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Simple group C*-algebras

Theorem (Kennedy 2015, using previous work of
Kalantar-Kennedy and Breuillard-KK-Ozawa)

A discrete group G is C*-simple, i.e. C¥, ;(G) is simple, if and only if it
does not have any confined, amenable subgroups.

Confined subgroups

Group theoretic generalisation of non-trivial normal subgroups.

Formally: H < G such that its orbit closure in the Chabauty
space C(G) does not contain the trivial subgroup.

More combinatorially: H < G for which there is a finite set
F < G\{e} such that for all g € G we have gHg™' N F # (.

Key insight from Kalantar-Kennedy: C*-simplicity of G is related to
the dynamics on the Furstenberg boundary JrG.
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Short history of the Furstenberg boundary

Furstenberg 1970’s: introduced universal minimal, strongly
proximal, compact G-space JrG.

For simple Lie groups drG = G/B for B < G Borel.
For discrete groups 0pG is extremally disconnected.

Hamana 1980’s: Studied injective hull of G-operator systems.
Observes equality of I6(C) and C(drG).

Key: universality/injectivity + rigidity/essentiality combined.
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Proving C*-simplicity a la Kalantar-Kennedy

Key: classification of equivariant ucp maps C%,,(G) — C(0rG).

Key example given by the natural trace

1 ifg=e
7:Cha(G) = C:7(uy) =
red( ) (g) {0 |fg;ée
Strategy

7 is faithful (i.e. 7(x*x) = 0 implies x = 0) and a

* VY C!,(G) — Athere is an equivariant ucp map A — C(JrG).
e J1C% (G) — C(0rG) equivariant ucp map, namely 7.
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Groupoids

Example

If G —~ X is an action of a group on a topological space, then its
transformation groupoid G x X replaces the quotient X/G.

G x X =gets G x X with partially defined
multiplication (g, hx)(h, x) = (gh, x).

Definition
A groupoid is a small category in which all morphisms are invertible.

Source and range maps s,r: G 3 G such that

g - his defined if and only if s(g) = r(h).
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Topological groupoids

Assumptions for the definition of groupoid C*-algebras
Necessary for C*-algebras:
locally compact Hausdorff space of units.

Assumed here and realistic:
Etale, i.e. the maps s, r are local homeomorphisms.

For the purpose of a simple presentation:
Ample, i.e. G has a basis of compact open subsets.

Example
® G x X for a discrete group G, acting on a totally disconnected,
locally compact Hausdorff space X.

® The restrictions (G x X)|y to open subsets and quotients with
open kernel.
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Groupoid C*-algebras

Definition
G topological groupoid:
B < G is a bisection if s|g und r| are injective.
G ample:
[comp(G) *-semigroup of compact, open bisections.

B-C={g-h|geB, heC,s(g) =r(h)},
B* ={g"'|geB}.

CG = C[lcomp(G)] groupoid algebra.
Ctq(G) = @”AH reduced groupoid C*-algebra.

red
Closure in a suitable regular representation.

G étale groupoid: replace C[Icomp(G)] by suitable function algebra.
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Problem
Characterise étale groupoids whose groupoid C*-algebra is simple.

Fack-Skandalis 1982, Renault 1991
Principal amenable groupoids, such as foliation groupoids

Archbold-Spielberg 1993

Transformation groupoids of abelian groups
Brown-Clark-Farthing-Sims 2014

Amenable Hausdorff groupoids

Kawabe 2017

General transformation groupoids

Borys 2019

Simplicity results for Hausdorff groupoids with compact unit space

Kwasniewski-Meyer 2019
Amenable groupoids
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Kawabe: C*-simplicity techniques in dynamics

Studies G —~ X for countable G and compact X.

C(X) x Gis simple if and only if G —~ X is minimal and
C(X) < C(X) » G has the ideal intersection property.
Hamana-type boundary replaces Furstenberg boundary:
0r(G —~ X) = specIg(C(X)).

Theorem (Kawabe 2017)

Let X be a compact G-space. Then C(X) < C(X) x G has the
intersection property if and only if every G-invariant closed subset of
{(H,x) € C(G) x X | H < Gy} contains {e} x X.
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Studies étale Hausdorff groupoids with compact space of units.

Hamana boundary in the category of fibred G-operator systems
V — G replaces Furstenberg boundary:

0r(G) = speclfib, g-op. sys. (C(X)).

Introduces sections of isotropy groups, living in | |, .50 C(GX).

Theorem (Borys 2020)

Let G be a Hausdorff étale groupoid with compact unit space that does
not have confined amenable sections of isotropy groups

. Then
C(G©) < C*,(G) has the intersection property.
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Characterising C*-simplicity: Hausdorff groupoids

Theorem (Kennedy-Kim-Li-R-Ursu 2021)

Let G be an étale Hausdorff groupoid with locally compact space of
units. Then the following are equivalent:
* Co(G®) = C*4(G) has the ideal intersection property.

® G has no confined, amenable sections of isotropy groups.

Key new ideas

® Introduction of a new notion of groupoid C*-algebras, in order
to obtain a Hamana boundary with sufficiently strong
universal property.

® Compactification of unit space of a groupoid in order apply
C*-simplicity techniques also in the locally compact case.
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A new notion of groupoid C*-algebras

Before KKLRU

Groupoids acting on bundles of C*-algebras (or operator spaces)
over the space of units V — G,

Problem

This usually excludes the groupoid C*-algebra C¥;(G).
Solution

Groupoid actions have to be described by actions of the

pseudogroup of open bisections '(G).
We turn C_ (G) and its quotients into G-C*-algebras, generalising

. . *
inner actions of groups a — ugauj.



Compactification of groupoids

Kalantar-Scarparo 2021: use compactification in relation to
Furstenberg/Hamana boundary for group actions.



Compactification of groupoids

Kalantar-Scarparo 2021: use compactification in relation to
Furstenberg/Hamana boundary for group actions.

Idea
Introduce an isolated unit to compactify the unit space.



Compactification of groupoids

Kalantar-Scarparo 2021: use compactification in relation to
Furstenberg/Hamana boundary for group actions.

Idea
Introduce an isolated unit to compactify the unit space.

Important
Well-developed notion of confinedness to pass between
compactification and original space.



Compactification of groupoids

Kalantar-Scarparo 2021: use compactification in relation to
Furstenberg/Hamana boundary for group actions.

Idea

Introduce an isolated unit to compactify the unit space.
Important

Well-developed notion of confinedness to pass between
compactification and original space.

Formally

We apply the Alexandrov compactification to the unit space

G+ =G u{n} 260 U {w} = (GO)*.
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Non-Hausdorff groupoids: a motivating example

Non-Hausdorff groupoids pose additional challenges, but arrise
naturally.

Example

Let G be a discrete group and G —~ X an action. The groupoid of
germs G = (G x X)/Iso(G x X)° is Hausdorff if and only if points
stabilisers equal neighbourhood stabilisers.

Example

The action of Thompson’s group T on a totally disconnected cover
of S' gives rise to a non-Hausdorff groupoid of germs.
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Example (Khoshkam-Skandalis 2002)
Consider G = [0, 1] x Fy/~ =4 {0} x F U (0, 1] where
(t,g) ~ (t,h)if t # 0. Then CX ,(G) = C¥,(F,) ® C([0, 1]).
® |deal intersection properties can fail for topologically free
non-Hausdorff groupoids.

® Replacement for reduced groupoid C*-algebra needed.

Proposition / Definition (Kwasniewski-Meyer 2021)

Let G be an étale groupoid with locally compact Hausdorff space of
units. Restriction of functions from G to G\) extends to a generalised
conditional expectation Eess : iy (G) — 57 (G®) =1(Co(G)).
The essential groupoid C*-algebra of G is

Cess(9) = Crax(9)/{a | Eess(a*a) = 0}.
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Theorem (KKLRU 2021)
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Characterising C*-simplicity: non-Hausdorff groupoids

Theorem (KKLRU 2021)
Let G be an étale Hausderff groupoid with locally compact Hausdorff

space of units. Assume that G is Hausdorff or o-compact.
Then the following are equivalent:
* Co(G©) < C*,(G) has the ideal intersection property.

® G has no essentially confined, amenable sections of isotropy
groups.

Surprise that non-Hausdorff case can be made to fit by carefully
adapting notions.
Key new ideas / ingredients

® Inclusion Ci(G) < Ck (G x OrG). Needs extra assumptions.
® Hausdorffification of groupoids.

* Ci (G x 0pG) is isomorphic to a reduced groupoid C*-algebra.
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Examples of relative Powers averaging

Exploiting the full strength of our characterisation, strong structural
results can be derived from simplicity.

Theorem (KKLRU 2021)
Let G be a countable discrete group and G —~ X a boundary action. Let
G = (G x X)/Iso(G x X)° be its groupoid of germs and denote by

7 G — Ck(G) the associated unitary representation of G.

*

Then for every a € C¥(G) with E(a) = 0, there is a sequence of
elements g, g, ... from G such that

n
%Z m(gi)ar(g)* =30 in norm.

i=1
Example
The action of Thompson’s group T on a totally disconnected cover
of S, gives rise to a unitary representation into the Cuntz algebra
7 : T — O; enjoying relative Powers averaging property in the
above sense.



Proving relative Powers averaging

Theorem (KKLRU 2021)

Let G be a minimal étale groupoid with compact Hausdorff space of
units and S a contractive and covering convex semigroup of generalised
probability measures on G. Then the following statements are
equivalent.
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* AC Ci (G) is C*-irreducible for every A supporting S.
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Proving relative Powers averaging

Theorem (KKLRU 2021)

Let G be a minimal étale groupoid with compact Hausdorff space of
units and S a contractive and covering convex semigroup of generalised
probability measures on G. Then the following statements are
equivalent.

* Cx.(9) is simple.
* AC Ci (G) is C*-irreducible for every A supporting S.
® Given a € C} (G x 0pG) with Eeis(a) = 0, we have 0 €

{n=alpe st
Kennedy, Haagerup, Amrutam-Ursu: use boundary techniques to
understand dynamics on state spaces of group(oid) C*-algebras.
Key new ideas

® Notion of strongly proximal groupoid actions.
® Furstenberg and Hamana boundary constructed and identified.
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Matthew Kennedy, Se-Jin Kim, Xin Li, Sven Raum, Dan Ursu
arXiv:2107.03980

Thanks for your attention!
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