Noncommutative ergodic theory of higher rank lattices

Cyril HOUĐAYER

Université Paris-Saclay & Institut Universitaire de France

International Congress of Mathematicians 2022
Operator algebras, dynamics and groups
University of Copenhagen
Introduction
Let k be any local field i.e. k is a nondiscrete locally compact field.

Definition

Let G be any simply connected semisimple connected linear algebraic k-group. We assume that

1. G is **absolutely almost simple** (resp. **almost k-simple**) i.e. the only proper normal algebraic (resp. k-closed) subgroups are finite.

2. G is **k-isotropic** i.e. G has a nontrivial k-split torus.

Denote by $rk_k(G)$ the dimension of a maximal k-split torus in G.
Let k be any **local** field i.e. k is a nondiscrete locally compact field.

Definition
Let G be any simply connected semisimple connected linear algebraic k-group. We assume that

1. G is **absolutely almost simple** (resp. **almost k-simple**) i.e. the only proper normal algebraic (resp. k-closed) subgroups are finite.

2. G is **k-isotropic** i.e. G has a nontrivial k-split torus.

Denote by $rk_k(G)$ the dimension of a maximal k-split torus in G.

Example

For every $n \geq 2$, SL_n is a k-isotropic absolutely almost simple algebraic k-group. Moreover, we have $rk_k(SL_n) = n - 1$.

Cyril HOUDAYER (Paris-Saclay & IUF)
Noncommutative ergodic theory of higher rank lattices
Higher rank lattices

Let \(I = \{1, \ldots, d\} \) be any finite index set with \(d \geq 1 \).

For every \(i \in I \), let \(k_i \) be any local field, \(\mathbb{G}_i \) any \(k_i \)-isotropic almost \(k_i \)-simple algebraic \(k_i \)-group and set \(G_i = \mathbb{G}_i(k_i) \).
Higher rank lattices

Let \(l = \{1, \ldots, d\} \) be any finite index set with \(d \geq 1 \).

For every \(i \in l \), let \(k_i \) be any local field, \(G_i \) any \(k_i \)-isotropic almost \(k_i \)-simple algebraic \(k_i \)-group and set \(G_i = G_i(k_i) \).

Definition (Higher rank lattice)

Set \(G = \prod_{i=1}^{d} G_i \). We say that \(\Gamma < G \) is a **higher rank lattice** if

1. \(\Gamma < G \) is a discrete subgroup with finite covolume;
2. If \(d \geq 2 \), then \(\Gamma < G \) is with dense projections i.e. for every \(j \in \{1, \ldots, d\} \), the projection of \(\Gamma \) in \(\prod_{i \neq j} G_i \) is dense;
3. \(\sum_{i=1}^{d} \text{rk}_{k_i}(G_i) \geq 2 \).
Higher rank lattices

Let $I = \{1, \ldots, d\}$ be any finite index set with $d \geq 1$.

For every $i \in I$, let k_i be any local field, G_i any k_i-isotropic almost k_i-simple algebraic k_i-group and set $G_i = G_i(k_i)$.

Definition (Higher rank lattice)

Set $G = \prod_{i=1}^{d} G_i$. We say that $\Gamma < G$ is a **higher rank lattice** if

1. $\Gamma < G$ is a discrete subgroup with finite covolume;
2. If $d \geq 2$, then $\Gamma < G$ is with dense projections i.e. for every $j \in \{1, \ldots, d\}$, the projection of Γ in $\prod_{i\neq j} G_i$ is dense;
3. $\sum_{i=1}^{d} \text{rk}_{k_i}(G_i) \geq 2$.

The higher rank assumption $\sum_{i=1}^{d} \text{rk}_{k_i}(G_i) \geq 2$ implies that:

- Either $d = 1$, $k = k_1$, $G = G_1$ and $\text{rk}_k(G) \geq 2$ (**simple** case).
- Or $d \geq 2$ (**semisimple** or **product** case).
Examples of higher rank lattices

Denote by \mathcal{P} the set of all prime numbers.

Examples (Borel–Harish-Chandra, Behr, Harder)

Higher rank lattices in simple algebraic groups (case $d = 1$):

- $\text{SL}_n(\mathbb{Z}) < \text{SL}_n(\mathbb{R})$, $n \geq 3$
- $\text{SL}_n(\mathbb{F}_q[t^{-1}]) < \text{SL}_n(\mathbb{F}_q((t)))$, $n \geq 3$ and $q = p^r$ with $p \in \mathcal{P}$
Examples of higher rank lattices

Denote by \mathcal{P} the set of all prime numbers.

Examples (Borel–Harish-Chandra, Behr, Harder)

Higher rank lattices in **simple** algebraic groups (case $d = 1$):

- $\text{SL}_n(\mathbb{Z}) < \text{SL}_n(\mathbb{R})$, $n \geq 3$
- $\text{SL}_n(\mathbb{F}_q[t^{-1}]) < \text{SL}_n(\mathbb{F}_q((t)))$, $n \geq 3$ and $q = p^r$ with $p \in \mathcal{P}$

Higher rank lattices in **semisimple** algebraic groups (case $d \geq 2$):

- $\text{SL}_n(\mathbb{Z}[\sqrt{a}]) < \text{SL}_n(\mathbb{R}) \times \text{SL}_n(\mathbb{R})$, $n \geq 2$, $a \geq 2$ square free
- $\text{SL}_n(\mathbb{Z}[S^{-1}]) < \text{SL}_n(\mathbb{R}) \times \text{SL}_n(\mathbb{Q}_{p_1}) \times \cdots \times \text{SL}_n(\mathbb{Q}_{p_k})$, $n \geq 2$, $p_1, \ldots, p_k \in \mathcal{P}$ and $S = p_1 \cdots p_k$
- $\text{SL}_n(\mathbb{F}_q[t, t^{-1}]) < \text{SL}_n(\mathbb{F}_q((t))) \times \text{SL}_n(\mathbb{F}_q((t^{-1})))$, $n \geq 2$
Let $\Gamma < G$ be any higher rank lattice.

Margulis’ Normal Subgroup Theorem (1978)

Any normal subgroup $N \triangleleft \Gamma$ is either finite or has finite index.
Let $\Gamma < G$ be any higher rank lattice.

Margulis’ Normal Subgroup Theorem (1978)

Any normal subgroup $N \triangleleft \Gamma$ is either finite or has finite index.

Margulis’ strategy: assuming that $N \triangleleft \Gamma$ is an infinite normal subgroup, to prove that Γ/N is a finite group, he showed that

1. Γ/N has **property (T)** (Functional Analysis).
2. Γ/N is **amenable** (Ergodic Theory). This follows from:
Let $\Gamma < G$ be any higher rank lattice.

Margulis’ Normal Subgroup Theorem (1978)

Any normal subgroup $N \triangleleft \Gamma$ is either finite or has finite index.

Margulis’ strategy: assuming that $N \triangleleft \Gamma$ is an infinite normal subgroup, to prove that Γ/N is a finite group, he showed that

1. Γ/N has **property (T)** (Functional Analysis).
2. Γ/N is **amenable** (Ergodic Theory). This follows from:

Margulis’ Factor Theorem (1978)

For every $i \in \{1, \ldots, d\}$, let $P_i < G_i$ be any minimal parabolic k_i-subgroup and set $P_i = P_i(k_i)$. Set $P = \prod_{i=1}^{d} P_i < G$. Then any measurable Γ-factor of G/P is Γ-isomorphic to G/Q for some unique intermediate closed subgroup $P < Q < G$.
Goals

We use operator algebras (C*-algebras and von Neumann algebras) to explore new rigidity phenomena of higher rank lattices.

Main Problem

Given a higher rank lattice $\Gamma < G$, we investigate:

1. Dynamical properties of the affine action $\Gamma \curvearrowright \mathcal{P}(\Gamma)$
2. Structure of group C*-algebras $C^*_\pi(\Gamma)$ where $\pi : \Gamma \to \mathcal{U}(\mathcal{H}_\pi)$
3. Rigidity aspects of the group von Neumann algebra $L(\Gamma)$
This ICM survey talk is based on the following joint works:

Dynamics of positive definite functions and character rigidity
For any countable discrete group Λ, set

$$\mathcal{P}(\Lambda) := \{ \varphi : \Lambda \to \mathbb{C} \mid \text{normalized positive definite function} \}$$

Then $\mathcal{P}(\Lambda) \subset \ell^\infty(\Lambda)$ is a weak-$*$ compact convex set.
For any countable discrete group Λ, set

$$\mathcal{P}(\Lambda) := \{ \varphi : \Lambda \to \mathbb{C} \mid \text{normalized positive definite function} \}$$

Then $\mathcal{P}(\Lambda) \subset \ell^\infty(\Lambda)$ is a weak-* compact convex set.

To any $\varphi \in \mathcal{P}(\Lambda)$, one associates the GNS triple $(\pi_\varphi, \mathcal{H}_\varphi, \xi_\varphi)$:

$$\forall \gamma \in \Lambda, \quad \varphi(\gamma) = \langle \pi_\varphi(\gamma)\xi_\varphi, \xi_\varphi \rangle$$
Dynamics of $\Lambda \curvearrowright \mathcal{P}(\Lambda)$

For any countable discrete group Λ, set

$$\mathcal{P}(\Lambda) := \{ \varphi : \Lambda \to \mathbb{C} \mid \text{normalized positive definite function} \}$$

Then $\mathcal{P}(\Lambda) \subset \ell^\infty(\Lambda)$ is a weak-\ast compact convex set.

To any $\varphi \in \mathcal{P}(\Lambda)$, one associates the GNS triple $(\pi_\varphi, \mathcal{H}_\varphi, \xi_\varphi)$:

$$\forall \gamma \in \Lambda, \quad \varphi(\gamma) = \langle \pi_\varphi(\gamma) \xi_\varphi, \xi_\varphi \rangle$$

Consider the affine conjugation action $\Lambda \curvearrowright \mathcal{P}(\Lambda)$ defined by

$$\forall \gamma \in \Lambda, \quad \gamma \varphi := \varphi \circ \text{Ad}(\gamma^{-1})$$
For any countable discrete group Λ, set

$$\mathcal{P}(\Lambda) := \{ \varphi : \Lambda \to \mathbb{C} \mid \text{normalized positive definite function} \}$$

Then $\mathcal{P}(\Lambda) \subset \ell^\infty(\Lambda)$ is a weak-$*$ compact convex set.

To any $\varphi \in \mathcal{P}(\Lambda)$, one associates the GNS triple $(\pi_\varphi, \mathcal{H}_\varphi, \xi_\varphi)$:

$$\forall \gamma \in \Lambda, \quad \varphi(\gamma) = \langle \pi_\varphi(\gamma)\xi_\varphi, \xi_\varphi \rangle$$

Consider the affine conjugation action $\Lambda \curvearrowright \mathcal{P}(\Lambda)$ defined by

$$\forall \gamma \in \Lambda, \quad \gamma \varphi := \varphi \circ \text{Ad}(\gamma^{-1})$$

Definition

A **character** $\varphi \in \mathcal{P}(\Lambda)$ is a fixed point for $\Lambda \curvearrowright \mathcal{P}(\Lambda)$.

Denote by $\text{Char}(\Lambda) \subset \mathcal{P}(\Lambda)$ the convex subset of all characters.
Examples of characters

Denote by $\text{Sub}(\Lambda)$ the compact metrizable space of all subgroups of Λ endowed with the conjugation action $\gamma \cdot H = \gamma H \gamma^{-1}$.

Consider the Λ-equivariant continuous map

$$\text{Sub}(\Lambda) \to \mathcal{P}(\Lambda) : H \mapsto 1_H$$

1. If $N \triangleleft \Lambda$ is a normal subgroup, then $\phi_N \in \text{Char}(\Lambda)$.
 Its GNS unirep $\pi_\phi = \lambda_{\Lambda/N}$ is the quasi-regular representation.
 When $N = \Lambda$, then 1_Λ is the trivial character.
 When $N = \{e\}$, then $1_{\{e\}}$ is the regular character.

2. If $\Lambda \acts (X, \nu)$ is pmp, then $\phi_\nu : \gamma \mapsto \nu(\text{Fix}(\gamma)) \in \text{Char}(\Lambda)$.
 When $\phi_\nu = 1_{\{e\}}$, the action $\Lambda \acts (X, \nu)$ is essentially free.

3. If $\pi : \Lambda \to U(n)$ is a finite dim unirep, then $\text{tr} \circ \pi \in \text{Char}(\Lambda)$.
Examples of characters

Denote by \(\text{Sub}(\Lambda) \) the compact metrizable space of all subgroups of \(\Lambda \) endowed with the conjugation action \(\gamma \cdot H = \gamma H \gamma^{-1} \).

Consider the \(\Lambda \)-equivariant continuous map

\[
\text{Sub}(\Lambda) \to \mathcal{P}(\Lambda) : H \mapsto 1_H
\]

Examples

1. If \(N \triangleleft \Lambda \) is a normal subgroup, then \(\varphi = 1_N \in \text{Char}(\Lambda) \).

 Its GNS unirep \(\pi_\varphi = \lambda_{\Lambda/N} \) is the quasi-regular representation.

 - When \(N = \Lambda \), then \(1_\Lambda \) is the trivial character.
 - When \(N = \{e\} \), then \(1_{\{e\}} \) is the regular character.
Denote by $\text{Sub}(\Lambda)$ the compact metrizable space of all subgroups of Λ endowed with the conjugation action $\gamma \cdot H = \gamma H \gamma^{-1}$.

Consider the Λ-equivariant continuous map

$$\text{Sub}(\Lambda) \to \mathcal{P}(\Lambda) : H \mapsto 1_H$$

Examples

1. If $N \triangleleft \Lambda$ is a normal subgroup, then $\varphi = 1_N \in \text{Char}(\Lambda)$. Its GNS unirep $\pi_\varphi = \lambda_{\Lambda/N}$ is the quasi-regular representation.
 - When $N = \Lambda$, then 1_Λ is the trivial character.
 - When $N = \{e\}$, then $1_{\{e\}}$ is the regular character.

2. If $\Lambda \curvearrowright (X, \nu)$ is pmp, then $\varphi_\nu : \gamma \mapsto \nu(\text{Fix}(\gamma)) \in \text{Char}(\Lambda)$.
 - When $\varphi_\nu = 1_{\{e\}}$, the action $\Lambda \curvearrowright (X, \nu)$ is essentially free.
Examples of characters

Denote by \(\text{Sub}(\Lambda) \) the compact metrizable space of all subgroups of \(\Lambda \) endowed with the conjugation action \(\gamma \cdot H = \gamma H \gamma^{-1} \).

Consider the \(\Lambda \)-equivariant continuous map

\[
\text{Sub}(\Lambda) \to \mathcal{P}(\Lambda) : H \mapsto 1_H
\]

Examples

1. If \(N \triangleleft \Lambda \) is a normal subgroup, then \(\varphi = 1_N \in \text{Char}(\Lambda) \).
 Its GNS unirep \(\pi_\varphi = \lambda_{\Lambda/N} \) is the quasi-regular representation.
 - When \(N = \Lambda \), then \(1_\Lambda \) is the trivial character.
 - When \(N = \{e\} \), then \(1_{\{e\}} \) is the regular character.

2. If \(\Lambda \curvearrowright (X, \nu) \) is pmp, then \(\varphi_\nu : \gamma \mapsto \nu(\text{Fix}(\gamma)) \in \text{Char}(\Lambda) \).
 When \(\varphi_\nu = 1_{\{e\}} \), the action \(\Lambda \curvearrowright (X, \nu) \) is essentially free.

3. If \(\pi : \Lambda \to \mathcal{U}(n) \) is a finite dim unirep, then \(\text{tr}_n \circ \pi \in \text{Char}(\Lambda) \).
Existence and classification of characters

Theorem (BH19, BBH20, BBH21)

Let $\Gamma < G$ be any higher rank lattice. Then

1. Any nonempty Γ-invariant weak-$*$ compact convex subset $\mathcal{C} \subset \mathcal{P}(\Gamma)$ contains a character.

2. Any extremal character $\varphi \in \text{Char}(\Gamma)$ is either supported on $\mathcal{L}(\Gamma)$ or π_{φ} is amenable.

Assume moreover that Γ has property (T). Then

3. Γ is character rigid, i.e., any extremal character $\varphi \in \text{Char}(\Gamma)$ is either supported on $\mathcal{L}(\Gamma)$ or $\dim(\pi_{\varphi}) < \infty$.

The classification part (items 2 and 3) is due to Peterson (2014). We obtain a new conceptual proof in [BH19, BBHP20, BBH21].

Theorem (BH19, BBH20, BBH21)

Let $\Gamma < G$ be any higher rank lattice. Then

1. Any nonempty Γ-invariant weak-$*$ compact convex subset $C \subset \mathcal{P}(\Gamma)$ contains a character.

2. Any extremal character $\varphi \in \text{Char}(\Gamma)$ is either supported on $\mathcal{L}(\Gamma)$ or π_φ is amenable.

Assume moreover that Γ has property (T). Then

3. Γ is character rigid i.e. any extremal character $\varphi \in \text{Char}(\Gamma)$ is either supported on $\mathcal{L}(\Gamma)$ or $\dim(\pi_\varphi) < \infty$.

The classification part (items 2 and 3) is due to Peterson (2014). We obtain a new conceptual proof in [BH19, BBHP20, BBH21]. Previous character rigidity results due to Bekka (2006), Peterson–Thom (2013), Creutz–Peterson (2013).
Existence and classification of characters

Theorem (BH19, BBH20, BBH21)

Let $\Gamma < G$ be any higher rank lattice. Then

1. Any nonempty Γ-invariant weak-* compact convex subset $C \subset \mathcal{P}(\Gamma)$ contains a character.

2. Any extremal character $\varphi \in \text{Char}(\Gamma)$ is either supported on $\mathcal{L}(\Gamma)$ or π_{φ} is amenable.

Assume moreover that Γ has property (T). Then

3. Γ is character rigid i.e. any extremal character $\varphi \in \text{Char}(\Gamma)$ is either supported on $\mathcal{L}(\Gamma)$ or $\dim(\pi_{\varphi}) < \infty$.

The classification part (items 2 and 3) is due to Peterson (2014). We obtain a new conceptual proof in [BH19, BBHP20, BBH21].
Existence and classification of characters

Theorem (BH19, BBH20, BBH21)

Let $\Gamma \subset G$ be any higher rank lattice. Then

1. Any nonempty Γ-invariant weak-\ast compact convex subset $C \subset \mathcal{P}(\Gamma)$ contains a character.

2. Any extremal character $\varphi \in \text{Char}(\Gamma)$ is either supported on $\mathcal{L}(\Gamma)$ or π_φ is amenable.

Assume moreover that Γ has property (T). Then

3. Γ is character rigid i.e. any extremal character $\varphi \in \text{Char}(\Gamma)$ is either supported on $\mathcal{L}(\Gamma)$ or $\dim(\pi_\varphi) < \infty$.

The classification part (items 2 and 3) is due to Peterson (2014). We obtain a new conceptual proof in [BH19, BBHP20, BBH21].

Corollary (BH19, BBHP20, BBH21)

Let $\Gamma < G$ be any higher rank lattice and set $\Lambda = \Gamma / \mathcal{L}(\Gamma)$. Let $\pi : \Lambda \to \mathcal{U}(\mathcal{H}_\pi)$ be any unirep. Then $C^*_\pi(\Lambda)$ admits a trace.

Assume moreover that Γ has property (T). If π is weakly mixing, then $\lambda \ll \pi$ i.e. there is a C^*-homomorphism $\Theta : C^*_\pi(\Lambda) \to C^*_\lambda(\Lambda)$ such that $\Theta(\pi(\gamma)) = \lambda(\gamma)$ for every $\gamma \in \Lambda$.

Moreover, $\tau_\Lambda \circ \Theta$ is the unique trace on $C^*_\pi(\Lambda)$. $\ker(\Theta)$ is the unique maximal proper ideal of $C^*_\pi(\Lambda)$.

This extends results by Bekka–Cowling–de la Harpe (1994) regarding C^*-simplicity and the unique trace property.
Corollary (BH19, BBHP20, BBH21)

Let $\Gamma < G$ be any higher rank lattice and set $\Lambda = \Gamma / \mathcal{L}(\Gamma)$. Let $\pi : \Lambda \to \mathcal{U}(\mathcal{H}_\pi)$ be any unirep. Then $C^*_\pi(\Lambda)$ admits a trace.

Assume moreover that Γ has property (T). If π is weakly mixing, then $\lambda \prec \pi$ i.e. there is a $*$-homomorphism $\Theta : C^*_\pi(\Lambda) \to C^*_\lambda(\Lambda)$ such that $\Theta(\pi(\gamma)) = \lambda(\gamma)$ for every $\gamma \in \Lambda$. Moreover,

1. $\tau_\Lambda \circ \Theta$ is the unique trace on $C^*_\pi(\Lambda)$.
2. $\ker(\Theta)$ is the unique maximal proper ideal of $C^*_\pi(\Lambda)$.

This extends results by Bekka–Cowling–de la Harpe (1994) regarding C^*-simplicity and the unique trace property.
Theorem (BH19, BBHP20, BBH21)

Let $\Gamma < G$ be any higher rank lattice and set $\Lambda = \Gamma / \mathcal{L}(\Gamma)$. Let $\Lambda \curvearrowright X$ be any minimal action on a compact metrizable space. At least one of the following assertions holds:

1. There exists a Λ-invariant probability measure $\nu \in \text{Prob}(X)$.
2. The action $\Lambda \curvearrowright X$ is topologically free, i.e., for every $\gamma \in \Lambda \setminus \{e\}$, $\text{Fix}(\gamma) = \{x \in X | \gamma x = x\}$ has empty interior.
3. Assume moreover that Γ has property (T). Then either X is finite or $\Lambda \curvearrowright X$ is topologically free.
Theorem (BH19, BBHP20, BBH21)

Let $\Gamma \subset G$ be any higher rank lattice and set $\Lambda = \Gamma / \mathcal{L}(\Gamma)$. Let $\Lambda \curvearrowright X$ be any minimal action on a compact metrizable space.

At least one of the following assertions holds:

- There exists a Λ-invariant probability measure $\nu \in \text{Prob}(X)$.
- The action $\Lambda \curvearrowright X$ is topologically free i.e. for every $\gamma \in \Lambda \setminus \{e\}$, $\text{Fix}(\gamma) := \{x \in X | \gamma x = x\}$ has empty interior.
Theorem (BH19, BBHP20, BBH21)

Let $\Gamma \lhd G$ be any higher rank lattice and set $\Lambda = \Gamma / \mathcal{P}(\Gamma)$. Let $\Lambda \curvearrowright X$ be any minimal action on a compact metrizable space.

At least one of the following assertions holds:

- There exists a Λ-invariant probability measure $\nu \in \text{Prob}(X)$.
- The action $\Lambda \curvearrowright X$ is topologically free i.e. for every $\gamma \in \Lambda \setminus \{e\}$, $\text{Fix}(\gamma) := \{x \in X \mid \gamma x = x\}$ has empty interior.

Assume moreover that Γ has property (T). Then

- Either X is finite or $\Lambda \curvearrowright X$ is topologically free.

Our main results are consequences of a **dynamical dichotomy** for normal ucp Γ-maps $\Theta : M \to L^\infty(G/P)$ where $\Gamma < G$ is a higher rank lattice and M is an ergodic Γ-von Neumann algebra.
Strategy of proof

Our main results are consequences of a **dynamical dichotomy** for normal ucp Γ-maps $\Theta : M \to L^\infty(G/P)$ where $\Gamma \subset G$ is a higher rank lattice and M is an ergodic Γ-von Neumann algebra.

The proof of the dynamical dichotomy (which is the hard part) uses **von Neumann algebra** theory and depends heavily on whether $d = 1$ (**simple** case) or $d \geq 2$ (**semisimple** case).
Our main results are consequences of a **dynamical dichotomy** for normal ucp Γ-maps $\Theta : M \to L^\infty(G/P)$ where $\Gamma < G$ is a higher rank lattice and M is an ergodic Γ-von Neumann algebra.

The proof of the dynamical dichotomy (which is the hard part) uses **von Neumann algebra** theory and depends heavily on whether $d = 1$ (**simple** case) or $d \geq 2$ (**semisimple** case).

In [BH19, BBH21], we treat the case $d = 1$ and $rk_k(G) \geq 2$ (e.g. $G = SL_n(\mathbb{R})$ for $n \geq 3$). In that case, we prove a much stronger result: the **noncommutative Nevo–Zimmer theorem**.
Strategy of proof

Our main results are consequences of a **dynamical dichotomy** for normal ucp Γ-maps $\Theta : M \to L^\infty(G/P)$ where $\Gamma < G$ is a higher rank lattice and M is an ergodic Γ-von Neumann algebra.

The proof of the dynamical dichotomy (which is the hard part) uses **von Neumann algebra** theory and depends heavily on whether $d = 1$ (**simple** case) or $d \geq 2$ (**semisimple** case).

In [BH19, BBH21], we treat the case $d = 1$ and $\text{rk}_k(G) \geq 2$ (e.g. $G = \text{SL}_n(\mathbb{R})$ for $n \geq 3$). In that case, we prove a much stronger result: the **noncommutative Nevo–Zimmer theorem**.

In [BBHP20], we treat the case $d \geq 2$ (e.g. $G = \text{SL}_2(\mathbb{R}) \times \text{SL}_2(\mathbb{R})$) exploiting a different method based on the product structure.
Strategy of proof

Our main results are consequences of a dynamical dichotomy for normal ucp Γ-maps $\Theta : M \to L^{\infty}(G/P)$ where $\Gamma < G$ is a higher rank lattice and M is an ergodic Γ-von Neumann algebra.

The proof of the dynamical dichotomy (which is the hard part) uses von Neumann algebra theory and depends heavily on whether $d = 1$ (simple case) or $d \geq 2$ (semisimple case).

In [BH19, BBH21], we treat the case $d = 1$ and $\text{rk}_k(G) \geq 2$ (e.g. $G = \text{SL}_n(\mathbb{R})$ for $n \geq 3$). In that case, we prove a much stronger result: the noncommutative Nevo–Zimmer theorem.

In [BBHP20], we treat the case $d \geq 2$ (e.g. $G = \text{SL}_2(\mathbb{R}) \times \text{SL}_2(\mathbb{R})$) exploiting a different method based on the product structure.

In that respect, [BH19], [BBHP20], [BBH21] are complementary.
The noncommutative Nevo–Zimmer theorem
In this section, we assume that $d = 1$. Then G is almost k-simple with $\text{rk}_k(G) \geq 2$ and we set $G = G(k)$.

Let $P < G$ be any minimal parabolic k-subgroup and set $P = P(k)$. Then $G/P = (G/P)(k)$.

Example

If $G = \text{SL}_n$, take $P < G$ the subgroup of upper triangular matrices.
In this section, we assume that $d = 1$. Then G is almost k-simple with $\text{rk}_k(G) \geq 2$ and we set $G = G(k)$.

Let $P < G$ be any minimal parabolic k-subgroup and set $P = P(k)$. Then $G/P = (G/P)(k)$.

Example

If $G = \text{SL}_n$, take $P < G$ the subgroup of upper triangular matrices.

Theorem (Furstenberg 1962, Bader–Shalom 2004)

For every admissible measure $\mu \in \text{Prob}(G)$, there exists a unique μ-stationary measure $\nu \in \text{Prob}(G/P)$ such that $(G/P, \nu)$ is the (G, μ)-Furstenberg–Poisson boundary i.e.

$$L^\infty(G/P, \nu) \overset{\text{G-equiv.}}{=} \text{Har}^\infty(G, \mu)$$

Recall that ν is μ-stationary if $\nu = \mu \ast \nu = \int_G g \ast \nu \, d\mu(g)$.

Cyril HOUDAYER (Paris-Saclay & IUF)
Noncommutative ergodic theory of higher rank lattices
Let $\Gamma \triangleleft G$ be any lattice. Let M be any von Neumann algebra and $\sigma : \Gamma \curvearrowright M$ any action by automorphisms.
Let $\Gamma < G$ be any lattice. Let M be any von Neumann algebra and $\sigma : \Gamma \curvearrowright M$ any action by automorphisms.

Definition (BBHP20)

Let $\Theta : M \to L^\infty(G/P)$ be any normal ucp Γ-map. We simply say that Θ is a Γ-boundary structure on M.

We denote by $\text{mult}(\Theta) \subset M$ its multiplicative domain.
Let $\Gamma < G$ be any lattice. Let M be any von Neumann algebra and $\sigma : \Gamma \curvearrowright M$ any action by automorphisms.

Definition (BBHP20)

Let $\Theta : M \rightarrow L^\infty(G/P)$ be any normal ucp Γ-map. We simply say that Θ is a Γ-boundary structure on M.

We denote by $\text{mult}(\Theta) \subset M$ its multiplicative domain.

For any Γ-boundary structure $\Theta : M \rightarrow L^\infty(G/P)$, one can define the *induced* G-boundary structure $\hat{\Theta} : \text{Ind}_\Gamma^G(M) \rightarrow L^\infty(G/P)$.
Examples of boundary structures

Note that the action $\Gamma \curvearrowright G/P$ is amenable and ergodic.
Examples of boundary structures

Note that the action $\Gamma \curvearrowright G/P$ is amenable and ergodic.

Examples (Boundary structures)

Let A be any unital separable C^*-algebra and $\Gamma \curvearrowright A$ any action.
Note that the action $\Gamma \curvearrowright G/P$ is amenable and ergodic.

Examples (Boundary structures)

Let A be any unital separable C^*-algebra and $\Gamma \curvearrowright A$ any action. Since $\Gamma \curvearrowright G/P$ is amenable, there exists a measurable Γ-map $\beta : G/P \to \mathfrak{S}(A) : b \mapsto \beta_b$. By duality, we obtain a ucp Γ-map $E : A \to L^\infty(G/P) : a \mapsto (b \mapsto \beta_b(a))$.
Examples of boundary structures

Note that the action $\Gamma \curvearrowright G/P$ is amenable and ergodic.

Examples (Boundary structures)

Let A be any unital separable C^*-algebra and $\Gamma \curvearrowright A$ any action. Since $\Gamma \curvearrowright G/P$ is amenable, there exists a measurable Γ-map $\beta : G/P \to \mathcal{S}(A) : b \mapsto \beta_b$. By duality, we obtain a ucp Γ-map $E : A \to L^\infty(G/P) : a \mapsto (b \mapsto \beta_b(a))$.

Consider the normal extension $E^{**} : A^{**} \to L^\infty(G/P)$ and denote by $z \in \mathcal{Z}(A^{**})$ its central support. Letting $M = A^{**}z$, $\Theta = E^{**} |_M : M \to L^\infty(G/P)$ is a Γ-boundary structure.
Examples of boundary structures

Note that the action $\Gamma \curvearrowright G/P$ is amenable and ergodic.

Examples (Boundary structures)

Let A be any unital separable C^*-algebra and $\Gamma \curvearrowright A$ any action.

Since $\Gamma \curvearrowright G/P$ is amenable, there exists a measurable Γ-map
\[\beta : G/P \to \mathcal{G}(A) : b \mapsto \beta_b. \]
By duality, we obtain a ucp Γ-map
\[E : A \to L^\infty(G/P) : a \mapsto (b \mapsto \beta_b(a)). \]

Consider the normal extension $E^{**} : A^{**} \to L^\infty(G/P)$ and denote by $z \in \mathcal{L}(A^{**})$ its central support. Letting $M = A^{**}z$,

\[\Theta = E^{**} |_M : M \to L^\infty(G/P) \]

is a Γ-boundary structure.

We apply the above construction to the following situations:

1. $A = C(X)$ where X is a compact metrizable Γ-space.
2. $A = C^*_\pi(\Gamma)$ where $\pi : \Gamma \to \mathcal{U}(\mathcal{H}_\pi)$ is a unitary representation and $\Gamma \curvearrowright C^*_\pi(\Gamma)$ is the conjugation action.
The noncommutative Nevo–Zimmer theorem

<table>
<thead>
<tr>
<th>Theorem (BH19, BBH21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $\Gamma < G$ be any lattice. Let M be any von Neumann algebra, $\Gamma \curvearrowright M$ any ergodic action and $\Theta : M \to L^\infty(G/P)$ any Γ-boundary structure. Then</td>
</tr>
</tbody>
</table>

Either $\Theta(M) = C_1$.

Or there is a unique proper parabolic k-subgroup $P < Q < G$ such that $\text{mult}(\Theta) \sim \Gamma$-equiv. $L^\infty(G/Q)$ with $Q = Q(k)$.

In case $M = L^\infty(X)$ and $k = \mathbb{R}$, and considering G-actions instead of Γ-actions, the above theorem is due to Nevo–Zimmer (2000). In [BH19], we extended NZ theorem to noncommutative von Neumann algebras M and to both Γ-actions and G-actions. In [BBH21], we further generalized to deal with lattices in simple algebraic groups defined over an arbitrary local field k. |
The noncommutative Nevo–Zimmer theorem

Theorem (BH19, BBH21)

Let $\Gamma < G$ be any lattice. Let M be any von Neumann algebra, $\Gamma \curvearrowright M$ any ergodic action and $\Theta : M \to L^\infty(G/P)$ any Γ-boundary structure. Then

- Either $\Theta(M) = \mathbb{C}1$.
- Or there is a unique proper parabolic k-subgroup $P \subset Q \subset G$ such that $\text{mult}(\Theta) \cong L^\infty(G/Q)$ with $Q = Q(k)$, Γ-equiv.

In case $M = L^\infty(X)$ and $k = \mathbb{R}$, and considering G-actions instead of Γ-actions, the above theorem is due to Nevo–Zimmer (2000). In [BH19], we extended NZ theorem to noncommutative von Neumann algebras M and to both Γ-actions and G-actions. In [BBH21], we further generalized to deal with lattices in simple algebraic groups defined over an arbitrary local field k.
The noncommutative Nevo–Zimmer theorem

Theorem (BH19, BBH21)

Let \(\Gamma \subset G \) be any lattice. Let \(M \) be any von Neumann algebra, \(\Gamma \curvearrowright M \) any ergodic action and \(\Theta : M \to L^\infty(G/P) \) any \(\Gamma \)-boundary structure. Then

- Either \(\Theta(M) = C^1 \).
- Or there is a unique proper parabolic \(k \)-subgroup \(P < Q < G \) such that \(\text{mult}(\Theta) \cong L^\infty(G/Q) \) with \(Q = \mathbb{Q}(k) \).

In case \(M = L^\infty(X) \) and \(k = \mathbb{R} \), and considering \(G \)-actions instead of \(\Gamma \)-actions, the above theorem is due to Nevo–Zimmer (2000).
The noncommutative Nevo–Zimmer theorem

Theorem (BH19, BBH21)

Let $\Gamma \lhd G$ be any lattice. Let M be any von Neumann algebra, $\Gamma \ltimes M$ any ergodic action and $\Theta : M \to L^\infty(G/P)$ any Γ-boundary structure. Then

- Either $\Theta(M) = \mathbb{C}1$.
- Or there is a unique proper parabolic k-subgroup $P < Q < G$ such that $\text{mult}(\Theta) \cong L^\infty(G/Q)$ with $Q = \mathbb{Q}(k)$, Γ-equiv.

In case $M = L^\infty(X)$ and $k = \mathbb{R}$, and considering G-actions instead of Γ-actions, the above theorem is due to Nevo–Zimmer (2000).

\leadsto In [BH19], we extended NZ theorem to noncommutative von Neumann algebras M and to both Γ-actions and G-actions.
The noncommutative Nevo–Zimmer theorem

Theorem (BH19, BBH21)

Let $\Gamma \leq G$ be any lattice. Let M be any von Neumann algebra, $\Gamma \curvearrowright M$ any ergodic action and $\Theta : M \rightarrow L^\infty(G/P)$ any Γ-boundary structure. Then

- Either $\Theta(M) = \mathbb{C}1$.
- Or there is a unique proper parabolic k-subgroup $P < Q < G$ such that $\text{mult}(\Theta) \cong L^\infty(G/Q)$ with $Q = \mathbb{Q}(k)$.

In case $M = L^\infty(X)$ and $k = \mathbb{R}$, and considering G-actions instead of Γ-actions, the above theorem is due to Nevo–Zimmer (2000).

\leadsto In [BH19], we extended NZ theorem to noncommutative von Neumann algebras M and to both Γ-actions and G-actions.

\leadsto In [BBH21], we further generalized to deal with lattices in simple algebraic groups defined over an arbitrary local field k.
The noncommutative factor theorem and Connes’ rigidity conjecture
Connes’ rigidity conjecture for higher rank lattices

Connes (1979) showed that whenever Λ is an icc group with property (T), the symmetry groups of $L(\Lambda)$ are at most countable. He conjectured that $L(\Lambda)$ should retain Λ for property (T) groups.
Connes’ rigidity conjecture for higher rank lattices

Connes (1979) showed that whenever Λ is an icc group with property (T), the symmetry groups of $L(\Lambda)$ are at most countable. He conjectured that $L(\Lambda)$ should retain Λ for property (T) groups.

CIOS (2021): First class of W^*-superrigid property (T) icc groups.

\(\sim \) Cyril HOUDAYER (Paris-Saclay & IUF)

Noncommutative ergodic theory of higher rank lattices
Connes’ rigidity conjecture for higher rank lattices

Connes (1979) showed that whenever Λ is an icc group with property (T), the symmetry groups of $L(\Lambda)$ are at most countable. He conjectured that $L(\Lambda)$ should retain Λ for property (T) groups.

\sim CIOS (2021): First class of W^*-superrigid property (T) icc groups.

In view of Mostow–Margulis’ rigidity results, we state the following version of **Connes’ rigidity conjecture** for lattices in higher rank simple real Lie groups.

Connes’ rigidity conjecture

For $i \in \{1, 2\}$, let G_i be any real connected simple Lie group with trivial center and $\text{rk}_R(G_i) \geq 2$, and let $\Gamma_i < G_i$ be any lattice.

\[
L(\Gamma_1) \cong L(\Gamma_2) \Rightarrow G_1 \cong G_2 \\
\Rightarrow \text{rk}_R(G_1) = \text{rk}_R(G_2)
\]
Let $\Gamma < G$ be any **higher rank lattice**. For every $i \in \{1, \ldots, d\}$, let $P_i < G_i$ be any minimal parabolic k_i-subgroup and set $P_i = P_i(k_i)$. Set $P = \prod_{i=1}^{d} P_i < G$.

Set $\Lambda = \Gamma / Z(\Gamma)$ and consider the ergodic action $\Lambda \actson G/P$ and its **group measure space** von Neumann algebra $L(\Lambda \actson G/P)$.
The noncommutative Margulis factor theorem

Let $\Gamma \subset G$ be any higher rank lattice. For every $i \in \{1, \ldots, d\}$, let $P_i \subset G_i$ be any minimal parabolic k_i-subgroup and set $\mathcal{P} = \prod_{i=1}^{d} P_i$. Set $\Lambda = \Gamma / \mathcal{L} \Gamma$ and consider the ergodic action $\Lambda \curvearrowright G/P$ and its group measure space von Neumann algebra $L(\Lambda \curvearrowright G/P)$.

Theorem (BBH21, BH22)

For every von Neumann subalgebra $L(\Lambda) \subset M \subset L(\Lambda \curvearrowright G/P)$, there exists a unique intermediate closed subgroup $P \subset Q \subset G$ such that $M = L(\Lambda \curvearrowright G/Q)$.

Cyril HOUDAYER (Paris-Saclay & IUF)
The noncommutative Margulis factor theorem

Let $\Gamma < G$ be any **higher rank lattice**. For every $i \in \{1, \ldots, d\}$, let $P_i < G_i$ be any minimal parabolic k_i-subgroup and set $P_i = P_i(k_i)$. Set $P = \prod_{i=1}^{d} P_i < G$.

Set $\Lambda = \Gamma / \mathcal{L}(\Gamma)$ and consider the ergodic action $\Lambda \curvearrowright G/P$ and its **group measure space** von Neumann algebra $L(\Lambda \curvearrowright G/P)$.

Theorem (BBH21, BH22)

For every von Neumann subalgebra $L(\Lambda) \subset M \subset L(\Lambda \curvearrowright G/P)$, there exists a unique intermediate closed subgroup $P < Q < G$ such that $M = L(\Lambda \curvearrowright G/Q)$.

Corollary (BBH21, BH22)

The rank $\sum_{i=1}^{d} \text{rk}_{k_i}(G_i)$ is an invariant of $L(\Lambda) \subset L(\Lambda \curvearrowright G/P)$.
Thank you for your attention!