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The Elliott conjecture

Conjecture 1.1 (The Elliott conjecture)

Let A,B be simple, nuclear, separable C*-algebras. Then A and B
are isomorphic if and only if Ell(A) and Ell(B) are isomorphic.

it does not hold at its boldest, so we need to restrict to classes of
”nice” C*-algebras (i.e. with some regularity properties, like
Z-stability)

besides proving the conjecture, there are other interesting
questions:

What is the range of the invariant?

How do we detect properties of the algebra in its invariant?
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Case distinction

Definition 1.2

A C*-algebra A is:

stably projectionless :⇔ A⊗K contains no projection

stably unital :⇔ A⊗K contains an approximate unit of
projections

stably finite :⇔ A⊗K contains no infinite projection

Proposition 1.3

Let A be a simple, nuclear C*-algebra. Then there are three
disjoint (and exhaustive) possibilities:

(F0) K+
0 = 0 and T (A) ∕= 0

(F1) K+
0 ∩ −K+

0 = 0, K+
0 − K+

0 = K0 ∕= 0 and T (A) ∕= 0

(Inf ) K+
0 = K0 and T (A) = 0
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The range of the Elliott invariant - necessary conditions

Let A be a simple, stable, stably finite, nuclear, separable
C*-algebra. Then its Elliott invariant Ell(A) = (G0,G1,C , < ., . >)
has the following properties:

G0 = (G0,G
+
0 ) is a countable, simple, pre-ordered, abelian

group

G1 is a countable, abelian group

C ∕= ∅ is a topological convex cone with a compact, convex
base that is a metrizable Choquet simplex

� : G0 → Aff0(C ) is an order-homomorphism

r : C → Pos(G0) is a continuous, affine map

If G+
0 ∕= 0, then r is assumed surjective

We will call such an invariant admissible (and stable).
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The range of the Elliott invariant

Theorem 1.4 (Elliott 1996)

For every weakly unperforated, admissible, stable Elliott invariant
ℰ exists a simple, stable ASH-algebra A with Ell(A) = ℰ .

Definition 1.5 (weak unperforation)

The pairing � : G0 → Aff0(C ) is weakly unperforated if
�(g)≫ 0 implies g > 0 for all g ∈ G0.
An ordered group is weakly unperforated if ng > 0 implies g > 0.

The pairing is weakly unperforated ⇔ the order on G is
determined by the map � : G → Aff0(C ), i.e.
G++
0 = �−1(Aff0(C )++)

If A is stably unital, then the two definitions agree.

By using a weakly unperforated pairing we can treat the cases
(F0) and (F1) at once.
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Non-commutative dimension theories

Definition 2.1

A non-commutative dimension theory assigns to each C*-algebra A
(in some class) a value d(A) ∈ ℕ ∪ {∞} such that:

(i) d(I ), d(A/I ) ≤ d(A) whenever I ⊲ A is an ideal in A

(ii) d(limk Ak) ≤ limk d(Ak) whenever A = lim−→k
Ak is a

countable limit

(iii) d(A⊕ B) = max{d(A), d(B))

Example 2.2

The following are dimension theories:

The real and stable rank (for all C*-algebras)

The decomposition rank and nuclear dimension (for separable
C*-algebras)
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The topological dimension

Definition 2.3 (locally Hausdorff space)

A topological space X is called locally Hausdorff if every closed
subset F ∕= ∅ contains a relatively open Hausdorff subset ∅ ∕= F ∩G

Definition 2.4 (Brown, Pederson 2007)

Let A be a C*-algbera. If Prim(A) is locally Hausdorff, then the
topological dimension of A is

topdim(A) = sup
K

dim(K )

where the supremum runs over all locally closed, compact,
Hausdorff subsets K ⊂ Prim(A).

Remark 2.5

If A is type I , then Prim(A) is locally Hausdorff. The topological
dimension is a dimension theory for �-unital, type I C*-algebras.
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non-commutative CW-complexes

Definition 2.6 (Pedersen 1999)

A NCCW-complex is a C*-algebra A = Al which is obtained as
an iterated pullback

Ak
//

��

Ak−1


k
��

Fk ⊗ C (Dn)
∂k // Fk ⊗ C (Sn−1)

(for k = 1, . . . , l ) where A0 = F0,F1, . . . ,Fk have finite
vector-space dimension.

Theorem 2.7 (Eilers-Loring-Pedersen 1998)

Every NCCW-complex of dimension ≤ 1 is semiprojective.

11 / 22



The AH- and ASH-dimension

Definition 2.8

We define classes of separable C*-algebras:

H(n) := all homogeneous A with topdim(A) ≤ n

SH(n) := all subhomogeneous A with topdim(A) ≤ n

SH(n)′ := all NCCW-complexes with topdim(A) ≤ n

Let AH(n), ASH(n), ASH(n)′ denote the classes of countable
limits of such algebras.

Example 2.9

SH(0)′ = F ⊂ SH(0) ⊂ AF , AH(0) = ASH(0)′ = ASH(0) = AF .

Definition 2.10

We let dimAH(A) ≤ n :⇔ A ∈ AH(n),
and similarly for dimASH(A) and dimASH′(A)
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Remark 2.11

dr(A) ≤ dimASH(A) ≤ dimASH′(A) ≤ dimAH(A)

Dadarlat-Eilers: There exists a (non-simple) algebra which is a
limit of AH(3)-algebras, but not an AH-algebra itself.

This implies that the AH-dimension is not a dimension theory
(in the above sense) for all AH-algebras. It might be for
simple algebras.

Note however: a limit of AH(k)-algebras is again in AH(k)
for k = 0, 1, and similarly for ASH(k)′.

The situation for ASH(1) seems to be open
(is AASH(1) = ASH(1) ?).
It might be that ASH(1) = ASH(1)′.

Also, for AH(2) the situation is unclear
(is AAH(2) = AH(2) ?).
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The main result

Theorem 3.1 (Elliott 1996)

Let ℰ be an admissible, stable, weakly unperforated invariant.
Then there exists a simple, stable C*-algebra A in ASH(2)′ such
that Ell(A) = ℰ .

Theorem 3.2 (T)

Let ℰ be an admissible, stable, weakly unperforated invariant with
G0 torsion-free. Then there exists a simple, stable C*-algebra A in
ASH(1)′ such that Ell(A) = ℰ .

Remark 3.3 (Unital version)

Let ℰ be an admissible, unital, weakly unperforated invariant.
Then there exists a simple, unital C*-algebra A in ASH(2)′ such
that Ell(A) = ℰ . If G0 is torsion-free, we can find A in ASH(1)′.

These algebras all have dr <∞, and are thus Z-stable.
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Appications

For this slide assume EC is true for the class C of simple, stably
finite, Z-stable, unital, nuclear, separable C*-algebras.

Corollary 3.4

Let A be in C. Then the following are equivalent:

A is in ASH(1)′

A is in ASH(1)

K0(A) is torsion-free

Corollary 3.5

Let A be in C. Then dimASH(A) = dimASH′(A) ≤ 2 and we can
detect the exact ASH-dimension as follows:

1.) dimASH(A) = 0 ⇔ K0(A) is a simple dimension group,
K1(A) = 0 and rA is a homeomorphism

2.) dimASH(A) ≤ 1 ⇔ K0(A) is torsion-free
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Proposition 3.6 (T)

Let A be a separable, type I C*-algebra with sr(A) = 1. Then
K0(A) is torsion-free.

Theorem 3.7 (T)

Let A be a separable, type I C*-algebra. TFAE:

sr(A) = 1

A is residually stably finite, and topdim(A) ≤ 1

Corollary 3.8

Let A be a separable, type I C*-algebra with dr(A) ≤ 1. Then
sr(A) = 1.

Question 3.9

Does every (simple) C*-algebra with dr(A) ≤ 1 have torsion-free
K0-group? Does sr(A) = 1 for a type I C*-algebra imply
dimASH(A) ≤ 1 (or at least dr(A) ≤ 1)?
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The integral Chern character for low-dimensional spaces.

The chern classes of vector bundles can be used to define
homomorphisms

ch0 : K 0(X )→ Hev(X ;ℚ) =
⊕
k≥0

H2k(X ;ℚ)

ch1 : K 1(X )→ Hodd(X ;ℚ) =
⊕
k≥0

H2k+1(X ;ℚ)

which become isomorphisms after tensoring with ℚ.

Theorem 4.1 (T)

Let X be a compact space of dimension ≤ 3. Then:

�0 : K 0(X )→ H0(X )⊕ H2(X ) is an isomorphism

�1 : K 1(X )→ H1(X )⊕ H3(X ) is an isomorphism
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Corollary 4.2

Let X be a compact space.

If dim(X ) ≤ 2, then K 1(X ) is torsion-free.

If dim(X ) ≤ 1, then K 0(X ) is torsion-free.

Corollary 4.3

If dimAH(A) ≤ 1, then K0(A) and K1(A) are torsion-free

If dimAH(A) ≤ 2, then K1(A) is torsion-free

It is possible that the converses hold (within the class of simple
AH-algebras of bounded dimension).
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Strategy for constructing C*-algebras with prescribed
invariant

To construct a (simple) C*-algebra with a prescribed Elliott
invariant ℰ we use roughly the following strategy (due to Elliott):

1 decompose ℰ as a direct limit ∼= lim−→(ℰk , �k+1,k) where the ℰk
are basic

2 construct C*-algebras Ak (building blocks) and
∗-homomorphisms 'k+1,k : Ak → Ak+1 such that
Ell(Ak) = ℰk and Ell('k+1,k) = �k+1,k .

3 the limit A := lim−→k
Ak already has Ell(A) = ℰ , but is not

necessarily simple. Deform the connecting maps 'k+1,k such
that the limit gets simple (while the invariant is unchanged)
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Theorem 4.4 (Effros-Handelman-Shen, Elliott, T)

Let G be a countable, ordered group. Then:

1.) G is unperforated with Riesz interpolation
⇔ G ∼= lim−→k

Gk and each Gk = ℤrk =
⊕rk

i=1(ℤ)

2.) G is weakly unperforated with Riesz interpolation
⇔ G ∼= lim−→k

G k and each G k =
⊕rk

i=1(ℤ⊕ ℤ[k,i ]) (for some
numbers [k , i ] ≥ 1)

Let G∗ = G0 ⊕ G1 be a countable, graded, ordered group. Then:

3.) G∗ is weakly unperforated with Riesz interpolation
⇔ G∗ ∼= lim−→k

G k
∗ and each

G k
∗ =

⊕rk
i=1((ℤ⊕ ℤ[k,i ])⊕str (ℤ⊕ ℤ[k,i ]))

4.) G∗ is weakly unperforated with Riesz interpolation and G0 is
torsion-free
⇔ G∗ ∼= lim−→k

G k
∗ and each G k

∗ =
⊕rk

i=1((ℤ)⊕str (ℤ[k,i ]))
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