Spectra of C* algebras, classification.

Eberhard Kirchberg

HU Berlin

Lect.2, Copenhagen, 09

Recall of basic facts from first lecture

- Recall of basic facts from first lecture
- 2 Strategy for coherent I.q-compact spaces.

- Recall of basic facts from first lecture
- 2 Strategy for coherent I.q-compact spaces.
- 3 Examples

- Recall of basic facts from first lecture
- Strategy for coherent I.q-compact spaces.
- 3 Examples
- Actions and Modules related to m.o.c. Cones
 - Actions of T0 spaces related to m.o.-convex cones
 - Hilbert A–B-modules versus m.o.c. Cones
 - Classification and reconstruction

Conventions and Notations

- Spaces P, X, Y, \cdots are second countable, algebras A, B, \ldots are separable, ...
- ... except corona spaces $\beta(P) \setminus P$, multiplier algebras $\mathcal{M}(B)$, and ideals of corona algebras $Q(B) := \mathcal{M}(B)/B$, ... as e.g., $Q(\mathbb{R}_+, B) := C_b(\mathbb{R}_+, B)/C_0(\mathbb{R}_+, B) \subset Q(SB)$.
- we use the naturally isomorphism $\mathcal{I}(A) \cong \mathbb{O}(\text{Prim}(A))$.
- Q denotes the Hilbert cube (with its coordinate-wise order).

The basic result was:

The basic result was:

A space X is homeomorphic to a primitive ideal space of an amenable C*-algebra A, if and only if,

The basic result was:

A space X is homeomorphic to a primitive ideal space of an amenable C*-algebra A,

if and only if,

there is a Polish I.c. space P and a continuous map $\pi\colon P\to X$ such that

 $\pi^{-1}: \mathbb{O}(X) \to \mathbb{O}(P)$ is injective (=: π is "pseudo-epimorphic") and

The basic result was:

A space X is homeomorphic to a primitive ideal space of an amenable C*-algebra A,

if and only if,

there is a Polish I.c. space P and a continuous map $\pi\colon P\to X$ such that

 $\pi^{-1}: \mathbb{O}(X) \to \mathbb{O}(P)$ is injective (=: π is "pseudo-epimorphic") and $(\bigcap_n \pi^{-1}(U_n))^\circ = \pi^{-1}((\bigcap_n U_n)^\circ)$ for each sequence $U_1, U_2, \ldots \in \mathbb{O}(X)$ (=: π is "pseudo-open").

The basic result was:

A space X is homeomorphic to a primitive ideal space of an amenable C*-algebra A,

if and only if,

there is a Polish I.c. space P and a continuous map $\pi\colon P\to X$ such that

 $\pi^{-1}: \mathbb{O}(X) \to \mathbb{O}(P)$ is injective (=: π is "pseudo-epimorphic") and $(\bigcap_n \pi^{-1}(U_n))^\circ = \pi^{-1}((\bigcap_n U_n)^\circ)$ for each sequence $U_1, U_2, \ldots \in \mathbb{O}(X)$ (=: π is "pseudo-open").

The algebra $A \otimes \mathcal{O}_2 \otimes \mathbb{K}$ is uniquely determined by X up to (unitarily homotopic) isomorphisms.

Notice: A continuous epimorphism $\pi: P \to X$ is **is not pseudo-open**.

There is **no pseudo-open** continuous epimorphism from the Cantor space $\{0,1\}^{\infty}$ onto the Hausdorff space [0,1].

Notice: A continuous epimorphism $\pi: P \to X$ is **is not pseudo-open**.

There is **no pseudo-open** continuous epimorphism from the Cantor space $\{0,1\}^{\infty}$ onto the Hausdorff space [0,1].

We call a map $\Psi \colon \mathbb{O}(X) \to \mathbb{O}(Y)$ "lower semi-continuous" if $(\bigcap_n \Psi(U_n))^\circ = \Psi((\bigcap_n U_n)^\circ)$ for each sequence $U_1, U_2, \ldots \in \mathbb{O}(X)$.

Notice: A continuous epimorphism $\pi: P \to X$ is **is not pseudo-open**.

There is **no pseudo-open** continuous epimorphism from the Cantor space $\{0,1\}^{\infty}$ onto the Hausdorff space [0,1].

We call a map $\Psi \colon \mathbb{O}(X) \to \mathbb{O}(Y)$ "lower semi-continuous" if $(\bigcap_n \Psi(U_n))^\circ = \Psi((\bigcap_n U_n)^\circ)$ for each sequence $U_1, U_2, \ldots \in \mathbb{O}(X)$. (Thus, π is pseudo-open, if and only if, π^{-1} is lower semi-continuous.)

Notice: A continuous epimorphism $\pi: P \to X$ is **is not pseudo-open**.

There is **no pseudo-open** continuous epimorphism from the Cantor space $\{0,1\}^{\infty}$ onto the Hausdorff space [0,1].

We call a map $\Psi \colon \mathbb{O}(X) \to \mathbb{O}(Y)$ "lower semi-continuous" if $(\bigcap_n \Psi(U_n))^\circ = \Psi((\bigcap_n U_n)^\circ)$ for each sequence $U_1, U_2, \ldots \in \mathbb{O}(X)$. (Thus, π is pseudo-open, if and only if, π^{-1} is lower semi-continuous.)

If one works with *closed sets*, then one has to replace intersections by unions and interiors by closures.

A subset C of X is "saturated" if $C = \operatorname{Sat}(C)$, where $\operatorname{Sat}(C)$ means the intersection of all $U \in \mathbb{O}(X)$ with $U \supset C$.

Definition

A sober T_0 space X is called "**coherent**" if the intersection $C_1 \cap C_2$ of two *saturated* quasi-compact subsets $C_1, C_2 \subset X$ is again quasi-compact.

A subset C of X is "saturated" if $C = \operatorname{Sat}(C)$, where $\operatorname{Sat}(C)$ means the intersection of all $U \in \mathbb{O}(X)$ with $U \supset C$.

Definition

A sober T_0 space X is called "**coherent**" if the intersection $C_1 \cap C_2$ of two *saturated* quasi-compact subsets $C_1, C_2 \subset X$ is again quasi-compact.

Next we give some partial results concerning **Question 4:** Is every (second-countable) *coherent* locally quasi-compact sober T_0 space X homeomorphic to the primitive ideal spaces Prim(A) of some *amenable A*?

Let X a locally quasi-compact sober T_0 space, $\mathcal{F}(X)$ the lattice of closed subsets $F \subset X$.

Definition

The topological space $\mathcal{F}(X)_{lsc}$ is the set $\mathcal{F}(X)$ with the Scott topology T_0 topology (or: **order topology**) that is **generated** by the complements

$$\mathcal{F}(X) \setminus [\emptyset, F] = \{G \in \mathcal{F}(X); G \cap U \neq \emptyset\} =: \mu_U$$

(where $U = X \setminus F$) of the intervals $[\emptyset, F]$ for all $F \in \mathcal{F}(X)$.

Let X a locally quasi-compact sober T_0 space, $\mathcal{F}(X)$ the lattice of closed subsets $F \subset X$.

Definition

The topological space $\mathcal{F}(X)_{lsc}$ is the set $\mathcal{F}(X)$ with the Scott topology T_0 topology (or: **order topology**) that is **generated** by the complements

$$\mathcal{F}(X) \setminus [\emptyset, F] = \{ G \in \mathcal{F}(X) ; G \cap U \neq \emptyset \} =: \mu_U$$

(where $U = X \setminus F$) of the intervals $[\emptyset, F]$ for all $F \in \mathcal{F}(X)$. The **Fell-Vietoris topology** is the topology, that is *generated* by the sets μ_U ($U \in \mathbb{O}(X)$) and the sets $\mu_C := \{G \in \mathcal{F}(X) \; ; \; G \cap C = \emptyset\}$ for all *quasi-compact* $C \subset X$. The space $\mathcal{F}(X)_{lsc}$ is a *coherent* second countable locally quasi-compact sober T_0 space.

The space $\mathcal{F}(X)_H$ is a compact Polish space.

The space $\mathcal{F}(X)_{lsc}$ is a *coherent* second countable locally quasi-compact sober T_0 space.

The space $\mathcal{F}(X)_H$ is a compact Polish space.

Definition

A map $f: X \to [0, \infty)$ is a **Dini function** if it is lower semi-continuous and $\sup f(F) = \inf_{\{s \in F_n\}} f(F_n)$ for every decreasing sequence $F_1 \supset F_2 \supset \cdots$ of closed subsets and $F = \bigcap_n F_n$.

The space $\mathcal{F}(X)_{lsc}$ is a *coherent* second countable locally quasi-compact sober T_0 space.

The space $\mathcal{F}(X)_H$ is a compact Polish space.

Definition

A map $f: X \to [0, \infty)$ is a **Dini function** if it is lower semi-continuous and $\sup f(F) = \inf_{\{s \in F_n\}} f(F_n)$ for every decreasing sequence $F_1 \supset F_2 \supset \cdots$ of closed subsets and $F = \bigcap_n F_n$.

There are several other definitions — e.g. by generalized Dini Lemma — that are equivalent for all sober spaces.

The space $\mathcal{F}(X)_{lsc}$ is a *coherent* second countable locally quasi-compact sober T_0 space.

The space $\mathcal{F}(X)_H$ is a compact Polish space.

Definition

A map $f: X \to [0, \infty)$ is a **Dini function** if it is lower semi-continuous and $\sup f(F) = \inf_{\{s \in F_n\}} f(F_n)$ for every decreasing sequence $F_1 \supset F_2 \supset \cdots$ of closed subsets and $F = \bigcap_n F_n$.

There are several other definitions — e.g. by generalized Dini Lemma — that are equivalent for all sober spaces.

For sober spaces X one has also that a function $f: X \to [0,1]$ is Dini, if and only if, $f: X \to [0,1]_{lsc}$ is continuous and the restriction $f: X \setminus f^{-1}(0) \to (0,1]_{lsc}$ is **proper**.

The ordered Hilbert cube \mathbb{Q} is nothing else $\mathcal{F}(Y)$ for $Y:=X_0 \uplus X_0 \uplus \cdots$ where $X_0:=(0,1]_{lsc}$. The Fell-Vietoris topology becomes just the ordinary Hausdorff topology on \mathbb{Q} .

The ordered Hilbert cube \mathbb{Q} is nothing else $\mathcal{F}(Y)$ for $Y:=X_0 \uplus X_0 \uplus \cdots$ where $X_0:=(0,1]_{lsc}$. The Fell-Vietoris topology becomes just the ordinary Hausdorff topology on \mathbb{Q} .

On the other hand, \mathbb{Q} (with Scott topology) is also the primitive ideal space of some unital amenable C^* -algebra, because \mathbb{Q}_{lsc} is the cartesian product $[0,1]_{lsc}$.

The ordered Hilbert cube $\mathbb Q$ is nothing else $\mathcal F(Y)$ for $Y:=X_0 \uplus X_0 \uplus \cdots$ where $X_0:=(0,1]_{\mathrm{lsc}}$. The Fell-Vietoris topology becomes just the ordinary Hausdorff topology on $\mathbb Q$.

On the other hand, \mathbb{Q} (with Scott topology) is also the primitive ideal space of some unital amenable C^* -algebra, because \mathbb{Q}_{lsc} is the cartesian product $[0,1]_{lsc}$.

If X is locally quasi-compact sober T_0 space, then a dense sequence g_1,g_2,\ldots in the Dini functions g on X with $\sup g(X)=1$ defines an order isomorphism $\iota\colon \mathcal{F}\to \mathbb{Q}$ onto a max-closed subset $\iota(\mathcal{F})$ of \mathbb{Q} . Indeed, $\iota(F):=(\sup g_1(F),\sup g_2(F),\ldots)\in \mathbb{Q}$ does the job, and $\iota(\emptyset)=0,\,\iota(X)=1$.

The ordered Hilbert cube $\mathbb Q$ is nothing else $\mathcal F(Y)$ for $Y:=X_0 \uplus X_0 \uplus \cdots$ where $X_0:=(0,1]_{\mathrm{lsc}}$. The Fell-Vietoris topology becomes just the ordinary Hausdorff topology on $\mathbb Q$.

On the other hand, \mathbb{Q} (with Scott topology) is also the primitive ideal space of some unital amenable C^* -algebra, because \mathbb{Q}_{lsc} is the cartesian product $[0,1]_{lsc}$.

If X is locally quasi-compact sober T_0 space, then a dense sequence g_1,g_2,\ldots in the Dini functions g on X with $\sup g(X)=1$ defines an order isomorphism $\iota\colon \mathcal{F}\to \mathbb{Q}$ onto a max-closed subset $\iota(\mathcal{F})$ of \mathbb{Q} . Indeed, $\iota(F):=(\sup g_1(F),\sup g_2(F),\ldots)\in \mathbb{Q}$ does the job, and $\iota(\emptyset)=0,\,\iota(X)=1$.

The image $\iota(\mathcal{F}(X))$ is closed in \mathbb{Q} (with Hausdorff topology) and ι defines an isomorphism from $\mathcal{F}(X)$ (with Fell-Vietoris topology) onto $\iota(\mathcal{F}(X))$.

In a T₀ space X (e.g. $X = [0,1]_{lsc}$) one has usually that quasi-G_{δ} subsets $Z \subset X$, — i.e., intersections of a sequence Z_1, Z_2, \ldots with $Z_n = U_n \cup F_n$ (U_n open, F_n closed) — are not G_{δ} subsets of X. But, for continuous map $\pi \colon P \to X$, one has that $\pi^{-1}(Z)$ is G_{δ}, hence is a Polish space.

In a T₀ space X (e.g. $X = [0,1]_{lsc}$) one has usually that quasi-G_{δ} subsets $Z \subset X$, — i.e., intersections of a sequence Z_1, Z_2, \ldots with $Z_n = U_n \cup F_n$ (U_n open, F_n closed) — are not G_{δ} subsets of X. But, for continuous map $\pi \colon P \to X$, one has that $\pi^{-1}(Z)$ is G_{δ}, hence is a Polish space.

The Scott-topology on $\mathbb Q$ induces the Scott-topology on $\mathcal F(X)$, in which X becomes an quasi- G_δ of $\mathcal F(X)$ and $\mathbb Q$. Since $\mathbb Q$ is a primitive ideal space, we get that there is a (not necessarily l.c.) Polish space P and an open and continuous surjection $\pi \colon P \to X$, such that the fibers $\pi^{-1}(x)$ are disjoint unions of infinite-dimensional projective spaces.

In a T₀ space X (e.g. $X = [0,1]_{lsc}$) one has usually that quasi-G_{δ} subsets $Z \subset X$, — i.e., intersections of a sequence Z_1, Z_2, \ldots with $Z_n = U_n \cup F_n$ (U_n open, F_n closed) — are not G_{δ} subsets of X. But, for continuous map $\pi \colon P \to X$, one has that $\pi^{-1}(Z)$ is G_{δ}, hence is a Polish space.

The Scott-topology on $\mathbb Q$ induces the Scott-topology on $\mathcal F(X)$, in which X becomes an quasi- G_δ of $\mathcal F(X)$ and $\mathbb Q$. Since $\mathbb Q$ is a primitive ideal space, we get that there is a (not necessarily l.c.) Polish space P and an open and continuous surjection $\pi\colon P\to X$, such that the fibers $\pi^{-1}(x)$ are disjoint unions of infinite-dimensional projective spaces.

In a more direct way one sees, that X has a Polish topology (induced from \mathbb{Q} with Hausdorff topology) and a continuous partial order on it with the property that the corresponding Scott topology is just the T_0 topology of X.

In this way $X \subset \overline{X}^H \setminus \{0\} \subset \mathcal{F}(X) \subset \mathbb{Q}$ as Polish spaces.

In this way $X \subset \overline{X}^H \setminus \{0\} \subset \mathcal{F}(X) \subset \mathbb{Q}$ as Polish spaces.

Below, we denote by $Y = \overline{X}^H \setminus \{\emptyset\} \subset \mathcal{F}(X) \setminus \{\emptyset\}$ the closure of X in $\mathbb{Q} \setminus \{0\}$.

In this way $X \subset \overline{X}^H \setminus \{0\} \subset \mathcal{F}(X) \subset \mathbb{Q}$ as Polish spaces.

Below, we denote by $Y = \overline{X}^H \setminus \{\emptyset\} \subset \mathcal{F}(X) \setminus \{\emptyset\}$ the closure of X in $\mathbb{Q} \setminus \{0\}$.

Proposition

The image $\eta(X) \cong X$ in $\mathcal{F}(X) \setminus \{\emptyset\}$ of a l.q-c. (second countable) sober T_0 space X is **closed** in $\mathcal{F}(X) \setminus \{\emptyset\}$ with respect to the Fell-Vietoris topology on $\mathcal{F}(X)$,

if and only if,

X is coherent, if and only if,

the set $\mathcal{D}(X)$ of Dini functions on X is **convex**, if and only if,

 $\mathcal{D}(X)$ is min-closed, if and only if,

 $\mathcal{D}(X)$ is multiplicatively closed.

Lemma

Each closed subset $F \subset \mathbb{Q}_H$ is a coherent sober subspace F_{lsc} of \mathbb{Q}_{lsc} . If $F = \bigcap_n F_n$ for sequence $F_1 \supset F_2 \supset \cdots$ in $\mathcal{F}(\mathbb{Q}_H)$, and if each $(F_n)_{lsc}$ is the primitive ideal space of an amenable C^* -algebra, then F_{lsc} is the primitive ideal space of an amenable C^* -algebra.

Lemma

Each closed subset $F \subset \mathbb{Q}_H$ is a coherent sober subspace F_{lsc} of \mathbb{Q}_{lsc} . If $F = \bigcap_n F_n$ for sequence $F_1 \supset F_2 \supset \cdots$ in $\mathcal{F}(\mathbb{Q}_H)$, and if each $(F_n)_{lsc}$ is the primitive ideal space of an amenable C^* -algebra, then F_{lsc} is the primitive ideal space of an amenable C^* -algebra.

Corollary

If there is a coherent sober l.c. space X that is not homeomorphic to the primitive ideal space of an amenable C^* -algebra, then there is $n \in \mathbb{N}$ and a finite union Y of (Hausdorff-closed) cubes in $[0,1]^n$ such that Y with induced order-topology is not the primitive ideal space of any amenable C^* -algebra.

I do not know if the following (Hausdorff) closed subset F of $[0,1]^2$ (with the coherent topology on F that is induced from $([0,1]_{lsc})^2$) is the primitive ideal space of an amenable C^* -algebra: F is the union of the segments $\overline{(0,0)(1,0)}$, $\overline{(1,0)(1,1)}$, $\overline{(1/2,1)(1,1)}$, and $\overline{(1/2,1/2)(1/2,1)}$.

A subspace $Z \subset [0,1]_{lsc}$ The *sober* subspaces Z of $[0,1]_{lsc}$ are all coherent and are primitive ideal spaces of amenable C^* -algebras, because the subsets $Z \cup \{\inf Z\}$ are order isomorphic to closed subsets of [0,1].

The saturated quasi-compact subsets of the cartesian product $([0,1]_{lsc})^n$ are the upward directed closed sets.

Examples of **non-coherent** and of **coherent** Prim(A):

Let X := Prim(A) for the C^* -algebra $A \subset C([0, 1], M_2)$ consisting of the continuous maps $h \colon [0, 1] \to M_2$ with $h(1) \in \Delta :=$ diagonal matrices.

Examples of **non-coherent** and of **coherent** Prim(A):

Let X := Prim(A) for the C^* -algebra $A \subset C([0, 1], M_2)$ consisting of the continuous maps $h \colon [0, 1] \to M_2$ with $h(1) \in \Delta :=$ diagonal matrices.

Then $X=[0,1]\cup_{\pi}\{2,3\}$ with $\pi(2):=\pi(3):=1$ (The point 1 is replaced by two points 2 and 3). We have $Y=[0,1]\cup\{2,3\}\subset\mathbb{R}$ with its ordinary Hausdorff topology for $Y\cong$ closure of X in \mathcal{F}_H (= \mathcal{F} with Fell-Vietoris topology). The Dini functions on X are given by the set of non-negative continuous functions $g\in C(Y)$ with $g(1)=\max(g(2),g(3))$. The closed subset F_1 of X that correponds to 1 is $F_1=\{2,3\}$.

Examples of **non-coherent** and of **coherent** Prim(A):

Let X := Prim(A) for the C^* -algebra $A \subset C([0,1], M_2)$ consisting of the continuous maps $h \colon [0,1] \to M_2$ with $h(1) \in \Delta :=$ diagonal matrices.

Then $X=[0,1]\cup_{\pi}\{2,3\}$ with $\pi(2):=\pi(3):=1$ (The point 1 is replaced by two points 2 and 3). We have $Y=[0,1]\cup\{2,3\}\subset\mathbb{R}$ with its ordinary Hausdorff topology for $Y\cong$ closure of X in \mathcal{F}_H (= \mathcal{F} with Fell-Vietoris topology). The Dini functions on X are given by the set of non-negative continuous functions $g\in C(Y)$ with $g(1)=\max(g(2),g(3))$. The closed subset F_1 of X that correponds to 1 is $F_1=\{2,3\}$.

The natural embedding of X into Y maps X onto $Y \setminus \{1\}$. Thus, the condition $g(1) = \max(g(2), g(3))$ reads as $\lim_{t \nearrow 1} g(t) = \max(g(2), g(3))$.

With this topology, the space Y is the primitive ideal space $Y \cong Prim(B)$ of a unital separable nuclear C^* -algebra B, as follows:

With this topology, the space Y is the primitive ideal space $Y\cong \operatorname{Prim}(B)$ of a unital separable nuclear C^* -algebra B, as follows: Let $D:=\mathbb{K}+(\mathbb{C}1\oplus\mathbb{C}1)\subset\mathcal{L}(\ell_2\oplus\ell_2)$. Then D is unital, and has three primitive ideals $1\cong\{0\},\,2\cong\mathbb{K}+(\mathbb{C}1\oplus0)$ and $3\cong\mathbb{K}+(0\oplus\mathbb{C})$ with topology as induced on $\{1,2,3\}\subset Y$ by Y_{lsc} .

With this topology, the space Y is the primitive ideal space $Y\cong \operatorname{Prim}(B)$ of a unital separable nuclear C^* -algebra B, as follows: Let $D:=\mathbb{K}+(\mathbb{C}1\oplus\mathbb{C}1)\subset\mathcal{L}(\ell_2\oplus\ell_2)$. Then D is unital, and has three primitive ideals $1\cong\{0\}, 2\cong\mathbb{K}+(\mathbb{C}1\oplus0)$ and $3\cong\mathbb{K}+(0\oplus\mathbb{C})$ with topology as induced on $\{1,2,3\}\subset Y$ by Y_{lsc} . (Notice that \mathbb{K} is not a prime ideal of D and recall that the *point* in $\operatorname{Prim}(D)$ given by a primitive ideal I of D has nothing to do with the complement of $\operatorname{Prim}(D)\setminus h(I)$).

With this topology, the space Y is the primitive ideal space $Y \cong Prim(B)$ of a unital separable nuclear C^* -algebra B, as follows: Let $D := \mathbb{K} + (\mathbb{C}1 \oplus \mathbb{C}1) \subset \mathcal{L}(\ell_2 \oplus \ell_2)$. Then D is unital, and has three primitive ideals $1 \cong \{0\}, 2 \cong \mathbb{K} + (\mathbb{C}1 \oplus 0)$ and $3 \cong \mathbb{K} + (0 \oplus \mathbb{C})$ with topology as induced on $\{1,2,3\} \subset Y$ by Y_{lsc} . (Notice that \mathbb{K} is not a prime ideal of D and recall that the point in Prim(D) given by a primitive ideal I of D has nothing to do with the complement of $Prim(D) \setminus h(I)$). Now take a unital embedding $\epsilon: D \hookrightarrow \mathcal{O}_2$ and consider the C^* -subalgebra B of $C([0,1],\mathcal{O}_2)$ of continuous maps $b\colon [0,1]\to\mathcal{O}_2$ with $b(1) \in \epsilon(D)$.

The Dini functions on Y_{lsc} are given by the continuous functions $g \in C(Y)_+$ with $g(1) \geq \max(g(2),g(3))$. It follows that $\mathcal{D}(Y_{lsc})$ is invariant under min (i.e., Y_{lsc} is *coherent*). Thus, $C(Y) = C^*(\mathcal{D}(Y_{lsc})) = C^*(\mathcal{D}(X)) \subset \ell_\infty(X)$.

The Dini functions on Y_{lsc} are given by the continuous functions $g \in C(Y)_+$ with $g(1) \geq \max(g(2),g(3))$. It follows that $\mathcal{D}(Y_{lsc})$ is invariant under min (i.e., Y_{lsc} is *coherent*). Thus, $C(Y) = C^*(\mathcal{D}(Y_{lsc})) = C^*(\mathcal{D}(X)) \subset \ell_\infty(X)$.

(Notice that $Y_{lsc} \setminus \{1\} = X$ as topological spaces.)

The Dini functions on Y_{lsc} are given by the continuous functions $g \in C(Y)_+$ with $g(1) \ge \max(g(2),g(3))$. It follows that $\mathcal{D}(Y_{lsc})$ is invariant under min (i.e., Y_{lsc} is *coherent*). Thus,

$$C(Y) = C^*(\mathcal{D}(Y_{\mathrm{lsc}})) = C^*(\mathcal{D}(X)) \subset \ell_{\infty}(X).$$

(Notice that $Y_{lsc} \setminus \{1\} = X$ as topological spaces.)

The natural continuous epimorphisms from Y onto Y_{lsc} , and from $Y \setminus \{1\}$ onto X are *not* pseudo-open. Indeed, the closure of $[0,1) = \bigcap_n [0,1-1/n]$ in Y (respectively in $Y \setminus \{1\}$) is not closed in Y_{lsc} , (respectively in X), but [0,1-1/n] is closed in X and Y_{lsc} for each $n \in \mathbb{N}$.

The Dini functions on Y_{lsc} are given by the continuous functions $g \in C(Y)_+$ with $g(1) \geq \max(g(2),g(3))$. It follows that $\mathcal{D}(Y_{lsc})$ is invariant under min (i.e., Y_{lsc} is *coherent*). Thus,

$$C(Y) = C^*(\mathcal{D}(Y_{\mathrm{lsc}})) = C^*(\mathcal{D}(X)) \subset \ell_{\infty}(X).$$

(Notice that $Y_{lsc} \setminus \{1\} = X$ as topological spaces.)

The natural continuous epimorphisms from Y onto Y_{lsc} , and from $Y \setminus \{1\}$ onto X are *not* pseudo-open. Indeed, the closure of $[0,1) = \bigcap_n [0,1-1/n]$ in Y (respectively in $Y \setminus \{1\}$) is not closed in Y_{lsc} , (respectively in X), but [0,1-1/n] is closed in X and Y_{lsc} for each $n \in \mathbb{N}$.

It follows, that $\mathcal{F}(Y_{lsc})_H \to \mathcal{F}(Y_{lsc})_{lsc}$ and $\mathcal{F}(X)_H \to \mathcal{F}(X)_{lsc}$ are not pseudo-open (even if we remove \emptyset).

The map ψ : $[0,1] \cup [4,5] \to X$ with $\psi(t) := \psi(4+t) := t$ for $t \in [0,1)$ and $\psi(1) := 2$, $\psi(5) := 3$ defines a continuous map from $[0,1] \cup [4,5]$ onto X that is pseudo-open.

The map ψ : $[0,1] \cup [4,5] \rightarrow X$ with $\psi(t) := \psi(4+t) := t$ for $t \in [0,1)$ and $\psi(1) := 2$, $\psi(5) := 3$ defines a continuous map from $[0,1] \cup [4,5]$ onto X that is pseudo-open.

The compression map $g \in C([0,1] \cup [4,5])_+ \to \widehat{g} \in \mathcal{D}(X) \subset C(Y)$ is given by $\widehat{g}(t) := \max(g(t), g(4+t))$ for $t \in [0,1]$ and $\widehat{g}(2) := g(1)$, $\widehat{g}(3) := g(5)$.

The map ψ : $[0,1] \cup [4,5] \to X$ with $\psi(t) := \psi(4+t) := t$ for $t \in [0,1)$ and $\psi(1) := 2$, $\psi(5) := 3$ defines a continuous map from $[0,1] \cup [4,5]$ onto X that is pseudo-open.

The compression map $g \in C([0,1] \cup [4,5])_+ \to \widehat{g} \in \mathcal{D}(X) \subset C(Y)$ is given by $\widehat{g}(t) := \max(g(t), g(4+t))$ for $t \in [0,1]$ and $\widehat{g}(2) := g(1)$, $\widehat{g}(3) := g(5)$.

Since Y_{lsc} is the primitive ideal space of a separable nuclear C^* -algebra, there is also a compact metric space Z and a pseudo-open and pseudo-epimorphic map from Z into Y.

The map ψ : $[0,1] \cup [4,5] \to X$ with $\psi(t) := \psi(4+t) := t$ for $t \in [0,1)$ and $\psi(1) := 2$, $\psi(5) := 3$ defines a continuous map from $[0,1] \cup [4,5]$ onto X that is pseudo-open.

The compression map $g \in C([0,1] \cup [4,5])_+ \to \widehat{g} \in \mathcal{D}(X) \subset C(Y)$ is given by $\widehat{g}(t) := \max(g(t), g(4+t))$ for $t \in [0,1]$ and $\widehat{g}(2) := g(1)$, $\widehat{g}(3) := g(5)$.

Since Y_{lsc} is the primitive ideal space of a separable nuclear C^* -algebra, there is also a compact metric space Z and a pseudo-open and pseudo-epimorphic map from Z into Y.

(We have no explicite construction for Z, but it seems likely, that one can take a suitable subset Z of $[0,1] \times \{1,2,3\}$ or of $[0,1] \times \{0,1,1/n,1-1/n; n \in \mathbb{N}\}.$)

The spaces X and Y_{lsc} are subspaces of $[0, 1]_{lsc}^3$.

The spaces X and Y_{lsc} are subspaces of $[0,1]^3_{lsc}$. Indeed, Y_{lsc} is naturally homeomorphic to the subspace $\{(0,1,0),(0,0,1),(1-t,t,t);\ t\in[0,1]\}$, and X is homeomorphic to the subspace $\{(0,1,0),(0,0,1),(1-t,t,t);\ t\in[0,1)\}$ of $[0,1]^3_{lsc}$.

The spaces X and Y_{lsc} are subspaces of $[0,1]_{lsc}^3$. Indeed, Y_{lsc} is naturally homeomorphic to the subspace $\{(0,1,0),(0,0,1),(1-t,t,t);\ t\in[0,1]\}$, and X is homeomorphic to the subspace $\{(0,1,0),(0,0,1),(1-t,t,t);\ t\in[0,1)\}$ of $[0,1]_{lsc}^3$.

Example of quasi-open and quasi-epimorphic continuous map that is not surjective (an is not open):

Take $\pi: (0,1) \to (0,1]_{lsc}$ with $\pi(t) := t$.

Definition (Actions of T0 spaces)

An increasing map $\Psi \colon \mathbb{O}(X) \to \mathcal{I}(A)$ is called an **action** of X on A.

Definition (Actions of T0 spaces)

An increasing map $\Psi \colon \mathbb{O}(X) \to \mathcal{I}(A)$ is called an **action** of X on A.

Notations for open $U \subset X$, closed $F \subset X$ and $a \in A$:

$$A(U) := \Psi(U), A|F := A/\Psi(X \setminus F), \text{ and } a|F := a + \psi(X \setminus F) \in A|F.$$

Definition (Actions of T0 spaces)

An increasing map $\Psi \colon \mathbb{O}(X) \to \mathcal{I}(A)$ is called an **action** of X on A.

Notations for open $U \subset X$, closed $F \subset X$ and $a \in A$:

$$A(U) := \Psi(U), A|F := A/\Psi(X \setminus F), \text{ and } a|F := a + \psi(X \setminus F) \in A|F.$$

The action Ψ is *lower semi-continuous* if the functions

$$x \in X \mapsto ||a|\{x\}||$$
 are l.s.c. on X for all $a \in A$.

(Equivalently:
$$\Psi((\bigcap_n U_n)^\circ) = \bigcap_n \Psi(U_n)$$
 for $U_n \in \mathbb{O}(X)$.)

Definition (Actions of T0 spaces)

An increasing map $\Psi \colon \mathbb{O}(X) \to \mathcal{I}(A)$ is called an **action** of X on A.

Notations for open $U \subset X$, closed $F \subset X$ and $a \in A$:

$$A(U) := \Psi(U), A|F := A/\Psi(X \setminus F), \text{ and } a|F := a + \psi(X \setminus F) \in A|F.$$

The action Ψ is *lower semi-continuous* if the functions

$$x \in X \mapsto ||a|\{x\}||$$
 are l.s.c. on X for all $a \in A$.

(Equivalently:
$$\Psi((\bigcap_n U_n)^\circ) = \bigcap_n \Psi(U_n)$$
 for $U_n \in \mathbb{O}(X)$.)

If
$$\Psi(\bigcup_n U_n) = \overline{\sum_n \Psi(U_n)}$$
 for $U_n \in \mathbb{O}(X)$ (respectively for

 $U_1 \subset U_2 \subset \cdots$), then the action Ψ is called *upper* s.c. (respectively *monotone upper* s.c.).

Definition (Actions of T0 spaces)

An increasing map $\Psi \colon \mathbb{O}(X) \to \mathcal{I}(A)$ is called an **action** of X on A.

Notations for open $U \subset X$, closed $F \subset X$ and $a \in A$:

$$A(U) := \Psi(U), A|F := A/\Psi(X \setminus F), \text{ and } a|F := a + \psi(X \setminus F) \in A|F.$$

The action Ψ is *lower semi-continuous* if the functions

$$x \in X \mapsto ||a| \overline{\{x\}}||$$
 are l.s.c. on X for all $a \in A$.

(Equivalently:
$$\Psi((\bigcap_n U_n)^\circ) = \bigcap_n \Psi(U_n)$$
 for $U_n \in \mathbb{O}(X)$.)

If
$$\Psi(\bigcup_n U_n) = \overline{\sum_n \Psi(U_n)}$$
 for $U_n \in \mathbb{O}(X)$ (respectively for

 $U_1 \subset U_2 \subset \cdots$), then the action Ψ is called *upper* s.c. (respectively *monotone upper* s.c.).

 Ψ is non-degnerate if $\Psi(\emptyset) = \{0\}$ and $\Psi^{-1}(A) = \{X\}$

Definition (Actions of T0 spaces)

An increasing map $\Psi \colon \mathbb{O}(X) \to \mathcal{I}(A)$ is called an **action** of X on A.

Notations for open $U \subset X$, closed $F \subset X$ and $a \in A$:

$$A(U) := \Psi(U), A|F := A/\Psi(X \setminus F), \text{ and } a|F := a + \psi(X \setminus F) \in A|F.$$

The action Ψ is *lower semi-continuous* if the functions

$$x \in X \mapsto ||a|\{x\}||$$
 are l.s.c. on X for all $a \in A$.

(Equivalently:
$$\Psi((\bigcap_n U_n)^\circ) = \bigcap_n \Psi(U_n)$$
 for $U_n \in \mathbb{O}(X)$.)

If
$$\Psi(\bigcup_n U_n) = \overline{\sum_n \Psi(U_n)}$$
 for $U_n \in \mathbb{O}(X)$ (respectively for

 $U_1 \subset U_2 \subset \cdots$), then the action Ψ is called *upper* s.c. (respectively *monotone upper* s.c.).

$$\Psi$$
 is non-degnerate if $\Psi(\emptyset) = \{0\}$ and $\Psi^{-1}(A) = \{X\}$

In case of l.s.c. actions one can take $X' := (\bigcap_{U \in \Psi^{-1}(A)} U)^{\circ}$ and $A' := A/\Psi(\emptyset)$ to get non-degenerate actions.

Example 1: X locally compact Hausdorff and A a $C_0(X)$ -algebra. Then $\Psi(U) := C_0(U)A$ defines an upper s.c. action of X on A. This action is also *lower* s.c., iff, A is the algebra of continuous sections (zero at ∞) of a continuous field over X.

Example 1: X locally compact Hausdorff and A a $C_0(X)$ -algebra. Then $\Psi(U) := C_0(U)A$ defines an upper s.c. action of X on A. This action is also *lower* s.c., iff, A is the algebra of continuous sections (zero at ∞) of a continuous field over X.

Example 2: Let X = Prim(B) then $\Psi_B(U) := \bigcap_{J \notin U} J$ is a lattice isomorphism from $\mathbb{O}(X)$ onto $\mathcal{I}(B)$. This Ψ_B is the *natural* action of Prim(B) on B.

Example 1: X locally compact Hausdorff and A a $C_0(X)$ -algebra. Then $\Psi(U) := C_0(U)A$ defines an upper s.c. action of X on A. This action is also *lower* s.c., iff, A is the algebra of continuous sections (zero at ∞) of a continuous field over X.

Example 2: Let X = Prim(B) then $\Psi_B(U) := \bigcap_{J \notin U} J$ is a lattice isomorphism from $\mathbb{O}(X)$ onto $\mathcal{I}(B)$. This Ψ_B is the *natural* action of Prim(B) on B.

Example 3: If $S \subset CP(A, B)$ and X := Prim(B), then, using the inverse of the natural action Ψ_B , we can define closed ideas $\Psi(U)$ of A by

$$\Psi_{\mathcal{S}}(U)_{+}:=\left\{a\in A;\ T(c^{*}ac)\in \Psi_{B}(U),\ \text{for all}\ T\in \mathcal{S},\ c\in A\right\}.$$

I.e., for $J \triangleleft B$, $\Psi_{\mathcal{S}}(J)$ is the maximal closed ideal I of A with $T(I) \subset J$ for all $T \in \mathcal{S}$.

The action $\Psi_{\mathcal{S}}$ is lower s.c. $\Psi_{\mathcal{S}}$ is non-degenerate, iff, \mathcal{S} is non-degenerate in sense of following Definition.

Definition (Non-degenerate sets of c.p. maps)

We call a subset $S \subset CP(A, B)$ non-degenerate, if the ideal generated by $\{T(a); a \in A, T \in S\}$ is dense in B, and $a \in A_+$ and $T(a) = 0 \ \forall T \in S$ implies a = 0.

The action $\Psi_{\mathcal{S}}$ is lower s.c. $\Psi_{\mathcal{S}}$ is non-degenerate, iff, \mathcal{S} is non-degenerate in sense of following Definition.

Definition (Non-degenerate sets of c.p. maps)

We call a subset $S \subset CP(A, B)$ non-degenerate, if the ideal generated by $\{T(a); a \in A, T \in S\}$ is dense in B, and $a \in A_+$ and $T(a) = 0 \ \forall T \in S$ implies a = 0.

Example 4: If \mathcal{H} is a Hilbert B-module and $d: A \to \mathcal{L}(\mathcal{H})$ is a *-representation, then one can consider the set \mathcal{S} of B-valued coefficients $T: a \mapsto \langle d(a)y, y \rangle \in B$ for $y \in \mathcal{H}$. The action $\Psi_{\mathcal{S}} \colon \mathcal{I}(B) \to \mathcal{I}(A)$ of Example 3 has the property, that $\Psi_{\mathcal{S}}(J)$ is the kernel of the (induced) representation $[d] \colon A \to \mathcal{L}(\mathcal{H}/\mathcal{H}J)$.

A subset $C \subset CP(A, B)$ is a matricially operator-convex cone (m.o.c.c.), if

(i) C is a closed convex subcone of CP(A, B, and

A subset $C \subset CP(A, B)$ is a matricially operator-convex cone (m.o.c.c.), if

- (i) C is a closed convex subcone of CP(A, B, and
- (ii) for $V \in \mathcal{C}$, $a_1, \ldots, a_n \in A$ and $b_1, \ldots, b_n \in B$, the map $W \colon a \in A \mapsto \sum_{j,k} b_j^* V(a_j^* a a_k) b_k$ is in \mathcal{C} .

A subset $C \subset CP(A, B)$ is a matricially operator-convex cone (m.o.c.c.), if

- (i) C is a closed convex subcone of CP(A, B, and
- (ii) for $V \in \mathcal{C}$, $a_1, \ldots, a_n \in A$ and $b_1, \ldots, b_n \in B$, the map $W \colon a \in A \mapsto \sum_{j,k} b_j^* V(a_j^* a a_k) b_k$ is in \mathcal{C} .

 \mathcal{C} is non-degenerate if \mathcal{C} is faithful on A_+ and $\bigcup_{V \in \mathcal{C}} V(A)$ is dense in B.

A subset $C \subset CP(A, B)$ is a matricially operator-convex cone (m.o.c.c.), if

- (i) C is a closed convex subcone of CP(A, B, and
- (ii) for $V \in \mathcal{C}$, $a_1, \ldots, a_n \in A$ and $b_1, \ldots, b_n \in B$, the map $W \colon a \in A \mapsto \sum_{j,k} b_j^* V(a_j^* a a_k) b_k$ is in \mathcal{C} .

 \mathcal{C} is non-degenerate if \mathcal{C} is faithful on A_+ and $\bigcup_{V \in \mathcal{C}} V(A)$ is dense in B. Can define the m.o.c.c. $\mathcal{C}(\mathcal{S})$ generated by a subset $\mathcal{S} \subset \mathsf{CP}(A,B)$, because intersections $\mathcal{C} := \bigcap_{\alpha} \mathcal{C}_{\alpha}$ of families of m.o.c. cones $\mathcal{C}_{\alpha} \subset \mathsf{CP}(A,B)$ are again a m.o.c. cones.

A subset $C \subset CP(A, B)$ is a matricially operator-convex cone (m.o.c.c.), if

- (i) C is a closed convex subcone of CP(A, B, and
- (ii) for $V \in \mathcal{C}$, $a_1, \ldots, a_n \in A$ and $b_1, \ldots, b_n \in B$, the map $W \colon a \in A \mapsto \sum_{j,k} b_j^* V(a_j^* a a_k) b_k$ is in \mathcal{C} .

 \mathcal{C} is non-degenerate if \mathcal{C} is faithful on A_+ and $\bigcup_{V \in \mathcal{C}} V(A)$ is dense in B. Can define the m.o.c.c. $\mathcal{C}(\mathcal{S})$ generated by a subset $\mathcal{S} \subset \mathsf{CP}(A,B)$, because intersections $\mathcal{C} := \bigcap_{\alpha} \mathcal{C}_{\alpha}$ of families of m.o.c. cones $\mathcal{C}_{\alpha} \subset \mathsf{CP}(A,B)$ are again a m.o.c. cones. Allows to define e.g. the m.o.c. cones $\mathcal{C}_2 \circ \mathcal{C}_1 \subset \mathsf{CP}(A,C)$ and $\mathcal{C}_1 \otimes \mathcal{C}_3 \subset \mathsf{CP}(A \otimes E,B \otimes F)$ by putting $\mathcal{S} = \{W \circ V \; | \; V \in \mathcal{C}_1, \; W \in \mathcal{C}_2\}$ (respectively $\mathcal{S} = \{V \otimes W \; | \; V \in \mathcal{C}_1, \; W \in \mathcal{C}_3\}$) for m.o.c. cones $\mathcal{C}_1 \subset \mathsf{CP}(A,B)$, $\mathcal{C}_2 \subset \mathsf{CP}(B,C)$ and $\mathcal{C}_3 \subset \mathsf{CP}(E,F)$.

Recall that (non-degenerate) m.o.c. cones $\mathcal{C} \subset \text{define}$ (non-degenerate) lower s.c. actions $\Psi_{\mathcal{C}} \colon \mathcal{I}(B) \cong \mathbb{O}(\text{Prim}(B)) \to \mathcal{I}(A)$.

Recall that (non-degenerate) m.o.c. cones $\mathcal{C} \subset \text{define}$ (non-degenerate) lower s.c. actions $\Psi_{\mathcal{C}} \colon \mathcal{I}(B) \cong \mathbb{O}(\text{Prim}(B)) \to \mathcal{I}(A)$.

Let F_{∞} free group, $E:=C^*(F_{\infty})$, and let $\mathcal{C}':=\mathcal{C}\otimes^{\max}\mathcal{C}(\mathrm{id})\subset$ denote the m.o.c. cone in $\mathsf{CP}(A\otimes^{\max}E,B\otimes^{\max}E)$ that is generated by $\mathcal{S}=\{V\otimes\mathrm{id}\,;\,\,V\in\mathcal{C}\}$. Let $\Psi'\colon\mathcal{I}(B\otimes^{\max}E)\to\mathcal{I}(A\otimes^{\max}E)$ the action corresponding to \mathcal{C}' .

Recall that (non-degenerate) m.o.c. cones $\mathcal{C} \subset \text{define}$ (non-degenerate) lower s.c. actions $\Psi_{\mathcal{C}} \colon \mathcal{I}(B) \cong \mathbb{O}(\text{Prim}(B)) \to \mathcal{I}(A)$.

Let F_{∞} free group, $E:=C^*(F_{\infty})$, and let $\mathcal{C}':=\mathcal{C}\otimes^{\max}\mathcal{C}(\mathrm{id})\subset$ denote the m.o.c. cone in $\mathsf{CP}(A\otimes^{\max}E,B\otimes^{\max}E)$ that is generated by $\mathcal{S}=\{V\otimes\mathrm{id}\,;\,\,V\in\mathcal{C}\}$. Let $\Psi'\colon\mathcal{I}(B\otimes^{\max}E)\to\mathcal{I}(A\otimes^{\max}E)$ the action corresponding to \mathcal{C}' . There is a separation result as follows:

Theorem (Separation)

If $C \subset \mathsf{CP}(A,B)$ is given, and the action Ψ' is defined as above, then $V \in \mathsf{CP}(A,B)$ is in C, if and only if, $(V \otimes \mathsf{id})(\Psi'(J)) \subset J$ for all $J \in \mathcal{I}(B \otimes^{\mathsf{max}} E)$.

Recall that (non-degenerate) m.o.c. cones $\mathcal{C} \subset \text{define}$ (non-degenerate) lower s.c. actions $\Psi_{\mathcal{C}} \colon \mathcal{I}(B) \cong \mathbb{O}(\text{Prim}(B)) \to \mathcal{I}(A)$.

Let F_{∞} free group, $E:=C^*(F_{\infty})$, and let $\mathcal{C}':=\mathcal{C}\otimes^{\max}\mathcal{C}(\mathrm{id})\subset$ denote the m.o.c. cone in $\mathsf{CP}(A\otimes^{\max}E,B\otimes^{\max}E)$ that is generated by $\mathcal{S}=\{V\otimes\mathrm{id}\,;\ V\in\mathcal{C}\}$. Let $\Psi'\colon\mathcal{I}(B\otimes^{\max}E)\to\mathcal{I}(A\otimes^{\max}E)$ the action corresponding to \mathcal{C}' . There is a separation result as follows:

Theorem (Separation)

If $\mathcal{C} \subset \mathsf{CP}(A,B)$ is given, and the action Ψ' is defined as above, then $V \in \mathsf{CP}(A,B)$ is in \mathcal{C} , if and only if, $(V \otimes \mathsf{id})(\Psi'(J)) \subset J$ for all $J \in \mathcal{I}(B \otimes^{\mathsf{max}} E)$.

Corollary (Cones determined by its action, see Example 3)

If B is nuclear, or if A is exact and $\mathcal{C} \subset \mathsf{CP}_{\mathsf{nuc}}(A,B)$, then, for $V \in \mathsf{CP}_{\mathsf{nuc}}(A,B)$ holds: $V \in \mathcal{C}$ iff $V(\Psi_{\mathcal{C}}(J)) \subset J$ for all $J \triangleleft B$.

Hilbert A-B-modules versus m.o.c. cones.

We say that a Hilbert A–B-module (given by \mathcal{H}_B and *-morphism $d: A \to \mathcal{L}(\mathcal{H}_B)$) is \mathcal{C} -compatible if the B-valued coefficient maps $a \mapsto \langle d(a)y, y \rangle$ are in \mathcal{C} for all $y \in \mathcal{H}_B$.

Hilbert A-B-modules versus m.o.c. cones.

We say that a Hilbert A–B-module (given by \mathcal{H}_B and *-morphism $d: A \to \mathcal{L}(\mathcal{H}_B)$) is \mathcal{C} -compatible if the B-valued coefficient maps $a \mapsto \langle d(a)y, y \rangle$ are in \mathcal{C} for all $y \in \mathcal{H}_B$. The class of \mathcal{C} -compatible Hilbert A–B-modules is stable under following operations:

- (i) Isometric A-B-module morphisms,
- (ii) (infinite) Hilbert A-B-module sums, and
- (iii) passage to Hilbert A-B-submodules.

Hilbert A-B-modules versus m.o.c. cones.

We say that a Hilbert A–B-module (given by \mathcal{H}_B and *-morphism $d: A \to \mathcal{L}(\mathcal{H}_B)$) is \mathcal{C} -compatible if the B-valued coefficient maps $a \mapsto \langle d(a)y, y \rangle$ are in \mathcal{C} for all $y \in \mathcal{H}_B$. The class of \mathcal{C} -compatible Hilbert A–B-modules is stable under following operations:

- (i) Isometric A-B-module morphisms,
- (ii) (infinite) Hilbert A-B-module sums, and
- (iii) passage to Hilbert A-B-submodules.

Proposition (Modules versus Cones, see Example 4)

The relation between m.o.c. cones $\mathcal{C} \subset \mathsf{CP}(A,B)$ and the family of \mathcal{C} -compatible Hilbert A–B-modules, is a bijection between m.o.c. cones and all families of Hilbert A–B-modules that are invariant under the operations (i)–(iii) above.

Theorem (Existence of h_0)

 $C(h_0) = CP_{rn}(Prim(B); A, B).$

Suppose that A and B are stable, A exact and B strongly purely infinite, and that $\Psi \colon \mathbb{O}(\mathsf{Prim}(B)) \to \mathcal{I}(A)$ is a non-degenerate action of $\mathsf{Prim}(B)$ on A lower s.c. and monotone upper s.c. Then there is a non-degenerate nuclear monomorphism $h_0 \colon A \to B$ such that $h_0 \oplus h_0$ is unitarily equivalent to h_0 , and

Theorem (Existence of h_0)

Suppose that A and B are stable, A exact and B strongly purely infinite, and that $\Psi \colon \mathbb{O}(\mathsf{Prim}(B)) \to \mathcal{I}(A)$ is a non-degenerate action of $\mathsf{Prim}(B)$ on A lower s.c. and monotone upper s.c. Then there is a non-degenerate nuclear monomorphism $h_0 \colon A \to B$ such that $h_0 \oplus h_0$ is unitarily equivalent to h_0 , and $\mathcal{C}(h_0) = \mathsf{CP}_{rn}(\mathsf{Prim}(B); A, B)$.

Thus $[Hom_{nuc}(Prim(B); A, B) \oplus h_0]_{u(t)} \cong KK(Prim(B); A, B)$.

Theorem (Existence of h_0)

Suppose that A and B are stable, A exact and B strongly purely infinite, and that $\Psi \colon \mathbb{O}(\mathsf{Prim}(B)) \to \mathcal{I}(A)$ is a non-degenerate action of $\mathsf{Prim}(B)$ on A lower s.c. and monotone upper s.c.

Then there is a non-degenerate nuclear monomorphism $h_0: A \to B$ such that $h_0 \oplus h_0$ is unitarily equivalent to h_0 , and $\mathcal{C}(h_0) = \mathsf{CP}_{rn}(\mathsf{Prim}(B); A, B)$.

Thus $[\mathsf{Hom}_\mathsf{nuc}(\mathsf{Prim}(B); A, B) \oplus h_0]_{u(t)} \cong \mathsf{KK}(\mathsf{Prim}(B); A, B).$

Corollary (lifting of *G*-actions on Prim(*A*))

If A is nuclear, stable and $A \cong A \otimes \mathcal{O}_2$, then every continuous action $\widehat{\alpha} \colon G \to \operatorname{Homeo}(\operatorname{Prim}(A))$ lifts to an continuous action $\alpha \colon G \to \operatorname{Aut}(A)$ on A.

The proof needs two "reconstruction theorems":

Theorem (Reconstruction, H.H.,E.K.)

Suppose that A is a nuclear and stable, that Ω is a sup–inf closed sub-lattice of $\mathcal{I}(A)\cong \mathbb{O}(\mathsf{Prim}(A))$ with $\mathsf{Prim}(A),\emptyset\in \Omega$. Then there is a non-degenerate *-monomorphism $H_0\colon A\to \mathcal{M}(A)$ with following properties:

- (i) The infinite repeat $\delta_{\infty} \circ H_0$ is unitarily equivalent to H_0 .
- (ii) For every $U \in \mathbb{O}(\text{Prim}(A))$ holds $H_0(J(V)) = H_0(A) \cap \mathcal{M}(A, J(U))$ where $V \in \Omega$ is given by $V = \bigcup \{W \in \Omega : W \subset U\}.$

Theorem (Reconstruction, H.H.,E.K.)

Suppose that A is a nuclear and stable, that Ω is a sup–inf closed sub-lattice of $\mathcal{I}(A)\cong \mathbb{O}(\mathsf{Prim}(A))$ with $\mathsf{Prim}(A),\emptyset\in \Omega$. Then there is a non-degenerate *-monomorphism $H_0\colon A\to \mathcal{M}(A)$ with following properties:

- (i) The infinite repeat $\delta_{\infty} \circ H_0$ is unitarily equivalent to H_0 .
- (ii) For every $U \in \mathbb{O}(\text{Prim}(A))$ holds $H_0(J(V)) = H_0(A) \cap \mathcal{M}(A, J(U))$ where $V \in \Omega$ is given by $V = \bigcup \{W \in \Omega : W \subset U\}.$

The H_0 is uniquely determined up to unitary homotopy.

The Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{H}}$ of the Hilbert A-A-module $\mathcal{H}:=(A,H_0)$ is stable and strongly purely infinite; and it is the same as the C^* -Fock algebra $\mathcal{F}(\mathcal{H})$ of \mathcal{H} .

The natural embedding of A into $\mathcal{O}_{\mathcal{H}}$ defines a lattice isomorphism from Ω onto $\mathbb{O}(\mathsf{Prim}(\mathcal{O}_{\mathcal{H}}))$ and a $\mathsf{KK}(\Omega;\cdot,\cdot)$ -equivalence.

Theorem (*G*-equivariant reconstruction)

If a locally compact group G acts on A by $\alpha \colon G \to \operatorname{Aut}(A)$ with $\alpha(g)(J) \in \Omega$ for all $J \in \Omega$, then H_0 (in the Reconstruction theorem) can be found such that H_0 is G-equivariant, i.e., there is an action $\gamma \colon G \to \operatorname{Aut}(A)$ of G on A that is outer conjugate to α , such that

$$\gamma(g)\left(H_0(a)b\right)=H_0\left(\gamma(g)(a)\right)\gamma(g)(b).$$

Theorem (*G*-equivariant reconstruction)

If a locally compact group G acts on A by $\alpha \colon G \to \operatorname{Aut}(A)$ with $\alpha(g)(J) \in \Omega$ for all $J \in \Omega$, then H_0 (in the Reconstruction theorem) can be found such that H_0 is G-equivariant, i.e., there is an action $\gamma \colon G \to \operatorname{Aut}(A)$ of G on A that is outer conjugate to α , such that

$$\gamma(g)(H_0(a)b) = H_0(\gamma(g)(a))\gamma(g)(b)$$
.

Then G acts on $\mathcal{O}_{\mathcal{H}}$ such that that $\iota \colon A \hookrightarrow \mathcal{O}_{\mathcal{H}}$ defines a $\mathsf{KK}^{G}(\Omega; \cdot, \cdot)$ -equivalence from A into $\mathcal{O}_{\mathcal{H}}$ (w.r.t. γ on A).

Theorem (*G*-equivariant reconstruction)

If a locally compact group G acts on A by $\alpha\colon G\to \operatorname{Aut}(A)$ with $\alpha(g)(J)\in\Omega$ for all $J\in\Omega$, then H_0 (in the Reconstruction theorem) can be found such that H_0 is G-equivariant,

i.e., there is an action $\gamma \colon G \to \operatorname{Aut}(A)$ of G on A that is outer conjugate to α , such that

$$\gamma(g)\left(H_0(a)b\right)=H_0\left(\gamma(g)(a)\right)\gamma(g)(b).$$

Then G acts on $\mathcal{O}_{\mathcal{H}}$ such that that $\iota \colon A \hookrightarrow \mathcal{O}_{\mathcal{H}}$ defines a $\mathsf{KK}^{\mathsf{G}}(\Omega;\cdot,\cdot)$ -equivalence from A into $\mathcal{O}_{\mathcal{H}}$ (w.r.t. γ on A).

If A is of type I, then $\mathcal{O}_{\mathcal{H}}$ is a \mathbb{Z} -crossed product of an inductive limit of type I C^* -algebras by an automorphism.