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The Elliott conjecture

Conjecture 1.1 (The Elliott conjecture)

Let A, B be simple, nuclear, separable C*-algebras. Then A and B
are isomorphic if and only if EIl(A) and Ell(B) are isomorphic.

it does not hold at its boldest, so we need to restrict to classes of
"nice” C*-algebras (i.e. with some regularity properties, like
Z-stability)

besides proving the conjecture, there are other interesting
questions:

o What is the range of the invariant?
@ How do we detect properties of the algebra in its invariant?



Case distinction

Definition 1.2

A C*-algebra A is:

e stably projectionless :< A ® K contains no projection

o stably unital ;= A ® K contains an approximate unit of
projections

o stably finite : < A ® K contains no infinite projection

Proposition 1.3

Let A be a simple, nuclear C*-algebra. Then there are three
disjoint (and exhaustive) possibilities:
(Fo) KSL =0and T(A)#0
(F1) KJH—KJ:O, KJ—KS’zKo;éOand T(A)#0
(Inf) Ky = Ko and T(A) =0



The range of the Elliott invariant - necessary conditions

Let A be a simple, stable, stably finite, nuclear, separable
C*-algebra. Then its Elliott invariant Ell(A) = (Go, G1, C, < .,. >)
has the following properties:

o Go = (Go, Gy) is a countable, simple, pre-ordered, abelian
group
Gj is a countable, abelian group

C # () is a topological convex cone with a compact, convex
base that is a metrizable Choquet simplex

p: Gog — Affg(C) is an order-homomorphism
@ r: C — Pos(Gp) is a continuous, affine map
o If Ggr = 0, then r is assumed surjective

We will call such an invariant admissible (and stable).



The range of the Elliott invariant

Theorem 1.4 (Elliott 1996)

For every weakly unperforated, admissible, stable Elliott invariant
€ exists a simple, stable ASH-algebra A with EIl(A) = €.

Definition 1.5 (weak unperforation)

The pairing p : Go — Affo(C) is weakly unperforated if
p(g) > 0 implies g > 0 for all g € Go.
An ordered group is weakly unperforated if ng > 0 implies g > 0.

@ The pairing is weakly unperforated < the order on G is
determined by the map p: G — Affg(C), i.e.
Gy = p(Affo(C) )

@ If A is stably unital, then the two definitions agree.

@ By using a weakly unperforated pairing we can treat the cases
(Fo) and (F1) at once.
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Non-commutative dimension theories

Definition 2.1

A non-commutative dimension theory assigns to each C*-algebra A
(in some class) a value d(A) € NU {oo} such that:

(i) d(I),d(A/l1) < d(A) whenever | < A is an ideal in A
(ii) d(limg Ax) < lim, d(Ax) whenever A = lim, Ay is a
countable limit
(i) d(A@® B) = max{d(A),d(B))

Example 2.2

The following are dimension theories:

@ The real and stable rank (for all C*-algebras)

@ The decomposition rank and nuclear dimension (for separable
C*-algebras)



The topological dimension

Definition 2.3 (locally Hausdorff space)

A topological space X is called locally Hausdorff if every closed
subset F # () contains a relatively open Hausdorff subset ) # FN G

Definition 2.4 (Brown, Pederson 2007)

Let A be a C*-algbera. If Prim(A) is locally Hausdorff, then the
topological dimension of A is

topdim(A) = supdim(K)
K

where the supremum runs over all locally closed, compact,
Hausdorff subsets K C Prim(A).

Remark 2.5

If Ais type /, then Prim(A) is locally Hausdorff. The topological
dimension is a dimension theory for o-unital, type | C*-algebras.
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non-commutative CW-complexes

Definition 2.6 (Pedersen 1999)

A NCCW-complex is a C*-algebra A = A; which is obtained as
an iterated pullback

Ak Ak—1

| |

Fe ® C(D") —2 F ® C(S™1)

(for k =1,...,1) where Ay = Fo, F1, ..., Fx have finite
vector-space dimension.

Theorem 2.7 (Eilers-Loring-Pedersen 1998)

Every NCCW-complex of dimension < 1 is semiprojective.
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The AH- and ASH-dimension

Definition 2.8
We define classes of separable C*-algebras:
e H(n) := all homogeneous A with topdim(A) < n
e SH(n) := all subhomogeneous A with topdim(A) < n
e SH(n)" := all NCCW-complexes with topdim(A) < n
Let AH(n), ASH(n), ASH(n)" denote the classes of countable
limits of such algebras.

Example 2.9
SH(0) = F C SH(0) c AF, AH(0) = ASH(0) = ASH(0) = AF.

Definition 2.10
We let diman(A) < n:<= A€ AH(n),
and similarly for dimasy(A) and dimasy/(A)
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Remark 2.11
dr(A) S dimASH(A) S dimASH/(A) S dimAH(A)

e Dadarlat-Eilers: There exists a (non-simple) algebra which is a
limit of AH(3)-algebras, but not an AH-algebra itself.

@ This implies that the AH-dimension is not a dimension theory
(in the above sense) for all AH-algebras. It might be for
simple algebras.

e Note however: a limit of AH(k)-algebras is again in AH(k)
for k = 0,1, and similarly for ASH(k)'.

@ The situation for ASH(1) seems to be open
(is AASH(1) = ASH(1) ?).

It might be that ASH(1) = ASH(1)'.

e Also, for AH(2) the situation is unclear

(is AAH(2) = AH(2) 7).
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The main result

Theorem 3.1 (Elliott 1996)

Let £ be an admissible, stable, weakly unperforated invariant.
Then there exists a simple, stable C*-algebra A in ASH(2)' such
that Ell(A) = €£.

Theorem 3.2 (T)

Let £ be an admissible, stable, weakly unperforated invariant with
Go torsion-free. Then there exists a simple, stable C*-algebra A in
ASH(1) such that EIl(A) = E£.

Remark 3.3 (Unital version)

Let £ be an admissible, unital, weakly unperforated invariant.
Then there exists a simple, unital C*-algebra A in ASH(2)’ such
that EIl(A) = £. If Gg is torsion-free, we can find A in ASH(1)'.

These algebras all have dr < oo, and are thus Z-stable.
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For this slide assume EC is true for the class C of simple, stably
finite, Z-stable, unital, nuclear, separable C*-algebras.

Corollary 3.4

Let A be in C. Then the following are equivalent:
o Aisin ASH(1)
e Aisin ASH(1)

o Ko(A) is torsion-free

Corollary 3.5

Let A be in C. Then dimasy(A) = dimasy/(A) < 2 and we can
detect the exact ASH-dimension as follows:

1.) dimasy(A) =0 < Ko(A) is a simple dimension group,
Ki(A) = 0 and ra is a homeomorphism
2.) dimasy(A) <1 < Ko(A) is torsion-free
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Proposition 3.6 (T)

Let A be a separable, type | C*-algebra with sr(A) = 1. Then
Ko(A) is torsion-free.

Theorem 3.7 (T)
Let A be a separable, type | C*-algebra. TFAE:
e sr(A)=1
e A is residually stably finite, and topdim(A) <1

Corollary 3.8

Let A be a separable, type | C*-algebra with dr(A) < 1. Then
sr(A) = 1.

Question 3.9

Does every (simple) C*-algebra with dr(A) < 1 have torsion-free
Ko-group? Does sr(A) =1 for a type | C*-algebra imply
dimasy(A) < 1 (or at least dr(A) < 1)?
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The integral Chern character for low-dimensional spaces.

The chern classes of vector bundles can be used to define
homomorphisms

ch®: KO(X) = H¥(X; Q) = P H**(X; Q)
k>0
ch! : K1(X) = H*%(X; Q) = @ H**'(X; Q)

k>0

which become isomorphisms after tensoring with Q.

Theorem 4.1 (T)

Let X be a compact space of dimension < 3. Then:
o X% : KO(X) — HO(X) & H2(X) is an isomorphism
o x!: KY(X) — HY(X) & H3(X) is an isomorphism
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Corollary 4.2

Let X be a compact space.
o Ifdim(X) <2, then KY(X) is torsion-free.
o Ifdim(X) < 1, then K°(X) is torsion-free.

Corollary 4.3

o Ifdimap(A) <1, then Ko(A) and Ki(A) are torsion-free
o Ifdiman(A) <2, then Ki(A) is torsion-free

It is possible that the converses hold (within the class of simple
AH-algebras of bounded dimension).
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Strategy for constructing C*-algebras with prescribed

invariant

To construct a (simple) C*-algebra with a prescribed Elliott
invariant £ we use roughly the following strategy (due to Elliott):
© decompose £ as a direct limit = Ii_rp)(gk,9k+17k) where the £k
are basic
@ construct C*-algebras A, (building blocks) and
*-homomorphisms 1 i : Ak — Aky1 such that
E”(Ak) = gk and E”(Sok-i-l,k) = 9k+1,k-
Q the limit A:=lim Ay already has Ell(A) = &, but is not
necessarily simple. Deform the connecting maps ¢y1 k such
that the limit gets simple (while the invariant is unchanged)
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Theorem 4.4 (Effros-Handelman-Shen, Elliott, T)

Let G be a countable, ordered group. Then:

1)

2))

G is unperforated with Riesz interpolation

& G =lim, G and each Gy = L'« = D, (z)

G is weakly unperforated with Riesz interpolation

& G =lim, G* and each G* = @7 |(Z & Zyk ;1) (for some
numbers [k,i] > 1)

Let G, = Gy @ Gy be a countable, graded, ordered group. Then:

3.)

4.)

G, is weakly unperforated with Riesz interpolation
~ i k
@k G, = Irl_r>nk G, and each
G =D ((Zo Z[k,i]) Dstr (Z @ Z[k,i]))
G, is weakly unperforated with Riesz interpolation and Gy is

torsion-free
& G, =lim, Gf and each G = B}, ((Z) ®str (Zk 7))

N
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