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Group von Neumann algebras (Murray-von Neumann, ’43)

Let G be a countable discrete group.
Let u : G → U(`2G ) be the left regular representation: ug (δh) = δgh.

Definition

The group von Neumann algebra L(G ) ⊂ B(`2G ) is defined as

L(G ) := span{ug | g ∈ G}WOT

Central problem

Classify L(G ) in terms of the group G .

Facts

1 If G is infinite abelian, then L(G ) ∼= L∞(Ĝ ,Haar) ∼= L∞([0, 1], Leb).

2 L(G ) is a II1 factor ⇔ G is icc: |{hgh−1 | h ∈ G}| =∞, ∀g 6= e.

Convention. In the rest of the talk, all groups are icc countable discrete.
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Classification of group von Neumann algebras

Murray-von Neumann, 1936-43

1 ∃! approximately finite dimensional II1 factor, R = ⊗n∈NM2(C)
WOT

.

2 L(G ) ∼= R, ∀ G icc locally finite, for instance G = S∞ = ∪n∈NSn.

3 L(F2) 6∼= R, where F2 is the free group on two generators.

Definition. A group G is amenable if its regular rep. has almost invariant
vectors: ∃ unit vectors (ξn) ⊂ `2G such that ‖ugξn − ξn‖2 → 0,∀g ∈ G .

Connes, 1975

L(G ) ∼= R, ∀ G icc amenable. Any amenable II1 factor is isomorphic to R.

Absence of rigidity: vN algebras forget any properties of amenable groups.

The rest of the talk: rigidity for vN algebras of nonamenable groups.
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Property (T) group von Neumann algebras, I

Definition. A group G has Kazhdan’s property (T) if any unitary rep. of
G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., SLn(Z), n ≥ 3.
2) Random groups: Gromov density model 1

3 < d < 1
2 (also hyperbolic).

3) Aut(Fk) (Novak-Kaluba-Ozawa k = 5 ; Novak-Kaluba-Kielak k > 5).

Connes (1980) If G is icc property (T), then the outer automorphism
group Out(L(G )) and fundamental group F(L(G )) are countable.

Connes’ rigidity conjecture, 1980

If G ,H are icc property (T) groups such that L(G ) ∼= L(H), then G ∼= H.

Connes-Jones (1983) Property (T) is an invariant of L(G ).

Cowling-Haagerup (1988) If G < Sp(1, n) and H < Sp(1,m) are
lattices and n 6= m, then L(G ) 6∼= L(H).

Ozawa (2002) ∃ uncountably many noniso. prop. (T) group factors.

Popa (2006) G 7→ L(G ) is countable-to-1 for icc prop. (T) groups.
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Property (T) group von Neumann algebras, II

Problem (Connes, 1994) Compute F(L(G )), for icc property (T) groups G .

Conjecture (Jones, 2000) Show that Out(L(G )) ∼= Char(G ) o Out(G ), for
icc property (T) groups G .

Popa’s strengthening of Connes’ rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group.
Let θ : L(G )t → L(H) be ∗-isomorphism, for some t > 0.

Then t = 1 and ∃ a group isomorphism δ : G → H and character
η : G → T such that (up to unitary conjugacy) θ(ug ) = η(g)uδ(g),∀g ∈ G .

In particular, G is W∗-superrigid: if L(G ) ∼= L(H), for any H, then G ∼= H,
Out(L(G )) ∼= Char(G ) o Out(G ) and F(L(G )) = {1}.
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Deformation/rigidity theory

Popa’s deformation/rigidity theory has led to remarkable advances in the
classification of group factors and calculation of invariants.

Popa (2001) F(L(Z2 o SL2(Z)) = {1}.
Popa (2004) If G ,H icc property (T), L(Z oG ) ∼= L(Z oH)⇒ G ∼= H.
Here, A o B = (

⊕
b∈B A) o B is the wreath-product of A and B.

I-Peterson-Popa (2005) ∃ II1 factors M with Out(M) = {e}.
Popa-Vaes (2006) icc G with Out(L(G )) ∼= Char(G ) o Out(G ).

I-Popa-Vaes (2010) examples of W∗-superrigid icc groups G .

Remark. These results do not apply to property (T) group factors.
This is because deformation/rigidity applies to II1 factors which admit
deformations, whose presence is typically incompatible with property (T).

Chifan-Das-Houdayer-Khan (2020) examples of icc property (T) groups
G such that F(L(G )) = {1}.
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Wreath-like product groups, I

Definition

A group G is a wreath-like product of two groups A and B,
in symbols G ∈ WR(A,B),

if there is a short exact sequence

{e} →
⊕

b∈B A→ G
ε−→ B → {e}

such that gAbg
−1 = Aε(g)b, with Ab the b-labelled copy of A in

⊕
b∈B A.

Example. A o B = (
⊕

b∈B A) o B ∈ WR(A,B).

Definition. H < G is a Cohen-Lyndon subgroup if 〈〈H〉〉 = ∗t∈T tHt−1,
with T a left transversal for the normal subgrp 〈〈H〉〉C G generated by H.
Examples (1) H < H ∗ K (Proof. 〈〈H〉〉 = ∗k∈KkHk−1.)
(2) (Cohen-Lyndon, 1963) any maximal cyclic subgrp H = Z < G = Fn.

Proposition Let S = 〈[tHt−1, t ′Ht ′−1] | t, t ′ ∈ T , t 6= t ′〉, for a C-L
subgroup H < G . Then S < 〈〈H〉〉, S C G and G/S ∈ WR(H,G/〈〈H〉〉).
Proof. We have 〈〈H〉〉/S ∼=

⊕
t∈T tHt−1 ∼=

⊕
G/〈〈H〉〉H and

a short exact sequence {e} → 〈〈H〉〉/S → G/S → G/〈〈H〉〉 → {e}.
Remark. When G = H ∗ K , we have G/〈〈H〉〉 = K and G/S = H o K .
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Definition. H < G is a Cohen-Lyndon subgroup if 〈〈H〉〉 = ∗t∈T tHt−1,
with T a left transversal for the normal subgrp 〈〈H〉〉C G generated by H.
Examples (1) H < H ∗ K (Proof. 〈〈H〉〉 = ∗k∈KkHk−1.)
(2) (Cohen-Lyndon, 1963) any maximal cyclic subgrp H = Z < G = Fn.

Proposition Let S = 〈[tHt−1, t ′Ht ′−1] | t, t ′ ∈ T , t 6= t ′〉, for a C-L
subgroup H < G . Then S < 〈〈H〉〉, S C G and G/S ∈ WR(H,G/〈〈H〉〉).
Proof. We have 〈〈H〉〉/S ∼=

⊕
t∈T tHt−1 ∼=

⊕
G/〈〈H〉〉H and

a short exact sequence {e} → 〈〈H〉〉/S → G/S → G/〈〈H〉〉 → {e}.

Remark. When G = H ∗ K , we have G/〈〈H〉〉 = K and G/S = H o K .
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⊕
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Wreath-like product groups, II

Theorem (Dahmani-Guirardel-Osin 2011, Sun 2020) If G is hyperbolic
relative to H, then ∃F ⊂ H finite s.t. ∀N C H with N ∩ F = ∅ we have:

〈〈N〉〉 = ∗t∈T tNt−1, where T is a left transversal for H〈〈N〉〉 < G , and
G/〈〈N〉〉 is hyperbolic relative to H/N.

Using this theorem, we prove:

Theorem A (Chifan-I-Osin-Sun, 2021)

Let K be an icc hyperbolic group. Then for any finitely generated group A,
∃ a quotient G of K such that G ∈ WR(A,B), for B icc hyperbolic.
Moreover, if K has property (T), then so does G ∈ WR(A,B).

Remarks:
1 This is surprising because wreath products A o B never have (T).
2 If A is abelian, L(A(B)) ∼= L∞(ÂB) and L(G ) ∼= L∞(ÂB) oσ,c B, with

B yσ ÂB Bernoulli & c ∈ Z2(σ,T). It follows H2(σ,T) 6= H2(Γ,T),
answering a question of Popa (recovering a result of Jiang, 2015).

3 The case A = F2 allows us to prove that every separable II1 factor
embeds into one with property (T). (Chifan-Drimbe-I, 2022).
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Connes’ rigidity conjecture for wreath-like products

Theorem B (Chifan-I-Osin-Sun, 2021)

Let G ∈ WR(A,B) and H ∈ WR(C ,D) be property (T) groups,

where A,C are nontrivial abelian or icc and B,D are icc hyperbolic.

Let θ : L(G )t → L(H) be ∗-isomorphism, for any t > 0.

Then t = 1 and ∃ a group isomorphism δ : G → H and character
η : G → T such that (up to unitary conjugacy) θ(ug ) = η(g)uδ(g),∀g ∈ G .

In particular, Out(L(G )) ∼= Char(G ) o Out(G ) and F(L(G )) = {1}.

Additionally, we can take G with no characters and prescribed Out:

Corollary C (CIOS, 2021)

∀ f.p. group Q, ∃ a continuum of icc property (T) groups {Gi}i∈I s.t.

1 L(Gi ) 6∼= L(Gj), ∀i 6= j .

2 Out(L(Gi )) ∼= Q and F(L(Gi )) = {1}, ∀i ∈ I .

These are the first calculations of Out(L(G )), for icc property (T) G .
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W∗-superrigid groups with property (T)

Connes’ rigidity conjecture (1980) Any icc property (T) group G is
W∗-superrigid: if L(G ) ∼= L(H), for any group H, then G ∼= H.

I-Popa-Vaes 2010, Berbec-Vaes 2012, Chifan-I 2017, and
Chifan-DiazArias-Drimbe 2021: W∗-superrigid grps without prop. (T)
(generalized wreath products and amalgamated free products).

Theorem D (Chifan-I-Osin-Sun, 2021)

Let G ∈ WR(A,B) be a property (T) group, where A is nontrivial abelian
and B is icc hyperbolic.Then G is W∗-superrigid.

Corollary E (CIOS, 2021)

Let G be an icc hyperbolic property (T) group and g ∈ G be an element of
infinite order. Then ∃d ∈ N such that ∀k ∈ N divisible by d , the quotient
group G/[〈〈gk〉〉, 〈〈gk〉〉] is a W∗-superrigid icc group with property (T).

These are the first examples of W∗-superrigid groups with property (T).

CIOS, 2022: uncountably many W∗-superrigid property (T) groups.
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Property (T) group factors with trivial Out

Let G ∈ WR(A,B) with property (T) and Char(G ) = {1}, where A 6= {1}
is abelian, B is icc hyperbolic and Out(B) = {e}.

Then Out(L(G )) = {e}.
Sketch of proof. Let θ be an automorphism of L(G ).
Identifying L(A(B)) ⊂ L(G ) with L∞(ÂB) ⊂ L∞(ÂB) oσ,c B, we have
(i) L(A(B)) ⊂ L(G ) is a Cartan subalgebra and its equivalence relation is
the orbit equivalence relation of the Bernoulli action B yσ ÂB .
(ii) The conjugation action G yα L(A(B)) = L∞(ÂB) given by
αg = Ad(ug ) is a generalized Bernoulli action.

As B is hyperbolic, L(A(B)) is the unique Cartan subalgebra of L(G )
(Popa-Vaes, 2012). We may assume that θ(L(A(B)) = L(A(B)).
Therefore, θ induces an automorphism of R(B y ÂB).
Since B is icc property (T), B y ÂB is OE superrigid (Popa, 2005).
Since Out(B) = {e}, we get that θ(ug ) ∈ L(A(B))ug , ∀g ∈ G .
Let θ(ug ) = wgug . Then (wg )g∈G ⊂ U(L(A(B)) is a 1-cocycle for α.
Since G has property (T), α is cocycle superrigid (Popa, 2005).
As Char(G ) = {1}, it follows that ug = uσg (u)∗, ∀g ∈ G .
Hence θ = Ad(u) is an inner automorphism.
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(ii) The conjugation action G yα L(A(B)) = L∞(ÂB) given by
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(i) L(A(B)) ⊂ L(G ) is a Cartan subalgebra and its equivalence relation is
the orbit equivalence relation of the Bernoulli action B yσ ÂB .
(ii) The conjugation action G yα L(A(B)) = L∞(ÂB) given by
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Since B is icc property (T), B y ÂB is OE superrigid (Popa, 2005).
Since Out(B) = {e}, we get that θ(ug ) ∈ L(A(B))ug , ∀g ∈ G .
Let θ(ug ) = wgug . Then (wg )g∈G ⊂ U(L(A(B)) is a 1-cocycle for α.
Since G has property (T), α is cocycle superrigid (Popa, 2005).
As Char(G ) = {1}, it follows that ug = uσg (u)∗, ∀g ∈ G .
Hence θ = Ad(u) is an inner automorphism.

89 / 90


