From local to global lifting ?

Gilles Pisier Texas A&M University and Sorbonne Université

Operator algebras, dynamics and groups ICM Satellite Conference Copenhagen, July 1-4 2022

.

Let me start by setting the stage by defining the **lifting problems** we wish to discuss:

Let C a C*-algebra. Let C/\mathcal{I} be a quotient C*-algebra. Let A be another C*-algebra.

LIFTING

Local Lifting Problem :

Discussion: contractions, positive contractions, global case open vNa: $C^{**} = \mathcal{I}^{**} \oplus (C/\mathcal{I})^{**}$

Let A be a unital C^* -algebra.

Definition

A (separable) has the lifting property (LP in short) if $\forall C/\mathcal{I}$, $\forall u : A \to C/\mathcal{I}$ u.c.p. $\exists \hat{u} : A \to C$ u.c.p. lifting u

C (There is also a non-separable variant)

Definition

A has the local lifting property (LLP in short) if $\forall C/\mathcal{I}$ $\forall u : A \to C/\mathcal{I}$ u.c.p. *u* is **locally liftable** i.e. $\forall E \subset A$ f.d. op. sys. $u_{|E} : E \to C/\mathcal{I}$ admits a u.c.p. lifting $u^E : E \to C$.

In the general case, we say A has LP (resp. LLP) if its unitization does **CLASSICAL FACT:** Any separable unital A can be written as $A = C^*(\mathbb{F}_\infty)/\mathcal{I}$ for some ideal \mathcal{I}

Therefore it suffices to consider the lifting problem for

$$\mathcal{C} = \mathcal{C}^*(\mathbb{F}_\infty)$$
 and $\mathit{u} = \mathit{Id}: \mathcal{A} o \mathcal{C}/\mathcal{I}$

Definition (Equivalent definition)

A has the LP if any unital *-homomorphism $u: A \rightarrow C/\mathcal{I}$ is **liftable**,

i.e. admits a u.c.p. lifting $\widehat{u} : A \to C$.

Definition (Equivalent definition)

A has the **LLP** if any unital *-homomorphism $u : A \rightarrow C/\mathcal{I}$ is **locally liftable**,

i.e. for any $E \subset A$ f.d. operator system the restriction $u_{|E} : E \to C/\mathcal{I}$ admits a u.c.p. lifting $u^E : E \to C$.

Examples of C*-algebras with LP

Nuclear C*-algebras (Choi-Effros 1977)
 (Typically: C*(G) for G amenable countable discrete group)

• $C^*(\mathbb{F}_N)$ where \mathbb{F}_N is a free group $(2 \le N \le \infty)$ (Kirchberg, 1994)

Both have the LP

Remark (digression): If $C_{\lambda}(G)$ is QWEP (no counterexample known) then

 $C_{\lambda}(G)$ LLP \Leftrightarrow G amenable

In particular $C_{\lambda}(\mathbb{F}_N)$ fails LLP for $N \geq 2$

Let us say that a discrete group G has LP if $C^*(G)$ does. Note:

```
\{amenable\} \cup \{free \ groups\} \subset \{LP\}
```

 \rightarrow not so easy to find counterexamples !

Open Problem Does $\mathbb{F}_2 \times \mathbb{F}_2$ (or a product of free groups) have the LP or the LLP ?

Counter-examples to LP: Property (T)

Among $C^*(G)$ for G discrete group (reduced case easier) All counterexamples are **Kazhdan property (T) groups** Ozawa (PAMS 2004): $\exists G$ with $C^*(G)$ failing LP Thom (2010) produced an explicit example with $C^*(G)$ failing LLP Ioana, Spaas and Wiersma (2020) showed

Theorem (ISW 2020)

For $G = SL(n, \mathbb{Z})$ for $n \ge 3$ $C^*(G)$ fails LLP.

Still open for general (T) groups

They also showed:

Theorem (ISW 2020)

If G has (T) and is NOT finitely presented then $C^*(G)$ fails LP. Moreover: There are uncountably many such groups

Open Problem (Kirchberg 1993) :

 $LLP \Rightarrow LP$? (in the separable case)

Partial Motivation :

If the Connes embedding problem has a positive ¹ solution then (Kirchberg) the LLP implies the LP

¹A recent paper entitled MIP* = RE posted on arxiv in Jan. 2020 by Ji, Natarajan, Vidick, Wright, and Yuen contains a negative solution \mathbb{A}

Project 1: Produce a similar example failing LP

··· probably quite difficult since it implies a negative solution to the Connes Embedding Problem

Project 2: Produce a similar example satisfying LP

* * *

- A new characterization of the LP involving tensor products
- A reduction of Project 2 to the validity of a simple inequality

Project 1: Produce a similar example failing LP

 \cdots probably quite difficult since it implies a negative solution to the Connes Embedding Problem

Project 2: Produce a similar example satisfying LP

* * *

- A new characterization of the LP involving tensor products
- A reduction of Project 2 to the validity of a simple inequality

Project 1: Produce a similar example failing LP

 \cdots probably quite difficult since it implies a negative solution to the Connes Embedding Problem

Project 2: Produce a similar example satisfying LP

* * *

- A new characterization of the LP involving tensor products
- A reduction of Project 2 to the validity of a simple inequality

Project 1: Produce a similar example failing LP

 \cdots probably quite difficult since it implies a negative solution to the Connes Embedding Problem

Project 2: Produce a similar example satisfying LP

* * *

- A new characterization of the LP involving tensor products
- A reduction of Project 2 to the validity of a simple inequality

```
Originating in Japan in the late 1950's
Turumaru, then
Takesaki (1958), Guichardet (1965),
Lance (1973)
Choi-Effros (+Connes), Kirchberg (1976-7) Wasserman (1976)
Effros-Lance (1977)
Archbold-Batty (1980) Effros-Haagerup (1985)
Kirchberg (1993) ···
```

Minimal and maximal tensor products

 $A \otimes_{\min} B$ and $A \otimes_{\max} B$

$$A \otimes_{\min} B = (A \otimes_{alg} \widehat{B, \parallel} \parallel_{\min}), \quad A \otimes_{\max} B = (A \otimes_{alg} \widehat{B, \parallel} \parallel_{\max})$$

When $A \subset B(H)$ and $B \subset B(K)$ then $\forall t \in A \otimes_{alg} B$

 $||t||_{\min} = ||t||_{B(H \otimes_2 K)}$ "spatial norm"

 $||t||_{\max} = \sup\{||\pi \cdot \sigma(t)||_{B(\mathcal{H})} | \pi, \sigma \text{ with commuting ranges}\}$ where sup runs over all \mathcal{H} 's and all pairs (π, σ) of *-homomorphisms

In case A or B (or both) is a von Neumann algebra

Effros-Lance 1977: If A is a vNa : $(\forall t \in A \otimes_{alg} B)$

 $||t||_{nor} = \sup\{||\pi \cdot \sigma(t)||_{B(\mathcal{H})} | \pi \text{ normal }, \sigma \text{ with commuting ranges}\}$ If A and B are both vNa :

 $\|t\|_{\text{bin}} = \sup\{\|\pi \cdot \sigma(t)\|_{\mathcal{B}(\mathcal{H})} \mid \pi, \sigma \text{ both normal with commuting ranges}\}$

$$(A^{**} \otimes_{\text{bin}} B^{**}) \subset (A \otimes_{\max} B)^{**}$$
 isometrically

Tensor products of C^{*}-algebras (basic facts)

Let A, C be C^* -algebras for any C^* -norm || || on $A \otimes_{alg} C$

 $\| \|_{\min} \le \| \| \le \| \|_{\max}$

Def: A is nuclear if $A \otimes_{\min} C = A \otimes_{\max} C \quad \forall C$

 $A \otimes_{\max} [C/\mathcal{I}] = [A \otimes_{\max} C]/[A \otimes_{\max} \mathcal{I}]$ "projectivity"

 $\forall B \subset C \qquad A \otimes_{\min} B \subset A \otimes_{\min} C \qquad \text{``injectivity''}$

◆ロト ◆母 ▶ ★ 臣 ▶ ★ 臣 → りへぐ

Tensor products of C*-algebras (Warning !)

Let A, C be C^* -algebras

$A \otimes_{\min} [C/\mathcal{I}] \neq [A \otimes_{\min} C]/[A \otimes_{\min} \mathcal{I}]$

 $\forall B \subset C \qquad A \otimes_{\max} B \not\subset A \otimes_{\max} C$

(□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 少々ぐ

Theorem

Let A be a C*-algebra

A has LLP
$$\, \Leftrightarrow A \otimes_{\mathsf{min}} B(\ell_2) = A \otimes_{\mathsf{max}} B(\ell_2)$$

A has LLP
$$\Leftrightarrow A \otimes_{\min} \mathbb{B} = A \otimes_{\max} \mathbb{B}$$

where

$$\mathbb{B}=(\oplus\sum_{n\geq 1}M_n)_{\infty}.$$

(often denoted $\prod_{n>1} M_n$ in C^{*}-literature)

Stability properties

- LP and LLP are stable under (finite) direct sums (easy)
- LP and LLP are stable under extensions
- LLP stable under (maximal) free products of arbitrary family (P. 1996)
- LP stable under (maximal) free products of any countable family (Boca 1996, easy by Boca 1991) Indeed if A_i (i.e. I) is such that id is liftly below in $C_i = C(\mathbb{F}_i)$
- Indeed, if A_i $(i \in I)$ is such that id_{A_i} is liftable up in $C_i = C(\mathbb{F}_{\infty})$

Boca 1991: u_i u.c.p. $\Rightarrow *_{i \in I} u_i$ u.c.p.

More stability properties

$$id_A: A \xrightarrow{u} C \xrightarrow{v} A$$

If id_A factors through C with decomposable maps u, v then

$$C LP$$
 (resp. LLP) $\Rightarrow A LP$ (resp. LLP)

* * * * * * * * * * * * * * *

LLP stable under closure of union of arbitrary nested family

 $A = \overline{\cup A_i}$

 $A_i \text{ LLP } \forall i \in I \Rightarrow A \text{ LLP}$

(easy using $\mathbb{B} \otimes_{\min} A = \mathbb{B} \otimes_{\max} A$)

 \rightarrow analogue unclear for LP

New Characterization of LP for a separable C^* -algebra A

For any family $(D_i)_{i \in I}$ of C^* -algebras, consider the following property: We have a natural isometric embedding

$$(*) \qquad \qquad \ell_{\infty}(\{D_i\}) \otimes_{\max} A \subset \ell_{\infty}(\{D_i \otimes_{\max} A\}).$$

Equivalently $\ell_{\infty}(\{D_i\}) \otimes_{\max} A$ can be identified with the closure of $\ell_{\infty}(\{D_i\}) \otimes_{alg} A$ in $\ell_{\infty}(\{D_i \otimes_{\max} A\})$.

Main result: $LP \Leftrightarrow (*)$

Remark: Suffices $I = \mathbb{N}$ and $D_i = C^*(\mathbb{F}_{\infty}) \ \forall i \in \mathbb{N}$ (recall A separable) **Remark:** (*) is always true for the min-norm, \Rightarrow case A nuclear **Remark:** (*) in case $A = C^*(\mathbb{F}_{\infty})$ checked by linearization trick

(*)
$$\ell_{\infty}(\{D_i\}) \otimes_{\max} A \subset \ell_{\infty}(\{D_i \otimes_{\max} A\}).$$

Take $\{D_i\} = \{M_n \mid n \ge 1\}$. Then
(*) $\Rightarrow \ell_{\infty}(\{M_n\}) \otimes_{\max} A \subset \ell_{\infty}(\{M_n \otimes_{\max} A\}) = \ell_{\infty}(\{M_n \otimes_{\min} A\})$
and hence

$$\ell_{\infty}(\{M_n\}) \otimes_{\max} A \subset \ell_{\infty}(\{M_n\}) \otimes_{\min} A.$$

equivalently

$$\mathbb{B} \otimes_{\mathsf{max}} A = \mathbb{B} \otimes_{\mathsf{min}} A$$

where

$$\mathbb{B} = \ell_{\infty}(\{M_n\})$$

<ロ> <同> <同> < 回> < 回>

æ

which is Kirchberg's criterion for LLP

Main tool: Maximally bounded maps

Let $E \subset A$ be an operator space (A a C*-algebra) Let D be another C*-algebra. We denote (abusively)

$$D \otimes_{\mathsf{max}} E = \overline{D \otimes_{\mathsf{alg}} E}^{\| \ \|_{\mathsf{max}}} \subset D \otimes_{\mathsf{max}} A$$

Definition $u: E \to C$ is called maximally bounded if for any C*-algebra D $||u||_{mb} := ||Id_D \otimes u: D \otimes_{max} E \to D \otimes_{max} C|| < \infty$

We denote by MB(E, C) the normed space of such u's

Similar definition for maximally positive for E operator system

Theorem

Let $E \subset A$ be an operator subspace, $u : E \to C$

 $\|u\|_{mb} = \inf \|\tilde{u}\|_{dec},$

where the infimum runs over all maps $\tilde{u} : A \to C^{**}$ such that $\tilde{u}_{|E} = i_C u$ (infimum attained), where $i_C : C \to C^{**}$ is canonical inclusion

Based on Kirchberg (unpublished): $||u||_{mb} = ||i_C u||_{dec}$ when E = A

Theorem

The following are equivalent:

- (i) A has the LP
- (ii) (*) $\ell_{\infty}(\{D_i\}) \otimes_{\max} A \subset \ell_{\infty}(\{D_i \otimes_{\max} A\}) \quad \forall (D_i)$
- (iii) ∀E ⊂ A f.d. ∀C MB(E, C**) ⊂ MB(E, C)** contractively
- (iv) $\forall D \quad D^{**} \otimes_{\max} A \subset (D \otimes_{\max} A)^{**}$ isometrically
- (v) $\forall M \ vNa$ $M \otimes_{max} A = M \otimes_{nor} A$ isometrically
- (vi) For any family $(D_i)_{i \in I}$ of C*-algebras and any ultrafilter on I we have a natural isometric embedding

$$[\prod_{i\in I} D_i/\mathcal{U}] \otimes_{\max} A \subset \prod_{i\in I} [D_i \otimes_{\max} A]/\mathcal{U}.$$

 $\begin{array}{ll} \text{Main new point is (ii)} \Rightarrow (\text{iii}) \\ (\text{ii}) & A \text{ satisfies (*) (for any (D_i))} \\ (\text{iii}) & \forall E \subset A \text{ f.d. } \forall C \ MB(E, C^{**}) \subset MB(E, C)^{**} \text{ contractively} \end{array}$

We set $MB(E, C)^* = C^* \otimes_{\alpha} E$ (recall dim $(E) < \infty$) Then (*) implies a property of α that leads to (iii)

Back to Project 2

$$\cdots E_n \xrightarrow{T_n} E_{n+1} \cdots$$

$$\exists A(\{E_n, T_n\})$$

with WEP, LLP and such that $C = C^*(\mathbb{F}_{\infty})$ locally embeds in $A(\{E_n, T_n\} \text{ (and conversely)}.$

Our project 2 asked whether the following algebra has the LP

Theorem (P. Inv 2020)

There is a C^{*}-algebra $A(\{E_n, T_n\})$ which is WEP and LLP such that $C = C^*(\mathbb{F}_{\infty})$ locally embeds in $A(\{E_n, T_n\})$.

Theorem

The following (true or false !) assertions are equivalent

- (i) $A(\{E_n, T_n\})$ has the LP
- (ii) $LLP \Rightarrow LP \quad \forall C^* algebra \quad with WEP$
- (iii) Any faithful representation $j : C \to B(H)$ extends to a contractive morphism

$$\mathit{Id}_{\ell_{\infty}(\mathcal{C})} \otimes j : \ell_{\infty}(\mathcal{C}) \otimes_{\min} \mathcal{C} \to \ell_{\infty}(\mathcal{C}) \otimes_{\max} B(H)$$

• (iv) There is a completely isometric embedding $f : C \to C$ such that the min and max norms coincide on $f(C) \otimes C \subset C \otimes C$.

Tensor Products of *C**-Algebras and Operator Spaces

The Connes–Kirchberg Problem

GILLES PISIER

London Mathematical Society Student Texts **96**

> MATHEMATICAI SOCIETY EST. 1865

Thank you !

CAMBRIDGE