C*-algebras associated to C*-correspondences and applications to
noncommutative geometry.

Overview of the presentation.

@ (*-algebras associated to C*-correspondences

@ Restricted direct sum C*correspondences and pullbacks
@ Even dimensional mirror quantum spheres

°

Labelled graph algebras

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 1/25



C*-algebras associated to C*-correspondences and applications to
noncommutative geometry.

Overview of the presentation

@ (*-algebras associated to C*-correspondences

@ Restricted direct sum C*correspondences and pullbacks
@ Even dimensional mirror quantum spheres

°

Labelled graph algebras

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 2/25



correspondences

(Syddansk Universitet) Classification Master Class November 18, 2009



C*-correspondences

C*-correspondences generalise the theory of Hilbert spaces by replacing
the field of scalars C with an arbitrary C*-algebra A.
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C*-correspondences

C*-correspondences generalise the theory of Hilbert spaces by replacing
the field of scalars C with an arbitrary C*-algebra A.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C*-algebra. Suppose we have a right
action X x A — X of Aon X and an A valued inner-product
(-,-) : X x X — A that satisfies

forall £,n e X, ae A
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C*-correspondences

C*-correspondences generalise the theory of Hilbert spaces by replacing
the field of scalars C with an arbitrary C*-algebra A.

We begin with the definition of a right Hilbert-module.

Let X be a Banach space and A be a C*-algebra. Suppose we have a right
action X x A — X of Aon X and an A valued inner-product

(-,-) : X x X — A that satisfies
o (§;m-a)=(n) - a
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C*-correspondences

C*-correspondences generalise the theory of Hilbert spaces by replacing
the field of scalars C with an arbitrary C*-algebra A.

We begin with the definition of a right Hilbert-module.

Let X be a Banach space and A be a C*-algebra. Suppose we have a right
action X x A — X of Aon X and an A valued inner-product

(-,-) : X x X — A that satisfies
o (§;m-a)=(n) - a

o (n,&) ={&m"

()]

(6,€) = 0 and [I€]lx = /IS, E)la-
forall £,n e X, ae A
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C*-correspondences

C*-correspondences generalise the theory of Hilbert spaces by replacing
the field of scalars C with an arbitrary C*-algebra A.

We begin with the definition of a right Hilbert-module.

Let X be a Banach space and A be a C*-algebra. Suppose we have a right
action X x A — X of Aon X and an A valued inner-product

(-,-) : X x X — A that satisfies
o (§;m-a)=(n) - a
o (n,&) ={&m"

° (§,€) 2 0and [Ellx = V(& &)lla-

forall £,n e X, ae A
Then we say X is a right Hilbert A-module.
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Adjointable and compact operators
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Adjointable and compact operators

We say a linear operator T : X — X is adjointable if there exists an
operator T* : X — X such that

(T(€);m) = (€T (n))
for all £,m € X.
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Adjointable and compact operators

We say a linear operator T : X — X is adjointable if there exists an
operator T* : X — X such that

(T(€);m) = (€T (n))
for all £,m € X.

We write £(X) for the collection of all adjointable operators T : X — X.
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Adjointable and compact operators

We say a linear operator T : X — X is adjointable if there exists an
operator T* : X — X such that

(T(€);m) = (€T (n))
for all £,m € X.

We write £(X) for the collection of all adjointable operators T : X — X.

Then £(X) is a C*-algebra.
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Adjointable and compact operators
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Adjointable and compact operators

For £,m € X, define 6¢ ,, to be the operator satisfying

0&7](4) = £<na <>

for all ¢ € X.
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Adjointable and compact operators

For £,m € X, define 6¢ ,, to be the operator satisfying
Ocn(C) = &, ).
for all ¢ € X.
This is an adjointable operator with (6¢ )" = 0, ¢. We call
K(X) = span{0e,, : €. € X}

the compact operators.
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Adjointable and compact operators

For £,m € X, define 6¢ ,, to be the operator satisfying
Oc.(C) = £, ).
for all ¢ € X.
This is an adjointable operator with (6¢ )" = 0, ¢. We call
K(X) = span{fe, : §,n € X}
the compact operators.

Then KC(X) is a closed two-sided ideal in £(X).
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C*-correspondences

A C*-correspondence is a pair (X, A) where X is a Hilbert A-module,
equipped with a x-homomorphism

ox : A— L(X).
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C*-correspondences

A C*-correspondence is a pair (X, A) where X is a Hilbert A-module,
equipped with a x-homomorphism

ox : A— L(X).

We call ¢x the left action of A on X.

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009



Representations

We define the C*-algebra associated to a C*-correspondence (X, A) as a
universal object associated to representations of (X, A).
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We define the C*-algebra associated to a C*-correspondence (X, A) as a
universal object associated to representations of (X, A).

Definition

Let (X, A) be a C*-correspondence and let B be a C*-algebra. We say a
pair (7, t) is a representation of (X,A) on Bif m: A— B is a
*-homomorphism and t : X — B is a linear map satisfying
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Representations

We define the C*-algebra associated to a C*-correspondence (X, A) as a
universal object associated to representations of (X, A).

Let (X, A) be a C*-correspondence and let B be a C*-algebra. We say a
pair (7, t) is a representation of (X,A) on Bif m: A— B is a
*-homomorphism and t : X — B is a linear map satisfying

o t(px(a)) =m(a)t(§) forallac A, € X

o w((&,m)) = t(&)*t(n) for all £,n € X.
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Covariance
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Covariance

Definition (Katsura 2003)

Define an ideal Jx of A by

Ix :={a€ A:¢px(a) € K(X) and a- b=0 for all b € ker px}
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Covariance

Definition (Katsura 2003)
Define an ideal Jx of A by

Ix :={a€ A:¢px(a) € K(X) and a- b=0 for all b € ker px}

Definition (Katsura 2003)
We say a representation (7, t) of (X, A) on B is covariant if for all a € Jx
we have

m(a) = ¢e(¢x(a))
where 1y : K(X) — B satisfies 1(6¢,) = t(£)t(n)*.

November 18, 2009 8/25
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The algebra

So we are ready to define the C*-algebra associated to a
C*-correspondence (X, A).
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The algebra

So we are ready to define the C*-algebra associated to a
C*-correspondence (X, A).

Definition (Katsura, 2003)

For a C*-correspondence (X, A) define Ox to be the C*-algebra generated
by the images of X and A under the universal covariant representation
(mx, tx)-
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Categorical viewpoint

By defining appropriate morphisms between C*-correspondences, they fit
nicely into the language of categories.
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Definition
Given two C*-correspondences (X, A) and (Y, B), a pair (¢)x,%a) where
x : X — Y is a linear map and 14 : A — B is a C*-homomorphism, is
called a morphism of C*-correspondences if it satisfies
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David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 10 / 25



Categorical viewpoint

By defining appropriate morphisms between C*-correspondences, they fit
nicely into the language of categories.

Given two C*-correspondences (X, A) and (Y, B), a pair (¢)x,%a) where
x : X — Y is a linear map and 14 : A — B is a C*-homomorphism, is
called a morphism of C*-correspondences if it satisfies

o (Yx(€),¥x(n)) = va((&,m) forall &,n € X,

o Yx(px(a)l) = py(va(a))yx(€) forall £ € X and a € A, and

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 10 / 25



Categorical viewpoint

By defining appropriate morphisms between C*-correspondences, they fit
nicely into the language of categories.

Given two C*-correspondences (X, A) and (Y, B), a pair (¢)x,%a) where
x : X — Y is a linear map and 14 : A — B is a C*-homomorphism, is
called a morphism of C*-correspondences if it satisfies

o (Yx(€),¥x(n)) = va((&,m) forall &,n € X,

o Yx(px(a)l) = py(va(a))yx(€) forall £ € X and a € A, and

) @Z)A(JX) C Jy and

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 10 / 25



Categorical viewpoint

By defining appropriate morphisms between C*-correspondences, they fit
nicely into the language of categories.

Given two C*-correspondences (X, A) and (Y, B), a pair (¢)x,%a) where
x : X — Y is a linear map and 14 : A — B is a C*-homomorphism, is
called a morphism of C*-correspondences if it satisfies

o (Yx(€),¥x(n)) = va((&,m) forall &,n € X,

o Yx(px(a)l) = py(va(a))yx(€) forall £ € X and a € A, and

) @Z)A(JX) C Jy and

e for all a € Jx we have ¢y (¢a(a)) = 1/1;( ( )) where
Yy K(X) — K(Y) satisfies 1% (0¢ ;) = €),x(m)-
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Functors

There is a functor F from the category of C*-correspondences to the
category of C*-algebras such that
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There is a functor F from the category of C*-correspondences to the
category of C*-algebras such that

e F(X,A)=0x
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Functors

There is a functor F from the category of C*-correspondences to the
category of C*-algebras such that

e F(X,A)=0x
o UV =F(¢x,va): Ox — Oy is a C*-homomorphism satisfying

V(mx(a)) = my(¥a(a)) and W(tx(£)) = ty(¥x($))
forallac Aand &€ € X.
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Functors

There is a functor F from the category of C*-correspondences to the
category of C*-algebras such that

e F(X,A)=0x
o UV =F(¢x,va): Ox — Oy is a C*-homomorphism satisfying

V(mx(a)) = my(¥a(a)) and W(tx(£)) = ty(¥x($))
forallac Aand &€ € X.

Not all homomorphisms ¢ : Ox — Oy arise this way.
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C*-algebras associated to C*-correspondences and applications to
noncommutative geometry.

Overview of the presentation

o (*-algebras associated to C*-correspondences

@ Restricted direct sum C*correspondences and pullbacks: Our main
theorem

@ Even dimensional mirror quantum spheres

o Labelled graph algebras

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009 12 /25



Restricted direct sums

Restricted direct sums of C*-correspondences are a generalisation of
pullbacks of C*-algebras.
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Restricted direct sums

Restricted direct sums of C*-correspondences are a generalisation of
pullbacks of C*-algebras.

Definition (Baki¢, Guljis (2003))
Given C*-correspondences (X, A), (Y, B) and (Z, C), and morphisms of

C*-correspondences (¢x,14) : (X,A) — (Z, C),
(wy,wg) : (Y,B) — (Z, C), define the restricted direct sum
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Restricted direct sums of C*-correspondences are a generalisation of
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Definition (Baki¢, Guljis (2003))
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C*-correspondences (¢x,14) : (X,A) — (Z, C),
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Restricted direct sums

Restricted direct sums of C*-correspondences are a generalisation of
pullbacks of C*-algebras.

Definition (Baki¢, Guljis (2003))

Given C*-correspondences (X, A), (Y, B) and (Z, C), and morphisms of

C*-correspondences (¢x,14) : (X,A) — (Z, C),
(wy,wg) : (Y,B) — (Z, C), define the restricted direct sum

X©z Y :={(&n) e XY Px(§) =wy(n)}-

| A

Proposition

The restricted direct sum X ®z Y is a C*-correspondence over the
C*-algebra A @ ¢ B defined to be the pullback C*-algebra of A and B
along ¥ and wg.
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Gluing C*-correspondences

Our main result says that the process of taking restricted direct sums on

the level of C*-correspondences lifts to the process of taking pull-backs on
the level of induced C*-algebras via the functor F.
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Gluing C*-correspondences

Our main result says that the process of taking restricted direct sums on
the level of C*-correspondences lifts to the process of taking pull-backs on
the level of induced C*-algebras via the functor F.

Theorem

Let (X,A),(Y,B) and (Z,C) be C*-correspondences fix morphisms of
C*-correspondences (1x,va) : (X,A) — (Z, C),
(wy,wg) : (Y,B) — (Z, C) satisfying
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Gluing C*-correspondences

Our main result says that the process of taking restricted direct sums on
the level of C*-correspondences lifts to the process of taking pull-backs on
the level of induced C*-algebras via the functor F.

Let (X,A),(Y,B) and (Z, C) be C*-correspondences fix morphisms of
C*-correspondences (1x,va) : (X,A) — (Z, C),
(wy,wg) : (Y,B) — (Z, C) satisfying

o Yx(X)=wy(Y)

(] ’QDA(A) = wB(B), and

o @bA(ker(¢X)) = wB(ker(qSy)).
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Gluing C*-correspondences

Our main result says that the process of taking restricted direct sums on
the level of C*-correspondences lifts to the process of taking pull-backs on
the level of induced C*-algebras via the functor F.

Theorem

Let (X,A),(Y,B) and (Z, C) be C*-correspondences fix morphisms of
C*-correspondences (1x,va) : (X,A) — (Z, C),
(wy,wg) : (Y,B) — (Z, C) satisfying

o Yx(X)=wy(Y)

4 ’QDA(A) = wB(B), and

o @bA(ker(¢X)) = wB(ker(qSy)).
Then

Oxe,vy = Ox ®0, Oy

where Ox ©o, Oy is the pullback C*-algebra of Ox and Oy along
V = F(¢Yx,1a) and Q = F(wy,wp).
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Noncommutative spaces

We can use this to construct new examples of noncommutative spaces.
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Even dimensional mirror quantum spheres

The motivating examples for this research are the even-dimensional mirror
quantum spheres, first defined for dimension 2 by Hajac, Matthes and

Szymanski in 2006, and generalised to higher dimension by Hong and
Szymanski in 2008.
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Even dimensional mirror quantum spheres

The motivating examples for this research are the even-dimensional mirror
quantum spheres, first defined for dimension 2 by Hajac, Matthes and
Szymanski in 2006, and generalised to higher dimension by Hong and
Szymanski in 2008.

For n € N, the 2n-dimensional mirror quantum sphere is defined as the
pullback of the following diagram

(D2
Bor
C(Dgn) ™ C(S{?nfl)

where 7 : C(D3") — C(S2"1) is the natural surjection and
B € Aut(C(S3"1)).
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Mirror quantum spheres as C*-correspondences

Hong and Szymanski showed that the algebras C(ID2") and C(52""!) are

graph algebras, so we can easily find C*-correspondences for these
algebras
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Mirror quantum spheres as C*-correspondences

Hong and Szymanski showed that the algebras C(ID2") and C(52""!) are
graph algebras, so we can easily find C*-correspondences for these
algebras

(X, A) such that Ox = C(D2")

(Z, C) such that Oz = C(S52"1)
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Mirror quantum spheres as C*-correspondences

Hong and Szymanski showed that the algebras C(ID2") and C(52""!) are
graph algebras, so we can easily find C*-correspondences for these

algebras
(X, A) such that Ox = C(D2")

(Z, C) such that Oz = C(S52"1)

There is a morphism of C*-correspondences (ox,04) : (X,A) — (Z, C)
such that ¥ = F(ox,04) : Ox — Oz and 7 : C(IDD(%”) — C(Sg”_l) are the
same map.
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Mirror quantum spheres as C*-correspondences

However, there is no morphism of C*-correspondences
(px,pa) : (X, A) — (Z, C) such that F(px,pa) = mo f.
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However, there is no morphism of C*-correspondences
(px,pa) : (X, A) — (Z, C) such that F(px,pa) = mo f.

There is another C*-correspondence (Y, B) and morphism
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Mirror quantum spheres as C*-correspondences

However, there is no morphism of C*-correspondences
(px,pa) : (X, A) — (Z, C) such that F(px,pa) = mo f.

There is another C*-correspondence (Y, B) and morphism
(py,ps): (Y,B) — (Z,C) such that

o Oy = C(D2")
o Flpy,pp) =mof

But the C*-correspondence (Y, B) no longer comes from a directed graph.
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C*-algebras associated to C*-correspondences and applications to
noncommutative geometry.

Overview of the presentation

C*-algebras associated to C*-correspondences
Restricted direct sum C*correspondences and pullbacks
Graph algebras

Even dimensional mirror quantum spheres

Labelled graph algebras
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Labelled graphs

Labelled graphs are a generalisation of directed graphs, where two or more

edges may carry the same label, and the range and sources of edges
become sets of vertices.
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Labelled graphs

Labelled graphs are a generalisation of directed graphs, where two or more
edges may carry the same label, and the range and sources of edges
become sets of vertices.

Definition (Bates, Pask (2007))

A labelled graph (E, L) over an alphabet A is a directed graph E together
with a surjective labelling map £ : E' — A which assigns to each edge
ec E' alabel ac A.
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Labelled graphs

Labelled graphs are a generalisation of directed graphs, where two or more
edges may carry the same label, and the range and sources of edges
become sets of vertices.

Definition (Bates, Pask (2007))

A labelled graph (E, L) over an alphabet A is a directed graph E together
with a surjective labelling map £ : E' — A which assigns to each edge
ec E' alabel ac A.

The range and source maps then become r,s : A — P(EP) satisfying

s(a) = {s(e) : L(e) = a} and r(a) ={r(e): L(e) = a}
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Example of a labelled graph (E, £).
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Example of a labelled graph (E, £).

bCu\_/va
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Example of a labelled graph (E, £).

bCu\_/va

s(a) ={u} r(a) ={v}
s(b) = {u,v} = r(b)

Then we have
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C*-algebra

We associate C*-algebras to labelled spaces (E, L,13) where (E, L) is a
labelled graph and B C 2£°.
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The C*-algebra is generated by a collection of partial isometries associated

to the labels on E!, and projections associated to the sets of vertices
AcB.
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C*-algebra

We associate C*-algebras to labelled spaces (E, L,13) where (E, L) is a
labelled graph and B C 2£°.

The C*-algebra is generated by a collection of partial isometries associated

to the labels on E!, and projections associated to the sets of vertices
AcB.

Not all labelled graphs admit a suitable set B in order to associate a
C*-algebra. When B exists we say B is accommodating for (E, L).
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C*-algebra

Definition (Bates, Pask (2003))

Let (E, L) be a labelled graph, B an accommodating set for (E, L). A
representation of (E, L) is a collection {pa : A € B} of projections and a
collection {s, : a € L(E!)} of partial isometries such that:
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Definition (Bates, Pask (2003))

Let (E, L) be a labelled graph, B an accommodating set for (E, L). A
representation of (E, L) is a collection {pa : A € B} of projections and a
collection {s, : a € L(E!)} of partial isometries such that:

e For A, B € B, we have papg = pans and paus = pa + P — PAnB
where py =0
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C*-algebra

Definition (Bates, Pask (2003))

Let (E, L) be a labelled graph, B an accommodating set for (E, L). A
representation of (E, L) is a collection {pa : A € B} of projections and a
collection {s, : a € L(E!)} of partial isometries such that:
e For A, B € B, we have papg = pans and paus = pa + P — PAnB
where py =0
e For ac L(E') and A € B, we have pas, = SaPr(A,a) Where
r(A,a) = {r(e) : s(e) € A, L(e)) = a}
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collection {s, : a € L(E!)} of partial isometries such that:

e For A, B € B, we have papg = pans and paus = pa + P — PAnB
where py =0

e For ac L(E') and A € B, we have pas, = SaPr(A,a) Where
r(A,a) = {r(e) : s(e) € A, L(e)) = a}
o For a,b € L(E"), we have s}s, = p,(,) and s}s, = 0 unless a = b
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C*-algebra

Definition (Bates, Pask (2003))

Let (E, L) be a labelled graph, B an accommodating set for (E, L). A
representation of (E, L) is a collection {pa : A € B} of projections and a
collection {s, : a € L(E!)} of partial isometries such that:

e For A, B € B, we have papg = pans and paus = pa + P — PAnB
where py =0

e For ac L(E') and A € B, we have pas, = SaPr(A,a) Where
r(A,a) = {r(e) : s(e) € A, L(e)) = a}
o For a,b € L(E"), we have s}s, = p,(,) and s}s, = 0 unless a = b

o For A € B define L1(A) := {a € L(EY) : s(a)NA#(}. Then if L}(A)
is finite and non-empty, we have

PA= D SPranSit D Py

aELl(A) VEA:V is a sink
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Even dimensional mirror quantum sphere

Using the
representation of the
even dimensional
mirror quantum
sphere as a C*
algebra associated to
a C*-correspondence,
we can prove that it
is in fact a labelled
graph algebra.
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Even dimensional mirror quantum sphere

Using the

representation of the

even dimensional
mirror quantum

sphere as a C*

algebra associated to

a C*-correspondence,
we can prove that it

is in fact a labelled

graph algebra.

Figure: Labelled graph for
10
C(Sqﬂ).

David Robertson (Syddansk Universitet) Classification Master Class November 18, 2009



