Nadia S. Larsen University of Oslo

Hecke C*-algebras of right-angled Coxeter groups

Nadia S. Larsen University of Oslo

joint work with M. Caspers and M. Klisse

ICM satellite meeting University of Copenhagen 1-4 July 2022

Nadia S. Larsen University of Oslo

Main notions - an overview

- Graph product *_{ν∈V}(A_ν, φ_ν) of a family of unital C*-algebras A_ν endowed with GNS faithful states, with V set of vertices in a simplicial graph. Interpolates between free and direct products.
- Coxeter system (W, S), a group W with generating set S and relations including $s^2 = e$ for every s in S.
- Multi-parameter q = (q_s)_{s∈S} ∈ ℝ^(W,S)_{>0} with q_s in ℝ_{>0} having value independent of conjugacy class in W.
- Hecke C*-algebra C^{*}_{r,q}(W) of (W, S) and q. A kind of deformation of C^{*}_r(W) with a canonical tracial state τ_q.
- Special class of (*W*, *S*), the *right-angled* ones, with relations given by commutation among tuples in subsets of *S*.

More formal definitions to be presented afterwards.

Nadia S. Larsen University of Oslo

A Khintchine type inequality for graph products

Theorem (M. Caspers, M. Klisse and NSL (2021))

Given a graph product $*_{\nu,\Gamma}(A_{\nu}, \varphi_{\nu})$ over a finite simplicial graph Γ , let $\chi_n : A \to A$ denote the projection onto the space of operators of length n in A, with $n \ge 1$. Then for every $n \ge 1$ there are an operator space X_n and maps

$$j_n: \chi_n(A) \to X_n, \ \pi_n: \operatorname{dom}(\pi_n) \subset X_n \to \chi_n(A),$$

so that $\pi_n \circ j_n$ is the identity on $\chi_n(A)$ and π_n is completely bounded with

$$\|\pi_n\|_{cb} \leq Cn,$$

where C is a constant depending on Γ .

Here length is in relation to "words" $v_1v_2\cdots v_n$ formed by concatenation, where $v_i \in V\Gamma$. Furthermore, the space X_n is a Haagerup tensor product of column and row spaces.

Nadia S. Larsen University of Oslo

A Haagerup type inequality for R-A (W, S)

Theorem (M. Caspers, M. Klisse and NSL (2021))

Suppose that (W, S) is a right-angled Coxeter system with finite S. Let $q = (q_s)_{s \in S} \in \mathbb{R}_{>0}^{(W,S)}$ be a multi-parameter, let $C_{r,q}^*(W)$ be the associated reduced Hecke C*-algebra acting on $\ell^2(W)$ with o.n.b. $(\delta_w)_{w \in W}$. Then for every $n \ge 1$ and $x \in \chi_n(C_{r,q}^*(W))$, we have that

 $\|\chi_n(x)\| \leq C'n\|x\delta_e\|_2,$

where the constant C' depends on the multi-parameter q and on the graph Γ with vertex set S and edges prescribed by the group relations.

Here length is in relation to expressions of the form $w = s_1 s_2 \cdots s_n$ for $w \in W$, $s_i \in S$.

Nadia S. Larsen University of Oslo

Simplicity of reduced Hecke C^* -algebras

Theorem (M. Caspers, M. Klisse and NSL (2021)) Suppose that (W, S) is an irreducible right-angled Coxeter system with $3 \le |S| < \infty$. Let $q = (q_s)_{s \in S} \in \mathbb{R}_{>0}^{(W,S)}$ be a multi-parameter and let $C^*_{r,q}(W)$ be the associated reduced

Hecke C^* -algebra acting on $\ell^2(W)$. Then there exists an open neighbourhood U of $1 \in \mathbb{R}^{(W,S)}_{>0}$ such that for all $q \in U$ we have that $C^*_{r,q}(W)$ is simple. Furthermore, $C^*_{r,q}(W)$ has unique tracial state.

The single-parameter case $q_s = 1$ for all s in S leads to $C_r^*(W)$, and the conclusion is known, P. de la Harpe (2007).

For the spherical and affine type (W, S), there is always a character on $C^*_{r,q}(W)$.

Nadia S. Larsen University of Oslo

Motivational earlier work

Theorem (L. Garncarek (2016))

Let (W, S) be an irreducible right-angled Coxeter system with $|S| \ge 3$ and let $q_s = q$ in $\mathbb{R}_{>0}$ for all s. Then the single parameter Hecke-von Neumann algebra $\mathcal{N}_q(W)$ is a factor if and only if $q \in [\rho, \rho^{-1}]$ where ρ is the radius of convergence of the growth series $\sum_{w \in W} z^{|w|}$ of W.

Nadia S. Larsen University of Oslo

Motivational earlier work

For a Coxeter group W with generating set S, let W_s be the subgroup determined by $s^2 = e$, so $W_s \cong \mathbb{Z}_2$.

Theorem (M. Caspers (2020))

Given a right-angled Coxeter system (W, S) with graph Γ , i.e. $V\Gamma = S$ and edges encode possible commutation of pairs of generators, let $q = (q_s)_{s \in S} \in \mathbb{R}_{>0}^{(W,S)}$ be a multi-parameter, let $C^*_{r,q_s}(W_s)$ be the reduced Hecke C*-algebra with its canonical faithful trace τ_{q_s} for all $s \in S$. Then

$$(C^*_{r,q}(W), \tau_q) \cong *_{s,\Gamma} (C^*_{r,q_s}(W_s), \tau_{q_s}).$$

More precisely, if $w = s_1 \cdots s_n$ is reduced, $w \in W$, the isomorphism is implemented on generators $T_w^{(q)}$ and $T_s^{(q_s)}$

$$T_w^{(q)}\mapsto T_{s_1}^{(q_{s_1})}\cdots T_{s_n}^{(q_{s_n})}.$$

Nadia S. Larsen University of Oslo

Ensuing refinement and strengthening (I)

Theorem (S. Raum and A. Skalski (2021))

Let (W, S) be an irreducible right-angled Coxeter system with $3 \leq |S| < \infty$ and $q = (q_s)_{s \in S} \in \mathbb{R}^{(W,S)}_{>0}$ a multi-parameter with $q_s \leq 1$ for all $s \in S$. Then the Hecke-von Neumann algebra $\mathcal{N}_q(W)$ satisfies

$$\mathcal{N}_q(W)\cong\mathcal{M}\oplus\bigoplus_P\mathbb{C},$$

where \mathcal{M} is a factor and the summands are indexed over one-dim. central projections.

This extends Garncarek's and Caspers-Klisse-L factoriality to all multi-parameters.

Nadia S. Larsen University of Oslo Ensuing refinement and strengthening (II)

A complete characterisation of simplicity in the right-angled case:

Theorem (M. Klisse (2021))

Given an irreducible right-angled Coxeter system (W, S) and any multi-parameter q, the Hecke C^* -algebra $C^*_{r,q}(W)$ is simple precisely when q lies outside the closure of a set R(W, S) of parameters associated to the region of convergence of the multivariate growth series $\sum_{w \in W} z_w$ of W.

Note: The methods are inspired by *M. Kalantar and M. Kennedy's* boundary theory and differ from [CKL].

Nadia S. Larsen University of Oslo

Preliminaries on graphs

Simplicial graph Γ:

- vertex set VΓ,
- edge set EΓ,

 $\bullet\,$ undirected, no double edges, no loops at a vertex.

A word \boldsymbol{v} on $\boldsymbol{\Gamma}$ is a concatenation

$$\mathbf{v}=v_1v_2\cdots v_n, v_i\in V\Gamma,$$

with $v \in V\Gamma$ regarded as *letters*.

Nadia S. Larsen University of Oslo

Simplicial graphs: words

Given $\Gamma = (V\Gamma, E\Gamma)$ simplicial graph, two words **w** and **w**' are *equivalent* if they are in the same equivalence class w.r.t

• shuffle of letters

 $v_1 \cdots v_{i-1} v_i v_{i+1} v_{i+2} \cdots v_n \sim v_1 \cdots v_{i-1} v_{i+1} v_i v_{i+2} \cdots v_n$ whenever $(v_i, v_{i+1}) \in E\Gamma$,

absorbtion of letters

$$v_1 \cdots v_i v_{i+1} v_{i+2} \cdots v_n \sim v_1 \cdots v_i v_{i+2} \cdots v_n$$
 if $v_i = v_{i+1}$.

Say $\mathbf{v} = v_1 \cdots v_n$ is *reduced* if $v_i = v_j$ for i < j implies

$$\exists i < k < j : (v_i, v_k), (v_j, v_k) \notin E\Gamma.$$

The *length* of a reduced word is the smallest number of letters in a representative, up to equivalence.

Nadia S. Larsen University of Oslo

Graph products of groups

E. Green (1990). Setup consists of

- Simplicial graph: Γ, with vertex set VΓ and edge set EΓ, undirected, no double edges, no loops at a vertex.
- Group G_v for every $v \in V\Gamma$.

The graph product of $\{G_v\}_{v \in V\Gamma}$ is a group $*_{v \in V\Gamma} G_v$ built from the free product of the G_v 's by adding new relations

 $g_v g_w = g_w g_v$, if v and w share an edge.

Nadia S. Larsen University of Oslo

Graph products of C^* -algebras

- M. Caspers and P. Fima (2017). Setup consists of
 - Simplicial graph $\Gamma = (V\Gamma, E\Gamma)$.
 - Unital C*-algebra $\{A_v, \varphi_v\}$ endowed with a GNS-faithful state φ_v for each $v \in V\Gamma$.

The graph product $(A, \varphi) = *_{\nu,\Gamma}(A_{\nu}, \varphi_{\nu})$ is given by a C^* -algebra A, unique up to isomorphism, with a GNS faithful state φ s.t.

- **1** There are unital inclusions $A_v \subseteq A$ for all v so that $\bigcup_v A_v$ generates A and elements of A_v commute with those of A_w whenever v, w share an edge;
- **2** $\varphi|_{\mathcal{A}_{v}} = \varphi_{v}$, for all $v \in V\Gamma$ and
- 3 if $\mathbf{v} = v_1 \cdots v_n$ is reduced and $\varphi_{v_j}(a_j) = \text{for } j = 1, \dots, n$, then $\varphi(a_{v_1} \cdots a_{v_n}) = 0$.

Generalises free products of C^* -algebras, e.g. in the foundation of free probability of *D.-V. Voiculescu*.

Nadia S. Larsen University of Oslo Graph products - alternative picture

Idea: use Hilbert space representations accounting for shuffle equivalence, namely

 $v_1 \cdots v_{i-1} v_i v_{i+1} v_{i+2} \cdots v_n \sim v_1 \cdots v_{i-1} v_{i+1} v_i v_{i+2} \cdots v_n$

whenever $(v_i, v_{i+1}) \in E\Gamma$. Useful observation: for reduced words, equivalence is determined by shuffle equivalence.

Nadia S. Larsen University of Oslo

Graph products - alternative picture

Given Γ finite simplicial graph and $(A_v, \varphi)_{v \in V\Gamma}$ unital C^* -algebras with corresponding faithful GNS states, let $\Omega_v \in L^2(A_v, \varphi_v)$ (or $L^2(A_v)$) be the unit of A_v , let

$$A_{\mathbf{v}}^{\circ} := \{ \mathbf{a} \in A_{\mathbf{v}} \mid \varphi_{\mathbf{v}}(\mathbf{a}) = \mathbf{0} \},$$

let $L^2(A_v^{\circ}, \varphi_v)$ (or $L^2(A_v^{\circ})$) be the closure of A_v° in the GNS-space $L^2(A_v)$, for each $v \in V\Gamma$.

For $\mathbf{v} = v_1 \cdots v_n$ reduced, set

$$\mathcal{H}_{\mathbf{v}} = L^2(A_{v_1}^\circ) \otimes \cdots \otimes L^2(A_{v_n}^\circ).$$

It follows that $\mathcal{H}_{\mathbf{v}} \simeq \mathcal{H}_{\mathbf{w}}$ whenever reduced words \mathbf{v}, \mathbf{w} are (shuffle) equivalent. Then the graph product is (up to isom.) determined by representing $x \in A_v$ on $\mathcal{H} = \bigoplus_{[\mathbf{v}]} \mathcal{H}_{\mathbf{v}}$.

Nadia S. Larsen University of Oslo

Graph products: alternative picture

Let $\mathbf{w} = w_1 \cdots w_d$ be reduced of length d. If $v \in V\Gamma$ is not an initial letter in \mathbf{w} , the action of $x \in A_v$ on $\xi_1 \otimes \cdots \otimes \xi_d \in \mathcal{H}_w$ is (faithfully) represented by

$$x^{\circ}\Omega_{\nu}\otimes\xi_{1}\otimes\cdots\otimes\xi_{d}+\varphi_{\nu}(x)\xi_{1}\otimes\cdots\otimes\xi_{d},$$

with $x^{\circ} = x - \varphi_v(x)$. If v is an initial letter of w, may assume $w_1 = v$ and set $x \cdot (\xi_1 \otimes \cdots \otimes \xi_d)$ to be

 $(x\xi_1 - \langle x\xi_1, \Omega_v \rangle \Omega_v) \otimes \xi_2 \otimes \cdots \otimes \xi_d + \langle x\xi_1, \Omega_v \rangle \xi_2 \otimes \cdots \otimes \xi_d.$

The reduced graph product $(A, \varphi) := *_{\nu,\Gamma}(A_{\nu}, \varphi_{\nu})$ is the C^* -algebra generated by $A_{\nu}, \nu \in V\Gamma$ acting on \mathcal{H} , with (faithful) state $\varphi(x) := \langle x\Omega, \Omega \rangle$. Here Ω is a vacuum state so that $\mathcal{H}_{\emptyset} := \mathbb{C}\Omega$. Next, define operators of finite length.

Nadia S. Larsen University of Oslo

Operators of fixed finite length

Let $(A, \varphi) := *_{v,\Gamma}(A_v, \varphi_v)$ be a graph product C^* -algebra represented faithfully on $\mathcal{H} = \bigoplus_{[\mathbf{v}]} \mathcal{H}_{\mathbf{v}}$. An operator of length nin A is given by $a_1 \cdots a_n$ with $a_i \in A_{v_i}^\circ$ and $\mathbf{v} = v_1 \cdots v_n$ reduced.

For $v \in V\Gamma$, let P_v be the orthogonal projection of \mathcal{H} onto $\oplus_{[\mathbf{v}] \in I_v} \mathcal{H}_{\mathbf{v}}$, where I_v are representatives of all words that start with v up to shuffle equivalence. For $n \in \mathbb{N}_{\geq 0}$, let

$$\chi_n: A \to A, \ a_1 \cdots a_r \mapsto \delta_{r,n} a_1 \cdots a_r, \tag{1}$$

where $a_1 \cdots a_r$ is reduced. Thus, χ_n is the word length projection of length n.

Nadia S. Larsen University of Oslo

About the proof of the Khintchine inequality

• Identify reduced words admitting a permutation

$$(v_{\sigma(1)}\cdots v_{\sigma(k)})(v_{\sigma(k+1)}\cdots v_{\sigma(k+l)})(v_{\sigma(k+l+1)}\cdots v_{\sigma(n)})$$

with first bracket ending in a clique $V\Gamma_1$, then a clique $V\Gamma_0$ of length *I* in the middle, and lastly starting at a clique $V\Gamma_2$.

- Mirror this for an operator a₁ · · · a_n in reduced form as a direct sum of creation-diagonal-annihilation. Set
 C_i = P<sub>v_{σ(i)} a_{σ(i)}P[⊥]<sub>v_{σ(i)}, let D_i = P<sub>v_{σ(i)} a_{σ(i)}P_{v_{σ(i)}} and
 A_i = P[⊥]<sub>v_{σ(i)} a_{σ(i)}P<sub>v_{σ(i)}.

 </sub></sub></sub></sub></sub>
- So, identify a₁ ··· a_n in reduced form for which the corresp. v₁ ··· v_n decomposes with

 $\bigoplus_{l=0}^{n}\bigoplus_{k=0}^{n-l}\bigoplus_{\Gamma_{0}}\bigoplus_{(\Gamma_{1},\Gamma_{2})}(C_{1}\cdots C_{k})(D_{k+1}\cdots D_{k+l})(A_{k+l+1}\cdots A_{n})$

This generalises Ricard-Xu's method to the graph product.

Nadia S. Larsen University of Oslo

About the proof of the Khintchine inequality

• Use the free product $*_{v}(A_{v}, \varphi_{v})$ to define X_{n} as

$$\bigoplus_{l=0}^{n} \bigoplus_{k=0}^{n-l} \bigoplus_{\Gamma_0 \in Cliq(\Gamma,l)} \bigoplus_{(\Gamma_1,\Gamma_2) \in Comm(\Gamma_0)} L_k \otimes_h A_{\Gamma_0} \otimes_h K_{n-k-l}.$$

where L_* is a column space, K_* a row space, and A_{Γ_0} diagonal.

• Construct π_n by interpolating between $*_{v,\Gamma}A_v$ and $*_vA_v$.

groups Nadia S.

Larsen University of Oslo

Coxeter groups

A Coxeter system (W, S) consists of a group W freely generated by a set S with relations

$$(st)^{m_{s,t}} = e$$

for exponents $m_{s,t} \in \{1,2,\ldots,\infty\}$ so that:

- $m_{s,s} = 1$ for all $s \in S$;
- $m_{s,t} \geq 2$ for all $s \neq t$, and

•
$$m_{s,t} = m_{t,s}$$
 for all $s, t \in S$.

If $m_{s,t} = \infty$, no relation is imposed on s and t. The system (W, S) is

1 right-angled if $m_{s,t} \in \{2,\infty\}$ for all distinct $s, t \in S$;

② irreducible if W is not isomorphic to a direct product of special subgroups W_T for T ⊂ S.

Nadia S. Larsen University of Oslo

Words and multi-parameter expressions

Fix a Coxeter system (W, S). For **w** in W, an expression $\mathbf{w} = s_1 s_2 \cdots s_n$ with $s_i \in S$ is *reduced* if $n \leq m$ for any expression of **w** as a product of *m* generators. Set $|\mathbf{w}| := n$ as the word-length of **w** and write $\mathbf{w} =_r s_1 s_2 \cdots s_n$. A concatenation $s\mathbf{w}$ can lead to $|s\mathbf{w}| = |\mathbf{w}| - 1$, if *s* is *exchanged* for some s_i appearing in **w** (in general, exchange, deletion and folding are equivalent "operations" on expressions for elements in W). Else $|s\mathbf{w}| = |\mathbf{w}| + 1$. Write $s \sim t$ if *s*, *t* are conjugate in W. Employ the notation:

 $q:=(q_s)_{s\in S}\in A^{(W,S)}$ if $q_s\in A$ and $q_s=q_t$ for $s\sim t.$

Relevant choices for A are \mathbb{R} , \mathbb{C} or $\{-1,1\}$. Given $\mathbf{w} =_r s_1 s_2 \cdots s_n$, put

$$q_{\mathbf{w}} := q_{s_1} \cdots q_{s_n}.$$

Aim: associate a *-algebra $\mathbb{C}_q[W]$ and C^* -completions.

Nadia S. Larsen University of Oslo

Operator algebras associated with (W, S)

A (possibly incomplete) list:

- Hecke-von Neumann algebras and L²-cohomology, J. Dymara (2006), M. Davis, J. Dymara, T. Januskiewicz, B. Okun (2008)
- Hecke-von Neumann algebras for a single parameter $(q = q_s \text{ for } s \in S)$ and factoriality in the right-angled, irreducible case, *L. Garncarek*.
- Recovers in special cases results of *K. Dykema* (1993) on factoriality of interpolated free products.
- The Hecke C*-algebra completion of C_q[W] inside B(ℓ²(W)) and absence of Cartan subalgebras in the right-angled, irreducible case, M. Caspers (2020).

Nadia S. Larsen University of Oslo

The Hecke *-algebra of (W, S) with a parameter

Definition (Cf. e.g. Davis, Garncarek) Given $q := (q_s)_{s \in S} \in \mathbb{R}^{(W,S)}$, let

$$p_s(q) := q_s^{-rac{1}{2}}(q_s-1), s \in S,$$

and define $\mathbb{C}_q[W]$ as the *-algebra spanned by $\{T_{\bm{w}} \mid \bm{w} \in W\}$ with relations

$$T_{s}^{(q)}T_{w}^{(q)} = \begin{cases} T_{sw}^{(q)} & \text{if } |sw| > |w|, \\ T_{sw}^{(q)} + p_{s}(q)T_{w}^{(q)} & \text{if } |sw| < |w|, \end{cases}$$

and adjoint

$$\left(T_{\mathbf{w}}^{(q)}\right)^* = T_{\mathbf{w}^{-1}}^{(q)}.$$

Nadia S. Larsen University of Oslo

Representation on Hilbert space

Represent $\mathbb{C}_q[W]$ on $\ell^2(W)$ (with canonical o.n.b. $(\delta_{\mathbf{w}})_{\mathbf{w}\in W}$) by setting, for $s \in S$,

$$\mathcal{T}_{s}^{(q)}\delta_{\mathbf{w}} := egin{cases} \delta_{s\mathbf{w}} & ext{if } |s\mathbf{w}| > |\mathbf{w}| \ \delta_{s\mathbf{w}} + p_{s}(q)\delta_{\mathbf{w}} & ext{if } |s\mathbf{w}| < |\mathbf{w}| \end{cases}$$

This action extends to a faithful *-representation $\mathbb{C}_q[W] \to B(\ell^2(W)).$

Definition

The reduced Hecke C^{*}-algebra C^{*}_{r,q}(W) associated with (W, S) and $q = (q_s)_{s \in S} \in \mathbb{R}^{(W,S)}$ is the norm closure of $\mathbb{C}_q[W]$ in $B(\ell^2(W))$.

Nadia S. Larsen University of Oslo

For a Coxeter system (W, S), define a graph Γ by $V\Gamma := S$ and declaring (s, t) an edge, for $s, t \in S$, when $m_{s,t} = 2$. Let W_s denote the special subgroup $W_{\{s\}}$ with relation $s^2 = 1$. Then

$$W \cong *_{s,\Gamma} W_s = *_{s,\Gamma} \mathbb{Z}_2.$$

Recall (M. Caspers) that

$$(C^*_{r,q}(W), \tau_q) \cong *_{s,\Gamma} (C^*_{r,q_s}(W_s), \tau_{q_s}).$$

Nadia S. Larsen University of Oslo

About the proof of the Haagerup inequality

In the right-angled case for (W, S), we have that A_{Γ_0} is one-dimensional and

$$X_n = \bigoplus_{l=0}^n \bigoplus_{k=0}^{n-l} \bigoplus_{\Gamma_0 \in Cliq(\Gamma,l)} \bigoplus_{(\Gamma_1,\Gamma_2) \in Comm(\Gamma_0)} M_{k,n-k-l}(\mathbb{C}).$$

Apply the Khintchine inequality to $*_{s,\Gamma}(C^*_{r,q_s}(W_s), \tau_{q_s})$, and show that j_n extends to a bounded map

$$L^2(\chi_n(C^*_{r,q}(W)), \tau_q) \to L^2(X_n, \operatorname{Tr})$$

and estimate using $Tr = Tr_{n-k-l}$.

Nadia S. Larsen University of Oslo

Simplicity and unique trace property

Employ the Haagerup inequality in the context of $C^*_{r,q}(W)$, in connection with an adaptation of Powers's technique by using a deformed averaging operator depending on q, which builds upon Ching's variant of Pukanszky's 14ε -inequality.

THANK YOU!