Wreath-like product groups and rigidity of their von Neumann algebras

joint work with Ionut Chifan, Denis Osin and Bin Sun

Adrian Ioana

UCSD

Operator algebras, dynamics and groups - an ICM satellite conference

University of Copenhagen, July 3
Let G be a countable discrete group.
Let $u : G \to \mathcal{U}(\ell^2 G)$ be the left regular representation: $u_g(\delta_h) = \delta_{gh}$.

Definition
The group von Neumann algebra $L(G) \subset B(\ell^2 G)$ is defined as $L(G) := \text{span}\{u_g | g \in G\}$ WOT.

Central problem
Classify $L(G)$ in terms of the group G.

Facts
1. If G is infinite abelian, then $L(G) \sim L(\hat{G}, \text{Haar}) \sim L([0,1], \text{Leb})$.
2. $L(G)$ is a II$_1$ factor \iff G is icc: $|\{hgh^{-1} | h \in G\}| = \infty$, $\forall g \neq e$.

Convention.
In the rest of the talk, all groups are icc countable discrete.
Let G be a countable discrete group.
Let $u : G \to \mathcal{U}(\ell^2 G)$ be the left regular representation: $u_g(\delta_h) = \delta_{gh}$.

Definition

The group von Neumann algebra $L(G) \subset B(\ell^2 G)$ is defined as

$$L(G) := \text{span}\{u_g \mid g \in G\}^{\text{WOT}}$$
Let G be a countable discrete group.
Let $u : G \to \mathcal{U}(\ell^2 G)$ be the left regular representation: $u_g(\delta_h) = \delta_{gh}$.

Definition

The group von Neumann algebra $L(G) \subset B(\ell^2 G)$ is defined as

$$L(G) := \operatorname{span}\{u_g \mid g \in G\}^\text{WOT}$$

Central problem

Classify $L(G)$ in terms of the group G.

Let G be a countable discrete group. Let $u : G \to \mathcal{U}(\ell^2 G)$ be the left regular representation: $u_g(\delta_h) = \delta_{gh}$.

Definition

The group von Neumann algebra $L(G) \subset \mathcal{B}(\ell^2 G)$ is defined as

$$L(G) := \text{span}\{u_g \mid g \in G\}^{\text{WOT}}$$

Central problem

Classify $L(G)$ in terms of the group G.

Facts

1. If G is infinite abelian, then $L(G) \cong L^\infty(\hat{G}, \text{Haar}) \cong L^\infty([0, 1], \text{Leb})$.
Let G be a countable discrete group. Let $u : G \to U(\ell^2 G)$ be the left regular representation: $u_g(\delta_h) = \delta_{gh}$.

Definition

The group von Neumann algebra $L(G) \subset B(\ell^2 G)$ is defined as

$$L(G) := \operatorname{span}\{u_g \mid g \in G\}^{\text{WOT}}$$

Central problem

Classify $L(G)$ in terms of the group G.

Facts

1. If G is infinite abelian, then $L(G) \cong L^\infty(\hat{G}, \text{Haar}) \cong L^\infty([0, 1], \text{Leb})$.
2. $L(G)$ is a II$_1$ factor \iff G is icc: $|\{ghg^{-1} \mid h \in G\}| = \infty$, $\forall g \neq e$.
Let G be a countable discrete group.
Let $u : G \to \mathcal{U}(\ell^2 G)$ be the left regular representation: $u_g(\delta_h) = \delta_{gh}$.

Definition

The group von Neumann algebra $L(G) \subset B(\ell^2 G)$ is defined as

$$L(G) := \overline{\text{span}}\{u_g \mid g \in G\}^{\text{WOT}}$$

Central problem

Classify $L(G)$ in terms of the group G.

Facts

1. If G is infinite abelian, then $L(G) \cong L^\infty(\hat{G}, \text{Haar}) \cong L^\infty([0, 1], \text{Leb})$.
2. $L(G)$ is a II$_1$ factor \iff G is icc: $|\{hgh^{-1} \mid h \in G\}| = \infty$, $\forall g \neq e$.

Convention. In the rest of the talk, all groups are icc countable discrete.
∃! approximately finite dimensional II_1 factor, \(R = \bigotimes_{n \in \mathbb{N}} M_2(\mathbb{C})^{WOT} \).
∃! approximately finite dimensional II\textsubscript{1} factor, $R = \bigotimes_{n \in \mathbb{N}} M_2(\mathbb{C})^\text{WOT}$.

$L(G) \cong R$, \forall \ G icc locally finite, for instance $G = S_\infty = \bigcup_{n \in \mathbb{N}} S_n$.

Absence of rigidity: vN algebras forget any properties of amenable groups.

The rest of the talk: rigidity for vN algebras of nonamenable groups.
Classification of group von Neumann algebras

Murray-von Neumann, 1936-43

1. \(\exists ! \) approximately finite dimensional II\(_1\) factor, \(R = \bigotimes_{n \in \mathbb{N}} M_2(\mathbb{C}) \)\(^{\text{WOT}} \).

2. \(L(G) \cong R \), \(\forall G \) icc locally finite, for instance \(G = S_\infty = \bigcup_{n \in \mathbb{N}} S_n \).

3. \(L(\mathbb{F}_2) \not\cong R \), where \(\mathbb{F}_2 \) is the free group on two generators.

Definition.

A group \(G \) is amenable if its regular rep. has almost invariant vectors:

\[\exists \text{ unit vectors } (\xi_n) \subset \ell^2(G) \text{ such that } \|u_g \xi_n - \xi_n\|_2 \to 0, \forall g \in G. \]

Connes, 1975

\(L(G) \cong R \), \(\forall G \) icc amenable. Any amenable II\(_1\) factor is isomorphic to \(R \).

Absence of rigidity: vN algebras forget any properties of amenable groups.

The rest of the talk: rigidity for vN algebras of nonamenable groups.
Murray-von Neumann, 1936-43

1. \(\exists! \) approximately finite dimensional \(\text{II}_1 \) factor, \(R = \bigotimes_{n \in \mathbb{N}} M_2(\mathbb{C})^{\text{WOT}} \).

2. \(L(G) \cong R, \forall \ G \text{ icc locally finite, for instance } G = S_\infty = \bigcup_{n \in \mathbb{N}} S_n. \)

3. \(L(\mathbb{F}_2) \not\cong R, \text{ where } \mathbb{F}_2 \text{ is the free group on two generators.} \)

Definition. A group \(G \) is **amenable** if its regular rep. has almost invariant vectors: \(\exists \) unit vectors \((\xi_n) \subset \ell^2 G \) such that \(\| u_g \xi_n - \xi_n \|_2 \to 0, \forall g \in G. \)
Classification of group von Neumann algebras

Murray-von Neumann, 1936-43

1. \exists! approximately finite dimensional II$_1$ factor, $R = \bigotimes_{n \in \mathbb{N}} M_2(\mathbb{C})^\text{WOT}$.
2. $L(G) \cong R$, \forall G icc locally finite, for instance $G = S_\infty = \bigcup_{n \in \mathbb{N}} S_n$.
3. $L(\mathbb{F}_2) \not\cong R$, where \mathbb{F}_2 is the free group on two generators.

Definition. A group G is amenable if its regular rep. has almost invariant vectors: \exists unit vectors $(\xi_n) \subset \ell^2 G$ such that $\|u_g \xi_n - \xi_n\|_2 \to 0$, $\forall g \in G$.

Connes, 1975

$L(G) \cong R$, \forall G icc amenable. Any amenable II$_1$ factor is isomorphic to R.

Absence of rigidity: vN algebras forget any properties of amenable groups.

The rest of the talk: rigidity for vN algebras of nonamenable groups.
Classification of group von Neumann algebras

Murray-von Neumann, 1936-43

1. \(\exists! \) approximately finite dimensional II\(_1\) factor, \(R = \bigotimes_{n \in \mathbb{N}} M_2(\mathbb{C})^{\text{WOT}} \).

2. \(L(G) \cong R \), \(\forall \) G icc locally finite, for instance \(G = S_\infty = \bigcup_{n \in \mathbb{N}} S_n \).

3. \(L(F_2) \not\cong R \), where \(F_2 \) is the free group on two generators.

Definition. A group \(G \) is amenable if its regular rep. has almost invariant vectors: \(\exists \) unit vectors \((\xi_n) \subset \ell^2 G\) such that \(\|u_g \xi_n - \xi_n\|_2 \to 0, \forall g \in G \).

Connes, 1975

\(L(G) \cong R \), \(\forall \) G icc amenable. Any amenable II\(_1\) factor is isomorphic to \(R \).

Absence of rigidity: vN algebras forget any properties of amenable groups.
Classification of group von Neumann algebras

Murray-von Neumann, 1936-43

1. ∃! approximately finite dimensional II\(_1\) factor, \(R = \bigotimes_{n \in \mathbb{N}} M_2(\mathbb{C})^{WOT}\).

2. \(L(G) \cong R\), \(\forall G\) icc locally finite, for instance \(G = S_\infty = \bigcup_{n \in \mathbb{N}} S_n\).

3. \(L(F_2) \not\cong R\), where \(F_2\) is the free group on two generators.

Definition. A group \(G\) is **amenable** if its regular rep. has almost invariant vectors: \(\exists\) unit vectors \((\xi_n) \subset \ell^2 G\) such that \(\|u_g \xi_n - \xi_n\|_2 \to 0, \forall g \in G\).

Connes, 1975

\(L(G) \cong R, \forall G\) icc amenable. Any amenable II\(_1\) factor is isomorphic to \(R\).

Absence of rigidity: vN algebras forget any properties of amenable groups.

The rest of the talk: **rigidity** for vN algebras of nonamenable groups.
Definition. A group G has Kazhdan’s property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples.
1) Higher rank lattices, e.g., $\text{SL}_n(\mathbb{Z})$, $n \geq 3$.
2) Random groups: Gromov density model $1 < d < 1/2$ (also hyperbolic).
3) $\text{Aut}(F_k)$ (Novak-Kaluba-Ozawa $k = 5$; Novak-Kaluba-Kielak $k > 5$).

Connes (1980) If G is icc property (T), then the outer automorphism group $\text{Out}(L(G))$ and fundamental group $\pi_1(L(G))$ are countable.

Connes' rigidity conjecture, 1980 If G, H are icc property (T) groups such that $L(G) \simeq L(H)$, then $G \simeq H$.

Connes-Jones (1983) Property (T) is an invariant of $L(G)$.

Cowling-Haagerup (1988) If $G < \text{Sp}(1,n)$ and $H < \text{Sp}(1,m)$ are lattices and $n \neq m$, then $L(G) \not\simeq L(H)$.

Ozawa (2002) \exists uncountably many noniso. prop. (T) group factors.

Popa (2006) $G \mapsto L(G)$ is countable-to-1 for icc prop. (T) groups.
Definition. A group G has Kazhdan’s property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $\text{SL}_n(\mathbb{Z})$, $n \geq 3$.
Definition. A group G has Kazhdan’s property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples.
1) Higher rank lattices, e.g., $\text{SL}_n(\mathbb{Z})$, $n \geq 3$.
2) Random groups: Gromov density model $\frac{1}{3} < d < \frac{1}{2}$ (also hyperbolic).
Definition. A group G has Kazhdan’s property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $\text{SL}_n(\mathbb{Z})$, $n \geq 3$.
2) Random groups: Gromov density model $\frac{1}{3} < d < \frac{1}{2}$ (also hyperbolic).
3) $\text{Aut}(\mathbb{F}_k)$ (Novak-Kaluba-Ozawa $k = 5$; Novak-Kaluba-Kielak $k > 5$).
Property (T) group von Neumann algebras, I

Definition. A group G has Kazhdan’s property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $\text{SL}_n(\mathbb{Z})$, $n \geq 3$.
2) Random groups: Gromov density model $\frac{1}{3} < d < \frac{1}{2}$ (also hyperbolic).
3) $\text{Aut}(\mathbb{F}_k)$ (Novak-Kaluba-Ozawa $k = 5$; Novak-Kaluba-Kielak $k > 5$).

Connes (1980) If G is icc property (T), then the outer automorphism group $\text{Out}(L(G))$ and fundamental group $\mathcal{F}(L(G))$ are countable.
Definition. A group G has Kazhdan’s property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $\operatorname{SL}_n(\mathbb{Z}), n \geq 3$.
2) Random groups: Gromov density model $\frac{1}{3} < d < \frac{1}{2}$ (also hyperbolic).
3) $\operatorname{Aut}(\mathbb{F}_k)$ (Novak-Kaluba-Ozawa $k = 5$; Novak-Kaluba-Kielak $k > 5$).

Connes (1980) If G is icc property (T), then the outer automorphism group $\operatorname{Out}(L(G))$ and fundamental group $\mathcal{F}(L(G))$ are countable.

Connes’ rigidity conjecture, 1980

If G, H are icc property (T) groups such that $L(G) \cong L(H)$, then $G \cong H$.
Definition. A group G has Kazhdan’s property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples.
1) Higher rank lattices, e.g., $\text{SL}_n(\mathbb{Z})$, $n \geq 3$.
2) Random groups: Gromov density model $\frac{1}{3} < d < \frac{1}{2}$ (also hyperbolic).
3) Aut(\mathbb{F}_k) (Novak-Kaluba-Ozawa $k = 5$; Novak-Kaluba-Kielak $k > 5$).

Connes (1980) If G is icc property (T), then the outer automorphism group $\text{Out}(L(G))$ and fundamental group $\mathcal{F}(L(G))$ are countable.

Connes’ rigidity conjecture, 1980

If G, H are icc property (T) groups such that $L(G) \cong L(H)$, then $G \cong H$.

- **Connes-Jones (1983)** Property (T) is an invariant of $L(G)$.
Definition. A group G has Kazhdan’s property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $\text{SL}_n(\mathbb{Z})$, $n \geq 3$.
2) Random groups: Gromov density model $\frac{1}{3} < d < \frac{1}{2}$ (also hyperbolic).
3) $\text{Aut}(\mathbb{F}_k)$ (Novak-Kaluba-Ozawa $k = 5$; Novak-Kaluba-Kielak $k > 5$).

Connes (1980) If G is icc property (T), then the outer automorphism group $\text{Out}(L(G))$ and fundamental group $\mathcal{F}(L(G))$ are countable.

Connes’ rigidity conjecture, 1980

If G, H are icc property (T) groups such that $L(G) \cong L(H)$, then $G \cong H$.

- Connes-Jones (1983) Property (T) is an invariant of $L(G)$.
- Cowling-Haagerup (1988) If $G < \text{Sp}(1, n)$ and $H < \text{Sp}(1, m)$ are lattices and $n \neq m$, then $L(G) \not\cong L(H)$.
Definition. A group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \geq 3$.
2) Random groups: Gromov density model $\frac{1}{3} < d < \frac{1}{2}$ (also hyperbolic).
3) $\text{Aut}(F_k)$ (Novak-Kaluba-Ozawa $k = 5$; Novak-Kaluba-Kielak $k > 5$).

Connes (1980) If G is icc property (T), then the outer automorphism group $\text{Out}(L(G))$ and fundamental group $\mathcal{F}(L(G))$ are countable.

Connes’ rigidity conjecture, 1980

If G, H are icc property (T) groups such that $L(G) \cong L(H)$, then $G \cong H$.

- **Connes-Jones (1983)** Property (T) is an invariant of $L(G)$.
- **Cowling-Haagerup (1988)** If $G \subset \text{Sp}(1, n)$ and $H \subset \text{Sp}(1, m)$ are lattices and $n \neq m$, then $L(G) \not\cong L(H)$.
- **Ozawa (2002)** \exists uncountably many noniso. prop. (T) group factors.
Definition. A group G has Kazhdan’s property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $\text{SL}_n(\mathbb{Z}), n \geq 3$.
2) Random groups: Gromov density model $\frac{1}{3} < d < \frac{1}{2}$ (also hyperbolic).
3) $\text{Aut}(\mathbb{F}_k)$ (Novak-Kaluba-Ozawa $k = 5$; Novak-Kaluba-Kielak $k > 5$).

Connes (1980) If G is icc property (T), then the outer automorphism group $\text{Out}(L(G))$ and fundamental group $\mathcal{F}(L(G))$ are countable.

Connes’ rigidity conjecture, 1980

If G, H are icc property (T) groups such that $L(G) \cong L(H)$, then $G \cong H$.

- Connes-Jones (1983) Property (T) is an invariant of $L(G)$.
- Cowling-Haagerup (1988) If $G < \text{Sp}(1,n)$ and $H < \text{Sp}(1,m)$ are lattices and $n \neq m$, then $L(G) \not\cong L(H)$.
- Ozawa (2002) \exists uncountably many noniso. prop. (T) group factors.
- Popa (2006) $G \leftrightarrow L(G)$ is countable-to-1 for icc prop. (T) groups.
Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G.

Conjecture (Jones, 2000) Show that $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$, for icc property (T) groups G.

Popa’s strengthening of Connes’ rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group. Let $\theta: L(G) \to L(H)$ be *-isomorphism, for some $t > 0$. Then $t = 1$ and there exists a group isomorphism $\delta: G \to H$ and character $\eta: G \to T$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g) u_{\delta(g)}$, $\forall g \in G$. In particular, G is W^\ast-superrigid: if $L(G) \cong L(H)$, for any H, then $G \cong H$.

Out$(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$ and $\mathcal{F}(L(G)) = \{1\}$.

Property (T) group von Neumann algebras, II
Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G.

Conjecture (Jones, 2000) Show that $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$, for icc property (T) groups G.

Popa’s strengthening of Connes’ rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group. Let $\theta : L(G) \to L(H)$ be \ast-isomorphism, for some $t > 0$.

Then $t = 1$ and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to T$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g) u_\delta(g)$, $\forall g \in G$.

In particular, G is W_\ast-superrigid: if $L(G) \cong L(H)$, for any H, then $G = H$, $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$ and $\mathcal{F}(L(G)) = \{1\}$.

Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G.

Conjecture (Jones, 2000) Show that $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$, for icc property (T) groups G.

Popa’s strengthening of Connes’ rigidity conjecture, 2006
Let G be an icc property (T) group and H be any group.
Property (T) group von Neumann algebras, II

Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G.

Conjecture (Jones, 2000) Show that $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$, for icc property (T) groups G.

Popa’s strengthening of Connes’ rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group. Let $\theta : L(G)^t \to L(H)$ be \ast-isomorphism, for some $t > 0$.
Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G.

Conjecture (Jones, 2000) Show that $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$, for icc property (T) groups G.

Popa’s strengthening of Connes’ rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group. Let $\theta : L(G)^t \to L(H)$ be \ast-isomorphism, for some $t > 0$.

Then $t = 1$ and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}$, $\forall g \in G$.
Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G.

Conjecture (Jones, 2000) Show that $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$, for icc property (T) groups G.

Popa’s strengthening of Connes’ rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group. Let $\theta : L(G)^t \to L(H)$ be \ast-isomorphism, for some $t > 0$.

Then $t = 1$ and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}$, $\forall g \in G$.

In particular, G is W^*-superrigid: if $L(G) \cong L(H)$, for any H, then $G \cong H$.
Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G.

Conjecture (Jones, 2000) Show that $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$, for icc property (T) groups G.

Popa’s strengthening of Connes’ rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group. Let $\theta : L(G)^t \to L(H)$ be \ast-isomorphism, for some $t > 0$.

Then $t = 1$ and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}$, $\forall g \in G$.

In particular, G is W^*-superrigid: if $L(G) \cong L(H)$, for any H, then $G \cong H$, $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$ and $\mathcal{F}(L(G)) = \{1\}$.
Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G.

Conjecture (Jones, 2000) Show that $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$, for icc property (T) groups G.

Popa’s strengthening of Connes’ rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group. Let $\theta : L(G)^t \to L(H)$ be \ast-isomorphism, for some $t > 0$.

Then $t = 1$ and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}$, $\forall g \in G$.

In particular, G is W^*-superrigid: if $L(G) \cong L(H)$, for any H, then $G \cong H$, $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$ and $\mathcal{F}(L(G)) = \{1\}$.
Popa’s deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.
Popa’s deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- **Popa (2001)** \(\mathcal{F}(L(\mathbb{Z}^2 \rtimes \text{SL}_2(\mathbb{Z}))) = \{1\} \).
Deformation/rigidity theory

Popa’s deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- **Popa (2001)** $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z}))) = \{1\}$.
- **Popa (2004)** If G, H icc property (T), $L(\mathbb{Z} \wr G) \cong L(\mathbb{Z} \wr H) \Rightarrow G \cong H$.

Remark. These results do not apply to property (T) group factors. This is because deformation/rigidity applies to II$_1$ factors which admit deformations, whose presence is typically incompatible with property (T).
Popa’s deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- **Popa (2001)** $\mathcal{F}(L(\mathbb{Z}^2 \rtimes \text{SL}_2(\mathbb{Z}))) = \{1\}$.

- **Popa (2004)** If G, H icc property (T), $L(\mathbb{Z} \wr G) \cong L(\mathbb{Z} \wr H) \Rightarrow G \cong H$. Here, $A \wr B = (\bigoplus_{b \in B} A) \rtimes B$ is the **wreath-product** of A and B.
Popa’s deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- **Popa (2001)** \(\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z}))) = \{1\} \).
- **Popa (2004)** If \(G, H \) icc property (T), \(L(\mathbb{Z} \wr G) \cong L(\mathbb{Z} \wr H) \Rightarrow G \cong H \). Here, \(A \wr B = (\bigoplus_{b \in B} A) \ltimes B \) is the **wreath-product** of \(A \) and \(B \).
- **I-Peterson-Popa (2005)** \(\exists \text{ II}_1 \) factors \(M \) with \(\text{Out}(M) = \{e\} \).
- **Popa-Vaes (2006)** icc \(G \) with \(\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G) \).
- **I-Popa-Vaes (2010)** examples of \(\text{W}^* \)-superrigid icc groups \(G \).

Remark. These results do not apply to property (T) group factors. This is because deformation/rigidity applies to \(\text{II}_1 \) factors which admit deformations, whose presence is typically incompatible with property (T).
Popa’s deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- **Popa (2001)** $\mathcal{F}(L(\mathbb{Z}^2 \rtimes \text{SL}_2(\mathbb{Z}))) = \{1\}$.
- **Popa (2004)** If G, H icc property (T), $L(\mathbb{Z} \wr G) \cong L(\mathbb{Z} \wr H) \Rightarrow G \cong H$. Here, $A \wr B = (\bigoplus_{b \in B} A) \rtimes B$ is the wreath-product of A and B.
- **I-Peterson-Popa (2005)** $\exists \text{II}_1$ factors M with $\text{Out}(M) = \{e\}$.
- **Popa-Vaes (2006)** icc G with $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$.
Popa’s deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- **Popa (2001)** $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z}))) = \{1\}$.
- **Popa (2004)** If G, H icc property (T), $L(\mathbb{Z} \wr G) \cong L(\mathbb{Z} \wr H) \Rightarrow G \cong H$. Here, $A \wr B = (\bigoplus_{b \in B} A) \rtimes B$ is the wreath-product of A and B.
- **I-Peterson-Popa (2005)** \exists II$_1$ factors M with $\text{Out}(M) = \{e\}$.
- **Popa-Vaes (2006)** icc G with $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$.
- **I-Popa-Vaes (2010)** examples of W^*-superrigid icc groups G.

Remark. These results do not apply to property (T) group factors. This is because deformation/rigidity applies to II$_1$ factors which admit deformations, whose presence is typically incompatible with property (T).

- **Chifan-Das-Houdayer-Khan (2020)** examples of icc property (T) groups G such that $F(L(G)) = \{1\}$.
Popa’s deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- **Popa (2001)** \(\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z}))) = \{1\} \).
- **Popa (2004)** If \(G, H \) icc property (T), \(L(\mathbb{Z} \wr G) \cong L(\mathbb{Z} \wr H) \Rightarrow G \cong H \). Here, \(A \wr B = (\bigoplus_{b \in B} A) \rtimes B \) is the **wreath-product** of \(A \) and \(B \).
- **I-Peterson-Popa (2005)** \(\exists \) II\(_1\) factors \(M \) with \(\text{Out}(M) = \{e\} \).
- **Popa-Vaes (2006)** icc \(G \) with \(\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G) \).
- **I-Popa-Vaes (2010)** examples of \(W^*\)-superrigid icc groups \(G \).

Remark. These results do not apply to property (T) group factors.
Popa’s deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- **Popa (2001)** $\mathcal{F}(L(\mathbb{Z}^2 \rtimes \text{SL}_2(\mathbb{Z}))) = \{1\}$.
- **Popa (2004)** If G, H icc property (T), $L(\mathbb{Z} \wr G) \cong L(\mathbb{Z} \wr H) \Rightarrow G \cong H$. Here, $A \wr B = (\bigoplus_{b \in B} A) \rtimes B$ is the wreath-product of A and B.
- **I-Peterson-Popa (2005)** \exists II$_1$ factors M with $\text{Out}(M) = \{e\}$.
- **Popa-Vaes (2006)** icc G with $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$.
- **I-Popa-Vaes (2010)** examples of W^*-superrigid icc groups G.

Remark. These results do not apply to property (T) group factors. This is because deformation/rigidity applies to II$_1$ factors which admit deformations, whose presence is typically incompatible with property (T).
Deformation/rigidity theory

Popa’s deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- **Popa (2001)** $\mathcal{F}(L(\mathbb{Z}^2 \rtimes \text{SL}_2(\mathbb{Z}))) = \{1\}$.
- **Popa (2004)** If G, H icc property (T), $L(\mathbb{Z} \wr G) \cong L(\mathbb{Z} \wr H) \Rightarrow G \cong H$. Here, $A \wr B = (\bigoplus_{b \in B} A) \rtimes B$ is the wreath-product of A and B.
- **I-Peterson-Popa (2005)** \exists II$_1$ factors M with $\text{Out}(M) = \{e\}$.
- **Popa-Vaes (2006)** icc G with $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$.
- **I-Popa-Vaes (2010)** examples of W^*-superrigid icc groups G.

Remark. These results do not apply to property (T) group factors. This is because deformation/rigidity applies to II$_1$ factors which admit deformations, whose presence is typically incompatible with property (T).

Chifan-Das-Houdayer-Khan (2020) examples of icc property (T) groups G such that $\mathcal{F}(L(G)) = \{1\}$.
Wreath-like product groups, I

Definition

A group G is a *wreath-like product* of two groups A and B, in symbols $G \in \mathcal{WR}(A, B)$,
A group G is a wreath-like product of two groups A and B, in symbols $G \in \mathcal{WR}(A, B)$, if there is a short exact sequence

$$
\{e\} \to \bigoplus_{b \in B} A \to G \overset{\epsilon}{\to} B \to \{e\}
$$
A group G is a wreath-like product of two groups A and B, in symbols $G \in \mathcal{WR}(A, B)$, if there is a short exact sequence

$$\{e\} \rightarrow \bigoplus_{b \in B} A \rightarrow G \xrightarrow{\varepsilon} B \rightarrow \{e\}$$

such that $gA_b g^{-1} = A_{\varepsilon(g)}b$, with A_b the b-labelled copy of A in $\bigoplus_{b \in B} A$.\[\]
A group \(G \) is a **wreath-like product** of two groups \(A \) and \(B \), in symbols \(G \in \mathcal{WR}(A, B) \), if there is a short exact sequence

\[
\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}
\]

such that \(gA_bg^{-1} = A_{\varepsilon(g)}b \), with \(A_b \) the \(b \)-labelled copy of \(A \) in \(\bigoplus_{b \in B} A \).

Example. \(A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B) \).
A group G is a wreath-like product of two groups A and B, in symbols $G \in \mathcal{WR}(A, B)$, if there is a short exact sequence
\[
\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}
\]
such that $gA_b g^{-1} = A_{\varepsilon(g)b}$, with A_b the b-labelled copy of A in $\bigoplus_{b \in B} A$.

Example. $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B)$.

Definition. $H \lhd G$ is a Cohen-Lyndon subgroup if $\langle \langle H \rangle \rangle = *_{t \in T} tHt^{-1}$, with T a left transversal for the normal subgroup $\langle \langle H \rangle \rangle \lhd G$ generated by H.
Definition

A group G is a **wreath-like product** of two groups A and B, in symbols $G \in \mathcal{WR}(A, B)$, if there is a short exact sequence

$$\{e\} \rightarrow \bigoplus_{b \in B} A \rightarrow G \xrightarrow{\varepsilon} B \rightarrow \{e\}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)}b$, with A_b the b-labelled copy of A in $\bigoplus_{b \in B} A$.

Example. $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B)$.

Definition. $H < G$ is a **Cohen-Lyndon subgroup** if $\langle H \rangle = \ast_{t \in T} tHt^{-1}$, with T a left transversal for the normal subgrp $\langle H \rangle < G$ generated by H.

Examples (1) $H < H \ast K$
(Proof. $\langle H \rangle = \ast_{k \in K} kHk^{-1}$.)
Definition
A group G is a **wreath-like product** of two groups A and B, in symbols $G \in \mathcal{WR}(A, B)$, if there is a short exact sequence

$$\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$$

such that $gA bg^{-1} = A_{\varepsilon(g)} b$, with A_b the b-labelled copy of A in $\bigoplus_{b \in B} A$.

Example. $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B)$.

Definition. $H < G$ is a **Cohen-Lyndon subgroup** if $\langle\langle H \rangle\rangle = \ast_{t \in T} t H t^{-1}$, with T a left transversal for the normal subgrp $\langle\langle H \rangle\rangle \triangleleft G$ generated by H.

Examples (1) $H < H \ast K$ (Proof. $\langle\langle H \rangle\rangle = \ast_{k \in K} k H k^{-1}$.)

(2) **(Cohen-Lyndon, 1963)** any maximal cyclic subgrp $H = \mathbb{Z} < G = \mathbb{F}_n$.

Wreath-like product groups, I

Definition
A group G is a wreath-like product of two groups A and B, in symbols $G \in \mathcal{WR}(A, B)$, if there is a short exact sequence

$$\{e\} \rightarrow \bigoplus_{b \in B} A \rightarrow G \xrightarrow{\varepsilon} B \rightarrow \{e\}$$

such that $gA_b g^{-1} = A_{\varepsilon(g)} b$, with A_b the b-labelled copy of A in $\bigoplus_{b \in B} A$.

Example. $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B)$.

Definition. $H < G$ is a Cohen-Lyndon subgroup if $\langle \langle H \rangle \rangle = \ast_{t \in T} tHt^{-1}$, with T a left transversal for the normal subgrp $\langle \langle H \rangle \rangle \triangleleft G$ generated by H.

Examples (1) $H < H \ast K$ (Proof. $\langle \langle H \rangle \rangle = \ast_{k \in K} kHk^{-1}$.)
(2) (Cohen-Lyndon, 1963) any maximal cyclic subgrp $H = \mathbb{Z} < G = \mathbb{F}_n$.

Proposition Let $S = \langle [tHt^{-1}, t'Ht'^{-1}] \mid t, t' \in T, t \neq t' \rangle$, for a C-L subgroup $H < G$. Then $S < \langle \langle H \rangle \rangle$, $S \triangleleft G$ and $G/S \in \mathcal{WR}(H, G/\langle \langle H \rangle \rangle)$.
Wreath-like product groups, I

Definition
A group G is a wreath-like product of two groups A and B, in symbols $G \in \mathcal{WR}(A, B)$, if there is a short exact sequence

$$\{e\} \rightarrow \bigoplus_{b \in B} A \rightarrow G \xrightarrow{\varepsilon} B \rightarrow \{e\}$$

such that $gA_b g^{-1} = A_{\varepsilon(g)} b$, with A_b the b-labelled copy of A in $\bigoplus_{b \in B} A$.

Example. $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B)$.

Definition. $H < G$ is a Cohen-Lyndon subgroup if $\langle \langle H \rangle \rangle = *_{t \in T} tHt^{-1}$, with T a left transversal for the normal subgroup $\langle \langle H \rangle \rangle \trianglelefteq G$ generated by H.

Examples
(1) $H < H * K$
(Proof. $\langle \langle H \rangle \rangle = *_{k \in K} kHk^{-1}$.)
(2) (Cohen-Lyndon, 1963) any maximal cyclic subgroup $H = \mathbb{Z} < G = \mathbb{F}_n$.

Proposition Let $S = \langle [tHt^{-1}, t'Ht'^{-1}] \mid t, t' \in T, t \neq t' \rangle$, for a C-L subgroup $H < G$. Then $S < \langle \langle H \rangle \rangle$, $S \trianglelefteq G$ and $G/S \in \mathcal{WR}(H, G/\langle \langle H \rangle \rangle)$.

Proof. We have $\langle \langle H \rangle \rangle/S \cong \bigoplus_{t \in T} tHt^{-1} \cong \bigoplus_{G/\langle \langle H \rangle \rangle} H$ and a short exact sequence $\{e\} \rightarrow \langle \langle H \rangle \rangle/S \rightarrow G/S \rightarrow G/\langle \langle H \rangle \rangle \rightarrow \{e\}$.
Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in \mathcal{WR}(A, B)$, if there is a short exact sequence

$$\{ e \} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{ e \}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)}b$, with A_b the b-labelled copy of A in $\bigoplus_{b \in B} A$.

Example. $A \wr B = \left(\bigoplus_{b \in B} A \right) \rtimes B \in \mathcal{WR}(A, B)$.

Definition. $H < G$ is a Cohen-Lyndon subgroup if $\langle \langle H \rangle \rangle = \ast_{t \in T} tHt^{-1}$, with T a left transversal for the normal subgrp $\langle \langle H \rangle \rangle \lhd G$ generated by H.

Examples (1) $H < H \ast K$ (Proof. $\langle \langle H \rangle \rangle = \ast_{k \in K} kHk^{-1}$.)
(2) (Cohen-Lyndon, 1963) any maximal cyclic subgrp $H = \mathbb{Z} < G = \mathbb{F}_n$.

Proposition Let $S = \langle [tHt^{-1}, t'Ht'^{-1}] \mid t, t' \in T, t \neq t' \rangle$, for a C-L subgroup $H < G$. Then $S < \langle \langle H \rangle \rangle$, $S \lhd G$ and $G/S \in \mathcal{WR}(H, G/\langle \langle H \rangle \rangle)$.

Proof. We have $\langle \langle H \rangle \rangle / S \cong \bigoplus_{t \in T} tHt^{-1} \cong \bigoplus_{G/\langle \langle H \rangle \rangle} H$ and a short exact sequence $\{ e \} \to \langle \langle H \rangle \rangle / S \to G/S \to G/\langle \langle H \rangle \rangle \to \{ e \}$.

Remark. When $G = H \ast K$, we have $G/\langle \langle H \rangle \rangle = K$ and $G/S = H \wr K$.

52 / 90
Wreath-like product groups, II

Theorem (Dahmani-Guirardel-Osin 2011, Sun 2020) If G is hyperbolic relative to H, then $\exists F \subset H$ finite s.t. $\forall N \triangleleft H$ with $N \cap F = \emptyset$ we have:

- $\langle \langle N \rangle \rangle = \ast_{t \in T} tNt^{-1}$, where T is a left transversal for $H\langle \langle N \rangle \rangle < G$, and
- $G/\langle \langle N \rangle \rangle$ is hyperbolic relative to H/N.

Remarks:

1. This is surprising because wreath products $A \wr B$ never have (T).
2. If A is abelian, $L(A(B)) \cong L_\infty(\hat{A}B) \rtimes \sigma$, with $B \rtimes \sigma \hat{A}B$ Bernoulli & $\sigma \in \mathbb{Z}_2(\sigma, T)$.
3. It follows $H^2(\sigma, T) \neq H^2(\Gamma, T)$, answering a question of Popa (recovering a result of Jiang, 2015).
4. The case $A = F_2$ allows us to prove that every separable II$_1$ factor embeds into one with property (T). (Chifan-Drimbe-I, 2022).
Theorem (Dahmani-Guirardel-Osin 2011, Sun 2020) If G is hyperbolic relative to H, then $\exists F \subset H$ finite s.t. $\forall N \lhd H$ with $N \cap F = \emptyset$ we have:

- $\langle N \rangle = \ast_{t \in T} t N t^{-1}$, where T is a left transversal for $H\langle N \rangle < G$, and
- $G/\langle N \rangle$ is hyperbolic relative to H/N.

Using this theorem, we prove:

Theorem A (Chifan-I-Osin-Sun, 2021) Let K be an icc hyperbolic group. Then for any finitely generated group A, \exists a quotient G of K such that $G \in \text{WR}(A, B)$, for B icc hyperbolic.

Moreover, if K has property (T), then so does $G \in \text{WR}(A, B)$.

Remarks:

1. This is surprising because wreath products $A \wr B$ never have (T).
2. If A is abelian, $L(A \langle (B) \rangle) \sim L_\infty(\hat{A} \ast B)$ and $L(G) \sim L_\infty(\hat{A} \ast B \rtimes_\sigma c B)$, with $B \rtimes_\sigma \hat{A} B$ Bernoulli & $c \in \mathbb{Z}_2(\sigma, T)$.

It follows $H_2(\sigma, T) \neq H_2(\Gamma, T)$, answering a question of Popa (recovering a result of Jiang, 2015).

3. The case $A = F_2$ allows us to prove that every separable II$_1$ factor embeds into one with property (T). (Chifan-Drimbe-I, 2022).
Wreath-like product groups, II

Theorem (Dahmani-Guirardel-Osin 2011, Sun 2020) If G is hyperbolic relative to H, then $\exists F \subset H$ finite s.t. $\forall N \lhd H$ with $N \cap F = \emptyset$ we have:

- $\langle \langle N \rangle \rangle = \ast_{t \in T} tNt^{-1}$, where T is a left transversal for $H\langle \langle N \rangle \rangle < G$, and
- $G/\langle \langle N \rangle \rangle$ is hyperbolic relative to H/N.

Using this theorem, we prove:

Theorem A (Chifan-I-Osin-Sun, 2021)

Let K be an icc hyperbolic group. Then for any finitely generated group A, \exists a quotient G of K such that $G \in \mathcal{WR}(A, B)$, for B icc hyperbolic.
Wreath-like product groups, II

Theorem (Dahmani-Guirardel-Osin 2011, Sun 2020) If G is hyperbolic relative to H, then $\exists F \subset H$ finite s.t. $\forall N \vartriangleleft H$ with $N \cap F = \emptyset$ we have:

- $\langle \langle N \rangle \rangle = \ast_{t \in T} t N t^{-1}$, where T is a left transversal for $H\langle \langle N \rangle \rangle < G$, and
- $G/\langle \langle N \rangle \rangle$ is hyperbolic relative to H/N.

Using this theorem, we prove:

Theorem A (Chifan-I-Osin-Sun, 2021)

Let K be an icc hyperbolic group. Then for any finitely generated group A, \exists a quotient G of K such that $G \in W\mathcal{R}(A, B)$, for B icc hyperbolic. Moreover, if K has property (T), then so does $G \in W\mathcal{R}(A, B)$.
Wreath-like product groups, II

Theorem (Dahmani-Guirardel-Osin 2011, Sun 2020) If G is hyperbolic relative to H, then $\exists F \subset H$ finite s.t. $\forall N \triangleleft H$ with $N \cap F = \emptyset$ we have:
- $\langle \langle N \rangle \rangle = \ast_{t \in T} t N t^{-1}$, where T is a left transversal for $H\langle \langle N \rangle \rangle \lhd G$, and
- $G/\langle \langle N \rangle \rangle$ is hyperbolic relative to H/N.

Using this theorem, we prove:

Theorem A (Chifan-I-Osin-Sun, 2021)

Let K be an icc hyperbolic group. Then for any finitely generated group A, \exists a quotient G of K such that $G \in \mathcal{WR}(A, B)$, for B icc hyperbolic. Moreover, if K has property (T), then so does $G \in \mathcal{WR}(A, B)$.

Remarks:
- This is surprising because wreath products $A \wr B$ never have (T).
Theorem (Dahmani-Guirardel-Osin 2011, Sun 2020) If G is hyperbolic relative to H, then $\exists F \subset H$ finite s.t. $\forall N \lhd H$ with $N \cap F = \emptyset$ we have:

- $\langle \langle N \rangle \rangle = \ast_{t \in T} tNt^{-1}$, where T is a left transversal for $H\langle \langle N \rangle \rangle < G$, and
- $G/\langle \langle N \rangle \rangle$ is hyperbolic relative to H/N.

Using this theorem, we prove:

Theorem A (Chifan-I-Osin-Sun, 2021)

Let K be an icc hyperbolic group. Then for any finitely generated group A, \exists a quotient G of K such that $G \in \mathcal{WR}(A, B)$, for B icc hyperbolic. Moreover, if K has property (T), then so does $G \in \mathcal{WR}(A, B)$.

Remarks:

1. This is surprising because wreath products $A \wr B$ never have (T).
2. If A is abelian, $L(A^{(B)}) \cong L^\infty(\hat{A}^B)$ and $L(G) \cong L^\infty(\hat{A}^B) \rtimes_{\sigma, c} B$, with $B \rtimes^\sigma \hat{A}^B$ Bernoulli $\&$ $c \in Z^2(\sigma, \mathbb{T})$.
Theorem (Dahmani-Guirardel-Osin 2011, Sun 2020) If \(G \) is hyperbolic relative to \(H \), then \(\exists F \subset H \) finite s.t. \(\forall N \triangleleft H \) with \(N \cap F = \emptyset \) we have:
- \(\langle N \rangle = \ast_{t \in T} tNt^{-1} \), where \(T \) is a left transversal for \(H\langle N \rangle < G \), and
- \(G/\langle N \rangle \) is hyperbolic relative to \(H/N \).

Using this theorem, we prove:

Theorem A (Chifan-I-Osin-Sun, 2021)

Let \(K \) be an icc hyperbolic group. Then for any finitely generated group \(A \), \(\exists \) a quotient \(G \) of \(K \) such that \(G \in \mathcal{WR}(A, B) \), for \(B \) icc hyperbolic.

Moreover, if \(K \) has property \((T)\), then so does \(G \in \mathcal{WR}(A, B) \).

Remarks:

1. This is surprising because wreath products \(A \wr B \) never have \((T)\).
2. If \(A \) is abelian, \(L(A(B)) \cong L^\infty(\hat{A}^B) \) and \(L(G) \cong L^\infty(\hat{A}^B) \rtimes_{\sigma, c} B \), with \(B \rhd_{\sigma} \hat{A}^B \) Bernoulli & \(c \in Z^2(\sigma, \mathbb{T}) \). It follows \(H^2(\sigma, \mathbb{T}) \neq H^2(\Gamma, \mathbb{T}) \), answering a question of Popa (recovering a result of Jiang, 2015).
Theorem (Dahmani-Guirardel-Osin 2011, Sun 2020) If G is hyperbolic relative to H, then $\exists F \subset H$ finite s.t. $\forall N \lhd H$ with $N \cap F = \emptyset$ we have:

- $\langle\langle N\rangle\rangle = \ast_{t \in T} t N t^{-1}$, where T is a left transversal for $H\langle\langle N\rangle\rangle < G$, and
- $G/\langle\langle N\rangle\rangle$ is hyperbolic relative to H/N.

Using this theorem, we prove:

Theorem A (Chifan-I-Osin-Sun, 2021)

Let K be an icc hyperbolic group. Then for any finitely generated group A, \exists a quotient G of K such that $G \in \mathcal{WR}(A, B)$, for B icc hyperbolic. Moreover, if K has property (T), then so does $G \in \mathcal{WR}(A, B)$.

Remarks:

1. This is surprising because wreath products $A \wr B$ never have (T).
2. If A is abelian, $L(A(B)) \cong L^\infty(\hat{A}^B)$ and $L(G) \cong L^\infty(\hat{A}^B) \rtimes_{\sigma, c} B$, with $B \curvearrowright^\sigma \hat{A}^B$ Bernoulli & $c \in Z^2(\sigma, \mathbb{T})$. It follows $H^2(\sigma, \mathbb{T}) \neq H^2(\Gamma, \mathbb{T})$, answering a question of Popa (recovering a result of Jiang, 2015).
3. The case $A = \mathbb{F}_2$ allows us to prove that every separable II_1 factor embeds into one with property (T). (Chifan-Drimbe-I, 2022).
Connes’ rigidity conjecture for wreath-like products

Theorem B (Chifan-I-Osin-Sun, 2021)
Let $G \in \mathcal{WR}(A, B)$ and $H \in \mathcal{WR}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic. Let $\theta: L(G) \to L(H)$ be *-isomorphism, for any $t > 0$. Then $t = 1$ and \exists a group isomorphism $\delta: G \to H$ and character $\eta: G \to T$ such that (up to unitary conjugacy) $\theta(\nu_g) = \eta(g) \nu_\delta(g)$, $\forall g \in G$.

In particular, $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$ and $\text{F}(L(G)) = \{1\}$.

Additionally, we can take G with no characters and prescribed Out:

Corollary C (CIOS, 2021)
For all f.p. group Q, \exists a continuum of icc property (T) groups $\{G_i\}_{i \in I}$ s.t. $1 \neq L(G_i) \cong L(G_j), \forall i \neq j$.

$\text{Out}(L(G_i)) \cong Q$ and $\text{F}(L(G_i)) = \{1\}, \forall i \in I$.

These are the first calculations of $\text{Out}(L(G))$, for icc property (T) G.
Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in \mathcal{WR}(A, B)$ and $H \in \mathcal{WR}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic.
Connes’ rigidity conjecture for wreath-like products

Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in \mathcal{WR}(A, B)$ and $H \in \mathcal{WR}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic. Let $\theta : L(G)^t \to L(H)$ be $*$-isomorphism, for any $t > 0$. Additionally, we can take G with no characters and prescribed Out:

Corollary C (CIOS, 2021)

\forall f.p. group Q, \exists a continuum of icc property (T) groups \{$G_i\}_{i \in I}$ s.t. $1_{L(G_i)} \not\sim = L(G_j), \forall i \neq j$.

Out($L(G_i)$) $\sim = Q$ and $F(L(G_i)) = \{1\}, \forall i \in I$.

These are the first calculations of Out($L(G)$), for icc property (T) G.
Theorem B (Chifan-I-Osin-Sun, 2021)

Let \(G \in \mathcal{WR}(A, B) \) and \(H \in \mathcal{WR}(C, D) \) be property (T) groups, where \(A, C \) are nontrivial abelian or icc and \(B, D \) are icc hyperbolic. Let \(\theta : L(G)^{t} \rightarrow L(H) \) be \(*\)-isomorphism, for any \(t > 0 \).

Then \(t = 1 \) and \(\exists \) a group isomorphism \(\delta : G \rightarrow H \) and character \(\eta : G \rightarrow \mathbb{T} \) such that (up to unitary conjugacy) \(\theta(u_g) = \eta(g)u_{\delta(g)}, \forall g \in G \).
Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in \mathcal{WR}(A, B)$ and $H \in \mathcal{WR}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic.

Let $\theta : L(G)^t \to L(H)$ be \ast-isomorphism, for any $t > 0$.

Then $t = 1$ and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}$, $\forall g \in G$.

In particular, $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$ and $\mathcal{F}(L(G)) = \{1\}$.
Connes’ rigidity conjecture for wreath-like products

Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in \mathcal{WR}(A,B)$ and $H \in \mathcal{WR}(C,D)$ be property (T) groups, where A,C are nontrivial abelian or icc and B,D are icc hyperbolic.

Let $\theta : L(G)^t \to L(H)$ be \ast-isomorphism, for any $t > 0$.

Then $t = 1$ and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}$, $\forall g \in G$.

In particular, $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$ and $\mathcal{F}(L(G)) = \{1\}$.

Additionally, we can take G with no characters and prescribed Out:
Connes’ rigidity conjecture for wreath-like products

Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in \mathcal{WR}(A, B)$ and $H \in \mathcal{WR}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic.

Let $\theta : L(G)^t \to L(H)$ be \ast-isomorphism, for any $t > 0$.

Then $t = 1$ and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_\delta(g), \forall g \in G$.

In particular, $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$ and $\mathcal{F}(L(G)) = \{1\}$.

Additionally, we can take G with no characters and prescribed Out:

Corollary C (CIOS, 2021)

\forall f.p. group Q, \exists a continuum of icc property (T) groups $\{G_i\}_{i \in I}$ s.t.
Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in \mathcal{WR}(A, B)$ and $H \in \mathcal{WR}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic.

Let $\theta : L(G)^t \to L(H)$ be \ast-isomorphism, for any $t > 0$.

Then $t = 1$ and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}$, $\forall g \in G$.

In particular, $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$ and $\mathcal{F}(L(G)) = \{1\}$.

Additionally, we can take G with no characters and prescribed Out:

Corollary C (CIOS, 2021)

\forall f.p. group Q, \exists a continuum of icc property (T) groups $\{G_i\}_{i \in I}$ s.t.

1. $L(G_i) \not\cong L(G_j)$, $\forall i \neq j$.
2. $\text{Out}(L(G_i)) \cong Q$ and $\mathcal{F}(L(G_i)) = \{1\}$, $\forall i \in I$.
Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in \mathcal{WR}(A, B)$ and $H \in \mathcal{WR}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic.

Let $\theta: L(G)^t \to L(H)$ be \ast-isomorphism, for any $t > 0$.

Then $t = 1$ and \exists a group isomorphism $\delta: G \to H$ and character $\eta: G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}$, $\forall g \in G$.

In particular, $\text{Out}(L(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$ and $\mathcal{F}(L(G)) = \{1\}$.

Additionally, we can take G with no characters and prescribed Out:

Corollary C (CIOS, 2021)

\forall f.p. group Q, \exists a continuum of icc property (T) groups $\{G_i\}_{i \in I}$ s.t.

1. $L(G_i) \not\cong L(G_j)$, $\forall i \neq j$.
2. $\text{Out}(L(G_i)) \cong Q$ and $\mathcal{F}(L(G_i)) = \{1\}$, $\forall i \in I$.
Connes’ rigidity conjecture for wreath-like products

Theorem B (Chifan-I-Osin-Sun, 2021)

Let $G \in \mathcal{WR}(A, B)$ and $H \in \mathcal{WR}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic.

Let $\theta : \text{L}(G)^t \to \text{L}(H)$ be \ast-isomorphism, for any $t > 0$.

Then $t = 1$ and \exists a group isomorphism $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)u_{\delta(g)}, \forall g \in G$.

In particular, $\text{Out}(\text{L}(G)) \cong \text{Char}(G) \rtimes \text{Out}(G)$ and $\mathcal{F}(\text{L}(G)) = \{1\}$.

Additionally, we can take G with no characters and prescribed Out:

Corollary C (CIOS, 2021)

\forall f.p. group Q, \exists a continuum of icc property (T) groups $\{G_i\}_{i \in I}$ s.t.

1. $\text{L}(G_i) \not\cong \text{L}(G_j), \forall i \neq j$.
2. $\text{Out}(\text{L}(G_i)) \cong Q$ and $\mathcal{F}(\text{L}(G_i)) = \{1\}, \forall i \in I$.

These are the first calculations of $\text{Out}(\text{L}(G))$, for icc property (T) G.
Connes’ rigidity conjecture (1980) Any icc property (T) group G is W^*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$.
Connes’ rigidity conjecture (1980) Any icc property (T) group G is W^*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$.

Connes’ rigidity conjecture (1980) Any icc property (T) group G is W^*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$.

Theorem D (Chifan-I-Osin-Sun, 2021)

Let $G \in \mathcal{WR}(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic.
W^*-superrigid groups with property (T)

Connes’ rigidity conjecture (1980) Any icc property (T) group G is W^*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$.

Theorem D (Chifan-I-Osin-Sun, 2021)

Let $G \in \mathcal{WR}(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic. Then G is W^*-superrigid.
W*-superrigid groups with property (T)

Connes’ rigidity conjecture (1980) Any icc property (T) group G is W*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$.

Theorem D (Chifan-I-Osin-Sun, 2021)

Let $G \in WR(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic. Then G is W*-superrigid.

Corollary E (CIOS, 2021)

Let G be an icc hyperbolic property (T) group and $g \in G$ be an element of infinite order.
W*-superrigid groups with property (T)

Connes’ rigidity conjecture (1980) Any icc property (T) group G is \(W^*\)-superrigid: if \(L(G) \cong L(H)\), for any group H, then $G \cong H$.

Theorem D (Chifan-I-Osin-Sun, 2021)

Let $G \in \mathcal{WR}(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic. Then G is \(W^*\)-superrigid.

Corollary E (CIOS, 2021)

Let G be an icc hyperbolic property (T) group and $g \in G$ be an element of infinite order. Then $\exists d \in \mathbb{N}$ such that $\forall k \in \mathbb{N}$ divisible by d, the quotient group $G/\langle\langle g^k \rangle\rangle$ is a \(W^*\)-superrigid icc group with property (T).
W* -superrigid groups with property (T)

Connes’ rigidity conjecture (1980) Any icc property (T) group G is W^*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$.

Theorem D (Chifan-I-Osin-Sun, 2021)

Let $G \in \mathcal{WR}(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic. Then G is W^*-superrigid.

Corollary E (CIOS, 2021)

Let G be an icc hyperbolic property (T) group and $g \in G$ be an element of infinite order. Then $\exists d \in \mathbb{N}$ such that $\forall k \in \mathbb{N}$ divisible by d, the quotient group $G/[\langle g^k \rangle, \langle g^k \rangle]$ is a W^*-superrigid icc group with property (T).

These are the first examples of W^*-superrigid groups with property (T).
W*-superrigid groups with property (T)

Connes’ rigidity conjecture (1980) Any icc property (T) group G is W^*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$.

Theorem D (Chifan-I-Osin-Sun, 2021)

Let $G \in \mathcal{WR}(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic. Then G is W^*-superrigid.

Corollary E (CIOS, 2021)

Let G be an icc hyperbolic property (T) group and $g \in G$ be an element of infinite order. Then $\exists d \in \mathbb{N}$ such that $\forall k \in \mathbb{N}$ divisible by d, the quotient group $G/[[\langle g^k \rangle], \langle g^k \rangle]$ is a W^*-superrigid icc group with property (T).

These are the first examples of W^*-superrigid groups with property (T).

CIOS, 2022: uncountably many W^*-superrigid property (T) groups.
Let $G \in \mathcal{WR}(A, B)$ with property (T) and $\text{Char}(G) = \{1\}$, where $A \neq \{1\}$ is abelian, B is icc hyperbolic and $\text{Out}(B) = \{e\}$. Then $\text{Out}(L(G)) = \{e\}$.

Sketch of proof. Let θ be an automorphism of $L(G)$. Identifying $L(A(B)) \subset L(G)$ with $L_{\infty}(\hat{A}B) \subset L_{\infty}(\hat{A}B) \rtimes \sigma, cB$, we have (i) $L(A(B)) \subset L(G)$ is a Cartan subalgebra and its equivalence relation is the orbit equivalence relation of the Bernoulli action $B \rtimes \hat{A}B$.

(ii) The conjugation action $G \rtimes \alpha L(A(B)) = L_{\infty}(\hat{A}B)$ given by $\alpha g = \text{Ad}(u g)$ is a generalized Bernoulli action. As B is hyperbolic, $L(A(B))$ is the unique Cartan subalgebra of $L(G)$ (Popa-Vaes, 2012). We may assume that $\theta(L(A(B)) = L(A(B))$.

Therefore, θ induces an automorphism of $R(B \rtimes \hat{A}B)$. Since B is icc property (T), $B \rtimes \hat{A}B$ is OE superrigid (Popa, 2005). Since $\text{Out}(B) = \{e\}$, we get that $\theta(u g) \in L(A(B)) u g$, $\forall g \in G$.

Let $\theta(u g) = w g u g$. Then $(w g) g \in G \subset U(L(A(B)))$ is a 1-cocycle for α.

Since G has property (T), α is cocycle superrigid (Popa, 2005). As $\text{Char}(G) = \{1\}$, it follows that $u g = u \sigma g (u^*)$, $\forall g \in G$.

Hence $\theta = \text{Ad}(u)$ is an inner automorphism.
Let $G \in \mathcal{WR}(A, B)$ with property (T) and $\text{Char}(G) = \{1\}$, where $A \neq \{1\}$ is abelian, B is icc hyperbolic and $\text{Out}(B) = \{e\}$. Then $\text{Out}(L(G)) = \{e\}$.

Sketch of proof. Let θ be an automorphism of $L(G)$. Identifying $L(A(B)) \subset L(G)$ with $L_\infty(\hat{A}B)$, we have

(i) $L(A(B)) \subset L(G)$ is a Cartan subalgebra and its equivalence relation is the orbit equivalence relation of the Bernoulli action $B \rtimes \hat{A}B$.

(ii) The conjugation action $G \rtimes \alpha L(A(B)) = L_\infty(\hat{A}B)$ given by $\alpha g = \text{Ad}(u)g$ is a generalized Bernoulli action.

As B is hyperbolic, $L(A(B))$ is the unique Cartan subalgebra of $L(G)$ (Popa-Vaes, 2012). We may assume that $\theta(L(A(B))) = L(A(B))$.

Therefore, θ induces an automorphism of $R(B \rtimes \hat{A}B)$. Since B is icc property (T), $B \rtimes \hat{A}B$ is OE superrigid (Popa, 2005). Since $\text{Out}(B) = \{e\}$, we get that $\theta(u)g \in L(A(B))u$, $\forall g \in G$.

Let $\theta(u)g = w(g)$. Then $(w(g))g \in G \subset U(L(A(B)))$ is a 1-cocycle for α.

Since G has property (T), α is cocycle superrigid (Popa, 2005). As $\text{Char}(G) = \{1\}$, it follows that $u(g) = u(\sigma(g)(u))$, $\forall g \in G$.

Hence $\theta = \text{Ad}(u)$ is an inner automorphism.
Let $G \in \mathcal{WR}(A, B)$ with property (T) and $\text{Char}(G) = \{1\}$, where $A \neq \{1\}$ is abelian, B is icc hyperbolic and $\text{Out}(B) = \{e\}$. Then $\text{Out}(L(G)) = \{e\}$.

Sketch of proof. Let θ be an automorphism of $L(G)$.

...
Let $G \in \mathcal{WR}(A, B)$ with property (T) and $\text{Char}(G) = \{1\}$, where $A \neq \{1\}$ is abelian, B is icc hyperbolic and $\text{Out}(B) = \{e\}$. Then $\text{Out}(L(G)) = \{e\}$.

Sketch of proof. Let θ be an automorphism of $L(G)$. Identifying $L(A^{(B)}) \subset L(G)$ with $L^{\infty}(\hat{A}^{B}) \subset L^{\infty}(\hat{A}^{B}) \rtimes_{\sigma,c} B$, we have
Property (T) group factors with trivial Out

Let $G \in \mathcal{WR}(A, B)$ with property (T) and $\text{Char}(G) = \{1\}$, where $A \neq \{1\}$ is abelian, B is icc hyperbolic and $\text{Out}(B) = \{e\}$. Then $\text{Out}(L(G)) = \{e\}$.

Sketch of proof. Let θ be an automorphism of $L(G)$. Identifying $L(A^{(B)}) \subset L(G)$ with $L^\infty(\hat{A}^B) \subset L^\infty(\hat{A}^B) \rtimes_{\sigma,c} B$, we have

(i) $L(A^{(B)}) \subset L(G)$ is a Cartan subalgebra and its equivalence relation is the orbit equivalence relation of the Bernoulli action $B \curvearrowright^\sigma \hat{A}^B$.

Let $G \in \mathcal{WR}(A, B)$ with property (T) and $\text{Char}(G) = \{1\}$, where $A \neq \{1\}$ is abelian, B is icc hyperbolic and $\text{Out}(B) = \{e\}$. Then $\text{Out}(L(G)) = \{e\}$.

Sketch of proof. Let θ be an automorphism of $L(G)$.

Identifying $L(A(B)) \subset L(G)$ with $L^\infty(\hat{A}^B) \subset L^\infty(\hat{A}^B) \rtimes_{\sigma,c} B$, we have

(i) $L(A(B)) \subset L(G)$ is a Cartan subalgebra and its equivalence relation is the orbit equivalence relation of the Bernoulli action $B \curvearrowright^\sigma \hat{A}^B$.

(ii) The conjugation action $G \curvearrowright^\alpha L(A(B)) = L^\infty(\hat{A}^B)$ given by $\alpha_g = \text{Ad}(u_g)$ is a generalized Bernoulli action.
Let \(G \in \mathcal{W}R(A, B) \) with property (T) and \(\text{Char}(G) = \{1\} \), where \(A \neq \{1\} \) is abelian, \(B \) is icc hyperbolic and \(\text{Out}(B) = \{e\} \). Then \(\text{Out}(L(G)) = \{e\} \).

Sketch of proof. Let \(\theta \) be an automorphism of \(L(G) \). Identifying \(L(A^{(B)}) \subset L(G) \) with \(L^\infty(\hat{A}^B) \subset L^\infty(\hat{A}^B) \rtimes_{\sigma,c} B \), we have

(i) \(L(A^{(B)}) \subset L(G) \) is a Cartan subalgebra and its equivalence relation is the orbit equivalence relation of the Bernoulli action \(B \curvearrowright^\sigma \hat{A}^B \).

(ii) The conjugation action \(G \curvearrowleft^\alpha L(A^{(B)}) = L^\infty(\hat{A}^B) \) given by \(\alpha_g = \text{Ad}(u_g) \) is a generalized Bernoulli action.

- As \(B \) is hyperbolic, \(L(A^{(B)}) \) is the unique Cartan subalgebra of \(L(G) \) \cite{Popa-Vaes, 2012}. We may assume that \(\theta(L(A^{(B)}) = L(A^{(B)}) \). Therefore, \(\theta \) induces an automorphism of \(\mathcal{R}(B \curvearrowleft \hat{A}^B) \).
Let $G \in \mathcal{WR}(A, B)$ with property (T) and $\text{Char}(G) = \{1\}$, where $A \neq \{1\}$ is abelian, B is icc hyperbolic and $\text{Out}(B) = \{e\}$. Then $\text{Out}(L(G)) = \{e\}$.

Sketch of proof. Let θ be an automorphism of $L(G)$.

Identifying $L(A^{(B)}) \subset L(G)$ with $L^\infty(\hat{A}^B) \subset L^\infty(\hat{A}^B) \rtimes_{\sigma, c} B$, we have

(i) $L(A^{(B)}) \subset L(G)$ is a Cartan subalgebra and its equivalence relation is the orbit equivalence relation of the Bernoulli action $B \actson \hat{A}^B$.

(ii) The conjugation action $G \actson^\alpha L(A^{(B)}) = L^\infty(\hat{A}^B)$ given by $\alpha_g = \text{Ad}(u_g)$ is a generalized Bernoulli action.

- As B is hyperbolic, $L(A^{(B)})$ is the unique Cartan subalgebra of $L(G)$ ([Popa-Vaes, 2012]). We may assume that $\theta(L(A^{(B)}) = L(A^{(B)})$. Therefore, θ induces an automorphism of $\mathcal{R}(B \actson \hat{A}^B)$.

- Since B is icc property (T), $B \actson \hat{A}^B$ is OE superrigid ([Popa, 2005]). Since $\text{Out}(B) = \{e\}$, we get that $\theta(u_g) \in L(A^{(B)})u_g, \forall g \in G$.

86 / 90
Let $G \in \mathcal{WR}(A, B)$ with property (T) and $\text{Char}(G) = \{1\}$, where $A \neq \{1\}$ is abelian, B is icc hyperbolic and $\text{Out}(B) = \{e\}$. Then $\text{Out}(L(G)) = \{e\}$.

Sketch of proof. Let θ be an automorphism of $L(G)$. Identifying $L(A^{(B)}) \subset L(G)$ with $L^\infty(\hat{A}^B) \subset L^\infty(\hat{A}^B) \rtimes_{\sigma, c} B$, we have

(i) $L(A^{(B)}) \subset L(G)$ is a Cartan subalgebra and its equivalence relation is the orbit equivalence relation of the Bernoulli action $B \curvearrowright \sigma \hat{A}^B$.

(ii) The conjugation action $G \curvearrowright^\alpha L(A^{(B)}) = L^\infty(\hat{A}^B)$ given by $\alpha_g = \text{Ad}(u_g)$ is a generalized Bernoulli action.

- As B is hyperbolic, $L(A^{(B)})$ is the unique Cartan subalgebra of $L(G)$ (*Popa-Vaes, 2012*). We may assume that $\theta(L(A^{(B)})) = L(A^{(B)})$. Therefore, θ induces an automorphism of $\mathcal{R}(B \curvearrowright \hat{A}^B)$.

- Since B is icc property (T), $B \curvearrowright \hat{A}^B$ is OE superrigid (*Popa, 2005*). Since $\text{Out}(B) = \{e\}$, we get that $\theta(u_g) \in L(A^{(B)})u_g, \forall g \in G$.

- Let $\theta(u_g) = w_g u_g$. Then $(w_g)_{g \in G} \subset \mathcal{U}(L(A^{(B)}))$ is a 1-cocycle for α.

\(87 / 90\)
Let \(G \in \mathcal{WR}(A, B) \) with property (T) and \(\text{Char}(G) = \{ 1 \} \), where \(A \neq \{ 1 \} \) is abelian, \(B \) is icc hyperbolic and \(\text{Out}(B) = \{ e \} \). Then \(\text{Out}(L(G)) = \{ e \} \).

Sketch of proof. Let \(\theta \) be an automorphism of \(L(G) \).

Identifying \(L(A(B)) \subset L(G) \) with \(L^\infty(\hat{A}B) \subset L^\infty(\hat{A}B) \rtimes_{\sigma,c} B \), we have

(i) \(L(A(B)) \subset L(G) \) is a Cartan subalgebra and its equivalence relation is the orbit equivalence relation of the Bernoulli action \(B \curvearrowright^\sigma \hat{A}B \).

(ii) The conjugation action \(G \curvearrowright^\alpha L(A(B)) = L^\infty(\hat{A}B) \) given by \(\alpha_g = \text{Ad}(u_g) \) is a generalized Bernoulli action.

- As \(B \) is hyperbolic, \(L(A(B)) \) is the unique Cartan subalgebra of \(L(G) \) ([Popa-Vaes, 2012](#)). We may assume that \(\theta(L(A(B)) = L(A(B)) \). Therefore, \(\theta \) induces an automorphism of \(R(B \curvearrowright \hat{A}B) \).
- Since \(B \) is icc property (T), \(B \curvearrowright \hat{A}B \) is OE superrigid ([Popa, 2005](#)). Since \(\text{Out}(B) = \{ e \} \), we get that \(\theta(u_g) \in L(A(B))u_g, \forall g \in G \).
- Let \(\theta(u_g) = w_g u_g \). Then \((w_g)_{g \in G} \subset \mathcal{U}(L(A(B))) \) is a 1-cocycle for \(\alpha \). Since \(G \) has property (T), \(\alpha \) is cocycle superrigid ([Popa, 2005](#)).
Let $G \in \mathcal{W}(A, B)$ with property (T) and $\text{Char}(G) = \{1\}$, where $A \neq \{1\}$ is abelian, B is icc hyperbolic and $\text{Out}(B) = \{e\}$. Then $\text{Out}(L(G)) = \{e\}$.

Sketch of proof. Let θ be an automorphism of $L(G)$. Identifying $L(A(B)) \subset L(G)$ with $L^\infty(\hat{A}B) \subset L^\infty(\hat{A}B) \rtimes_{\sigma, c} B$, we have

(i) $L(A(B)) \subset L(G)$ is a Cartan subalgebra and its equivalence relation is the orbit equivalence relation of the Bernoulli action $B \ump \hat{A}B$.

(ii) The conjugation action $G \ump \alpha L(A(B)) = L^\infty(\hat{A}B)$ given by $\alpha_g = \text{Ad}(u_g)$ is a generalized Bernoulli action.

- As B is hyperbolic, $L(A(B))$ is the unique Cartan subalgebra of $L(G)$ (Popa-Vaes, 2012). We may assume that $\theta(L(A(B))) = L(A(B))$. Therefore, θ induces an automorphism of $\mathcal{R}(B \ump \hat{A}B)$.

- Since B is icc property (T), $B \ump \hat{A}B$ is OE superrigid (Popa, 2005). Since $\text{Out}(B) = \{e\}$, we get that $\theta(u_g) \in L(A(B))u_g$, $\forall g \in G$.

- Let $\theta(u_g) = w_g u_g$. Then $(w_g)_{g \in G} \subset \mathcal{U}(L(A(B)))$ is a 1-cocycle for α. Since G has property (T), α is cocycle superrigid (Popa, 2005). As $\text{Char}(G) = \{1\}$, it follows that $u_g = u\sigma_g(u)^*$, $\forall g \in G$. Hence $\theta = \text{Ad}(u)$ is an inner automorphism.