A noncommutative pointwise ergodic theorem for amenable groups

L. Cadilhac joint work with S. Wang (Harbin)

IMJ-PRG, Paris

2022, July 3

The starting point

 (Ω, μ) a measure space $\mathcal{T} : \Omega \to \Omega$ measure preserving

Theorem (Birkhoff)

Let $p \in [1,\infty)$ and $f \in L_p(\Omega)$ then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n-1}f(T^n\omega)=\widehat{f}(\omega) \quad \text{a.e.}$$

where \hat{f} is a *T*-invariant function.

- $(\Omega, \mu) \rightsquigarrow (\mathcal{M}, \tau)$ \mathcal{M} a vNa, τ a normal semifinite faithful positive trace
- *T* → *G* a locally compact **amenable** group of transformations acting by positive trace preserving contractions on (*M*, *τ*)

Pointwise convergence

Almost uniform convergence

Let $p \in (0, \infty]$. Let $(x_n)_{n \ge 0} \in L_p(\mathcal{M})$ and $x \in L_p(\mathcal{M})$. We say that (x_n) converges **almost uniformly** (a.u.) to x if for any $\varepsilon > 0$ there exists a projection $e \in \mathcal{M}$ such that

$$\tau(1-e) \leq \varepsilon \quad \text{and} \quad \|e(x_n-x)\|_{\infty} \to 0.$$

We say that (x_n) converges **bilaterally almost uniformly** (b.a.u.) if

$$\tau(1-e) \leq \varepsilon \quad \text{and} \quad \|e(x_n-x)e\|_{\infty} \to 0.$$

Theorem (Lance '76)

Let T be a *-automorphism of a von Neumann algebra \mathcal{M} preserving a normal faithful state ρ . Then for any $x \in \mathcal{M}$

$$\frac{1}{n}\sum_{i=0}^{n-1}T^{i}(x)\rightarrow \widehat{x} \quad \text{a.u.}$$

p-integrability

Noncommutative L_p -spaces Let $p \in (0, \infty)$, $x \in \mathcal{M}$

$$\|x\|_{p} = \tau(|x|^{p})^{1/p} \quad L_{p}(\mathcal{M},\tau) = \overline{\left\{x \in \mathcal{M} : \|x\|_{p} < \infty\right\}}$$

 $L_1(\mathcal{M})=\mathcal{M}_*$, $L_\infty(\mathcal{M})=\mathcal{M}$

Theorem (Junge, Xu '07)

Let T be a positive trace preserving contraction on \mathcal{M} . Then for any $p \in [1, \infty)$ and $x \in L_p(\mathcal{M})$

$$\frac{1}{n}\sum_{i=1}^{n-1}T^i(x)\to \widehat{x} \quad \text{b.a.u for } p\leq 2 \text{ and a.u. for } p>2.$$

Ergodic averages

G - locally compact second countable amenable group m - right invariant Radon measure on G $G \curvearrowright^{\alpha} M$ - a weakly continuous action

Ergodic averages

Let $(F_n)_{n\geq 0}$ be a sequence of compact subsets of G and $x \in L_p(\mathcal{M})$, $p \in [1, \infty)$. Define for any $n \geq 0$,

$$A_n^{\alpha}(x) = \frac{1}{m(F_n)} \int_{F_n} \alpha_g(x) dm(g)$$

Question

Given an amenable group G, can we find a Følner sequence $(F_n)_{n\geq 0}$ such that $A_n^{\alpha}(x)$ converges a.u. or b.a.u. for any action α and any $x \in L_p(\overline{\mathcal{M}})$?

- We can if \mathcal{M} is commutative (Lindenstrauss '01)
- We can if G is of polynomial growth (Hong, Liao, Wang '21)

Key ingredient: maximal inequalities

 F_n - sequence of compact subsets of G A_n - associated averaging operators

Weak type (1,1) maximal inequality

• Commutative case: $f \in L_1(\Omega)$ and $\lambda > 0$

$$\mu\left(\left\{\sup_{n\geq 0}|A_n(f)|>\lambda\right\}\right)\leq C\frac{\|f\|_1}{\lambda}$$

Noncommutative case: x ∈ L₁(M) and λ > 0, there exists a projection e such that

$$\begin{split} \tau(1-e) &\leq C \frac{\|x\|_1}{\lambda} \quad \text{and} \quad \|eA_n(x)e\|_{\infty} \leq \lambda \; \forall n \geq 0. \\ \left\{ \sup_{n \geq 0} |A_n(f)| \leq \lambda \right\} \end{split}$$

link: e =

How to prove an ergodic theorem

in 5 simple steps

- Show that there is uniform convergence of A^α_n(x) for x in a dense subset of L_p(M) known techniques apply
- Show that + maximal inequality in L_p(M) ⇒ (bilaterally) almost uniform convergence techniques of Junge-Xu apply
- Transference: maximal inequality for π ⇒ maximal inequality for any action where π the action of G by translation on L_∞(G) ⊗M proved in Hong-Liao-Wang
- Interpolation: weak type (1,1) maximal inequality ⇒ maximal inequality in L_p main technical result of Junge-Xu
- Prove a weak type (1,1) inequality for π proved in Hong-Liao-Wang for groups of polynomial growth

Main result

From now on, $A_n := A_n^{\pi}$

Theorem (C, Wang)

• Assume that $(F_n)_{n\geq 0}$ is a regular filtered følner sequence. Let $x \in L_1(\mathcal{N})$ and $\lambda > 0$. There exists a projection $e \in \mathcal{N}$ such that

$$au(1-e) \leq C rac{\|x\|_1}{\lambda} ext{ and } \|eA_n(x)e\|_\infty \leq \lambda \; orall n \geq 0.$$

- Every second countable amenable group admits a regular filtered følner sequence.
- "covering lemmas" used in the commutative setting do not have noncommutative equivalents yet
- usual noncommutative strategy: compare ergodic averages and martingale averages

The difference operator

The dyadic filtration on \mathbb{R}^d

•
$$G = \mathbb{R}^d$$
, $\mathcal{N} = L_{\infty}(\mathbb{R}^d)\overline{\otimes}\mathcal{M}$, $F_n = B(0, 2^n)$

- for $n \ge 0$ define $\mathcal{P}_n = \{2^n[0,1)^d + 2^n v : v \in \mathbb{Z}^d\},\ (\mathcal{P}_n)_{n\ge 0}$ form a sequence of nested partitions of \mathbb{R}^d
- define \mathcal{N}_n to be the subalgebra of \mathcal{N} of functions constant on cubes of \mathcal{P}_n E_n the associated conditional expectation

Theorem (Hong, Xu '18)

For any x in $L_1(\mathcal{N})$, we have

$$\|(A_n(x) - E_n(x))_{n\geq 0}\|_{RC(1,\infty)} \leq C \|x\|_1.$$

- We have a weak type (1,1) maximal inequality for $(E_n)_{n\geq 0}$ (Cuculescu '71)
- The theorem above enables to transfer this inequality to $(A_n)_{n\geq 0}$
- Proof based on noncommutative Calderón-Zygmund decomposition

Beyond the dyadic filtration

G - amenable group

Completely regular filtered Følner sequence

A completely regular filtered Følner sequence is a pair $((F_n)_{n\geq 0}, (\mathcal{P}_k)_{k\geq 0})$ such that

- (F_n) is a Følner sequence
- (\mathcal{P}_k) is a sequence of nested partitions of G
- for $n \geq k$ and $Q \in \mathcal{P}_k$, F_n is $(2^{k-n}, Q)$ -invariant
- for k > n and $Q \in \mathcal{P}_k$, Q is $(2^{n-k}, F_n)$ -invariant.

D is (ε, K) -invariant $\approx m(D \cdot K \setminus D) \leq \varepsilon m(D)$

- define conditional expectations E_n like in the dyadic case
- if $((F_n)_{n\geq 0}, (\mathcal{P}_k)_{k\geq 0})$ is completely regular $(A_n D_n)_{n\geq 0}$ of weak type (1,1)
- uses noncommutative nondoubling Calderón-Zygmund decomposition

Finding regular filtered Følner sequences

It reduces to showing the following condition

Tilability

We say that a group G is *tilable* if for any $\varepsilon > 0$ and $K \subset G$ compact, there exists a partition \mathcal{P} of G and a compact set $B \subset G$ such that

- every $Q \in \mathcal{P}$ is (ε, K) -invariant
- for every $Q \in \mathcal{P}$, there exists $g \in G$ such that $Q \subset g \cdot B$
- discrete groups are tilable (Downarowicz, Huczek, Zhang '19)
- beyond discrete group, we can also find suitable partitions by imposing less restrictive conditions
- in both cases, the construction is based on the quasi-tilings of Ornstein and Weiss '89