions capture both algebraic and topological information.

For example, if A is commutative, this forces the Fλ to be commutative as well.
Also, dimnuc C(X ) = dim X .
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Even without finite nuclear dimension, one can find approximations with similar
properties.

THEOREM [Hirshberg–Kirchberg–White, Carrión–Hirshberg–White]

Any nuclear C?-algebra A has a system(
A

ϕλ−→ Fλ
ψλ−→ A

)
λ∈Λ

of completely positive approximations such that
I the ϕλ are convex combinations of contractive order zero maps
I the ψλ are contractive and approximately order zero.

If A and all its tracial states are quasidiagonal, one can in addition arrange that
I the ψλ are approximately multiplicative.

Note that, even for C([0,1]), such approximations are not entirely straightforward
to write down.
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From now on we will assume A to be separable, and we will restrict to systems of
approximations with Λ = N: (

A
ϕk−→ Fk

ψk−→ A
)

k∈N

With %k ,k+1 := ϕk+1ψk such a system of approximations yields an inductive
system

F0
%0,1−→ F1

%1,2−→ . . . .

QUESTIONS

When does a system ( F0
%0,1−→ F1

%1,2−→ . . . ) come from a C?-algebra?
Under which conditions on the system ( F0

%0,1−→ F1
%1,2−→ . . . ) can we recover A?

How to read of information on A (K-theory, traces, . . . ) from ( F0
%0,1−→ F1

%1,2−→ . . . ) ?
What structure does the inductive limit of ( F0

%0,1−→ F1
%1,2−→ . . . ) have?



From now on we will assume A to be separable, and we will restrict to systems of
approximations with Λ = N: (

A
ϕk−→ Fk

ψk−→ A
)

k∈N

With %k ,k+1 := ϕk+1ψk such a system of approximations yields an inductive
system

F0
%0,1−→ F1

%1,2−→ . . . .

QUESTIONS

When does a system ( F0
%0,1−→ F1

%1,2−→ . . . ) come from a C?-algebra?
Under which conditions on the system ( F0

%0,1−→ F1
%1,2−→ . . . ) can we recover A?

How to read of information on A (K-theory, traces, . . . ) from ( F0
%0,1−→ F1

%1,2−→ . . . ) ?
What structure does the inductive limit of ( F0

%0,1−→ F1
%1,2−→ . . . ) have?



From now on we will assume A to be separable, and we will restrict to systems of
approximations with Λ = N: (

A
ϕk−→ Fk

ψk−→ A
)

k∈N

With %k ,k+1 := ϕk+1ψk such a system of approximations yields an inductive
system

F0
%0,1−→ F1

%1,2−→ . . . .

QUESTIONS

When does a system ( F0
%0,1−→ F1

%1,2−→ . . . ) come from a C?-algebra?

Under which conditions on the system ( F0
%0,1−→ F1

%1,2−→ . . . ) can we recover A?
How to read of information on A (K-theory, traces, . . . ) from ( F0

%0,1−→ F1
%1,2−→ . . . ) ?

What structure does the inductive limit of ( F0
%0,1−→ F1

%1,2−→ . . . ) have?



From now on we will assume A to be separable, and we will restrict to systems of
approximations with Λ = N: (

A
ϕk−→ Fk

ψk−→ A
)

k∈N

With %k ,k+1 := ϕk+1ψk such a system of approximations yields an inductive
system

F0
%0,1−→ F1

%1,2−→ . . . .

QUESTIONS

When does a system ( F0
%0,1−→ F1

%1,2−→ . . . ) come from a C?-algebra?
Under which conditions on the system ( F0

%0,1−→ F1
%1,2−→ . . . ) can we recover A?

How to read of information on A (K-theory, traces, . . . ) from ( F0
%0,1−→ F1

%1,2−→ . . . ) ?
What structure does the inductive limit of ( F0

%0,1−→ F1
%1,2−→ . . . ) have?



From now on we will assume A to be separable, and we will restrict to systems of
approximations with Λ = N: (

A
ϕk−→ Fk

ψk−→ A
)

k∈N

With %k ,k+1 := ϕk+1ψk such a system of approximations yields an inductive
system

F0
%0,1−→ F1

%1,2−→ . . . .

QUESTIONS

When does a system ( F0
%0,1−→ F1

%1,2−→ . . . ) come from a C?-algebra?
Under which conditions on the system ( F0

%0,1−→ F1
%1,2−→ . . . ) can we recover A?

How to read of information on A (K-theory, traces, . . . ) from ( F0
%0,1−→ F1

%1,2−→ . . . ) ?

What structure does the inductive limit of ( F0
%0,1−→ F1

%1,2−→ . . . ) have?



From now on we will assume A to be separable, and we will restrict to systems of
approximations with Λ = N: (

A
ϕk−→ Fk

ψk−→ A
)

k∈N

With %k ,k+1 := ϕk+1ψk such a system of approximations yields an inductive
system

F0
%0,1−→ F1

%1,2−→ . . . .

QUESTIONS

When does a system ( F0
%0,1−→ F1

%1,2−→ . . . ) come from a C?-algebra?
Under which conditions on the system ( F0

%0,1−→ F1
%1,2−→ . . . ) can we recover A?

How to read of information on A (K-theory, traces, . . . ) from ( F0
%0,1−→ F1

%1,2−→ . . . ) ?
What structure does the inductive limit of ( F0

%0,1−→ F1
%1,2−→ . . . ) have?



DEFINITION [Blackadar–Kirchberg, Courtney–W]

Consider an inductive system

F0
%0,1−→ F1

%1,2−→ . . .

with finite dimensional C?-algebras Fk and completely positive contractive %k ,k+1.
The system is asymptotically multiplicative, if the following holds:
For every K ∈ N, x , y ∈ FK and ε > 0 there is K ≤ M ∈ N
such that for every M ≤ m < n we have

‖%m,n(%K ,m(x)%K ,m(y))− %K ,n(x)%K ,n(y)‖Fn < ε.

The system is asymptotically order zero, if the following holds:
For every K ∈ N, x , y ∈ FK and ε > 0 there are K ≤ M ∈ N and δ > 0
such that for every M ≤ m < n we have

‖%K ,m(x)%K ,m(y)‖Fm < δ =⇒ ‖%K ,n(x)%K ,n(y)‖Fn < ε.
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Let A be a separable nuclear C?-algebra. Then, there exists a system of
completely positive approximations such that the associated inductive system
F0

%0,1−→ F1
%1,2−→ . . . has the following properties:

I it is asymptotically order zero
I the induced map Ψ : A −→ X := lim→(Fk ,%k ,k+1) ⊂

∏
N Fk/

⊕
N Fk

is an orthogonality preserving complete order isomorphism.

If A and all its traces are quasidiagonal, one can arrange:
I the system is asymptotically multiplicative
I Ψ is an injective ?-homomorphism
I the maps %k ,k+1 induce affine maps T≤1(Fk )←− T≤1(Fk+1) between the

simplices of positive trace functionals sucht that T≤1(A) ≈ lim← T≤1(Fk ).
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Upshot:

For a separable, unital, nuclear and sufficiently quasidiagonal C?-algebra A, we
now know how to read of its trace space T(A) from a suitable system of completely
positive approximations.

We also know how to recover its multiplicative structure via Ψ : A −→ X , so we can
describe projections, unitaries, partial isometries in terms of X .

Since our constructions are compatible with matrix amplification, we can describe
K-theory in this context.
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Without quasidiagonality, we can still describe traces —

but even K-theory works:

p ∈ A+ is a projection ⇐⇒ Ψ(p)2 = Ψ(p)Ψ(1A).

Similar identities hold for unitaries and partial isometries, and so one can always
describe K-theory for nuclear C?-algebras in terms of their approximating systems.
[Joint work in progress with Kristin Courtney.]
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Along these lines, we can analyse a nuclear C?-algebra in terms of asymptotically
order zero inductive systems of finite dimensional C?-algebras.

But given such an inductive system, when is there a C?-algebra behind it?

In other words, given
F0

%0,1−→ F1
%1,2−→ . . . −→ X ,

when can X be equipped with a C?-algebra structure?
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THEOREM [Courtney–W]

Let B be a C?-algebra and let X ⊂ B be a self-adjoint subspace.
Suppose there is

0 ≤ e ∈ X ∩ X ′

such that

I e is an order unit for Xsa

I X 2 = eX .

Then, X is a ?-algebra with the unique product • : X × X −→ X satisfying

(x • y) e = x y ∈ B.

Moreover, X carries a norm which ‘looks like’ ‖x‖• = ‖x e−1‖B.
With this product and norm, X becomes a unital pre-C?-algebra.
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