A noncommutative pointwise ergodic theorem for amenable groups

L. Cadilhac joint work with S. Wang (Harbin)

IMJ-PRG, Paris

2022, July 3

The starting point

(Ω, μ) a measure space
$T: \Omega \rightarrow \Omega$ measure preserving

Theorem (Birkhoff)

Let $p \in[1, \infty)$ and $f \in L_{p}(\Omega)$ then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n-1} f\left(T^{n} \omega\right)=\widehat{f}(\omega) \quad \text { a.e. }
$$

where \widehat{f} is a T-invariant function.

- $(\Omega, \mu) \rightsquigarrow(\mathcal{M}, \tau)-\mathcal{M}$ a vNa, τ a normal semifinite faithful positive trace
- $T \rightsquigarrow G$ a locally compact amenable group of transformations acting by positive trace preserving contractions on (\mathcal{M}, τ)

Pointwise convergence

Almost uniform convergence

Let $p \in(0, \infty]$. Let $\left(x_{n}\right)_{n \geq 0} \in L_{p}(\mathcal{M})$ and $x \in L_{p}(\mathcal{M})$. We say that $\left(x_{n}\right)$ converges almost uniformly (a.u.) to x if for any $\varepsilon>0$ there exists a projection $e \in \mathcal{M}$ such that

$$
\tau(1-e) \leq \varepsilon \quad \text { and } \quad\left\|e\left(x_{n}-x\right)\right\|_{\infty} \rightarrow 0 .
$$

We say that (x_{n}) converges bilaterally almost uniformly (b.a.u.) if

$$
\tau(1-e) \leq \varepsilon \quad \text { and } \quad\left\|e\left(x_{n}-x\right) e\right\|_{\infty} \rightarrow 0 .
$$

Theorem (Lance '76)

Let T be a $*$-automorphism of a von Neumann algebra \mathcal{M} preserving a normal faithful state ρ. Then for any $x \in \mathcal{M}$

$$
\frac{1}{n} \sum_{i=0}^{n-1} T^{i}(x) \rightarrow \widehat{x} \quad \text { a.u. }
$$

p-integrability

Noncommutative L_{p}-spaces

Let $p \in(0, \infty), x \in \mathcal{M}$

$$
\|x\|_{p}=\tau\left(|x|^{p}\right)^{1 / p} \quad L_{p}(\mathcal{M}, \tau)=\overline{\left\{x \in \mathcal{M}:\|x\|_{p}<\infty\right\}}
$$

$L_{1}(\mathcal{M})=\mathcal{M}_{*}, L_{\infty}(\mathcal{M})=\mathcal{M}$

Theorem (Junge, Xu '07)
Let T be a positive trace preserving contraction on \mathcal{M}. Then for any $p \in[1, \infty)$ and $x \in L_{p}(\mathcal{M})$

$$
\frac{1}{n} \sum_{i=1}^{n-1} T^{i}(x) \rightarrow \widehat{x} \quad \text { b.a.u for } p \leq 2 \text { and a.u. for } p>2
$$

Ergodic averages

G - locally compact second countable amenable group
m - right invariant Radon measure on G
$G \curvearrowright^{\alpha} \mathcal{M}$ - a weakly continuous action

Ergodic averages

Let $\left(F_{n}\right)_{n \geq 0}$ be a sequence of compact subsets of G and $x \in L_{p}(\mathcal{M}), p \in[1, \infty)$. Define for any $n \geq 0$,

$$
A_{n}^{\alpha}(x)=\frac{1}{m\left(F_{n}\right)} \int_{F_{n}} \alpha_{g}(x) d m(g)
$$

Question

Given an amenable group G, can we find a Følner sequence $\left(F_{n}\right)_{n \geq 0}$ such that $A_{n}^{\alpha}(x)$ converges a.u. or b.a.u. for any action α and any $x \in L_{p}(\mathcal{M})$?

- We can if \mathcal{M} is commutative (Lindenstrauss '01)
- We can if G is of polynomial growth (Hong, Liao, Wang '21)

Key ingredient: maximal inequalities

F_{n} - sequence of compact subsets of G
A_{n} - associated averaging operators

Weak type $(1,1)$ maximal inequality

- Commutative case: $f \in L_{1}(\Omega)$ and $\lambda>0$

$$
\mu\left(\left\{\sup _{n \geq 0}\left|A_{n}(f)\right|>\lambda\right\}\right) \leq C \frac{\|f\|_{1}}{\lambda}
$$

- Noncommutative case: $x \in L_{1}(\mathcal{M})$ and $\lambda>0$, there exists a projection e such that

$$
\tau(1-e) \leq C \frac{\|x\|_{1}}{\lambda} \quad \text { and } \quad\left\|e A_{n}(x) e\right\|_{\infty} \leq \lambda \forall n \geq 0
$$

Link: $e=\left\{\sup _{n \geq 0}\left|A_{n}(f)\right| \leq \lambda\right\}$

How to prove an ergodic theorem

in 5 simple steps

(1) Show that there is uniform convergence of $A_{n}^{\alpha}(x)$ for x in a dense subset of $L_{p}(\mathcal{M})$
known techniques apply
(2) Show that $\operatorname{C}+$ maximal inequality in $L_{p}(\mathcal{M}) \Rightarrow$ (bilaterally) almost uniform convergence techniques of Junge-Xu apply
(0) Transference: maximal inequality for $\pi \Rightarrow$ maximal inequality for any action where π the action of G by translation on $L_{\infty}(G) \bar{\otimes} \mathcal{M}$ proved in Hong-Liao-Wang
(0) Interpolation: weak type $(1,1)$ maximal inequality \Rightarrow maximal inequality in L_{p} main technical result of Junge-Xu
(0) Prove a weak type $(1,1)$ inequality for π proved in Hong-Liao-Wang for groups of polynomial growth

Main result

From now on, $A_{n}:=A_{n}^{\pi}$

Theorem (C, Wang)

- Assume that $\left(F_{n}\right)_{n \geq 0}$ is a regular filtered følner sequence. Let $x \in L_{1}(\mathcal{N})$ and $\lambda>0$. There exists a projection $e \in \mathcal{N}$ such that

$$
\tau(1-e) \leq C \frac{\|x\|_{1}}{\lambda} \text { and }\left\|e A_{n}(x) e\right\|_{\infty} \leq \lambda \forall n \geq 0
$$

- Every second countable amenable group admits a regular filtered følner sequence.
- "covering lemmas" used in the commutative setting do not have noncommutative equivalents yet
- usual noncommutative strategy: compare ergodic averages and martingale averages

The difference operator

The dyadic filtration on \mathbb{R}^{d}

- $G=\mathbb{R}^{d}, \mathcal{N}=L_{\infty}\left(\mathbb{R}^{d}\right) \bar{\otimes} \mathcal{M}, F_{n}=B\left(0,2^{n}\right)$
- for $n \geq 0$ define $\mathcal{P}_{n}=\left\{2^{n}[0,1)^{d}+2^{n} v: v \in \mathbb{Z}^{d}\right\}$, $\left(\mathcal{P}_{n}\right)_{n \geq 0}$ form a sequence of nested partitions of \mathbb{R}^{d}
- define \mathcal{N}_{n} to be the subalgebra of \mathcal{N} of functions constant on cubes of \mathcal{P}_{n} E_{n} the associated conditional expectation

Theorem (Hong, Xu '18)

For any x in $L_{1}(\mathcal{N})$, we have

$$
\left\|\left(A_{n}(x)-E_{n}(x)\right)_{n \geq 0}\right\|_{R C(1, \infty)} \leq C\|x\|_{1} .
$$

- We have a weak type $(1,1)$ maximal inequality for $\left(E_{n}\right)_{n \geq 0}$ (Cuculescu '71)
- The theorem above enables to transfer this inequality to $\left(A_{n}\right)_{n \geq 0}$
- Proof based on noncommutative Calderón-Zygmund decomposition

Beyond the dyadic filtration

G - amenable group

Completely regular filtered FøIner sequence

A completely regular filtered Følner sequence is a pair $\left(\left(F_{n}\right)_{n \geq 0},\left(\mathcal{P}_{k}\right)_{k \geq 0}\right)$ such that

- $\left(F_{n}\right)$ is a Følner sequence
- $\left(\mathcal{P}_{k}\right)$ is a sequence of nested partitions of G
- for $n \geq k$ and $Q \in \mathcal{P}_{k}, F_{n}$ is $\left(2^{k-n}, Q\right)$-invariant
- for $k>n$ and $Q \in \mathcal{P}_{k}, Q$ is $\left(2^{n-k}, F_{n}\right)$-invariant.
D is (ε, K)-invariant $\approx m(D \cdot K \backslash D) \leq \varepsilon m(D)$
- define conditional expectations E_{n} like in the dyadic case
- if $\left(\left(F_{n}\right)_{n \geq 0},\left(\mathcal{P}_{k}\right)_{k \geq 0}\right)$ is completely regular $\left(A_{n}-D_{n}\right)_{n \geq 0}$ of weak type $(1,1)$
- uses noncommutative nondoubling Calderón-Zygmund decomposition

Finding regular filtered Følner sequences

It reduces to showing the following condition

Tilability

We say that a group G is tilable if for any $\varepsilon>0$ and $K \subset G$ compact, there exists a partition \mathcal{P} of G and a compact set $B \subset G$ such that

- every $Q \in \mathcal{P}$ is (ε, K)-invariant
- for every $Q \in \mathcal{P}$, there exists $g \in G$ such that $Q \subset g \cdot B$
- discrete groups are tilable (Downarowicz, Huczek, Zhang '19)
- beyond discrete group, we can also find suitable partitions by imposing less restrictive conditions
- in both cases, the construction is based on the quasi-tilings of Ornstein and Weiss '89

