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Exotic group C∗-algbras

Universal and reduced group C∗-algebra

G – locally compact group

▶ C∗
r (G) – reduced group C∗-algebra

▶ C∗(G) – universal group C∗-algebra

Theorem

C∗(G) = C∗
r (G) if and only if G is amenable.
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Exotic group C∗-algbras

Exotic group C∗-algebras

Definition

An exotic group C∗-algebra of G is a C∗-completion A of Cc(G) such that

the identity map on Cc(G) extends to proper quotient maps

C∗(G) ↠ A ↠ C∗
r (G).

Question: Does every non-amenable G have exotic group C∗-algebras?

This question is still open!
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Exotic group C∗-algbras

Why are they interesting?

▶ Exotic group C∗-algebras are C∗-algebras associated with groups

which reflect structural properties of the underlying group.

▶ Baum–Connes conjecture with coefficients: K-theory of reduced

crossed product in terms of the topological K-theory.

Counterexamples due to Higson–Lafforgue–Skandalis (2002).

Baum–Guentner–Willet (2013): Reformulation of the conjecture.

The reformulated conjecture expresses the K-theory of a certain nice

special crossed product in terms of the topological K-theory.

Can be constructed from exotic group C∗-algebras.

Tim de Laat 3



Exotic group C∗-algbras

Why are they interesting?

▶ Exotic group C∗-algebras are C∗-algebras associated with groups

which reflect structural properties of the underlying group.

▶ Baum–Connes conjecture with coefficients: K-theory of reduced

crossed product in terms of the topological K-theory.

Counterexamples due to Higson–Lafforgue–Skandalis (2002).

Baum–Guentner–Willet (2013): Reformulation of the conjecture.

The reformulated conjecture expresses the K-theory of a certain nice

special crossed product in terms of the topological K-theory.

Can be constructed from exotic group C∗-algebras.

Tim de Laat 3



Exotic group C∗-algbras

Why are they interesting?

▶ Exotic group C∗-algebras are C∗-algebras associated with groups

which reflect structural properties of the underlying group.

▶ Baum–Connes conjecture with coefficients: K-theory of reduced

crossed product in terms of the topological K-theory.

Counterexamples due to Higson–Lafforgue–Skandalis (2002).

Baum–Guentner–Willet (2013): Reformulation of the conjecture.

The reformulated conjecture expresses the K-theory of a certain nice

special crossed product in terms of the topological K-theory.

Can be constructed from exotic group C∗-algebras.

Tim de Laat 3



Exotic group C∗-algbras

Why are they interesting?

▶ Exotic group C∗-algebras are C∗-algebras associated with groups

which reflect structural properties of the underlying group.

▶ Baum–Connes conjecture with coefficients: K-theory of reduced

crossed product in terms of the topological K-theory.

Counterexamples due to Higson–Lafforgue–Skandalis (2002).

Baum–Guentner–Willet (2013): Reformulation of the conjecture.

The reformulated conjecture expresses the K-theory of a certain nice

special crossed product in terms of the topological K-theory.

Can be constructed from exotic group C∗-algebras.

Tim de Laat 3



Exotic group C∗-algbras

Why are they interesting?

▶ Exotic group C∗-algebras are C∗-algebras associated with groups

which reflect structural properties of the underlying group.

▶ Baum–Connes conjecture with coefficients: K-theory of reduced

crossed product in terms of the topological K-theory.

Counterexamples due to Higson–Lafforgue–Skandalis (2002).

Baum–Guentner–Willet (2013): Reformulation of the conjecture.

The reformulated conjecture expresses the K-theory of a certain nice

special crossed product in terms of the topological K-theory.

Can be constructed from exotic group C∗-algebras.

Tim de Laat 3



Exotic group C∗-algbras

What is known? [Discrete groups]

First systematic approach: Ideal completions [Brown–Guentner (2013)].

Γ countable group, D alg. two-sided ideal of ℓ∞(Γ). The ideal completion

C∗
D(Γ) is the completion of the group ring with respect to the norm

defined through all un. reps with many matrix coefficients in D.

(Matrix coefficient: πξ ,ζ : g ↦ ⟨π(g)ξ , ζ⟩.)
▶ C∗

ℓp(𝔽d) ↠ C∗
ℓq(𝔽d) is not injective if 2 ≤ q < p ≤ ∞ [Okayasu (2014)].

Same for discrete groups Γ with 𝔽d < Γ [Wiersma (2016)].

▶ Other constructions and examples, many results due to Wiersma.
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Exotic group C∗-algbras

What is known? [Lie groups]

▶ C∗
ℓp(SL(2,ℝ)) ↠ C∗

ℓq(SL(2,ℝ)) is not injective if 2 ≤ q < p ≤ ∞

[Wiersma (2015)]. Analysis of the representations.

▶ Same for SO0(n, 1) and SU(n, 1) [Samei–Wiersma (2018)].

Relies on the Kunze – Stein property and a strengthened version of

the Haagerup property.

They are not so exotic.

Question: Can we understand these results in terms of representations?

What about Lie groups with property (T)?
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Exotic group C∗-algbras

Lp-integrability of matrix coefficients

Construct exotic group algebras of Lie groups through Lp-integrability

properties of matrix coefficients of unitary representations.

G locally compact group, p ∈ [1,∞]

Definition

A un. rep. π : G → ℬ(ℋ) is an Lp-representation if there is a dense

subspace ℋ0 ⊂ ℋ such that πξ ,ζ ∈ Lp(G) for all ξ , ζ ∈ ℋ0.

π is an Lp+-representation if π is Lp+ε for all ε > 0.

(f ∈ Cb(G) ∩ Lp(G) implies: f is contained in Lq(G) for all q ≥ p.)
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Exotic group C∗-algbras

Why Lp+-representations?

Lp+-representations ∼ weak containment.

Theorem [Cowling–Haagerup–Howe (1988)]

Let (ℋ, π, ξ) be a cyclic unitary representation of a locally compact

group G such that πξ ,ξ ∈ L2+ε(G) for all ε > 0. Then π is weakly contained

in the left-regular representation.
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Exotic group C∗-algbras

The algebras C∗
Lp+(G)

G locally compact group, p ∈ [2,∞]

C∗
Lp(G) and C∗

Lp+(G) are the completions of Cc(G) with respect to the

C∗-norms

‖ ⋅ ‖Lp : Cc(G) → [0,∞), f ↦ sup{‖π(f )‖ ∣ π is an Lp-rep.} and

‖ ⋅ ‖Lp+ : Cc(G) → [0,∞), f ↦ sup{‖π(f )‖ ∣ π is an Lp+-rep.},
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Exotic group C∗-algbras

The Kunze–Stein property

G is called Kunze–Stein ifm : Cc(G) × Cc(G) → Cc(G), (f ,g) ↦ f ∗ g

extends to a bounded bil. map Lq(G) × L2(G) → L2(G) for all q ∈ [1, 2).

Examples:

▶ SL(2,ℝ) [Kunze–Stein (1960)]

▶ Connected semisimple Lie groups with finite center [Cowling (1978)]

and non-Archimedean analogues [Veca (2002)]

▶ Groups of automorphisms of trees [Nebbia (1988)]

If G is non-compact and amenable andm extends to a bounded bil. map

Lq × L2 → L2(G), then q = 1.
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Exotic group C∗-algbras

Lp+-representations of Kunze–Stein groups

For p ∈ [2,∞], set

̂GLp+ : = {[π] ∈ ̂G ∣ π is an Lp+-representation}

Theorem [dL – Siebenand (2019)]

Let G be a Kunze-Stein group. Then ̂GLp+ is Fell-closed in Ĝ.

(S consists of all [π] in ̂G which are weakly contained in S.)

Was known for SO0(n, 1) and SU(n, 1) from work of Shalom (2000).
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Exotic group C∗-algbras

Simple Lie groups

Have a well-behaved and rich structure.

G connected simple Lie group G = KA+K,

K maximal compact subgroup, A abelian

Real rank of G = dim(Lie(A))

(G,K) is a Gelfand pair spherical functions (Harish-Chandra).

These are diagonal matrix coefficients πξ ,ξ , with ξ ∈ ℋK\{0}.

(ℋ, π) is class one if ℋK is one-dimensional
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Exotic group C∗-algbras

Simple Lie groups with real rank one

G – connected simple Lie group with real rank one.

Then G is locally isomorphic to one of the following Lie groups:

SO(n, 1) = {g ∈ SL(n + 1,ℝ) ∣ g∗In,1g = In,1},
SU(n, 1) = {g ∈ SL(n + 1,ℂ) ∣ g∗In,1g = In,1},
Sp(n, 1) = {g ∈ GL(n + 1,ℍ) ∣ g∗In,1g = In,1},
F4(−20).

First three: Isometry groups of the classical rank one symmetric spaces

of the non-compact type. Class one representation theory is well

understood.

Tim de Laat 12



Exotic group C∗-algbras

Locally compact group G:

Φ(G): = inf{p ∈ [1,∞] ∣ ∀ π ∈ ̂G\{τ0}, π is an Lp+-representation},

where τ0 is the trivial representation.

For the classical real rank one Lie groups:

Φ(G) =
⎧{
⎨{⎩

∞ if G = SO0(n, 1),
∞ if G = SU(n, 1),
2n + 1 if G = Sp(n, 1).

First two cases: Harish-Chandra

Sp(n, 1): Li (1995).
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Exotic group C∗-algbras

Theorem [dL – Siebenand (2019)]

Let G be a classical simple Lie group with real rank one and finite center.

Then for 2 ≤ q < p ≤ Φ(G), the canonical quotient map

C∗
Lp+(G) ↠ C∗

Lq+(G)

has non-trivial kernel. Furthermore, for every p,q ∈ [Φ(G),∞), we have

C∗
Lp+(G) = C∗

Lq+(G).

For F4(−20), we get partial results.

For finite coverings, the result is the same.

Tim de Laat 14
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Exotic group C∗-algbras

About the proof

▶ By the earlier theorem, the first claim reduces to finding

Lp+-representations which are not Lq+ for 2 ≤ q < p ≤ Φ(G).

▶ Consider the strip of class one complementary series

representations.

▶ Asymptotics (Lp-integrability) of spherical functions follows from

Harish-Chandra’s rich work. One can realize all necessary

Lp-integability in this strip.

▶ The second claim follows from a result of Cowling (1979).

(Quantitative version of property (T).)
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Exotic group C∗-algbras

Concluding remarks

Our approach also works for groups of automorphisms of trees.

[Samei – Wiersma (2018), Heinig – dL – Siebenand (2019)]

What about

▶ simple Lie groups with higher real rank: SL(n,ℝ) (n ≥ 3),
▶ almost simple algebraic groups over non-Archimedean local fields?

Another question:

▶ Are the algebras C∗
Lp+(G) the only exotic group C∗-algebras coming

from ideals in the Fourier–Stieltjes algebra?

Tim de Laat 16



Exotic group C∗-algbras

Concluding remarks

Our approach also works for groups of automorphisms of trees.

[Samei – Wiersma (2018), Heinig – dL – Siebenand (2019)]

What about

▶ simple Lie groups with higher real rank: SL(n,ℝ) (n ≥ 3),
▶ almost simple algebraic groups over non-Archimedean local fields?

Another question:

▶ Are the algebras C∗
Lp+(G) the only exotic group C∗-algebras coming

from ideals in the Fourier–Stieltjes algebra?

Tim de Laat 16



Exotic group C∗-algbras

Concluding remarks

Our approach also works for groups of automorphisms of trees.

[Samei – Wiersma (2018), Heinig – dL – Siebenand (2019)]

What about

▶ simple Lie groups with higher real rank: SL(n,ℝ) (n ≥ 3),
▶ almost simple algebraic groups over non-Archimedean local fields?

Another question:

▶ Are the algebras C∗
Lp+(G) the only exotic group C∗-algebras coming

from ideals in the Fourier–Stieltjes algebra?

Tim de Laat 16


