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Simple algebraic groups

Let k be any local field i.e. k is a nondiscrete locally compact field.

Definition

Let G be any simply connected semisimple connected linear
algebraic k-group. We assume that

1 G is absolutely almost simple (resp. almost k-simple) i.e.
the only proper normal algebraic (resp. k-closed) subgroups
are finite.

2 G is k-isotropic i.e. G has a nontrivial k-split torus.

Denote by rkk(G) the dimension of a maximal k-split torus in G.

Example

For every n ≥ 2, SLn is a k-isotropic absolutely almost simple
algebraic k-group. Moreover, we have rkk(SLn) = n − 1.
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Higher rank lattices

Let I = {1, . . . , d} be any finite index set with d ≥ 1.

For every i ∈ I , let ki be any local field, Gi any ki -isotropic almost
ki -simple algebraic ki -group and set Gi = Gi (ki ).

Definition (Higher rank lattice)

Set G =
∏d

i=1 Gi . We say that Γ < G is a higher rank lattice if

1 Γ < G is a discrete subgroup with finite covolume;

2 If d ≥ 2, then Γ < G is with dense projections i.e. for every
j ∈ {1, . . . , d}, the projection of Γ in

∏
i 6=j Gi is dense;

3
∑d

i=1 rkki (Gi ) ≥ 2.

The higher rank assumption
∑d

i=1 rkki (Gi ) ≥ 2 implies that:

Either d = 1, k = k1, G = G1 and rkk(G) ≥ 2 (simple case).

Or d ≥ 2 (semisimple or product case).
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Examples of higher rank lattices

Denote by P the set of all prime numbers.

Examples (Borel–Harish-Chandra, Behr, Harder)

Higher rank lattices in simple algebraic groups (case d = 1):

SLn(Z) < SLn(R), n ≥ 3

SLn

(
Fq[t−1]

)
< SLn

(
Fq((t))

)
, n ≥ 3 and q = pr with p ∈ P

Higher rank lattices in semisimple algebraic groups (case d ≥ 2):

SLn(Z[
√
a]) < SLn(R)× SLn(R), n ≥ 2, a ≥ 2 square free

SLn(Z[S−1]) < SLn(R)× SLn(Qp1)× · · · × SLn(Qpk ), n ≥ 2,
p1, . . . , pk ∈ P and S = p1 · · · pk
SLn

(
Fq[t, t−1]

)
< SLn

(
Fq((t))

)
× SLn

(
Fq((t−1))

)
, n ≥ 2
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Motivation

Let Γ < G be any higher rank lattice.

Margulis’ Normal Subgroup Theorem (1978)

Any normal subgroup N � Γ is either finite or has finite index.

Margulis’ strategy: assuming that N � Γ is an infinite normal
subgroup, to prove that Γ/N is a finite group, he showed that

1 Γ/N has property (T) (Functional Analysis).

2 Γ/N is amenable (Ergodic Theory). This follows from:

Margulis’ Factor Theorem (1978)

For every i ∈ {1, . . . , d}, let Pi < Gi be any minimal parabolic
ki -subgroup and set Pi = Pi (ki ). Set P =

∏d
i=1 Pi < G .

Then any measurable Γ-factor of G/P is Γ-isomorphic to G/Q for
some unique intermediate closed subgroup P < Q < G .
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Goals

We use operator algebras (C∗-algebras and von Neumann algebras)
to explore new rigidity phenomena of higher rank lattices.

Main Problem

Given a higher rank lattice Γ < G , we investigate:

1 Dynamical properties of the affine action Γ y P(Γ)

2 Structure of group C∗-algebras C∗π(Γ) where π : Γ→ U (Hπ)

3 Rigidity aspects of the group von Neumann algebra L(Γ)
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Dynamics of positive definite functions
and character rigidity
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Dynamics of Λ y P(Λ)

For any countable discrete group Λ, set

P(Λ) := {ϕ : Λ→ C | normalized positive definite function}

Then P(Λ) ⊂ `∞(Λ) is a weak-∗ compact convex set.

To any ϕ ∈P(Λ), one associates the GNS triple (πϕ,Hϕ, ξϕ):

∀γ ∈ Λ, ϕ(γ) = 〈πϕ(γ)ξϕ, ξϕ〉

Consider the affine conjugation action Λ y P(Λ) defined by

∀γ ∈ Λ, γϕ := ϕ ◦ Ad(γ−1)

Definition

A character ϕ ∈P(Λ) is a fixed point for Λ y P(Λ).

Denote by Char(Λ) ⊂P(Λ) the convex subset of all characters.
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Examples of characters

Denote by Sub(Λ) the compact metrizable space of all subgroups
of Λ endowed with the conjugation action γ · H = γHγ−1.

Consider the Λ-equivariant continuous map

Sub(Λ)→P(Λ) : H 7→ 1H

Examples

1 If N � Λ is a normal subgroup, then ϕ = 1N ∈ Char(Λ).

Its GNS unirep πϕ = λΛ/N is the quasi-regular representation.

When N = Λ, then 1Λ is the trivial character.
When N = {e}, then 1{e} is the regular character.

2 If Λ y (X , ν) is pmp, then ϕν : γ 7→ ν(Fix(γ)) ∈ Char(Λ).
; When ϕν = 1{e}, the action Λ y (X , ν) is essentially free.

3 If π : Λ→ U (n) is a finite dim unirep, then trn ◦π ∈ Char(Λ).
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Existence and classification of characters

Theorem (BH19, BBH20, BBH21)

Let Γ < G be any higher rank lattice. Then

1 Any nonempty Γ-invariant weak-∗ compact convex subset
C ⊂P(Γ) contains a character.

2 Any extremal character ϕ ∈ Char(Γ) is either supported on
Z (Γ) or πϕ is amenable.

Assume moreover that Γ has property (T). Then

3 Γ is character rigid i.e. any extremal character ϕ ∈ Char(Γ)
is either supported on Z (Γ) or dim(πϕ) <∞.

The classification part (items 2 and 3) is due to Peterson (2014).
We obtain a new conceptual proof in [BH19, BBHP20, BBH21].

Previous character rigidity results due to Bekka (2006), Peterson–Thom

(2013), Creutz–Peterson (2013).
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Structure of group C∗-algebras C∗π(Γ)

Corollary (BH19, BBHP20, BBH21)

Let Γ < G be any higher rank lattice and set Λ = Γ/Z (Γ). Let
π : Λ→ U (Hπ) be any unirep. Then C∗π(Λ) admits a trace.

Assume moreover that Γ has property (T). If π is weakly mixing,
then λ ≺ π i.e. there is a ∗-homomorphism Θ : C∗π(Λ)→ C∗λ(Λ)
such that Θ(π(γ)) = λ(γ) for every γ ∈ Λ. Moreover,

1 τΛ ◦Θ is the unique trace on C∗π(Λ).

2 ker(Θ) is the unique maximal proper ideal of C∗π(Λ).

This extends results by Bekka–Cowling–de la Harpe (1994) regarding

C∗-simplicity and the unique trace property.
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Dichotomy for topological dynamics

Theorem (BH19, BBHP20, BBH21)

Let Γ < G be any higher rank lattice and set Λ = Γ/Z (Γ). Let
Λ y X be any minimal action on a compact metrizable space.

At least one of the following assertions holds:

There exists a Λ-invariant probability measure ν ∈ Prob(X ).

The action Λ y X is topologically free i.e. for every
γ ∈ Λ \ {e}, Fix(γ) := {x ∈ X | γx = x} has empty interior.

Assume moreover that Γ has property (T). Then

Either X is finite or Λ y X is topologically free.

Our result is a topological analogue of Stuck–Zimmer’s stabilizer rigidity

theorem (1992). It solves a question raised by Glasner–Weiss (2014).
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Strategy of proof

Our main results are consequences of a dynamical dichotomy for
normal ucp Γ-maps Θ : M → L∞(G/P) where Γ < G is a higher
rank lattice and M is an ergodic Γ-von Neumann algebra.

The proof of the dynamical dichotomy (which is the hard part)
uses von Neumann algebra theory and depends heavily on
whether d = 1 (simple case) or d ≥ 2 (semisimple case).

In [BH19, BBH21], we treat the case d = 1 and rkk(G) ≥ 2
(e.g. G = SLn(R) for n ≥ 3). In that case, we prove a much
stronger result: the noncommutative Nevo–Zimmer theorem.

In [BBHP20], we treat the case d ≥ 2 (e.g.G = SL2(R)× SL2(R))
exploiting a different method based on the product structure.

In that respect, [BH19], [BBHP20], [BBH21] are complementary.
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The noncommutative Nevo–Zimmer theorem
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Structure theory of G/P

In this section, we assume that d = 1. Then G is almost k-simple
with rkk(G) ≥ 2 and we set G = G(k).

Let P < G be any minimal parabolic k-subgroup and set
P = P(k). Then G/P = (G/P)(k).

Example

If G = SLn, take P < G the subgroup of upper triangular matrices.

Theorem (Furstenberg 1962, Bader–Shalom 2004)

For every admissible measure µ ∈ Prob(G ), there exists a unique
µ-stationary measure ν ∈ Prob(G/P) such that (G/P, ν) is the
(G , µ)-Furstenberg–Poisson boundary i.e.

L∞(G/P, ν) ∼=
G -equiv.

Har∞(G , µ)

Recall that ν is µ-stationary if ν = µ ∗ ν =
∫
G g∗ν dµ(g).
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Boundary structures on von Neumann algebras

Let Γ < G be any lattice. Let M be any von Neumann algebra and
σ : Γ y M any action by automorphisms.

Definition (BBHP20)

Let Θ : M → L∞(G/P) be any normal ucp Γ-map. We simply say
that Θ is a Γ-boundary structure on M.

We denote by mult(Θ) ⊂ M its multiplicative domain.

For any Γ-boundary structure Θ : M → L∞(G/P), one can define
the induced G -boundary structure Θ̂ : IndG

Γ (M)→ L∞(G/P).
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Examples of boundary structures

Note that the action Γ y G/P is amenable and ergodic.

Examples (Boundary structures)

Let A be any unital separable C∗-algebra and Γ y A any action.

Since Γ y G/P is amenable, there exists a measurable Γ-map
β : G/P → S(A) : b 7→ βb. By duality, we obtain a ucp Γ-map
E : A→ L∞(G/P) : a 7→ (b 7→ βb(a)).

Consider the normal extension E∗∗ : A∗∗ → L∞(G/P) and denote
by z ∈ Z (A∗∗) its central support. Letting M = A∗∗z ,
Θ = E∗∗ |M : M → L∞(G/P) is a Γ-boundary structure.

We apply the above construction to the following situations:

1 A = C(X ) where X is a compact metrizable Γ-space.

2 A = C∗π(Γ) where π : Γ→ U (Hπ) is a unitary representation
and Γ y C∗π(Γ) is the conjugation action.
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The noncommutative Nevo–Zimmer theorem

Theorem (BH19, BBH21)

Let Γ < G be any lattice. Let M be any von Neumann algebra,
Γ y M any ergodic action and Θ : M → L∞(G/P) any
Γ-boundary structure. Then

Either Θ(M) = C1.

Or there is a unique proper parabolic k-subgroup P < Q < G
such that mult(Θ) ∼=

Γ-equiv.
L∞(G/Q) with Q = Q(k).

In case M = L∞(X ) and k = R, and considering G -actions instead of

Γ-actions, the above theorem is due to Nevo–Zimmer (2000).

; In [BH19], we extended NZ theorem to noncommutative von

Neumann algebras M and to both Γ-actions and G -actions.

; In [BBH21], we further generalized to deal with lattices in simple

algebraic groups defined over an arbitrary local field k .
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The noncommutative factor theorem
and Connes’ rigidity conjecture
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Connes’ rigidity conjecture for higher rank lattices

Connes (1979) showed that whenever Λ is an icc group with
property (T), the symmetry groups of L(Λ) are at most countable.

He conjectured that L(Λ) should retain Λ for property (T) groups.

; CIOS (2021): First class of W∗-superrigid property (T) icc groups.

In view of Mostow–Margulis’ rigidity results, we state the following
version of Connes’ rigidity conjecture for lattices in higher rank
simple real Lie groups.

Connes’ rigidity conjecture

For i ∈ {1, 2}, let Gi be any real connected simple Lie group with
trivial center and rkR(Gi ) ≥ 2, and let Γi < Gi be any lattice.

L(Γ1) ∼= L(Γ2) ⇒ G1
∼= G2

⇒ rkR(G1) = rkR(G2)
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The noncommutative Margulis factor theorem

Let Γ < G be any higher rank lattice. For every i ∈ {1, . . . , d},
let Pi < Gi be any minimal parabolic ki -subgroup and set
Pi = Pi (ki ). Set P =

∏d
i=1 Pi < G .

Set Λ = Γ/Z (Γ) and consider the ergodic action Λ y G/P and its
group measure space von Neumann algebra L(Λ y G/P).

Theorem (BBH21, BH22)

For every von Neumann subalgebra L(Λ) ⊂ M ⊂ L(Λ y G/P),
there exists a unique intermediate closed subgroup P < Q < G
such that M = L(Λ y G/Q).

Corollary (BBH21, BH22)

The rank
∑d

i=1 rkki (Gi ) is an invariant of L(Λ) ⊂ L(Λ y G/P).
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Thank you for your attention!
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