

Exotic group C^* -algebras of simple Lie groups with real rank one

Tim de Laat

(Joint work with Timo Siebenand)

Richard Kadison and his mathematical legacy – A memorial conference

November 30, 2019

living.knowledge

Universal and reduced group C*-algebra

- G locally compact group
 - \triangleright $C_r^*(G)$ reduced group C^* -algebra
 - C*(G) universal group C*-algebra

Universal and reduced group C*-algebra

G – locally compact group

- \triangleright $C_r^*(G)$ reduced group C^* -algebra
- C*(G) universal group C*-algebra

Theorem

 $C^*(G) = C^*_r(G)$ if and only if G is amenable.

Exotic group *C**-algebras

Definition

An exotic group C^* -algebra of G is a C^* -completion A of $C_c(G)$ such that the identity map on $C_c(G)$ extends to proper quotient maps

 $C^*(G) \twoheadrightarrow A \twoheadrightarrow C^*_r(G).$

Exotic group *C****-algebras**

Definition

An exotic group C^* -algebra of G is a C^* -completion A of $C_c(G)$ such that the identity map on $C_c(G)$ extends to proper quotient maps

$$C^*(G) \twoheadrightarrow A \twoheadrightarrow C^*_r(G).$$

Question: Does every non-amenable *G* have exotic group *C**-algebras?

Exotic group *C**-algebras

Definition

An exotic group C^* -algebra of G is a C^* -completion A of $C_c(G)$ such that the identity map on $C_c(G)$ extends to proper quotient maps

$$C^*(G) \twoheadrightarrow A \twoheadrightarrow C^*_r(G).$$

Question: Does every non-amenable *G* have exotic group *C**-algebras?

This question is still open!

Exotic group C*-algebras are C*-algebras associated with groups which reflect structural properties of the underlying group.

- Exotic group C*-algebras are C*-algebras associated with groups which reflect structural properties of the underlying group.
- Baum–Connes conjecture with coefficients: K-theory of reduced crossed product in terms of the topological K-theory.

- Exotic group C*-algebras are C*-algebras associated with groups which reflect structural properties of the underlying group.
- Baum–Connes conjecture with coefficients: K-theory of reduced crossed product in terms of the topological K-theory. Counterexamples due to Higson–Lafforgue–Skandalis (2002).

- Exotic group C*-algebras are C*-algebras associated with groups which reflect structural properties of the underlying group.
- Baum–Connes conjecture with coefficients: K-theory of reduced crossed product in terms of the topological K-theory. Counterexamples due to Higson–Lafforgue–Skandalis (2002).

Baum–Guentner–Willet (2013): Reformulation of the conjecture. The reformulated conjecture expresses the *K*-theory of a certain nice special crossed product in terms of the topological *K*-theory.

- Exotic group C*-algebras are C*-algebras associated with groups which reflect structural properties of the underlying group.
- Baum–Connes conjecture with coefficients: K-theory of reduced crossed product in terms of the topological K-theory. Counterexamples due to Higson–Lafforgue–Skandalis (2002).

Baum–Guentner–Willet (2013): Reformulation of the conjecture. The reformulated conjecture expresses the *K*-theory of a certain nice special crossed product in terms of the topological *K*-theory.

Can be constructed from exotic group C*-algebras.

What is known? [Discrete groups]

First systematic approach: Ideal completions [Brown-Guentner (2013)].

What is known? [Discrete groups]

First systematic approach: Ideal completions [Brown–Guentner (2013)].

Γ countable group, *D* alg. two-sided ideal of $\ell^{\infty}(\Gamma)$. The ideal completion $C_D^*(\Gamma)$ is the completion of the group ring with respect to the norm defined through all un. reps with many matrix coefficients in *D*. (Matrix coefficient: $\pi_{\xi,\zeta} : g \mapsto \langle \pi(g)\xi, \zeta \rangle$.)

What is known? [Discrete groups]

First systematic approach: Ideal completions [Brown–Guentner (2013)].

Γ countable group, *D* alg. two-sided ideal of $\ell^{\infty}(\Gamma)$. The ideal completion $C_D^*(\Gamma)$ is the completion of the group ring with respect to the norm defined through all un. reps with many matrix coefficients in *D*. (Matrix coefficient: $\pi_{\xi,\zeta} : g \mapsto \langle \pi(g)\xi, \zeta \rangle$.)

► $C^*_{\ell^p}(\mathbb{F}_d) \twoheadrightarrow C^*_{\ell^q}(\mathbb{F}_d)$ is not injective if $2 \le q [Okayasu (2014)].$ $Same for discrete groups <math>\Gamma$ with $\mathbb{F}_d < \Gamma$ [Wiersma (2016)].

What is known? [Discrete groups]

First systematic approach: Ideal completions [Brown–Guentner (2013)].

Γ countable group, *D* alg. two-sided ideal of $\ell^{\infty}(\Gamma)$. The ideal completion $C_D^*(\Gamma)$ is the completion of the group ring with respect to the norm defined through all un. reps with many matrix coefficients in *D*. (Matrix coefficient: $\pi_{\xi,\zeta} : g \mapsto \langle \pi(g)\xi, \zeta \rangle$.)

- ► $C^*_{\ell^p}(\mathbb{F}_d) \twoheadrightarrow C^*_{\ell^q}(\mathbb{F}_d)$ is not injective if $2 \le q [Okayasu (2014)].$ $Same for discrete groups <math>\Gamma$ with $\mathbb{F}_d < \Gamma$ [Wiersma (2016)].
- > Other constructions and examples, many results due to Wiersma.

► $C^*_{\rho\rho}(SL(2,\mathbb{R})) \twoheadrightarrow C^*_{\rho q}(SL(2,\mathbb{R}))$ is not injective if $2 \le q$ [Wiersma (2015)]. Analysis of the representations.

- ► $C^*_{\ell^p}(SL(2, \mathbb{R})) \twoheadrightarrow C^*_{\ell^q}(SL(2, \mathbb{R}))$ is not injective if $2 \le q$ [Wiersma (2015)]. Analysis of the representations.
- Same for SO₀(n, 1) and SU(n, 1) [Samei–Wiersma (2018)]. Relies on the Kunze – Stein property and a strengthened version of the Haagerup property.

- ► $C^*_{\ell^p}(SL(2, \mathbb{R})) \twoheadrightarrow C^*_{\ell^q}(SL(2, \mathbb{R}))$ is not injective if $2 \le q$ [Wiersma (2015)]. Analysis of the representations.
- Same for SO₀(n, 1) and SU(n, 1) [Samei–Wiersma (2018)]. Relies on the Kunze – Stein property and a strengthened version of the Haagerup property.

They are not so exotic.

- ► $C^*_{\ell^p}(SL(2, \mathbb{R})) \twoheadrightarrow C^*_{\ell^q}(SL(2, \mathbb{R}))$ is not injective if $2 \le q$ [Wiersma (2015)]. Analysis of the representations.
- Same for SO₀(n, 1) and SU(n, 1) [Samei–Wiersma (2018)].
 Relies on the Kunze Stein property and a strengthened version of the Haagerup property.

They are not so exotic.

Question: Can we understand these results in terms of representations? What about Lie groups with property (T)?

L^p-integrability of matrix coefficients

Construct exotic group algebras of Lie groups through *L*^{*p*}-integrability properties of matrix coefficients of unitary representations.

L^p-integrability of matrix coefficients

Construct exotic group algebras of Lie groups through *L*^{*p*}-integrability properties of matrix coefficients of unitary representations.

G locally compact group, $p \in [1, \infty]$

Definition

A un. rep. $\pi: G \to \mathcal{B}(\mathcal{H})$ is an L^p -representation if there is a dense subspace $\mathcal{H}_0 \subset \mathcal{H}$ such that $\pi_{\xi,\zeta} \in L^p(G)$ for all $\xi, \zeta \in \mathcal{H}_0$.

L^p-integrability of matrix coefficients

Construct exotic group algebras of Lie groups through *L*^{*p*}-integrability properties of matrix coefficients of unitary representations.

G locally compact group, $p \in [1, \infty]$

Definition

A un. rep. $\pi: G \to \mathcal{B}(\mathcal{H})$ is an L^p -representation if there is a dense subspace $\mathcal{H}_0 \subset \mathcal{H}$ such that $\pi_{\xi,\zeta} \in L^p(G)$ for all $\xi, \zeta \in \mathcal{H}_0$.

 π is an L^{p+} -representation if π is $L^{p+\varepsilon}$ for all $\varepsilon > 0$.

($f \in C_b(G) \cap L^p(G)$ implies: f is contained in $L^q(G)$ for all $q \ge p$.)

Why *L^{p+}*-representations?

 L^{p+} -representations \sim weak containment.

Theorem [Cowling-Haagerup-Howe (1988)]

Let (\mathcal{H}, π, ξ) be a cyclic unitary representation of a locally compact group G such that $\pi_{\xi,\xi} \in L^{2+\varepsilon}(G)$ for all $\varepsilon > 0$. Then π is weakly contained in the left-regular representation.

The algebras $C^*_{L^{p+}(G)}$

G locally compact group, $p \in [2, \infty]$

 $C^*_{L^p}(G)$ and $C^*_{L^{p_+}}(G)$ are the completions of $C_c(G)$ with respect to the $C^*\text{-norms}$

The algebras $C^*_{L^{p+}(G)}$

G locally compact group, $p \in [2, \infty]$

 $C^*_{L^p}(G)$ and $C^*_{L^{p_+}}(G)$ are the completions of $C_c(G)$ with respect to the $C^*\text{-norms}$

 $\| \cdot \|_{L^p} \colon C_c(G) \to [0,\infty), f \mapsto \sup\{\|\pi(f)\| \mid \pi \text{ is an } L^p \text{-rep.}\} \text{ and } \\ \| \cdot \|_{L^{p+1}} \colon C_c(G) \to [0,\infty), f \mapsto \sup\{\|\pi(f)\| \mid \pi \text{ is an } L^{p+} \text{-rep.}\},$

The Kunze–Stein property

G is called Kunze–Stein if $m: C_c(G) \times C_c(G) \to C_c(G)$, $(f,g) \mapsto f * g$ extends to a bounded bil. map $L^q(G) \times L^2(G) \to L^2(G)$ for all $q \in [1, 2)$.

The Kunze–Stein property

G is called Kunze–Stein if $m: C_c(G) \times C_c(G) \to C_c(G)$, $(f,g) \mapsto f * g$ extends to a bounded bil. map $L^q(G) \times L^2(G) \to L^2(G)$ for all $q \in [1, 2)$.

Examples:

▶ SL(2, ℝ) [Kunze–Stein (1960)]

The Kunze–Stein property

G is called Kunze–Stein if $m: C_c(G) \times C_c(G) \to C_c(G)$, $(f,g) \mapsto f * g$ extends to a bounded bil. map $L^q(G) \times L^2(G) \to L^2(G)$ for all $q \in [1, 2)$.

Examples:

- ▶ SL(2, ℝ) [Kunze–Stein (1960)]
- Connected semisimple Lie groups with finite center [Cowling (1978)] and non-Archimedean analogues [Veca (2002)]

The Kunze–Stein property

G is called Kunze–Stein if $m: C_c(G) \times C_c(G) \to C_c(G)$, $(f,g) \mapsto f * g$ extends to a bounded bil. map $L^q(G) \times L^2(G) \to L^2(G)$ for all $q \in [1, 2)$.

Examples:

- ▶ SL(2, ℝ) [Kunze–Stein (1960)]
- Connected semisimple Lie groups with finite center [Cowling (1978)] and non-Archimedean analogues [Veca (2002)]
- Groups of automorphisms of trees [Nebbia (1988)]

The Kunze–Stein property

G is called Kunze–Stein if $m: C_c(G) \times C_c(G) \to C_c(G)$, $(f,g) \mapsto f * g$ extends to a bounded bil. map $L^q(G) \times L^2(G) \to L^2(G)$ for all $q \in [1, 2)$.

Examples:

- ▶ SL(2, ℝ) [Kunze–Stein (1960)]
- Connected semisimple Lie groups with finite center [Cowling (1978)] and non-Archimedean analogues [Veca (2002)]
- Groups of automorphisms of trees [Nebbia (1988)]

If G is non-compact and amenable and m extends to a bounded bil. map $L^q \times L^2 \to L^2(G)$, then q = 1.

L^{p+}-representations of Kunze–Stein groups

For $p \in [2, \infty]$, set

 $\hat{G}_{L^{p+}} := \{ [\pi] \in \hat{G} \mid \pi \text{ is an } L^{p+} \text{-representation} \}$

Theorem [dL – Siebenand (2019)]

Let G be a Kunze-Stein group. Then $\hat{G}_{L^{p+}}$ is Fell-closed in \hat{G} .

L^{p+}-representations of Kunze–Stein groups

For $p \in [2, \infty]$, set

 $\hat{G}_{L^{p+}} := \{ [\pi] \in \hat{G} \mid \pi \text{ is an } L^{p+} \text{-representation} \}$

Theorem [dL – Siebenand (2019)]

Let G be a Kunze-Stein group. Then $\hat{G}_{L^{p_+}}$ is Fell-closed in \hat{G} .

 $(\overline{S} \text{ consists of all } [\pi] \text{ in } \hat{G} \text{ which are weakly contained in } S.)$

L^{p+}-representations of Kunze–Stein groups

For $p \in [2, \infty]$, set

 $\hat{G}_{L^{p+}} := \{ [\pi] \in \hat{G} \mid \pi \text{ is an } L^{p+} \text{-representation} \}$

Theorem [dL – Siebenand (2019)]

Let G be a Kunze-Stein group. Then $\hat{G}_{L^{p+}}$ is Fell-closed in \hat{G} .

 $(\overline{S} \text{ consists of all } [\pi] \text{ in } \hat{G} \text{ which are weakly contained in } S.)$

Was known for $SO_0(n, 1)$ and SU(n, 1) from work of Shalom (2000).

Simple Lie groups

Have a well-behaved and rich structure.

Simple Lie groups

Have a well-behaved and rich structure.

G connected simple Lie group $\rightsquigarrow G = K\overline{A^+}K$, K maximal compact subgroup, A abelian

Simple Lie groups

Have a well-behaved and rich structure.

G connected simple Lie group $\rightsquigarrow G = K\overline{A^+}K$, K maximal compact subgroup, A abelian

Real rank of $G = \dim(\text{Lie}(A))$

Simple Lie groups

Have a well-behaved and rich structure.

G connected simple Lie group $\rightsquigarrow G = K\overline{A^+}K$, *K* maximal compact subgroup, *A* abelian

Real rank of $G = \dim(\text{Lie}(A))$

(G, K) is a Gelfand pair \rightsquigarrow spherical functions (Harish-Chandra). These are diagonal matrix coefficients $\pi_{\xi,\xi}$, with $\xi \in \mathcal{H}^K \setminus \{0\}$.

 (\mathcal{H},π) is class one if \mathcal{H}^{K} is one-dimensional

Simple Lie groups with real rank one

G – connected simple Lie group with real rank one. Then *G* is locally isomorphic to one of the following Lie groups:

$$\begin{split} & \mathsf{SO}(n,1) = \{g \in \mathsf{SL}(n+1,\mathbb{R}) \mid g^* I_{n,1}g = I_{n,1}\}, \\ & \mathsf{SU}(n,1) = \{g \in \mathsf{SL}(n+1,\mathbb{C}) \mid g^* I_{n,1}g = I_{n,1}\}, \\ & \mathsf{Sp}(n,1) = \{g \in \mathsf{GL}(n+1,\mathbb{H}) \mid g^* I_{n,1}g = I_{n,1}\}, \\ & \mathsf{F}_{4(-20)}. \end{split}$$

First three: Isometry groups of the classical rank one symmetric spaces of the non-compact type. Class one representation theory is well understood.

Locally compact group G:

 $\Phi(G):=\inf\{p\in[1,\infty]\mid\forall\,\pi\in\hat{G}\backslash\{\tau_0\},\,\pi\text{ is an }L^{p+}\text{-representation}\},$

where τ_0 is the trivial representation.

Locally compact group G:

 $\Phi(G):=\inf\{p\in[1,\infty]\mid\forall\,\pi\in\hat{G}\backslash\{\tau_0\},\,\pi\text{ is an }L^{p+}\text{-representation}\},$

where τ_0 is the trivial representation.

For the classical real rank one Lie groups:

$$\Phi(G) = \begin{cases} \infty & \text{if } G = \text{SO}_0(n, 1), \\ \infty & \text{if } G = \text{SU}(n, 1), \\ 2n+1 & \text{if } G = \text{Sp}(n, 1). \end{cases}$$

First two cases: Harish-Chandra Sp(n, 1): Li (1995).

Theorem [dL – Siebenand (2019)]

Let G be a classical simple Lie group with real rank one and finite center. Then for $2 \le q \le p \le \Phi(G)$, the canonical quotient map

$$C^*_{L^{p+}}(G) \twoheadrightarrow C^*_{L^{q+}}(G)$$

has non-trivial kernel. Furthermore, for every $p, q \in [\Phi(G), \infty)$, we have

$$C^*_{L^{p+}}(G) = C^*_{L^{q+}}(G).$$

Theorem [dL – Siebenand (2019)]

Let G be a classical simple Lie group with real rank one and finite center. Then for $2 \le q \le p \le \Phi(G)$, the canonical quotient map

$$C^*_{L^{p+}}(G) \twoheadrightarrow C^*_{L^{q+}}(G)$$

has non-trivial kernel. Furthermore, for every $p, q \in [\Phi(G), \infty)$, we have

$$C^*_{L^{p+}}(G) = C^*_{L^{q+}}(G).$$

For $F_{4(-20)}$, we get partial results.

Theorem [dL – Siebenand (2019)]

Let *G* be a classical simple Lie group with real rank one and finite center. Then for $2 \le q \le \Phi(G)$, the canonical quotient map

$$C^*_{L^{p+}}(G) \twoheadrightarrow C^*_{L^{q+}}(G)$$

has non-trivial kernel. Furthermore, for every $p, q \in [\Phi(G), \infty)$, we have

$$C^*_{L^{p+}}(G) = C^*_{L^{q+}}(G).$$

For $F_{4(-20)}$, we get partial results.

For finite coverings, the result is the same.

▶ By the earlier theorem, the first claim reduces to finding L^{p+} -representations which are not L^{q+} for $2 \le q \le p \le \Phi(G)$.

- ▶ By the earlier theorem, the first claim reduces to finding L^{p+} -representations which are not L^{q+} for $2 \le q \le p \le \Phi(G)$.
- Consider the strip of class one complementary series representations.

- ▶ By the earlier theorem, the first claim reduces to finding L^{p+} -representations which are not L^{q+} for $2 \le q \le \Phi(G)$.
- Consider the strip of class one complementary series representations.
- Asymptotics (L^p-integrability) of spherical functions follows from Harish-Chandra's rich work. One can realize all necessary L^p-integability in this strip.

- ▶ By the earlier theorem, the first claim reduces to finding L^{p+} -representations which are not L^{q+} for $2 \le q \le \Phi(G)$.
- Consider the strip of class one complementary series representations.
- Asymptotics (L^p-integrability) of spherical functions follows from Harish-Chandra's rich work. One can realize all necessary L^p-integability in this strip.
- The second claim follows from a result of Cowling (1979).
 (Quantitative version of property (T).)

Concluding remarks

Our approach also works for groups of automorphisms of trees. [Samei – Wiersma (2018), Heinig – dL – Siebenand (2019)]

Concluding remarks

Our approach also works for groups of automorphisms of trees. [Samei – Wiersma (2018), Heinig – dL – Siebenand (2019)]

What about

- simple Lie groups with higher real rank: $SL(n, \mathbb{R})$ $(n \ge 3)$,
- almost simple algebraic groups over non-Archimedean local fields?

Concluding remarks

Our approach also works for groups of automorphisms of trees. [Samei – Wiersma (2018), Heinig – dL – Siebenand (2019)]

What about

- simple Lie groups with higher real rank: $SL(n, \mathbb{R})$ ($n \ge 3$),
- almost simple algebraic groups over non-Archimedean local fields?

Another question:

Are the algebras $C_{L^{p+}}^*(G)$ the only exotic group C^* -algebras coming from ideals in the Fourier–Stieltjes algebra?