Noncommutative ergodic theory of higher rank lattices

Cyril HOUDAYER

Université Paris-Saclay & Institut Universitaire de France

International Congress of Mathematicians 2022

Operator algebras, dynamics and groups University of Copenhagen

Introduction

Let k be any local field i.e. k is a nondiscrete locally compact field.

Definition

Let $\mathbb G$ be any simply connected semisimple connected linear algebraic $k\text{-}{\rm group}.$ We assume that

- G is absolutely almost simple (resp. almost *k*-simple) i.e. the only proper normal algebraic (resp. *k*-closed) subgroups are finite.
- **2** \mathbb{G} is *k*-isotropic i.e. \mathbb{G} has a nontrivial *k*-split torus.

Denote by $\operatorname{rk}_k(\mathbb{G})$ the dimension of a maximal *k*-split torus in \mathbb{G} .

Let k be any local field i.e. k is a nondiscrete locally compact field.

Definition

Let $\mathbb G$ be any simply connected semisimple connected linear algebraic $k\text{-}{\rm group}.$ We assume that

- G is absolutely almost simple (resp. almost *k*-simple) i.e. the only proper normal algebraic (resp. *k*-closed) subgroups are finite.
- **2** \mathbb{G} is *k*-isotropic i.e. \mathbb{G} has a nontrivial *k*-split torus.

Denote by $\operatorname{rk}_k(\mathbb{G})$ the dimension of a maximal *k*-split torus in \mathbb{G} .

Example

For every $n \ge 2$, SL_n is a *k*-isotropic absolutely almost simple algebraic *k*-group. Moreover, we have $rk_k(SL_n) = n - 1$.

Let $I = \{1, \ldots, d\}$ be any finite index set with $d \ge 1$.

For every $i \in I$, let k_i be any local field, \mathbb{G}_i any k_i -isotropic almost k_i -simple algebraic k_i -group and set $G_i = \mathbb{G}_i(k_i)$.

Let $I = \{1, \ldots, d\}$ be any finite index set with $d \ge 1$.

For every $i \in I$, let k_i be any local field, \mathbb{G}_i any k_i -isotropic almost k_i -simple algebraic k_i -group and set $G_i = \mathbb{G}_i(k_i)$.

Definition (Higher rank lattice)

Set $G = \prod_{i=1}^{d} G_i$. We say that $\Gamma < G$ is a higher rank lattice if

- **1** $\Gamma < G$ is a discrete subgroup with finite covolume;
- If d ≥ 2, then Γ < G is with dense projections i.e. for every j ∈ {1,..., d}, the projection of Γ in ∏_{i≠i} G_i is dense;

Let $I = \{1, \ldots, d\}$ be any finite index set with $d \ge 1$.

For every $i \in I$, let k_i be any local field, \mathbb{G}_i any k_i -isotropic almost k_i -simple algebraic k_i -group and set $G_i = \mathbb{G}_i(k_i)$.

Definition (Higher rank lattice)

Set $G = \prod_{i=1}^{d} G_i$. We say that $\Gamma < G$ is a higher rank lattice if

- **1** $\Gamma < G$ is a discrete subgroup with finite covolume;
- If d ≥ 2, then Γ < G is with dense projections i.e. for every j ∈ {1,..., d}, the projection of Γ in ∏_{i≠i} G_i is dense;

The higher rank assumption $\sum_{i=1}^{d} \operatorname{rk}_{k_i}(\mathbb{G}_i) \geq 2$ implies that:

- Either d = 1, $k = k_1$, $\mathbb{G} = \mathbb{G}_1$ and $\mathsf{rk}_k(\mathbb{G}) \ge 2$ (simple case).
- Or $d \ge 2$ (semisimple or product case).

Denote by \mathcal{P} the set of all prime numbers.

Examples (Borel-Harish-Chandra, Behr, Harder)

Higher rank lattices in simple algebraic groups (case d = 1):

- $SL_n(\mathbb{Z}) < SL_n(\mathbb{R}), n \geq 3$
- $\mathsf{SL}_n\left(\mathbb{F}_q[t^{-1}]\right) < \mathsf{SL}_n\left(\mathbb{F}_q((t))\right)$, $n \ge 3$ and $q = p^r$ with $p \in \mathcal{P}$

Denote by \mathcal{P} the set of all prime numbers.

Examples (Borel-Harish-Chandra, Behr, Harder)

Higher rank lattices in simple algebraic groups (case d = 1):

- $SL_n(\mathbb{Z}) < SL_n(\mathbb{R}), n \geq 3$
- $\mathsf{SL}_n\left(\mathbb{F}_q[t^{-1}]\right) < \mathsf{SL}_n\left(\mathbb{F}_q((t))\right)$, $n \ge 3$ and $q = p^r$ with $p \in \mathcal{P}$

Higher rank lattices in **semisimple** algebraic groups (case $d \ge 2$):

- $SL_n(\mathbb{Z}[\sqrt{a}]) < SL_n(\mathbb{R}) \times SL_n(\mathbb{R})$, $n \ge 2$, $a \ge 2$ square free
- $SL_n(\mathbb{Z}[S^{-1}]) < SL_n(\mathbb{R}) \times SL_n(\mathbb{Q}_{p_1}) \times \cdots \times SL_n(\mathbb{Q}_{p_k}), n \ge 2,$ $p_1, \ldots, p_k \in \mathcal{P} \text{ and } S = p_1 \cdots p_k$
- $\mathsf{SL}_n\left(\mathbb{F}_q[t,t^{-1}]\right) < \mathsf{SL}_n\left(\mathbb{F}_q((t))\right) \times \mathsf{SL}_n\left(\mathbb{F}_q((t^{-1}))\right), n \ge 2$

Motivation

Let $\Gamma < G$ be any higher rank lattice.

Margulis' Normal Subgroup Theorem (1978)

Any normal subgroup $N \lhd \Gamma$ is either finite or has finite index.

Let $\Gamma < G$ be any higher rank lattice.

Margulis' Normal Subgroup Theorem (1978)

Any normal subgroup $N \triangleleft \Gamma$ is either finite or has finite index.

Margulis' strategy: assuming that $N \lhd \Gamma$ is an infinite normal subgroup, to prove that Γ/N is a finite group, he showed that

- Γ/N has property (T) (Functional Analysis).
- **2** Γ/N is **amenable** (Ergodic Theory). This follows from:

Let $\Gamma < G$ be any higher rank lattice.

Margulis' Normal Subgroup Theorem (1978)

Any normal subgroup $N \triangleleft \Gamma$ is either finite or has finite index.

Margulis' strategy: assuming that $N \lhd \Gamma$ is an infinite normal subgroup, to prove that Γ/N is a finite group, he showed that

- **1** Γ/N has **property (T)** (Functional Analysis).
- **2** Γ/N is **amenable** (Ergodic Theory). This follows from:

Margulis' Factor Theorem (1978)

For every $i \in \{1, ..., d\}$, let $\mathbb{P}_i < \mathbb{G}_i$ be any minimal parabolic k_i -subgroup and set $P_i = \mathbb{P}_i(k_i)$. Set $P = \prod_{i=1}^d P_i < G$.

Then any measurable Γ -factor of G/P is Γ -isomorphic to G/Q for some unique intermediate closed subgroup P < Q < G.

We use operator algebras (C*-algebras and von Neumann algebras) to explore new rigidity phenomena of higher rank lattices.

Main Problem

Given a higher rank lattice $\Gamma < G$, we investigate:

- **1** Dynamical properties of the affine action $\Gamma \curvearrowright \mathscr{P}(\Gamma)$
- **2** Structure of group C^{*}-algebras $C^*_{\pi}(\Gamma)$ where $\pi : \Gamma \to \mathscr{U}(\mathscr{H}_{\pi})$
- **③** Rigidity aspects of the group von Neumann algebra $L(\Gamma)$

This ICM survey talk is based on the following joint works:

- [BH19] R. Boutonnet, C. Houdayer: Stationary characters on lattices of semisimple Lie groups. Publications mathématiques de l'IHÉS 133 (2021), 1-46. arXiv:1908.07812
- [BBHP20] U. Bader, R. Boutonnet, C. Houdayer, J. Peterson: Charmenability of arithmetic groups of product type. To appear in Invent. Math. arXiv:2009.09952
 - [BBH21] U. Bader, R. Boutonnet, C. Houdayer: *Charmenability of higher rank arithmetic groups.* arXiv:2112.01337
 - [BH22] R. Boutonnet, C. Houdayer: *The noncommutative factor theorem for lattices in product groups.* In preparation.

Dynamics of positive definite functions and character rigidity

For any countable discrete group Λ , set

 $\mathscr{P}(\Lambda) \coloneqq \{\varphi : \Lambda \to \mathbb{C} \mid \text{normalized positive definite function}\}$

Then $\mathscr{P}(\Lambda) \subset \ell^{\infty}(\Lambda)$ is a weak-* compact convex set.

For any countable discrete group Λ , set

 $\mathscr{P}(\Lambda) \coloneqq \{\varphi : \Lambda \to \mathbb{C} \mid \text{normalized positive definite function}\}$

Then $\mathscr{P}(\Lambda) \subset \ell^{\infty}(\Lambda)$ is a weak-* compact convex set.

To any $\varphi \in \mathscr{P}(\Lambda)$, one associates the GNS triple $(\pi_{\varphi}, \mathscr{H}_{\varphi}, \xi_{\varphi})$:

 $\forall \gamma \in \Lambda, \quad \varphi(\gamma) = \langle \pi_{\varphi}(\gamma) \xi_{\varphi}, \xi_{\varphi} \rangle$

For any countable discrete group Λ , set

 $\mathscr{P}(\Lambda) \coloneqq \{\varphi : \Lambda \to \mathbb{C} \mid \text{normalized positive definite function}\}$

Then $\mathscr{P}(\Lambda) \subset \ell^{\infty}(\Lambda)$ is a weak-* compact convex set.

To any $\varphi \in \mathscr{P}(\Lambda)$, one associates the GNS triple $(\pi_{\varphi}, \mathscr{H}_{\varphi}, \xi_{\varphi})$:

$$\forall \gamma \in \Lambda, \quad \varphi(\gamma) = \langle \pi_{\varphi}(\gamma) \xi_{\varphi}, \xi_{\varphi} \rangle$$

Consider the affine conjugation action $\Lambda \curvearrowright \mathscr{P}(\Lambda)$ defined by

$$\forall \gamma \in \Lambda, \quad \gamma \varphi \coloneqq \varphi \circ \mathsf{Ad}(\gamma^{-1})$$

For any countable discrete group Λ , set

 $\mathscr{P}(\Lambda) \coloneqq \{\varphi : \Lambda \to \mathbb{C} \mid \text{normalized positive definite function}\}$

Then $\mathscr{P}(\Lambda) \subset \ell^{\infty}(\Lambda)$ is a weak-* compact convex set.

To any $\varphi \in \mathscr{P}(\Lambda)$, one associates the GNS triple $(\pi_{\varphi}, \mathscr{H}_{\varphi}, \xi_{\varphi})$:

$$orall \gamma \in ig \Lambda, \quad arphi(\gamma) = \langle \pi_arphi(\gamma) \xi_arphi, \xi_arphi
angle$$

Consider the affine conjugation action $\Lambda \curvearrowright \mathscr{P}(\Lambda)$ defined by

$$\forall \gamma \in \Lambda, \quad \gamma \varphi \coloneqq \varphi \circ \mathsf{Ad}(\gamma^{-1})$$

Definition

A character $\varphi \in \mathscr{P}(\Lambda)$ is a fixed point for $\Lambda \curvearrowright \mathscr{P}(\Lambda)$.

Denote by $Char(\Lambda) \subset \mathscr{P}(\Lambda)$ the convex subset of all characters.

Cyril HOUDAYER (Paris-Saclay & IUF) Noncommutative ergodic theory of higher rank lattices

Denote by Sub(Λ) the compact metrizable space of all subgroups of Λ endowed with the conjugation action $\gamma \cdot H = \gamma H \gamma^{-1}$. Consider the Λ -equivariant continuous map

 $\mathsf{Sub}(\Lambda) \to \mathscr{P}(\Lambda) : H \mapsto 1_H$

Denote by Sub(Λ) the compact metrizable space of all subgroups of Λ endowed with the conjugation action $\gamma \cdot H = \gamma H \gamma^{-1}$. Consider the Λ -equivariant continuous map

 $\mathsf{Sub}(\Lambda) o \mathscr{P}(\Lambda) : H \mapsto 1_H$

Examples

- If N ⊲ Λ is a normal subgroup, then φ = 1_N ∈ Char(Λ).
 Its GNS unirep π_φ = λ_{Λ/N} is the quasi-regular representation.
 - When $N = \Lambda$, then 1_{Λ} is the trivial character.
 - When $N = \{e\}$, then $1_{\{e\}}$ is the regular character.

Denote by Sub(Λ) the compact metrizable space of all subgroups of Λ endowed with the conjugation action $\gamma \cdot H = \gamma H \gamma^{-1}$. Consider the Λ -equivariant continuous map

 $\mathsf{Sub}(\Lambda) o \mathscr{P}(\Lambda) : H \mapsto 1_H$

Examples

- If N ⊲ Λ is a normal subgroup, then φ = 1_N ∈ Char(Λ).
 Its GNS unirep π_φ = λ_{Λ/N} is the quasi-regular representation.
 - When $N = \Lambda$, then 1_{Λ} is the trivial character.
 - When $N = \{e\}$, then $1_{\{e\}}$ is the regular character.

② If $\Lambda \curvearrowright (X, \nu)$ is pmp, then $\varphi_{\nu} : \gamma \mapsto \nu(\mathsf{Fix}(\gamma)) \in \mathsf{Char}(\Lambda)$. → When $\varphi_{\nu} = 1_{\{e\}}$, the action $\Lambda \curvearrowright (X, \nu)$ is essentially free.

Denote by Sub(Λ) the compact metrizable space of all subgroups of Λ endowed with the conjugation action $\gamma \cdot H = \gamma H \gamma^{-1}$. Consider the Λ -equivariant continuous map

 $\mathsf{Sub}(\Lambda) o \mathscr{P}(\Lambda) : H \mapsto 1_H$

Examples

- If N ⊲ Λ is a normal subgroup, then φ = 1_N ∈ Char(Λ).
 Its GNS unirep π_φ = λ_{Λ/N} is the quasi-regular representation.
 - When $N = \Lambda$, then 1_{Λ} is the trivial character.
 - When $N = \{e\}$, then $1_{\{e\}}$ is the regular character.
- ② If $\Lambda \curvearrowright (X, \nu)$ is pmp, then $\varphi_{\nu} : \gamma \mapsto \nu(\operatorname{Fix}(\gamma)) \in \operatorname{Char}(\Lambda)$. → When $\varphi_{\nu} = 1_{\{e\}}$, the action $\Lambda \curvearrowright (X, \nu)$ is essentially free.
- **③** If $\pi : \Lambda \to \mathscr{U}(n)$ is a finite dim unirep, then $\operatorname{tr}_n \circ \pi \in \operatorname{Char}(\Lambda)$.

Let $\Gamma < G$ be any higher rank lattice. Then

- Any nonempty Γ-invariant weak-* compact convex subset
 C 𝒫(Γ) contains a character.
- **2** Any extremal character $\varphi \in \text{Char}(\Gamma)$ is either supported on $\mathscr{Z}(\Gamma)$ or π_{φ} is amenable.

Let $\Gamma < G$ be any higher rank lattice. Then

- Any nonempty Γ-invariant weak-* compact convex subset
 C 𝒫(Γ) contains a character.
- **2** Any extremal character $\varphi \in \text{Char}(\Gamma)$ is either supported on $\mathscr{Z}(\Gamma)$ or π_{φ} is amenable.

Assume moreover that Γ has property (T). Then

Γ is character rigid i.e. any extremal character φ ∈ Char(Γ) is either supported on *X*(Γ) or dim(π_φ) < ∞.

Let $\Gamma < G$ be any higher rank lattice. Then

- Any nonempty Γ-invariant weak-* compact convex subset
 C 𝒫(Γ) contains a character.
- **2** Any extremal character $\varphi \in \text{Char}(\Gamma)$ is either supported on $\mathscr{Z}(\Gamma)$ or π_{φ} is amenable.

Assume moreover that Γ has property (T). Then

Γ is character rigid i.e. any extremal character φ ∈ Char(Γ) is either supported on *X*(Γ) or dim(π_φ) < ∞.

The classification part (items 2 and 3) is due to Peterson (2014). We obtain a new conceptual proof in [BH19, BBHP20, BBH21].

Let $\Gamma < G$ be any higher rank lattice. Then

- Any nonempty Γ-invariant weak-* compact convex subset
 C P(Γ) contains a character.
- **2** Any extremal character $\varphi \in \text{Char}(\Gamma)$ is either supported on $\mathscr{Z}(\Gamma)$ or π_{φ} is amenable.

Assume moreover that Γ has property (T). Then

Γ is character rigid i.e. any extremal character φ ∈ Char(Γ) is either supported on *L*(Γ) or dim(π_φ) < ∞.

The classification part (items 2 and 3) is due to Peterson (2014). We obtain a new conceptual proof in [BH19, BBHP20, BBH21].

Previous character rigidity results due to Bekka (2006), Peterson–Thom (2013), Creutz–Peterson (2013).

Corollary (BH19, BBHP20, BBH21)

Let $\Gamma < G$ be any higher rank lattice and set $\Lambda = \Gamma / \mathscr{Z}(\Gamma)$. Let $\pi : \Lambda \to \mathscr{U}(\mathscr{H}_{\pi})$ be any unirep. Then $C^*_{\pi}(\Lambda)$ admits a trace.

Corollary (BH19, BBHP20, BBH21)

Let $\Gamma < G$ be any higher rank lattice and set $\Lambda = \Gamma/\mathscr{Z}(\Gamma)$. Let $\pi : \Lambda \to \mathscr{U}(\mathscr{H}_{\pi})$ be any unirep. Then $C^*_{\pi}(\Lambda)$ admits a trace. Assume moreover that Γ has property (T). If π is weakly mixing, then $\lambda \prec \pi$ i.e. there is a *-homomorphism $\Theta : C^*_{\pi}(\Lambda) \to C^*_{\lambda}(\Lambda)$ such that $\Theta(\pi(\gamma)) = \lambda(\gamma)$ for every $\gamma \in \Lambda$. Moreover,

- **1** $\tau_{\Lambda} \circ \Theta$ is the unique trace on $C^*_{\pi}(\Lambda)$.
- **2** ker(Θ) is the unique maximal proper ideal of $C^*_{\pi}(\Lambda)$.

This extends results by Bekka–Cowling–de la Harpe (1994) regarding C^* -simplicity and the unique trace property.

Let $\Gamma < G$ be any higher rank lattice and set $\Lambda = \Gamma/\mathscr{Z}(\Gamma)$. Let $\Lambda \curvearrowright X$ be any minimal action on a compact metrizable space. At least one of the following assertions holds:

Let $\Gamma < G$ be any higher rank lattice and set $\Lambda = \Gamma/\mathscr{Z}(\Gamma)$. Let $\Lambda \curvearrowright X$ be any minimal action on a compact metrizable space. At least one of the following assertions holds:

- There exists a Λ -invariant probability measure $\nu \in \text{Prob}(X)$.
- The action $\Lambda \curvearrowright X$ is topologically free *i.e.* for every $\gamma \in \Lambda \setminus \{e\}$, $Fix(\gamma) \coloneqq \{x \in X \mid \gamma x = x\}$ has empty interior.

Let $\Gamma < G$ be any higher rank lattice and set $\Lambda = \Gamma/\mathscr{Z}(\Gamma)$. Let $\Lambda \curvearrowright X$ be any minimal action on a compact metrizable space. At least one of the following assertions holds:

- There exists a Λ -invariant probability measure $\nu \in \text{Prob}(X)$.
- The action $\Lambda \curvearrowright X$ is topologically free *i.e.* for every $\gamma \in \Lambda \setminus \{e\}$, $Fix(\gamma) \coloneqq \{x \in X \mid \gamma x = x\}$ has empty interior.

Assume moreover that Γ has property (T). Then

• Either X is finite or $\Lambda \curvearrowright X$ is topologically free.

Our result is a topological analogue of Stuck–Zimmer's stabilizer rigidity theorem (1992). It solves a question raised by Glasner–Weiss (2014).

The proof of the dynamical dichotomy (which is the hard part) uses **von Neumann algebra** theory and depends heavily on whether d = 1 (simple case) or $d \ge 2$ (semisimple case).

The proof of the dynamical dichotomy (which is the hard part) uses **von Neumann algebra** theory and depends heavily on whether d = 1 (simple case) or $d \ge 2$ (semisimple case).

In [BH19, BBH21], we treat the case d = 1 and $\mathsf{rk}_k(\mathbb{G}) \ge 2$ (e.g. $G = \mathsf{SL}_n(\mathbb{R})$ for $n \ge 3$). In that case, we prove a much stronger result: the **noncommutative Nevo–Zimmer theorem**.

The proof of the dynamical dichotomy (which is the hard part) uses **von Neumann algebra** theory and depends heavily on whether d = 1 (simple case) or $d \ge 2$ (semisimple case).

In [BH19, BBH21], we treat the case d = 1 and $\mathsf{rk}_k(\mathbb{G}) \ge 2$ (e.g. $G = \mathsf{SL}_n(\mathbb{R})$ for $n \ge 3$). In that case, we prove a much stronger result: the **noncommutative Nevo–Zimmer theorem**.

In [BBHP20], we treat the case $d \ge 2$ (e.g. $G = SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$) exploiting a different method based on the product structure.

The proof of the dynamical dichotomy (which is the hard part) uses **von Neumann algebra** theory and depends heavily on whether d = 1 (simple case) or $d \ge 2$ (semisimple case).

In [BH19, BBH21], we treat the case d = 1 and $\mathsf{rk}_k(\mathbb{G}) \ge 2$ (e.g. $G = \mathsf{SL}_n(\mathbb{R})$ for $n \ge 3$). In that case, we prove a much stronger result: the **noncommutative Nevo–Zimmer theorem**.

In [BBHP20], we treat the case $d \ge 2$ (e.g. $G = SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$) exploiting a different method based on the product structure.

In that respect, [BH19], [BBHP20], [BBH21] are complementary.

The noncommutative Nevo–Zimmer theorem

Structure theory of G/P

In this section, we assume that d = 1. Then \mathbb{G} is almost k-simple with $\operatorname{rk}_k(\mathbb{G}) \ge 2$ and we set $G = \mathbb{G}(k)$.

Let $\mathbb{P} < \mathbb{G}$ be any minimal parabolic *k*-subgroup and set $P = \mathbb{P}(k)$. Then $G/P = (\mathbb{G}/\mathbb{P})(k)$.

Example

If $\mathbb{G} = SL_n$, take $\mathbb{P} < \mathbb{G}$ the subgroup of upper triangular matrices.

Structure theory of G/P

In this section, we assume that d = 1. Then \mathbb{G} is almost k-simple with $\operatorname{rk}_k(\mathbb{G}) \ge 2$ and we set $G = \mathbb{G}(k)$.

Let $\mathbb{P} < \mathbb{G}$ be any minimal parabolic *k*-subgroup and set $P = \mathbb{P}(k)$. Then $G/P = (\mathbb{G}/\mathbb{P})(k)$.

Example

If $\mathbb{G} = SL_n$, take $\mathbb{P} < \mathbb{G}$ the subgroup of upper triangular matrices.

Theorem (Furstenberg 1962, Bader–Shalom 2004)

For every admissible measure $\mu \in Prob(G)$, there exists a unique μ -stationary measure $\nu \in Prob(G/P)$ such that $(G/P, \nu)$ is the (G, μ) -Furstenberg–Poisson boundary *i.e.*

$$L^{\infty}(G/P, \nu) \cong_{G-equiv.} \operatorname{Har}^{\infty}(G, \mu)$$

Recall that ν is μ -stationary if $\nu = \mu * \nu = \int_G g_* \nu d\mu(g)$.

Let $\Gamma < G$ be any lattice. Let M be any von Neumann algebra and $\sigma : \Gamma \frown M$ any action by automorphisms.

Let $\Gamma < G$ be any lattice. Let M be any von Neumann algebra and $\sigma : \Gamma \curvearrowright M$ any action by automorphisms.

Definition (BBHP20)

Let $\Theta: M \to L^{\infty}(G/P)$ be any normal ucp Γ -map. We simply say that Θ is a Γ -boundary structure on M.

We denote by $mult(\Theta) \subset M$ its multiplicative domain.

Let $\Gamma < G$ be any lattice. Let M be any von Neumann algebra and $\sigma : \Gamma \curvearrowright M$ any action by automorphisms.

Definition (BBHP20)

Let $\Theta: M \to L^{\infty}(G/P)$ be any normal ucp Γ -map. We simply say that Θ is a Γ -boundary structure on M.

We denote by $mult(\Theta) \subset M$ its multiplicative domain.

For any Γ -boundary structure $\Theta : M \to L^{\infty}(G/P)$, one can define the **induced** *G*-boundary structure $\widehat{\Theta} : \operatorname{Ind}_{\Gamma}^{G}(M) \to L^{\infty}(G/P)$.

Note that the action $\Gamma \curvearrowright G/P$ is amenable and ergodic.

Note that the action $\Gamma \curvearrowright G/P$ is amenable and ergodic.

Examples (Boundary structures)

Let A be any unital separable C*-algebra and $\Gamma \curvearrowright A$ any action.

Note that the action $\Gamma \curvearrowright G/P$ is amenable and ergodic.

Examples (Boundary structures)

Let A be any unital separable C*-algebra and $\Gamma \curvearrowright A$ any action. Since $\Gamma \curvearrowright G/P$ is amenable, there exists a measurable Γ -map $\beta : G/P \rightarrow \mathfrak{S}(A) : b \mapsto \beta_b$. By duality, we obtain a ucp Γ -map $E : A \rightarrow L^{\infty}(G/P) : a \mapsto (b \mapsto \beta_b(a))$.

Note that the action $\Gamma \curvearrowright G/P$ is amenable and ergodic.

Examples (Boundary structures)

Let *A* be any unital separable C*-algebra and $\Gamma \curvearrowright A$ any action. Since $\Gamma \curvearrowright G/P$ is amenable, there exists a measurable Γ -map $\beta : G/P \to \mathfrak{S}(A) : b \mapsto \beta_b$. By duality, we obtain a ucp Γ -map $E : A \to L^{\infty}(G/P) : a \mapsto (b \mapsto \beta_b(a))$. Consider the normal extension $E^{**} : A^{**} \to L^{\infty}(G/P)$ and denote by $z \in \mathscr{Z}(A^{**})$ its central support. Letting $M = A^{**}z$, $\Theta = E^{**}|_M : M \to L^{\infty}(G/P)$ is a Γ -boundary structure.

Note that the action $\Gamma \curvearrowright G/P$ is amenable and ergodic.

Examples (Boundary structures)

Let A be any unital separable C*-algebra and $\Gamma \curvearrowright A$ any action. Since $\Gamma \curvearrowright G/P$ is amenable, there exists a measurable Γ -map $\beta : G/P \rightarrow \mathfrak{S}(A) : b \mapsto \beta_b$. By duality, we obtain a ucp Γ -map $E : A \rightarrow L^{\infty}(G/P) : a \mapsto (b \mapsto \beta_b(a))$.

Consider the normal extension $E^{**}: A^{**} \to L^{\infty}(G/P)$ and denote by $z \in \mathscr{Z}(A^{**})$ its central support. Letting $M = A^{**}z$, $\Theta = E^{**}|_M: M \to L^{\infty}(G/P)$ is a Γ -boundary structure.

We apply the above construction to the following situations:

- A = C(X) where X is a compact metrizable Γ -space.
- ② $A = C^*_{\pi}(\Gamma)$ where $\pi : \Gamma \to \mathscr{U}(\mathscr{H}_{\pi})$ is a unitary representation and $\Gamma \frown C^*_{\pi}(\Gamma)$ is the conjugation action.

Let $\Gamma < G$ be any lattice. Let M be any von Neumann algebra, $\Gamma \curvearrowright M$ any ergodic action and $\Theta : M \to L^{\infty}(G/P)$ any Γ -boundary structure. Then

Let $\Gamma < G$ be any lattice. Let M be any von Neumann algebra, $\Gamma \curvearrowright M$ any ergodic action and $\Theta : M \to L^{\infty}(G/P)$ any Γ -boundary structure. Then

- Either $\Theta(M) = \mathbb{C}1$.
- Or there is a unique proper parabolic k-subgroup P < Q < G such that mult(Θ) ≃ L[∞](G/Q) with Q = Q(k).

Let $\Gamma < G$ be any lattice. Let M be any von Neumann algebra, $\Gamma \curvearrowright M$ any ergodic action and $\Theta : M \to L^{\infty}(G/P)$ any Γ -boundary structure. Then

- Either $\Theta(M) = \mathbb{C}1$.
- Or there is a unique proper parabolic k-subgroup P < Q < G such that mult(Θ) ≃ L[∞](G/Q) with Q = Q(k).

In case $M = L^{\infty}(X)$ and $k = \mathbb{R}$, and considering *G*-actions instead of Γ -actions, the above theorem is due to Nevo–Zimmer (2000).

Let $\Gamma < G$ be any lattice. Let M be any von Neumann algebra, $\Gamma \curvearrowright M$ any ergodic action and $\Theta : M \to L^{\infty}(G/P)$ any Γ -boundary structure. Then

- Either $\Theta(M) = \mathbb{C}1$.
- Or there is a unique proper parabolic k-subgroup P < Q < G such that mult(Θ) ≃ L[∞](G/Q) with Q = Q(k).

In case $M = L^{\infty}(X)$ and $k = \mathbb{R}$, and considering *G*-actions instead of Γ -actions, the above theorem is due to Nevo–Zimmer (2000). \rightsquigarrow In [BH19], we extended NZ theorem to **noncommutative** von Neumann algebras *M* and to both Γ -actions and *G*-actions.

Let $\Gamma < G$ be any lattice. Let M be any von Neumann algebra, $\Gamma \curvearrowright M$ any ergodic action and $\Theta : M \to L^{\infty}(G/P)$ any Γ -boundary structure. Then

- Either $\Theta(M) = \mathbb{C}1$.
- Or there is a unique proper parabolic k-subgroup P < Q < G such that mult(Θ) ≃ L[∞](G/Q) with Q = Q(k).

In case $M = L^{\infty}(X)$ and $k = \mathbb{R}$, and considering *G*-actions instead of Γ -actions, the above theorem is due to Nevo–Zimmer (2000). \rightsquigarrow In [BH19], we extended NZ theorem to **noncommutative** von Neumann algebras *M* and to both Γ -actions and *G*-actions. \rightsquigarrow In [BBH21], we further generalized to deal with lattices in simple algebraic groups defined over an arbitrary local field *k*.

The noncommutative factor theorem and Connes' rigidity conjecture

Connes' rigidity conjecture for higher rank lattices

Connes (1979) showed that whenever Λ is an icc group with property (T), the symmetry groups of L(Λ) are at most countable. He conjectured that L(Λ) should retain Λ for property (T) groups.

Connes' rigidity conjecture for higher rank lattices

Connes (1979) showed that whenever Λ is an icc group with property (T), the symmetry groups of L(Λ) are at most countable. He conjectured that L(Λ) should retain Λ for property (T) groups. \rightsquigarrow CIOS (2021): First class of W^{*}-superrigid property (T) icc groups.

Connes' rigidity conjecture for higher rank lattices

Connes (1979) showed that whenever Λ is an icc group with property (T), the symmetry groups of L(Λ) are at most countable. He conjectured that L(Λ) should retain Λ for property (T) groups. \rightsquigarrow CIOS (2021): First class of W^{*}-superrigid property (T) icc groups.

In view of Mostow–Margulis' rigidity results, we state the following version of **Connes' rigidity conjecture** for lattices in higher rank simple real Lie groups.

Connes' rigidity conjecture

For $i \in \{1, 2\}$, let G_i be any real connected simple Lie group with trivial center and $\operatorname{rk}_{\mathbb{R}}(G_i) \geq 2$, and let $\Gamma_i < G_i$ be any lattice.

$$\begin{aligned} \mathsf{L}(\mathsf{\Gamma}_1) &\cong \mathsf{L}(\mathsf{\Gamma}_2) &\Rightarrow \quad \mathsf{G}_1 &\cong \mathsf{G}_2 \\ &\Rightarrow \quad \mathsf{rk}_{\mathbb{R}}(\mathsf{G}_1) = \mathsf{rk}_{\mathbb{R}}(\mathsf{G}_2) \end{aligned}$$

Let $\Gamma < G$ be any **higher rank lattice**. For every $i \in \{1, ..., d\}$, let $\mathbb{P}_i < \mathbb{G}_i$ be any minimal parabolic k_i -subgroup and set $P_i = \mathbb{P}_i(k_i)$. Set $P = \prod_{i=1}^d P_i < G$.

Set $\Lambda = \Gamma/\mathscr{Z}(\Gamma)$ and consider the ergodic action $\Lambda \curvearrowright G/P$ and its group measure space von Neumann algebra $L(\Lambda \curvearrowright G/P)$.

Let $\Gamma < G$ be any **higher rank lattice**. For every $i \in \{1, ..., d\}$, let $\mathbb{P}_i < \mathbb{G}_i$ be any minimal parabolic k_i -subgroup and set $P_i = \mathbb{P}_i(k_i)$. Set $P = \prod_{i=1}^d P_i < G$.

Set $\Lambda = \Gamma/\mathscr{Z}(\Gamma)$ and consider the ergodic action $\Lambda \curvearrowright G/P$ and its **group measure space** von Neumann algebra $L(\Lambda \curvearrowright G/P)$.

Theorem (BBH21, BH22)

For every von Neumann subalgebra $L(\Lambda) \subset M \subset L(\Lambda \curvearrowright G/P)$, there exists a unique intermediate closed subgroup P < Q < Gsuch that $M = L(\Lambda \curvearrowright G/Q)$. Let $\Gamma < G$ be any **higher rank lattice**. For every $i \in \{1, ..., d\}$, let $\mathbb{P}_i < \mathbb{G}_i$ be any minimal parabolic k_i -subgroup and set $P_i = \mathbb{P}_i(k_i)$. Set $P = \prod_{i=1}^d P_i < G$.

Set $\Lambda = \Gamma/\mathscr{Z}(\Gamma)$ and consider the ergodic action $\Lambda \curvearrowright G/P$ and its **group measure space** von Neumann algebra $L(\Lambda \curvearrowright G/P)$.

Theorem (BBH21, BH22)

For every von Neumann subalgebra $L(\Lambda) \subset M \subset L(\Lambda \curvearrowright G/P)$, there exists a unique intermediate closed subgroup P < Q < Gsuch that $M = L(\Lambda \curvearrowright G/Q)$.

Corollary (BBH21, BH22)

The rank $\sum_{i=1}^{d} \operatorname{rk}_{k_{i}}(\mathbb{G}_{i})$ is an invariant of $L(\Lambda) \subset L(\Lambda \frown G/P)$.

Thank you for your attention!