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Simple group C*-algebras

Theorem (Kennedy 2015, using previous work of
Kalantar-Kennedy and Breuillard-KK-Ozawa)
A discrete group G is C˚-simple, i.e. C˚redpGq is simple, if and only if it
does not have any confined, amenable subgroups.

Confined subgroups

Group theoretic generalisation of non-trivial normal subgroups.

Formally: H ď G such that its orbit closure in the Chabauty
space CpGq does not contain the trivial subgroup.

More combinatorially: H ď G for which there is a finite set
F Ď Gzteu such that for all g P G we have gHg´1 X F ‰ H.

Key insight from Kalantar-Kennedy: C˚-simplicity of G is related to
the dynamics on the Furstenberg boundary BFG.
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Short history of the Furstenberg boundary

Furstenberg 1970’s: introduced universal minimal, strongly
proximal, compact G-space BFG.

For simple Lie groups BFG “ G{B for B ď G Borel.
For discrete groups BFG is extremally disconnected.

Hamana 1980’s: Studied injective hull of G-operator systems.
Observes equality of IGpCq and CpBFGq.

Key: universality/injectivity + rigidity/essentiality combined.
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Proving C˚-simplicity à la Kalantar-Kennedy

Key: classification of equivariant ucp maps C˚redpGq Ñ CpBFGq.

Key example given by the natural trace

τ : C˚redpGq Ñ C : τpugq “

#

1 if g “ e

0 if g ‰ e .

Strategy
‚ τ is faithful (i.e. τpx˚xq “ 0 implies x “ 0) and a

*-homomorphism is faithful if and only if it is injective.
‚ @ C˚redpGq� A there is an equivariant ucp map A Ñ CpBFGq.
‚ D! C˚redpGq Ñ CpBFGq equivariant ucp map, namely τ .
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Key: classification of equivariant ucp maps C˚redpGq Ñ CpBFGq.
Key example given by the natural trace

τ : C˚redpGq Ñ C : τpugq “

#

1 if g “ e

0 if g ‰ e .

Strategy
‚ τ is faithful (i.e. τpx˚xq “ 0 implies x “ 0) and a

*-homomorphism is faithful if and only if it is injective.
‚ @ C˚redpGq� A there is an equivariant ucp map A Ñ CpBFGq.

‚ D! C˚redpGq Ñ CpBFGq equivariant ucp map, namely τ .



Proving C˚-simplicity à la Kalantar-Kennedy
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Groupoids

Example
If G ñ X is an action of a group on a topological space, then its
transformation groupoid G ˙ X replaces the quotient X{G.

G ˙ X “sets G ˆ X with partially defined

multiplication pg, hxqph, xq “ pgh, xq.

Definition
A groupoid is a small category in which all morphisms are invertible.

Source and range maps s, r : G Ñ Gp0q such that

g ¨ h is defined if and only if spgq “ rphq .
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Topological groupoids

Assumptions for the definition of groupoid C˚-algebras

Necessary for C˚-algebras:
locally compact Hausdor� space of units.

Assumed here and realistic:
Étale, i.e. the maps s, r are local homeomorphisms.

For the purpose of a simple presentation:
Ample, i.e. G has a basis of compact open subsets.

Example

‚ G ˙ X for a discrete group G, acting on a

totally disconnected,

locally compact Hausdor� space X .

‚ The restrictions pG ˙ Xq|U to open subsets and quotients with
open kernel.
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Groupoid C*-algebras

Definition
G topological groupoid:

B Ď G is a bisection if s|B und r|B are injective.

G ample:
ΓcomppGq *-semigroup of compact, open bisections.

B ¨ C “ tg ¨ h | g P B, h P C, spgq “ rphqu ,

B˚ “ tg´1 | g P Bu .

CG “ CrΓcomppGqs groupoid algebra.

C˚redpGq “ CG}¨} reduced groupoid C˚-algebra.
Closure in a suitable regular representation.

G étale groupoid: replace CrΓcomppGqs by suitable function algebra.
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Simple groupoid C*-algebras: a chronology

Problem
Characterise étale groupoids whose groupoid C˚-algebra is simple.

‚ Fack-Skandalis 1982, Renault 1991
Principal amenable groupoids, such as foliation groupoids

‚ Archbold-Spielberg 1993
Transformation groupoids of abelian groups

‚ Brown-Clark-Farthing-Sims 2014
Amenable Hausdor� groupoids

‚ Kawabe 2017
General transformation groupoids

‚ Borys 2019
Simplicity results for Hausdor� groupoids with compact unit space

‚ Kwaśniewski-Meyer 2019
Amenable groupoids
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‚ Kwaśniewski-Meyer 2019
Amenable groupoids



Simple groupoid C*-algebras: a chronology

Problem
Characterise étale groupoids whose groupoid C˚-algebra is simple.

‚ Fack-Skandalis 1982, Renault 1991
Principal amenable groupoids, such as foliation groupoids

‚ Archbold-Spielberg 1993
Transformation groupoids of abelian groups

‚ Brown-Clark-Farthing-Sims 2014
Amenable Hausdor� groupoids

‚ Kawabe 2017
General transformation groupoids

‚ Borys 2019
Simplicity results for Hausdor� groupoids with compact unit space
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Kawabe: C˚-simplicity techniques in dynamics

Studies G ñ X for countable G and compact X .

CpXq ¸ G is simple if and only if G ñ X is minimal and
CpXq Ď CpXq ¸ G has the ideal intersection property.

Hamana-type boundary replaces Furstenberg boundary:
BFpG ñ Xq “ spec IGpCpXqq.

Theorem (Kawabe 2017)
Let X be a compact G-space. Then CpXq Ď CpXq ¸ G has the
intersection property if and only if every G-invariant closed subset of
tpH, xq P CpGq ˆ X | H ď Gxu contains teu ˆ X.
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Borys: a Hamana boundary for groupoids

Studies étale Hausdor� groupoids with compact space of units.

Hamana boundary in the category of fibred G-operator systems
V Ñ Gp0q replaces Furstenberg boundary:
BFpGq “ spec I �b. G-op. sys.pCpXqq.
Introduces sections of isotropy groups, living in

Ů

xPGp0q CpGx
x q.

Theorem (Borys 2020)
Let G be a Hausdor� étale groupoid with compact unit space that does
not have confined amenable sections of isotropy groups , and in which
the orbit of any unit in the groupoid contains at least two points. Then
CpGp0qq Ď C˚redpGq has the intersection property.
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Characterising C˚-simplicity: Hausdor� groupoids

Theorem (Kennedy-Kim-Li-R-Ursu 2021)
Let G be an étale Hausdor� groupoid with locally compact space of
units. Then the following are equivalent:
‚ C0pGp0qq Ď C˚redpGq has the ideal intersection property.
‚ G has no confined, amenable sections of isotropy groups.

Key new ideas

‚ Introduction of a new notion of groupoid C˚-algebras, in order
to obtain a Hamana boundary with su�iciently strong
universal property.

‚ Compactification of unit space of a groupoid in order apply
C*-simplicity techniques also in the locally compact case.
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Key new ideas
‚ Introduction of a new notion of groupoid C˚-algebras, in order

to obtain a Hamana boundary with su�iciently strong
universal property.

‚ Compactification of unit space of a groupoid in order apply
C*-simplicity techniques also in the locally compact case.



A new notion of groupoid C*-algebras

Before KKLRU
Groupoids acting on bundles of C˚-algebras (or operator spaces)
over the space of units V Ñ Gp0q.

Problem
This usually excludes the groupoid C˚-algebra C˚redpGq.
Solution
Groupoid actions have to be described by actions of the
pseudogroup of open bisections ΓpGq.
We turn C˚maxpGq and its quotients into G-C˚-algebras, generalising
inner actions of groups a ÞÑ ugau˚g .
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Compactification of groupoids

Kalantar-Scarparo 2021: use compactification in relation to
Furstenberg/Hamana boundary for group actions.

Idea
Introduce an isolated unit to compactify the unit space.

Important
Well-developed notion of confinedness to pass between
compactification and original space.

Formally
We apply the Alexandrov compactification to the unit space
G` “ G Y t8u Ě Gp0q Y t8u “ pGp0qq`.
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Non-Hausdor� groupoids: a motivating example

Non-Hausdor� groupoids pose additional challenges, but arrise
naturally.

Example
Let G be a discrete group and G ñ X an action. The groupoid of
germs G “ pG ˙ Xq{IsopG ˙ Xq˝ is Hausdor� if and only if points
stabilisers equal neighbourhood stabilisers.

Example
The action of Thompson’s group T on a totally disconnected cover
of S1 gives rise to a non-Hausdor� groupoid of germs.
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Kwaśniewski-Meyer: essential groupoid C˚-algebras

Example (Khoshkam-Skandalis 2002)
Consider G “ r0, 1s ˆ F2{„ “set t0u ˆ F2 Y p0, 1s where
pt, gq „ pt, hq if t ‰ 0. Then C˚redpGq “ C˚redpF2q ‘ Cpr0, 1sq.

‚ Ideal intersection properties can fail for topologically free
non-Hausdor� groupoids.

‚ Replacement for reduced groupoid C˚-algebra needed.

Proposition / Definition (Kwaśniewski-Meyer 2021)
Let G be an étale groupoid with locally compact Hausdor� space of
units. Restriction of functions from G to Gp0q extends to a generalised
conditional expectation Eess : C˚maxpGq Ñ B8

M pGp0qq “ IpC0pGp0qqq.

The essential groupoid C˚-algebra of G is

C˚esspGq “ C˚maxpGq{ta | Eesspa˚aq “ 0u .
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Let G be an étale groupoid with locally compact Hausdor� space of
units. Restriction of functions from G to Gp0q extends to a generalised
conditional expectation Eess : C˚maxpGq Ñ B8

M pGp0qq “ IpC0pGp0qqq.

The essential groupoid C˚-algebra of G is

C˚esspGq “ C˚maxpGq{ta | Eesspa˚aq “ 0u .
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Characterising C˚-simplicity: non-Hausdor� groupoids

Theorem (KKLRU 2021)
Let G be an étale Hausdor� groupoid with locally compact

Hausdor�

space of units.

Assume that G is Hausdor� or σ-compact.

Then the following are equivalent:
‚ C0pGp0qq Ď C˚redpGq has the ideal intersection property.
‚ G has no

essentially

confined, amenable sections of isotropy
groups.

Surprise that non-Hausdor� case can be made to fit by carefully
adapting notions.

Key new ideas / ingredients
‚ Inclusion C˚esspGq Ď C˚esspG ˙ BFGq. Needs extra assumptions.
‚ Hausdor�ification of groupoids.
‚ C˚esspG ˙ BFGq is isomorphic to a reduced groupoid C˚-algebra.
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Examples of relative Powers averaging
Exploiting the full strength of our characterisation, strong structural
results can be derived from simplicity.

Theorem (KKLRU 2021)
Let G be a countable discrete group and G ñ X a boundary action. Let
G “ pG ˙ Xq{IsopG ˙ Xq˝ be its groupoid of germs and denote by
π : G Ñ C˚esspGq the associated unitary representation of G.

Then for every a P C˚esspGq with Epaq “ 0, there is a sequence of
elements g1, g2, . . . from G such that

1
n

n
ÿ

i“1

πpgiqaπpgiq
˚ nÑ8
ÝÑ 0 in norm.

Example
The action of Thompson’s group T on a totally disconnected cover
of S1, gives rise to a unitary representation into the Cuntz algebra
π : TÑ O2 enjoying relative Powers averaging property in the
above sense.
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Proving relative Powers averaging

Theorem (KKLRU 2021)
Let G be a minimal étale groupoid with compact Hausdor� space of
units and S a contractive and covering convex semigroup of generalised
probability measures on G. Then the following statements are
equivalent.
‚ C˚esspGq is simple.
‚ A Ď C˚esspGq is C˚-irreducible for every A supporting S.
‚ Given a P C˚esspG ˙ BFGq with Eesspaq “ 0, we have 0 P

tµ ˚ a | µ P Su.

Kennedy, Haagerup, Amrutam-Ursu: use boundary techniques to
understand dynamics on state spaces of group(oid) C˚-algebras.

Key new ideas
‚ Notion of strongly proximal groupoid actions.
‚ Furstenberg and Hamana boundary constructed and identified.
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