Wreath-like product groups and rigidity of their von Neumann algebras joint work with Ionut Chifan, Denis Osin and Bin Sun

Adrian Ioana

UCSD

Operator algebras, dynamics and groups - an ICM satellite conference University of Copenhagen, July 3

Let G be a countable discrete group.

Let $u: G \to \mathcal{U}(\ell^2 G)$ be the left regular representation: $u_g(\delta_h) = \delta_{gh}$.

Let G be a countable discrete group.

Let $u: G \to \mathcal{U}(\ell^2 G)$ be the left regular representation: $u_g(\delta_h) = \delta_{gh}$.

Definition

The group von Neumann algebra $L(G) \subset \mathbb{B}(\ell^2 G)$ is defined as

$$\mathsf{L}(G) := \overline{\mathsf{span}\{u_g \mid g \in G\}}^{\mathsf{WO}^-}$$

Let G be a countable discrete group.

Let $u: G \to \mathcal{U}(\ell^2 G)$ be the left regular representation: $u_g(\delta_h) = \delta_{gh}$.

Definition

The group von Neumann algebra $L(G) \subset \mathbb{B}(\ell^2 G)$ is defined as

$$\Box(G) := \overline{\operatorname{span}\{u_g \mid g \in G\}}^{\operatorname{WOT}}$$

Central problem

Classify L(G) in terms of the group G.

Let G be a countable discrete group.

Let $u: G \to \mathcal{U}(\ell^2 G)$ be the left regular representation: $u_g(\delta_h) = \delta_{gh}$.

Definition

The group von Neumann algebra $L(G) \subset \mathbb{B}(\ell^2 G)$ is defined as

$$\mathsf{L}(G) := \overline{\mathsf{span}\{u_g \mid g \in G\}}^{\mathsf{WOT}}$$

Central problem

Classify L(G) in terms of the group G.

Facts

• If G is infinite abelian, then $L(G) \cong L^{\infty}(\hat{G}, Haar) \cong L^{\infty}([0, 1], Leb)$.

Let G be a countable discrete group.

Let $u: G \to \mathcal{U}(\ell^2 G)$ be the left regular representation: $u_g(\delta_h) = \delta_{gh}$.

Definition

The group von Neumann algebra $L(G) \subset \mathbb{B}(\ell^2 G)$ is defined as

$$\mathsf{L}(G) := \overline{\mathsf{span}\{u_g \mid g \in G\}}^{\mathsf{WOT}}$$

Central problem

Classify L(G) in terms of the group G.

Facts

If G is infinite abelian, then L(G) ≃ L[∞](Ĝ, Haar) ≃ L[∞]([0,1], Leb).
L(G) is a II₁ factor ⇔ G is icc: |{hgh⁻¹ | h ∈ G}| = ∞, ∀g ≠ e.

Let G be a countable discrete group.

Let $u: G \to \mathcal{U}(\ell^2 G)$ be the left regular representation: $u_g(\delta_h) = \delta_{gh}$.

Definition

The group von Neumann algebra $L(G) \subset \mathbb{B}(\ell^2 G)$ is defined as

$$\mathsf{L}(G) := \overline{\mathsf{span}\{u_g \mid g \in G\}}^{\mathsf{WOT}}$$

Central problem

Classify L(G) in terms of the group G.

Facts

• If G is infinite abelian, then $L(G) \cong L^{\infty}(\hat{G}, Haar) \cong L^{\infty}([0, 1], Leb)$.

2 L(G) is a II₁ factor \Leftrightarrow G is icc: $|\{hgh^{-1} \mid h \in G\}| = \infty, \forall g \neq e$.

Convention. In the rest of the talk, all groups are icc countable discrete.

Murray-von Neumann, 1936-43

• \exists ! approximately finite dimensional II₁ factor, $R = \overline{\otimes_{n \in \mathbb{N}} \mathbb{M}_2(\mathbb{C})}^{WOT}$.

Murray-von Neumann, 1936-43

- \exists ! approximately finite dimensional II₁ factor, $R = \overline{\otimes_{n \in \mathbb{N}} \mathbb{M}_2(\mathbb{C})}^{WOT}$.
- **2** $L(G) \cong R$, $\forall G$ icc locally finite, for instance $G = S_{\infty} = \bigcup_{n \in \mathbb{N}} S_n$.

Murray-von Neumann, 1936-43

- $\exists!$ approximately finite dimensional II₁ factor, $R = \overline{\otimes_{n \in \mathbb{N}} \mathbb{M}_2(\mathbb{C})}^{WOT}$.
- **2** $L(G) \cong R, \forall G$ icc locally finite, for instance $G = S_{\infty} = \bigcup_{n \in \mathbb{N}} S_n$.
- $L(\mathbb{F}_2) \ncong R$, where \mathbb{F}_2 is the free group on two generators.

Murray-von Neumann, 1936-43

• $\exists!$ approximately finite dimensional II₁ factor, $R = \overline{\otimes_{n \in \mathbb{N}} \mathbb{M}_2(\mathbb{C})}^{WOT}$.

2 $L(G) \cong R, \forall G$ icc locally finite, for instance $G = S_{\infty} = \bigcup_{n \in \mathbb{N}} S_n$.

● $L(\mathbb{F}_2) \ncong R$, where \mathbb{F}_2 is the free group on two generators.

Definition. A group G is amenable if its regular rep. has almost invariant vectors: \exists unit vectors $(\xi_n) \subset \ell^2 G$ such that $||u_g \xi_n - \xi_n||_2 \to 0, \forall g \in G$.

Murray-von Neumann, 1936-43

• $\exists!$ approximately finite dimensional II₁ factor, $R = \overline{\otimes_{n \in \mathbb{N}} \mathbb{M}_2(\mathbb{C})}^{WOT}$.

2 $L(G) \cong R$, $\forall G$ icc locally finite, for instance $G = S_{\infty} = \bigcup_{n \in \mathbb{N}} S_n$.

● $L(\mathbb{F}_2) \ncong R$, where \mathbb{F}_2 is the free group on two generators.

Definition. A group G is amenable if its regular rep. has almost invariant vectors: \exists unit vectors $(\xi_n) \subset \ell^2 G$ such that $||u_g\xi_n - \xi_n||_2 \to 0, \forall g \in G$.

Connes, 1975

 $L(G) \cong R, \forall G$ icc amenable. Any amenable II₁ factor is isomorphic to R.

Murray-von Neumann, 1936-43

• $\exists!$ approximately finite dimensional II₁ factor, $R = \overline{\otimes_{n \in \mathbb{N}} \mathbb{M}_2(\mathbb{C})}^{WOT}$.

- **2** $L(G) \cong R, \forall G$ icc locally finite, for instance $G = S_{\infty} = \bigcup_{n \in \mathbb{N}} S_n$.
- $L(\mathbb{F}_2) \ncong R$, where \mathbb{F}_2 is the free group on two generators.

Definition. A group G is amenable if its regular rep. has almost invariant vectors: \exists unit vectors $(\xi_n) \subset \ell^2 G$ such that $||u_g\xi_n - \xi_n||_2 \to 0, \forall g \in G$.

Connes, 1975

 $L(G) \cong R, \forall G$ icc amenable. Any amenable II₁ factor is isomorphic to R.

Absence of rigidity: vN algebras forget any properties of amenable groups.

Murray-von Neumann, 1936-43

• \exists ! approximately finite dimensional II₁ factor, $R = \overline{\otimes_{n \in \mathbb{N}} \mathbb{M}_2(\mathbb{C})}^{WOT}$.

- **2** $L(G) \cong R, \forall G$ icc locally finite, for instance $G = S_{\infty} = \bigcup_{n \in \mathbb{N}} S_n$.
- $L(\mathbb{F}_2) \ncong R$, where \mathbb{F}_2 is the free group on two generators.

Definition. A group G is amenable if its regular rep. has almost invariant vectors: \exists unit vectors $(\xi_n) \subset \ell^2 G$ such that $||u_g\xi_n - \xi_n||_2 \to 0, \forall g \in G$.

Connes, 1975

 $L(G) \cong R, \forall G$ icc amenable. Any amenable II₁ factor is isomorphic to R.

Absence of rigidity: vN algebras forget any properties of amenable groups.

The rest of the talk: rigidity for vN algebras of nonamenable groups.

Definition. A group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Definition. A group *G* has Kazhdan's property (T) if any unitary rep. of *G* with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \geq 3$.

Definition. A group *G* has Kazhdan's property (T) if any unitary rep. of *G* with almost invariant vectors has nonzero invariant vectors. **Examples.** 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \ge 3$.

2) Random groups: Gromov density model $\frac{1}{3} < \mathbf{d} < \frac{1}{2}$ (also hyperbolic).

Definition. A group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \geq 3$.

2) Random groups: Gromov density model $\frac{1}{3} < \mathbf{d} < \frac{1}{2}$ (also hyperbolic).

3) Aut(\mathbb{F}_k) (Novak-Kaluba-Ozawa k = 5; Novak-Kaluba-Kielak k > 5).

Definition. A group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \geq 3$.

2) Random groups: Gromov density model $\frac{1}{3} < \mathbf{d} < \frac{1}{2}$ (also hyperbolic).

3) Aut(\mathbb{F}_k) (Novak-Kaluba-Ozawa k = 5; Novak-Kaluba-Kielak k > 5).

Connes (1980) If G is icc property (T), then the outer automorphism group Out(L(G)) and fundamental group $\mathcal{F}(L(G))$ are countable.

Definition. A group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \geq 3$.

2) Random groups: Gromov density model $\frac{1}{3} < \mathbf{d} < \frac{1}{2}$ (also hyperbolic).

3) Aut(\mathbb{F}_k) (Novak-Kaluba-Ozawa k = 5; Novak-Kaluba-Kielak k > 5).

Connes (1980) If G is icc property (T), then the outer automorphism group Out(L(G)) and fundamental group $\mathcal{F}(L(G))$ are countable.

Connes' rigidity conjecture, 1980

Definition. A group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \geq 3$.

2) Random groups: Gromov density model $\frac{1}{3} < \mathbf{d} < \frac{1}{2}$ (also hyperbolic).

3) Aut(\mathbb{F}_k) (Novak-Kaluba-Ozawa k = 5; Novak-Kaluba-Kielak k > 5).

Connes (1980) If G is icc property (T), then the outer automorphism group Out(L(G)) and fundamental group $\mathcal{F}(L(G))$ are countable.

Connes' rigidity conjecture, 1980

If G, H are icc property (T) groups such that $L(G) \cong L(H)$, then $G \cong H$.

• Connes-Jones (1983) Property (T) is an invariant of L(G).

Definition. A group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \geq 3$.

2) Random groups: Gromov density model $\frac{1}{3} < \mathbf{d} < \frac{1}{2}$ (also hyperbolic).

3) Aut(\mathbb{F}_k) (Novak-Kaluba-Ozawa k = 5; Novak-Kaluba-Kielak k > 5).

Connes (1980) If G is icc property (T), then the outer automorphism group Out(L(G)) and fundamental group $\mathcal{F}(L(G))$ are countable.

Connes' rigidity conjecture, 1980

- Connes-Jones (1983) Property (T) is an invariant of L(G).
- Cowling-Haagerup (1988) If G < Sp(1, n) and H < Sp(1, m) are lattices and $n \neq m$, then $L(G) \ncong L(H)$.

Definition. A group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \geq 3$.

2) Random groups: Gromov density model $\frac{1}{3} < \mathbf{d} < \frac{1}{2}$ (also hyperbolic).

3) Aut(\mathbb{F}_k) (Novak-Kaluba-Ozawa k = 5; Novak-Kaluba-Kielak k > 5).

Connes (1980) If G is icc property (T), then the outer automorphism group Out(L(G)) and fundamental group $\mathcal{F}(L(G))$ are countable.

Connes' rigidity conjecture, 1980

- Connes-Jones (1983) Property (T) is an invariant of L(G).
- Cowling-Haagerup (1988) If G < Sp(1, n) and H < Sp(1, m) are lattices and $n \neq m$, then $L(G) \ncong L(H)$.
- Ozawa (2002) \exists uncountably many noniso. prop. (T) group factors.

Definition. A group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \geq 3$.

2) Random groups: Gromov density model $\frac{1}{3} < \mathbf{d} < \frac{1}{2}$ (also hyperbolic).

3) Aut(\mathbb{F}_k) (Novak-Kaluba-Ozawa k = 5; Novak-Kaluba-Kielak k > 5).

Connes (1980) If G is icc property (T), then the outer automorphism group Out(L(G)) and fundamental group $\mathcal{F}(L(G))$ are countable.

Connes' rigidity conjecture, 1980

- Connes-Jones (1983) Property (T) is an invariant of L(G).
- Cowling-Haagerup (1988) If G < Sp(1, n) and H < Sp(1, m) are lattices and $n \neq m$, then $L(G) \ncong L(H)$.
- Ozawa (2002) \exists uncountably many noniso. prop. (T) group factors.
- **Popa (2006)** $G \mapsto L(G)$ is countable-to-1 for icc prop. (T) groups.

Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G.

Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G. Conjecture (Jones, 2000) Show that $Out(L(G)) \cong Char(G) \rtimes Out(G)$, for icc property (T) groups G.

Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G. Conjecture (Jones, 2000) Show that $Out(L(G)) \cong Char(G) \rtimes Out(G)$, for icc property (T) groups G.

Popa's strengthening of Connes' rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group.

Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G. Conjecture (Jones, 2000) Show that $Out(L(G)) \cong Char(G) \rtimes Out(G)$, for icc property (T) groups G.

Popa's strengthening of Connes' rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for some t > 0.

Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G. Conjecture (Jones, 2000) Show that $Out(L(G)) \cong Char(G) \rtimes Out(G)$, for icc property (T) groups G.

Popa's strengthening of Connes' rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for some t > 0.

Then t = 1 and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}, \forall g \in G$.

Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G. Conjecture (Jones, 2000) Show that $Out(L(G)) \cong Char(G) \rtimes Out(G)$, for icc property (T) groups G.

Popa's strengthening of Connes' rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for some t > 0.

Then t = 1 and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}, \forall g \in G$.

In particular, G is W*-superrigid: if $L(G) \cong L(H)$, for any H, then $G \cong H$,

Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G. Conjecture (Jones, 2000) Show that $Out(L(G)) \cong Char(G) \rtimes Out(G)$, for icc property (T) groups G.

Popa's strengthening of Connes' rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for some t > 0.

Then t = 1 and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}, \forall g \in G$.

In particular, G is W*-superrigid: if $L(G) \cong L(H)$, for any H, then $G \cong H$, Out $(L(G)) \cong Char(G) \rtimes Out(G)$ and $\mathcal{F}(L(G)) = \{1\}$.

Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G. Conjecture (Jones, 2000) Show that $Out(L(G)) \cong Char(G) \rtimes Out(G)$, for icc property (T) groups G.

Popa's strengthening of Connes' rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for some t > 0.

Then t = 1 and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}, \forall g \in G$.

In particular, G is W*-superrigid: if $L(G) \cong L(H)$, for any H, then $G \cong H$, Out $(L(G)) \cong Char(G) \rtimes Out(G)$ and $\mathcal{F}(L(G)) = \{1\}$.

Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

• Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$

Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$
- Popa (2004) If G, H icc property (T), $L(\mathbb{Z} \wr G) \cong L(\mathbb{Z} \wr H) \Rightarrow G \cong H$.

Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$
- Popa (2004) If G, H icc property (T), L(Z ≥ G) ≅ L(Z ≥ H) ⇒ G ≅ H. Here, A ≥ B = (⊕_{b∈B} A) ⋊ B is the wreath-product of A and B.
Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$
- Popa (2004) If G, H icc property (T), L(Z ≥ G) ≅ L(Z ≥ H) ⇒ G ≅ H. Here, A ≥ B = (⊕_{b∈B} A) ⋊ B is the wreath-product of A and B.
- I-Peterson-Popa (2005) $\exists II_1 \text{ factors } M \text{ with } Out(M) = \{e\}.$

Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$
- Popa (2004) If G, H icc property (T), L(Z ≥ G) ≅ L(Z ≥ H) ⇒ G ≅ H. Here, A ≥ B = (⊕_{b∈B} A) ⋊ B is the wreath-product of A and B.
- I-Peterson-Popa (2005) $\exists II_1 \text{ factors } M \text{ with } Out(M) = \{e\}.$
- **Popa-Vaes (2006)** icc G with $Out(L(G)) \cong Char(G) \rtimes Out(G)$.

Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$
- Popa (2004) If G, H icc property (T), L(Z ≥ G) ≅ L(Z ≥ H) ⇒ G ≅ H. Here, A ≥ B = (⊕_{b∈B} A) ⋊ B is the wreath-product of A and B.
- I-Peterson-Popa (2005) $\exists II_1 \text{ factors } M \text{ with } Out(M) = \{e\}.$
- **Popa-Vaes (2006)** icc G with $Out(L(G)) \cong Char(G) \rtimes Out(G)$.
- I-Popa-Vaes (2010) examples of W*-superrigid icc groups G.

Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$
- Popa (2004) If G, H icc property (T), L(Z ≥ G) ≅ L(Z ≥ H) ⇒ G ≅ H. Here, A ≥ B = (⊕_{b∈B} A) ⋊ B is the wreath-product of A and B.
- I-Peterson-Popa (2005) $\exists II_1 \text{ factors } M \text{ with } Out(M) = \{e\}.$
- **Popa-Vaes (2006)** icc G with $Out(L(G)) \cong Char(G) \rtimes Out(G)$.
- I-Popa-Vaes (2010) examples of W*-superrigid icc groups G.

Remark. These results do not apply to property (T) group factors.

Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$
- Popa (2004) If G, H icc property (T), L(Z ≥ G) ≅ L(Z ≥ H) ⇒ G ≅ H. Here, A ≥ B = (⊕_{b∈B} A) ⋊ B is the wreath-product of A and B.
- I-Peterson-Popa (2005) $\exists II_1 \text{ factors } M \text{ with } Out(M) = \{e\}.$
- **Popa-Vaes (2006)** icc G with $Out(L(G)) \cong Char(G) \rtimes Out(G)$.
- I-Popa-Vaes (2010) examples of W*-superrigid icc groups G.

Remark. These results do not apply to property (T) group factors. This is because deformation/rigidity applies to II_1 factors which admit deformations, whose presence is typically incompatible with property (T).

Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$
- Popa (2004) If G, H icc property (T), L(Z ≥ G) ≅ L(Z ≥ H) ⇒ G ≅ H. Here, A ≥ B = (⊕_{b∈B} A) ⋊ B is the wreath-product of A and B.
- I-Peterson-Popa (2005) $\exists II_1 \text{ factors } M \text{ with } Out(M) = \{e\}.$
- **Popa-Vaes (2006)** icc G with $Out(L(G)) \cong Char(G) \rtimes Out(G)$.
- I-Popa-Vaes (2010) examples of W*-superrigid icc groups G.

Remark. These results do not apply to property (T) group factors. This is because deformation/rigidity applies to II_1 factors which admit deformations, whose presence is typically incompatible with property (T).

Chifan-Das-Houdayer-Khan (2020) examples of icc property (T) groups G such that $\mathcal{F}(L(G)) = \{1\}$.

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in W\mathcal{R}(A, B)$,

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in W\mathcal{R}(A, B)$, if there is a short exact sequence $\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in WR(A, B)$, if there is a short exact sequence

$$\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)b}$, with A_b the *b*-labelled copy of A in $\bigoplus_{b \in B} A$.

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in W\mathcal{R}(A, B)$, if there is a short exact sequence

$$\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)b}$, with A_b the *b*-labelled copy of *A* in $\bigoplus_{b \in B} A$. **Example.** $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B)$.

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in WR(A, B)$, if there is a short exact sequence

$$\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)b}$, with A_b the *b*-labelled copy of *A* in $\bigoplus_{b \in B} A$. **Example.** $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B)$.

Definition. H < G is a Cohen-Lyndon subgroup if $\langle\!\langle H \rangle\!\rangle = *_{t \in T} t H t^{-1}$, with T a left transversal for the normal subgrp $\langle\!\langle H \rangle\!\rangle \lhd G$ generated by H.

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in W\mathcal{R}(A, B)$, if there is a short exact sequence

$$\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)b}$, with A_b the *b*-labelled copy of *A* in $\bigoplus_{b \in B} A$. **Example.** $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B)$.

Definition. H < G is a Cohen-Lyndon subgroup if $\langle\!\langle H \rangle\!\rangle = *_{t \in T} t H t^{-1}$, with T a left transversal for the normal subgrp $\langle\!\langle H \rangle\!\rangle \lhd G$ generated by H. **Examples (1)** H < H * K (Proof. $\langle\!\langle H \rangle\!\rangle = *_{k \in K} k H k^{-1}$.)

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in W\mathcal{R}(A, B)$, if there is a short exact sequence

$$\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)b}$, with A_b the *b*-labelled copy of *A* in $\bigoplus_{b \in B} A$. **Example.** $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B)$.

Definition. H < G is a Cohen-Lyndon subgroup if $\langle\!\langle H \rangle\!\rangle = *_{t \in T} t H t^{-1}$, with T a left transversal for the normal subgrp $\langle\!\langle H \rangle\!\rangle \lhd G$ generated by H. **Examples** (1) H < H * K (Proof. $\langle\!\langle H \rangle\!\rangle = *_{k \in K} k H k^{-1}$.) (2) (Cohen-Lyndon, 1963) any maximal cyclic subgrp $H = \mathbb{Z} < G = \mathbb{F}_n$.

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in W\mathcal{R}(A, B)$, if there is a short exact sequence

$$\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)b}$, with A_b the *b*-labelled copy of *A* in $\bigoplus_{b \in B} A$. **Example.** $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B)$.

Definition. H < G is a Cohen-Lyndon subgroup if $\langle\!\langle H \rangle\!\rangle = *_{t \in T} t H t^{-1}$, with T a left transversal for the normal subgrp $\langle\!\langle H \rangle\!\rangle \lhd G$ generated by H. **Examples** (1) H < H * K (Proof. $\langle\!\langle H \rangle\!\rangle = *_{k \in K} k H k^{-1}$.) (2) (Cohen-Lyndon, 1963) any maximal cyclic subgrp $H = \mathbb{Z} < G = \mathbb{F}_n$.

Proposition Let $S = \langle [tHt^{-1}, t'Ht'^{-1}] | t, t' \in T, t \neq t' \rangle$, for a C-L subgroup H < G. Then $S < \langle \! \langle H \rangle \! \rangle$, $S \lhd G$ and $G/S \in WR(H, G/\langle \! \langle H \rangle \! \rangle)$.

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in WR(A, B)$, if there is a short exact sequence

$$\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)b}$, with A_b the *b*-labelled copy of *A* in $\bigoplus_{b \in B} A$. **Example.** $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B)$.

Definition. H < G is a Cohen-Lyndon subgroup if $\langle\!\langle H \rangle\!\rangle = *_{t \in T} t H t^{-1}$, with T a left transversal for the normal subgrp $\langle\!\langle H \rangle\!\rangle \lhd G$ generated by H. **Examples** (1) H < H * K (Proof. $\langle\!\langle H \rangle\!\rangle = *_{k \in K} k H k^{-1}$.) (2) (Cohen-Lyndon, 1963) any maximal cyclic subgrp $H = \mathbb{Z} < G = \mathbb{F}_n$.

Proposition Let $S = \langle [tHt^{-1}, t'Ht'^{-1}] | t, t' \in T, t \neq t' \rangle$, for a C-L subgroup H < G. Then $S < \langle \langle H \rangle \rangle$, $S \lhd G$ and $G/S \in W\mathcal{R}(H, G/\langle \langle H \rangle \rangle)$. **Proof.** We have $\langle \langle H \rangle \rangle / S \cong \bigoplus_{t \in T} tHt^{-1} \cong \bigoplus_{G/\langle \langle H \rangle \rangle} H$ and a short exact sequence $\{e\} \rightarrow \langle \langle H \rangle \rangle / S \rightarrow G/S \rightarrow G/\langle \langle H \rangle \rangle \rightarrow \{e\}$.

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in WR(A, B)$, if there is a short exact sequence

$$\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)b}$, with A_b the *b*-labelled copy of *A* in $\bigoplus_{b \in B} A$. **Example.** $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B)$.

Definition. H < G is a Cohen-Lyndon subgroup if $\langle\!\langle H \rangle\!\rangle = *_{t \in T} t H t^{-1}$, with T a left transversal for the normal subgrp $\langle\!\langle H \rangle\!\rangle \lhd G$ generated by H. **Examples** (1) H < H * K (Proof. $\langle\!\langle H \rangle\!\rangle = *_{k \in K} k H k^{-1}$.) (2) (Cohen-Lyndon, 1963) any maximal cyclic subgrp $H = \mathbb{Z} < G = \mathbb{F}_n$.

Proposition Let $S = \langle [tHt^{-1}, t'Ht'^{-1}] | t, t' \in T, t \neq t' \rangle$, for a C-L subgroup H < G. Then $S < \langle H \rangle \rangle$, $S \lhd G$ and $G/S \in \mathcal{WR}(H, G/\langle H \rangle \rangle)$. **Proof.** We have $\langle H \rangle / S \cong \bigoplus_{t \in T} tHt^{-1} \cong \bigoplus_{G/\langle H \rangle} H$ and a short exact sequence $\{e\} \rightarrow \langle \langle H \rangle / S \rightarrow G/S \rightarrow G/\langle \langle H \rangle \rangle \rightarrow \{e\}$. **Remark.** When G = H * K, we have $G/\langle \langle H \rangle = K$ and $G/S = H \wr K$.

Theorem (Dahmani-Guirardel-Osin 2011, Sun 2020) If *G* is hyperbolic relative to *H*, then $\exists F \subset H$ finite s.t. $\forall N \triangleleft H$ with $N \cap F = \emptyset$ we have:

- $\langle\!\langle N \rangle\!\rangle = *_{t \in T} t N t^{-1}$, where T is a left transversal for $H \langle\!\langle N \rangle\!\rangle < G$, and
- $G/\langle\!\langle N \rangle\!\rangle$ is hyperbolic relative to H/N.

Theorem (Dahmani-Guirardel-Osin 2011, Sun 2020) If *G* is hyperbolic relative to *H*, then $\exists F \subset H$ finite s.t. $\forall N \triangleleft H$ with $N \cap F = \emptyset$ we have:

- $\langle\!\langle N \rangle\!\rangle = *_{t \in T} t N t^{-1}$, where T is a left transversal for $H \langle\!\langle N \rangle\!\rangle < G$, and
- $G/\langle\!\langle N \rangle\!\rangle$ is hyperbolic relative to H/N.

Using this theorem, we prove:

Theorem (Dahmani-Guirardel-Osin 2011, Sun 2020) If *G* is hyperbolic relative to *H*, then $\exists F \subset H$ finite s.t. $\forall N \triangleleft H$ with $N \cap F = \emptyset$ we have:

- $\langle\!\langle N \rangle\!\rangle = *_{t \in T} t N t^{-1}$, where T is a left transversal for $H \langle\!\langle N \rangle\!\rangle < G$, and
- $G/\langle\!\langle N \rangle\!\rangle$ is hyperbolic relative to H/N.

Using this theorem, we prove:

Theorem A (Chifan-I-Osin-Sun, 2021)

Let K be an icc hyperbolic group. Then for any finitely generated group A, \exists a quotient G of K such that $G \in W\mathcal{R}(A, B)$, for B icc hyperbolic.

Theorem (Dahmani-Guirardel-Osin 2011, Sun 2020) If *G* is hyperbolic relative to *H*, then $\exists F \subset H$ finite s.t. $\forall N \triangleleft H$ with $N \cap F = \emptyset$ we have:

- $\langle\!\langle N \rangle\!\rangle = *_{t \in T} t N t^{-1}$, where T is a left transversal for $H \langle\!\langle N \rangle\!\rangle < G$, and
- $G/\langle\!\langle N \rangle\!\rangle$ is hyperbolic relative to H/N.

Using this theorem, we prove:

Theorem A (Chifan-I-Osin-Sun, 2021)

Let K be an icc hyperbolic group. Then for any finitely generated group A, \exists a quotient G of K such that $G \in W\mathcal{R}(A, B)$, for B icc hyperbolic. Moreover, if K has property (T), then so does $G \in W\mathcal{R}(A, B)$.

Theorem (Dahmani-Guirardel-Osin 2011, Sun 2020) If *G* is hyperbolic relative to *H*, then $\exists F \subset H$ finite s.t. $\forall N \triangleleft H$ with $N \cap F = \emptyset$ we have:

- $\langle\!\langle N \rangle\!\rangle = *_{t \in T} t N t^{-1}$, where T is a left transversal for $H \langle\!\langle N \rangle\!\rangle < G$, and
- $G/\langle\!\langle N \rangle\!\rangle$ is hyperbolic relative to H/N.

Using this theorem, we prove:

Theorem A (Chifan-I-Osin-Sun, 2021)

Let K be an icc hyperbolic group. Then for any finitely generated group A, \exists a quotient G of K such that $G \in W\mathcal{R}(A, B)$, for B icc hyperbolic. Moreover, if K has property (T), then so does $G \in W\mathcal{R}(A, B)$.

Remarks:

() This is surprising because wreath products $A \wr B$ never have (T).

Theorem (Dahmani-Guirardel-Osin 2011, Sun 2020) If G is hyperbolic relative to H, then $\exists F \subset H$ finite s.t. $\forall N \triangleleft H$ with $N \cap F = \emptyset$ we have:

- $\langle\!\langle N \rangle\!\rangle = *_{t \in T} t N t^{-1}$, where T is a left transversal for $H \langle\!\langle N \rangle\!\rangle < G$, and
- $G/\langle\!\langle N \rangle\!\rangle$ is hyperbolic relative to H/N.

Using this theorem, we prove:

Theorem A (Chifan-I-Osin-Sun, 2021)

Let K be an icc hyperbolic group. Then for any finitely generated group A, \exists a quotient G of K such that $G \in W\mathcal{R}(A, B)$, for B icc hyperbolic. Moreover, if K has property (T), then so does $G \in W\mathcal{R}(A, B)$.

Remarks:

- This is surprising because wreath products $A \wr B$ never have (T).
- If A is abelian, L(A^(B)) ≅ L[∞](Â^B) and L(G) ≅ L[∞](Â^B) ⋊_{σ,c} B, with B ∩^σ Â^B Bernoulli & c ∈ Z²(σ, T).

Theorem (Dahmani-Guirardel-Osin 2011, Sun 2020) If G is hyperbolic relative to H, then $\exists F \subset H$ finite s.t. $\forall N \triangleleft H$ with $N \cap F = \emptyset$ we have:

- $\langle\!\langle N \rangle\!\rangle = *_{t \in T} t N t^{-1}$, where T is a left transversal for $H \langle\!\langle N \rangle\!\rangle < G$, and
- $G/\langle\!\langle N \rangle\!\rangle$ is hyperbolic relative to H/N.

Using this theorem, we prove:

Theorem A (Chifan-I-Osin-Sun, 2021)

Let K be an icc hyperbolic group. Then for any finitely generated group A, \exists a quotient G of K such that $G \in W\mathcal{R}(A, B)$, for B icc hyperbolic. Moreover, if K has property (T), then so does $G \in W\mathcal{R}(A, B)$.

Remarks:

- **①** This is surprising because wreath products $A \wr B$ never have (T).
- If A is abelian, L(A^(B)) ≃ L[∞](Â^B) and L(G) ≃ L[∞](Â^B) ⋊_{σ,c} B, with B ∩^σ Â^B Bernoulli & c ∈ Z²(σ, T). It follows H²(σ, T) ≠ H²(Γ, T), answering a question of Popa (recovering a result of Jiang, 2015).

Theorem (Dahmani-Guirardel-Osin 2011, Sun 2020) If G is hyperbolic relative to H, then $\exists F \subset H$ finite s.t. $\forall N \triangleleft H$ with $N \cap F = \emptyset$ we have:

- $\langle\!\langle N \rangle\!\rangle = *_{t \in T} t N t^{-1}$, where T is a left transversal for $H \langle\!\langle N \rangle\!\rangle < G$, and
- $G/\langle\!\langle N \rangle\!\rangle$ is hyperbolic relative to H/N.

Using this theorem, we prove:

Theorem A (Chifan-I-Osin-Sun, 2021)

Let K be an icc hyperbolic group. Then for any finitely generated group A, \exists a quotient G of K such that $G \in W\mathcal{R}(A, B)$, for B icc hyperbolic. Moreover, if K has property (T), then so does $G \in W\mathcal{R}(A, B)$.

Remarks:

- This is surprising because wreath products $A \wr B$ never have (T).
- If A is abelian, L(A^(B)) ≅ L[∞](Â^B) and L(G) ≅ L[∞](Â^B) ⋊_{σ,c} B, with B ∧^σ Â^B Bernoulli & c ∈ Z²(σ, T). It follows H²(σ, T) ≠ H²(Γ, T), answering a question of Popa (recovering a result of Jiang, 2015).
 The case A = F₂ allows us to prove that every separable II₁ factor
- embeds into one with property (T). (Chifan-Drimbe-I, 2022). 60/90

Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in \mathcal{WR}(A, B)$ and $H \in \mathcal{WR}(C, D)$ be property (T) groups,

Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in W\mathcal{R}(A, B)$ and $H \in W\mathcal{R}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic.

Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in W\mathcal{R}(A, B)$ and $H \in W\mathcal{R}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for any t > 0.

Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in W\mathcal{R}(A, B)$ and $H \in W\mathcal{R}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for any t > 0.

Then t = 1 and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}, \forall g \in G$.

Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in W\mathcal{R}(A, B)$ and $H \in W\mathcal{R}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for any t > 0.

Then t = 1 and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}, \forall g \in G$. In particular, $Out(L(G)) \cong Char(G) \rtimes Out(G)$ and $\mathcal{F}(L(G)) = \{1\}$.

Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in W\mathcal{R}(A, B)$ and $H \in W\mathcal{R}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for any t > 0.

Then t = 1 and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}, \forall g \in G$. In particular, $Out(L(G)) \cong Char(G) \rtimes Out(G)$ and $\mathcal{F}(L(G)) = \{1\}$.

Additionally, we can take G with no characters and prescribed Out:

Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in W\mathcal{R}(A, B)$ and $H \in W\mathcal{R}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for any t > 0.

Then t = 1 and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}, \forall g \in G$. In particular, $Out(L(G)) \cong Char(G) \rtimes Out(G)$ and $\mathcal{F}(L(G)) = \{1\}$.

Additionally, we can take G with no characters and prescribed Out:

Corollary C (CIOS, 2021)

 \forall f.p. group Q, \exists a continuum of icc property (T) groups $\{G_i\}_{i \in I}$ s.t.

Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in W\mathcal{R}(A, B)$ and $H \in W\mathcal{R}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for any t > 0.

Then t = 1 and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}, \forall g \in G$. In particular, $Out(L(G)) \cong Char(G) \rtimes Out(G)$ and $\mathcal{F}(L(G)) = \{1\}$.

Additionally, we can take G with no characters and prescribed Out:

Corollary C (CIOS, 2021)

 \forall f.p. group Q, \exists a continuum of icc property (T) groups $\{G_i\}_{i \in I}$ s.t.

 $L(G_i) \not\cong L(G_j), \forall i \neq j.$

Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in W\mathcal{R}(A, B)$ and $H \in W\mathcal{R}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for any t > 0.

Then t = 1 and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}, \forall g \in G$. In particular, $Out(L(G)) \cong Char(G) \rtimes Out(G)$ and $\mathcal{F}(L(G)) = \{1\}$.

Additionally, we can take G with no characters and prescribed Out:

Corollary C (CIOS, 2021)

 \forall f.p. group Q, \exists a continuum of icc property (T) groups $\{G_i\}_{i \in I}$ s.t.

 $L(G_i) \not\cong L(G_j), \forall i \neq j.$

Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in W\mathcal{R}(A, B)$ and $H \in W\mathcal{R}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for any t > 0.

Then t = 1 and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}, \forall g \in G$. In particular, $Out(L(G)) \cong Char(G) \rtimes Out(G)$ and $\mathcal{F}(L(G)) = \{1\}$.

Additionally, we can take G with no characters and prescribed Out:

Corollary C (CIOS, 2021)

 \forall f.p. group Q, \exists a continuum of icc property (T) groups $\{G_i\}_{i \in I}$ s.t.

1
$$L(G_i) \not\cong L(G_j), \forall i \neq j.$$

These are the first calculations of Out(L(G)), for icc property (T) G.

70 / 90

W^{*}-superrigid groups with property (T)

Connes' rigidity conjecture (1980) Any icc property (T) group *G* is W*-superrigid: if $L(G) \cong L(H)$, for any group *H*, then $G \cong H$.

W*-superrigid groups with property (T)

Connes' rigidity conjecture (1980) Any icc property (T) group G is W*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$. **I-Popa-Vaes 2010, Berbec-Vaes 2012, Chifan-I 2017**, and **Chifan-DiazArias-Drimbe 2021**: W*-superrigid grps *without* prop. (T) (generalized wreath products and amalgamated free products).
Connes' rigidity conjecture (1980) Any icc property (T) group G is W*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$. **I-Popa-Vaes 2010, Berbec-Vaes 2012, Chifan-I 2017**, and **Chifan-DiazArias-Drimbe 2021**: W*-superrigid grps *without* prop. (T) (generalized wreath products and amalgamated free products).

Theorem D (Chifan-I-Osin-Sun, 2021)

Let $G \in W\mathcal{R}(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic.

Connes' rigidity conjecture (1980) Any icc property (T) group G is W*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$. **I-Popa-Vaes 2010, Berbec-Vaes 2012, Chifan-I 2017**, and **Chifan-DiazArias-Drimbe 2021**: W*-superrigid grps *without* prop. (T) (generalized wreath products and amalgamated free products).

Theorem D (Chifan-I-Osin-Sun, 2021)

Let $G \in W\mathcal{R}(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic. Then G is W*-superrigid.

Connes' rigidity conjecture (1980) Any icc property (T) group G is W*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$. **I-Popa-Vaes 2010, Berbec-Vaes 2012, Chifan-I 2017**, and **Chifan-DiazArias-Drimbe 2021**: W*-superrigid grps *without* prop. (T) (generalized wreath products and amalgamated free products).

Theorem D (Chifan-I-Osin-Sun, 2021)

Let $G \in W\mathcal{R}(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic. Then G is W*-superrigid.

Corollary E (CIOS, 2021)

Let G be an icc hyperbolic property (T) group and $g \in G$ be an element of infinite order.

Connes' rigidity conjecture (1980) Any icc property (T) group G is W*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$. **I-Popa-Vaes 2010, Berbec-Vaes 2012, Chifan-I 2017**, and **Chifan-DiazArias-Drimbe 2021**: W*-superrigid grps *without* prop. (T) (generalized wreath products and amalgamated free products).

Theorem D (Chifan-I-Osin-Sun, 2021)

Let $G \in W\mathcal{R}(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic. Then G is W*-superrigid.

Corollary E (CIOS, 2021)

Let G be an icc hyperbolic property (T) group and $g \in G$ be an element of infinite order. Then $\exists d \in \mathbb{N}$ such that $\forall k \in \mathbb{N}$ divisible by d, the quotient group $G/[\langle \langle g^k \rangle \rangle, \langle \langle g^k \rangle \rangle]$ is a W*-superrigid icc group with property (T).

Connes' rigidity conjecture (1980) Any icc property (T) group G is W*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$. **I-Popa-Vaes 2010, Berbec-Vaes 2012, Chifan-I 2017**, and **Chifan-DiazArias-Drimbe 2021**: W*-superrigid grps *without* prop. (T) (generalized wreath products and amalgamated free products).

Theorem D (Chifan-I-Osin-Sun, 2021)

Let $G \in W\mathcal{R}(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic. Then G is W*-superrigid.

Corollary E (CIOS, 2021)

Let G be an icc hyperbolic property (T) group and $g \in G$ be an element of infinite order. Then $\exists d \in \mathbb{N}$ such that $\forall k \in \mathbb{N}$ divisible by d, the quotient group $G/[\langle g^k \rangle \rangle, \langle \langle g^k \rangle \rangle]$ is a W*-superrigid icc group with property (T).

These are the first examples of W^* -superrigid groups with property (T).

Connes' rigidity conjecture (1980) Any icc property (T) group G is W*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$. **I-Popa-Vaes 2010, Berbec-Vaes 2012, Chifan-I 2017**, and **Chifan-DiazArias-Drimbe 2021**: W*-superrigid grps *without* prop. (T) (generalized wreath products and amalgamated free products).

Theorem D (Chifan-I-Osin-Sun, 2021)

Let $G \in W\mathcal{R}(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic. Then G is W*-superrigid.

Corollary E (CIOS, 2021)

Let G be an icc hyperbolic property (T) group and $g \in G$ be an element of infinite order. Then $\exists d \in \mathbb{N}$ such that $\forall k \in \mathbb{N}$ divisible by d, the quotient group $G/[\langle g^k \rangle \rangle, \langle \langle g^k \rangle \rangle]$ is a W*-superrigid icc group with property (T).

These are the first examples of W^{*}-superrigid groups with property (T). CIOS, 2022: uncountably many W^{*}-superrigid property (T) groups.

Let $G \in W\mathcal{R}(A, B)$ with property (T) and Char(G) = {1}, where $A \neq \{1\}$ is abelian, B is icc hyperbolic and $Out(B) = \{e\}$.

Let $G \in W\mathcal{R}(A, B)$ with property (T) and $Char(G) = \{1\}$, where $A \neq \{1\}$ is abelian, B is icc hyperbolic and $Out(B) = \{e\}$. Then $Out(L(G)) = \{e\}$.

Let $G \in W\mathcal{R}(A, B)$ with property (T) and Char(G) = {1}, where $A \neq$ {1} is abelian, B is icc hyperbolic and $Out(B) = \{e\}$. Then $Out(L(G)) = \{e\}$.

Sketch of proof. Let θ be an automorphism of L(G).

Let $G \in W\mathcal{R}(A, B)$ with property (T) and $Char(G) = \{1\}$, where $A \neq \{1\}$ is abelian, B is icc hyperbolic and $Out(B) = \{e\}$. Then $Out(L(G)) = \{e\}$.

Sketch of proof. Let θ be an automorphism of L(G). Identifying L($A^{(B)}$) \subset L(G) with L^{∞}(\widehat{A}^B) \subset L^{∞}(\widehat{A}^B) $\rtimes_{\sigma,c} B$, we have

Let $G \in W\mathcal{R}(A, B)$ with property (T) and $Char(G) = \{1\}$, where $A \neq \{1\}$ is abelian, B is icc hyperbolic and $Out(B) = \{e\}$. Then $Out(L(G)) = \{e\}$.

Sketch of proof. Let θ be an automorphism of L(G). Identifying L($A^{(B)}$) \subset L(G) with L^{∞}(\widehat{A}^B) \subset L^{∞}(\widehat{A}^B) $\rtimes_{\sigma,c}$ B, we have (i) L($A^{(B)}$) \subset L(G) is a Cartan subalgebra and its equivalence relation is the orbit equivalence relation of the Bernoulli action $B \curvearrowright^{\sigma} \widehat{A}^B$.

Let $G \in W\mathcal{R}(A, B)$ with property (T) and $Char(G) = \{1\}$, where $A \neq \{1\}$ is abelian, B is icc hyperbolic and $Out(B) = \{e\}$. Then $Out(L(G)) = \{e\}$.

Let $G \in W\mathcal{R}(A, B)$ with property (T) and Char(G) = {1}, where $A \neq$ {1} is abelian, B is icc hyperbolic and $Out(B) = \{e\}$. Then $Out(L(G)) = \{e\}$.

Sketch of proof. Let θ be an automorphism of L(G). Identifying L($A^{(B)}$) \subset L(G) with L^{∞}(\widehat{A}^B) \subset L^{∞}(\widehat{A}^B) $\rtimes_{\sigma,c} B$, we have (i) L($A^{(B)}$) \subset L(G) is a Cartan subalgebra and its equivalence relation is the orbit equivalence relation of the Bernoulli action $B \curvearrowright^{\sigma} \widehat{A}^B$. (ii) The conjugation action $G \curvearrowright^{\alpha} L(A^{(B)}) = L^{\infty}(\widehat{A}^B)$ given by $\alpha_g = Ad(u_g)$ is a generalized Bernoulli action.

• As *B* is hyperbolic, $L(A^{(B)})$ is the unique Cartan subalgebra of L(G)(**Popa-Vaes, 2012**). We may assume that $\theta(L(A^{(B)}) = L(A^{(B)})$. Therefore, θ induces an automorphism of $\mathcal{R}(B \curvearrowright \widehat{A}^B)$.

Let $G \in W\mathcal{R}(A, B)$ with property (T) and $Char(G) = \{1\}$, where $A \neq \{1\}$ is abelian, B is icc hyperbolic and $Out(B) = \{e\}$. Then $Out(L(G)) = \{e\}$.

- As *B* is hyperbolic, $L(A^{(B)})$ is the unique Cartan subalgebra of L(G)(**Popa-Vaes, 2012**). We may assume that $\theta(L(A^{(B)}) = L(A^{(B)})$. Therefore, θ induces an automorphism of $\mathcal{R}(B \curvearrowright \widehat{A^B})$.
- Since B is icc property (T), $B \curvearrowright \widehat{A}^B$ is OE superrigid (**Popa, 2005**). Since $Out(B) = \{e\}$, we get that $\theta(u_g) \in L(A^{(B)})u_g, \forall g \in G$.

Let $G \in W\mathcal{R}(A, B)$ with property (T) and $Char(G) = \{1\}$, where $A \neq \{1\}$ is abelian, B is icc hyperbolic and $Out(B) = \{e\}$. Then $Out(L(G)) = \{e\}$.

- As *B* is hyperbolic, $L(A^{(B)})$ is the unique Cartan subalgebra of L(G)(**Popa-Vaes, 2012**). We may assume that $\theta(L(A^{(B)}) = L(A^{(B)})$. Therefore, θ induces an automorphism of $\mathcal{R}(B \frown \widehat{A^B})$.
- Since B is icc property (T), $B \curvearrowright \widehat{A}^B$ is OE superrigid (**Popa, 2005**). Since $Out(B) = \{e\}$, we get that $\theta(u_g) \in L(A^{(B)})u_g, \forall g \in G$.
- Let $\theta(u_g) = w_g u_g$. Then $(w_g)_{g \in G} \subset \mathcal{U}(\mathsf{L}(A^{(B)}))$ is a 1-cocycle for α .

Let $G \in W\mathcal{R}(A, B)$ with property (T) and Char(G) = {1}, where $A \neq$ {1} is abelian, B is icc hyperbolic and Out(B) = {e}. Then Out(L(G)) = {e}.

- As *B* is hyperbolic, $L(A^{(B)})$ is the unique Cartan subalgebra of L(G)(**Popa-Vaes, 2012**). We may assume that $\theta(L(A^{(B)}) = L(A^{(B)})$. Therefore, θ induces an automorphism of $\mathcal{R}(B \frown \widehat{A^B})$.
- Since B is icc property (T), $B \curvearrowright \widehat{A}^B$ is OE superrigid (**Popa, 2005**). Since $Out(B) = \{e\}$, we get that $\theta(u_g) \in L(A^{(B)})u_g, \forall g \in G$.
- Let θ(u_g) = w_gu_g. Then (w_g)_{g∈G} ⊂ U(L(A^(B)) is a 1-cocycle for α. Since G has property (T), α is cocycle superrigid (Popa, 2005).

Let $G \in W\mathcal{R}(A, B)$ with property (T) and $Char(G) = \{1\}$, where $A \neq \{1\}$ is abelian, B is icc hyperbolic and $Out(B) = \{e\}$. Then $Out(L(G)) = \{e\}$.

- As *B* is hyperbolic, $L(A^{(B)})$ is the unique Cartan subalgebra of L(G)(**Popa-Vaes, 2012**). We may assume that $\theta(L(A^{(B)}) = L(A^{(B)})$. Therefore, θ induces an automorphism of $\mathcal{R}(B \curvearrowright \widehat{A}^B)$.
- Since B is icc property (T), $B \curvearrowright \widehat{A}^B$ is OE superrigid (**Popa, 2005**). Since $Out(B) = \{e\}$, we get that $\theta(u_g) \in L(A^{(B)})u_g, \forall g \in G$.
- Let θ(u_g) = w_gu_g. Then (w_g)_{g∈G} ⊂ U(L(A^(B)) is a 1-cocycle for α. Since G has property (T), α is cocycle superrigid (Popa, 2005). As Char(G) = {1}, it follows that u_g = uσ_g(u)*, ∀g ∈ G. Hence θ = Ad(u) is an inner automorphism.